
Journal of

Mechanics of
Materials and Structures

WAVE PROPAGATION IN CARBON NANOTUBES:
NONLOCAL ELASTICITY-INDUCED STIFFNESS

AND VELOCITY ENHANCEMENT EFFECTS

C. W. Lim and Y. Yang

Volume 5, No. 3 March 2010

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 5, No. 3, 2010

WAVE PROPAGATION IN CARBON NANOTUBES:
NONLOCAL ELASTICITY-INDUCED STIFFNESS

AND VELOCITY ENHANCEMENT EFFECTS

C. W. LIM AND Y. YANG

We establish the physics and understanding of nonlocal nanoscale wave propagation in carbon nanotubes
(CNTs) based on nonlocal elastic stress field theory. This is done by developing an analytical nonlocal
nanotube model based on the variational principle for wave propagation in CNTs. Specifically, we
successfully derive benchmark governing equations of motion for analyzing wave propagation based on
an analytical nonlocal shear deformable model. The physical insights of the analytical nonlocal stress
model are presented through examples. Analytical solutions with significant observation of wave propa-
gation have been predicted and the prediction compares favorably with molecular dynamic simulations.
Qualitative comparisons with other non-nonlocal approaches, including the strain gradients model, the
couple stress model and experiments, justify the stiffness enhancement conclusion as predicted by the
new nonlocal stress model. New dispersion and spectrum relations derived using this analytical nonlocal
model bring an important focus onto the critical wavenumber: stiffness of CNTs and wave propagation
are enhanced below the critical wavenumber, while beyond that a sharp decrease in wave propagation is
observed. The physics of nanoscale wave propagation in nanotubes are further illustrated by relating the
nanoscale and the phase velocity ratio.

1. Introduction

The discovery of carbon nanotubes (CNTs) in the early 1990s [Iijima 1991] created enormous interest
among physicists, chemists and engineers, thanks to their unusual mechanical, electrical, electronic,
chemical and thermal conductivity properties [Iijima 1991; Treacy et al. 1996; Ajayan and Zhou 2001;
Ball 2001; Baughman et al. 2002].

There are many cross disciplinary research works in analytical and computational approaches for
CNTs which consider their physical, electrical, chemical and engineering characteristics. There have
been comparatively fewer experimental studies on CNTs because at such length scale it is extremely
difficult to control, operate precisely and test the specimen. Furthermore, many experimental reports dis-
agree considerably in the measurement of various properties under slightly different test environment. To
complement such shortages, a number of continuum and discrete models for CNTs have been proposed.

Molecular dynamic (MD) simulation is the most common computational approach for analyzing CNTs.
Using this method, every molecule is single-walled or double-walled CNTs is modeled as a discrete
point mass the web of thousands or millions of point masses are constituted in a structured configuration
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through intermolecular bonds and forces [Brenner et al. 2002; Liew et al. 2004a; Liew et al. 2004b; Liew
et al. 2005; Kitipornchai et al. 2005]. Although MD has been successful to a certain extent and in a
number of cases of study, it is bounded by computational, memory and other hardware constraints. This
approach has been restrictive in many cases when very many molecules are required in a nanostructural
model. Any premature breakdown of computation due to either algorithmic flaw itself or external power
interruption may require the jobs to be restarted or repeated. Hence, the MD analysis has been common
for moderate configurations of CNTs and restrictive for complicated CNTs.

To complement MD simulations, continuum elastic models of CNTs have been developed and applied
in a number of studies since the middle of 1990s. The early models involve the classical beam, tube or
shell models coupled with appropriate molecular potentials to study the mechanical characteristics such
as static bending and buckling [Yakobson et al. 1996; Ru 2000a; Ru 2000b; Parnes and Chiskis 2002; Han
et al. 2005] and dynamic vibration and wave propagation [Zhang et al. 2005; Yoon et al. 2005; Natsuki
et al. 2005; Wang et al. 2006a; Wang and Varadan 2006] of CNTs. The study of wave propagation
in CNTs has attracted intensive attention in research because many crucial physical properties such as
electrical conductance, optical transition and some dynamic behavior of CNTs are very sensitive to the
presence of wave [Zhang et al. 2005]. Among the early studies, the continuum shell model was developed
by Natsuki [Natsuki et al. 2005] to predict wave propagation in single-walled CNT embedded in an elastic
medium. [Wang and Varadan 2006] applied the elastic beam theory to study the wave characteristics of
single-walled and double-walled CNTs base on both thin and thick beam models.

Another continuum model applicable to the analysis of CNTs is the nonlocal elasticity stress field
theory which was first proposed in [Eringen and Edelen 1972; Eringen 1972a; 1972b; 1983; 2002].
According to this theory, the stress at a point within a continuous domain with nanoscale effects is
dependent not only on the strain at that point but it is also significantly influenced by the stress of all points
in the domain through a nonlocal modulus in an integral sense. With such consideration, the nonlocal
forces at long-range between molecules and lattice lead to the nonlocal stress-strain equation with higher-
order strain gradients. Because of its simplicity and superiority, the analysis of wave propagation in CNTs
using the nonlocal stress approach was recently reported [Wang and Hu 2005; Wang 2005; Wang et al.
2006c; Lu et al. 2007; Heireche et al. 2008; Liew et al. 2008]. In particular, [Lu et al. 2007] derived the
equation of motion for a nonlocal Timoshenko beam to investigate the wave propagation characteristics
in single-walled and double-walled CNTs. Other nonlocal shell models were also employed for further
research in a number of studies [Wang 2006; Wang et al. 2006b; Wang and Varadan 2007; Xie et al.
2007a; Xie et al. 2007b; Wang et al. 2008; Hu et al. 2008].

Virtually all published works [Wang and Hu 2005; Wang 2005; Wang et al. 2006c; Lu et al. 2007;
Heireche et al. 2008; Liew et al. 2008; Wang 2006; Wang et al. 2006b; Wang and Varadan 2007; Xie
et al. 2007a; Xie et al. 2007b; Wang et al. 2008; Hu et al. 2008] in wave propagation using the nonlocal
stress approach regarded the nanoscale to only affect the constitutive relation for nonlocal stress and strain.
Without rigorous validation, the classical equilibrium equations or equations of motion for beam and shell
models were adopted completely for all nonlocal static and dynamic problems. Such directly extended
nonlocal models, termed the partial nonlocal stress models, results in two fundamental suspicions that:
(a) in many cases of study the nanoscale effect is surprisingly missing in the ultimate analytical solution,
for instance the bending of a cantilever nanotube with point force at its end; and (b) the no-existence of
any higher-order boundary conditions associated with the higher-order differential equation of motion
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[Lim 2008; 2009; 2010]. The second statement above simply implies that the partial nonlocal stress
models derives a higher-order equation of motion but, unfortunately, without the corresponding higher-
order boundary conditions which is obviously inconsistent. In [Lim 2008; 2009; 2010] we successfully
established a new analytical nonlocal stress model and proved that stiffness of a nanobeam is strength-
ened with the presence of a nonlocal nanoscale. By deriving the exact nonlocal strain energy density,
higher-order governing differential equation with the corresponding higher-order boundary conditions
was derived via the variational principle. New predictions for bending of nanobeams were presented and
discussed.

Applying the identical nonlocal stress model but without making any assumptions on the static and
dynamic conditions a priori, a new higher-order dynamics differential equation of motion are derived via
exact variational principle here. Consistent higher-order boundary conditions and insightful predictions
using this new model are presented. Implications of the defective formulation and intriguing conclusions
in wave propagation in CNTs using the partial nonlocal stress models are also discussed in detail. The
CNTs considered here are shear deformable using the thick-walled tube model in order to better reflect
the nature of CNTs. Benchmarked analytical dispersion relations are derived and the contribution of
nonlocal nanoscale in the governing equation of motion is highlighted. Qualitative comparisons [Nix
and Gao 1998; Lam et al. 2003; Park and Hao 2006; 2008; Ma et al. 2008; Li and Chou 2004; Was
and Foecke 1996; McFarland and Colton 2005] with other non-nonlocal approaches towards the end
of the paper including molecular dynamics simulation, strain gradients model, couple stress model and
experiments justify that the stiffness enhancement conclusion as predicted by the new nonlocal stress
model.

2. Nonlocal elasticity stress field theory and nonlocal stress models

Basic nonlocal constitutive equations and nonlocal stress. The nonlocal elastic stress field theory first
proposed by Eringen concerns the state of stress at a reference point r ′ within a domain. The nonlocal
stress depends not only on the strain at that location but also on the strains at all other points within the
domain in a diminishing influence away from the central location. This phenomenon was first observed
in atomic theory of lattice dynamics and also from experiment observation on phonon dispersion. In the
absence of the nonlocal effects of strains at points r 6= r ′, the nonlocal field theory reverts to the local
or classical elasticity theory [Eringen 1983; 2002]. For homogeneous and isotropic solids with nonlocal
effects, the nonlocal elastic field theory is governed by

σi j,i + ρ( f j − ü j )= 0, σi j (r)=
∫

V
α(|r ′− r|, τ )σ ′i j (r

′) dV (r ′), (1)

σ ′i j (r
′)= λekk(r ′)δi j + 2µei j (r ′), ei j (r ′)=

1
2

(
∂u j (r ′)
∂ r ′i

+
∂ui (r ′)
∂ r ′j

)
, (2)

where σi j (r) is the nonlocal stress tensor, ρ the mass density, f j the body force density, and u j the
displacement vector at a reference point r in the body, at time t , while ü j , the second derivative of u j

with respect to time t , is the acceleration vector at r . The indices i, j run over the sets {1}, {1, 2} or
{1, 2, 3} depending on the dimension.
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Figure 1. Cylindrical nanotube and coordinate system.

Equation (2)1 shows the classical constitutive relation of Hooke’s low where the classical or local
stress tensor at r ′, denoted as σ ′i j (r

′), is related to the linear strain tensor ei j (r ′) at any point r ′ in the
body at time t , with λ and µ being Lamé constants, and δi j being Kronecker delta. It is clear that the
classical or local constitutive relation (2)1 has to be replaced by the nonlocal constitutive relative (1)2,
according to which σi j (r) at r depends not only on the classical local stress σ ′i j (r

′) at that particular
point but also on a nonlocal modulus α(|r ′− r|, τ ), where |r ′− r| is the Euclidean distance between r ′

and r and τ is a dimensionless length scale defined by

τ =
e0a
L
, (3)

a being the internal characteristic length such that the lattice parameter, C-C bond length, or granular
distance, L an external characteristic length such as the crack length or wavelength, and e0 is a material
constant obtainable experimentally or through other molecular or continuum models.

Due to the difficulty in deriving an analytical solution, it is possible in an approximate sense to convert
the integrodifferential equation (1)2 to a general partial differential equation [Eringen 1983; 2002]. Fur-
thermore, when only the uniaxial stress and strain are considered for a nanotube, the classical Hooke’s
law for uniaxial stress in one dimension is replaced by a nonlocal stress relation (loc. cit.) as

σ(x)− (e0a)2
d2σ(x)

dx2 = Eε(x), (4)

where E is the Young’s modulus and σ(x) and ε(x) are the normal stress and strain in the axial direction
of the nonlocal nanotube. For limiting nanoscale e0a→ 0, the nonlocal effect can be neglected and the
nonlocal stress σ approaches that of the corresponding classical stress σ ′ = Eε(x). It is noted that (4) is
a one-dimensional ordinary differential equation.

Figure 1 shows the shear deformable nanotube in Cartesian coordinate while x and z are the axial and
transverse coordinates respectively. According to the classical elastic theory for a long tube, the bending
moment Mxx in the transverse direction and strain are denoted by

Mxx =

∫
zσ d A, ε =−z

dϕ
dx
, (5)

where z is the normal coordinate measured from the midplane, ϕ(x, t) is the rotation angle of cross
section at point x and time t , and A is the cross sectional area. Multiplying (4) by z, integrating over the
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ρA
d2w

dt2

Qc Qc+ Q′c dx

dx

Mc Mc+M ′c dx
ρ I

d2ϕ

dt2

Figure 2. Geometry of a nanobeam, coordinate system and sign convention.

cross section and substituting Equations (5) yield the nonlocal bending moment relation as

Mxx − (e0a)2
∂2 Mxx

∂x2 =−E I
∂ϕ

∂x
(6)

while I =
∫

z2 d A is the second moment of area over the cross section.
For simplicity and standardization, the following dimensionless terms

x̄ =
x
L
, z̄ =

z
L

(7)

are introduced, where L can be taken as the length of the nanotube. The dimensionless solutions of (4)
and (6) can be expressed as [Lim 2009; 2010]

σ̄xx =

∞∑
n=1

τ 2(n−1)ε〈2(n−1)〉
xx =−z̄

∞∑
n=1

τ 2(n−1)ϕ〈2n−1〉, M xx =−

∞∑
n=1

τ 2(n−1)ϕ〈2n−1〉, (8)

where σ̄xx = σxx/E , M xx = Mxx L/E I and 〈 〉 denotes partial differentiation with respect to x̄ . Therefore,
the exact solution for the nonlocal constitutive equation of nanotube described above are expressed in
infinite series in terms of strain gradients for nonlocal stress and displacement gradients for nonlocal
moment in (8).

Dynamic equations of motion. For a thick nanotube represented by the classical shear deformable model,
the effect of shear and rotation on the nanotube cross section is significant and they should be considered.
The classical dynamic governing equations of motion for transverse motion and rotational motion are
respectively [Hagedorn and Dasgupta 2007]

d Qc

dx
= ρA

d2w

dt2 ,
d Mc

dx
− Qc =−ρ I

d2ϕ

dt2 , (9)

where subscript ‘c’ represents classical terms, ρ, Qc, Mc, w(x, t) are the mass density, shear force on
the nanotube cross section, bending moment and deflection of the nanotube in the z-direction as shown
in Figure 2.
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The classical dimensionless expressions of (9) are

E I
L3

d Qc

dx̄
=
ρAL
T 2

d2w

dt2 , Qc−
d Mc

dx̄
=
ρL2

ET 2

d2ϕ

dt2 , (10)

where T is the period of vibration, t = t/T is dimensionless time, Mc = Mc L/E I is the dimensionless
classical bending moment and Qc = Qc L2/E I is the dimensionless classical shear force on the cross
section. In the presence of a nonlocal elastic stress field, it has been a common practice to directly replace
the classical Mc in the equation of motion above and in Figure 1 with the nonlocal moment M xx defined
in (8) [Wang and Hu 2005; Wang 2005; Wang et al. 2006c; Lu et al. 2007; Heireche et al. 2008; Liew et al.
2008; Wang 2006; Wang et al. 2006b; Wang and Varadan 2007; Xie et al. 2007a; Xie et al. 2007b; Wang
et al. 2008; Hu et al. 2008; Lim and Wang 2007]. Such models are termed the partial nonlocal models.
For bending of a nanotube, it has been shown through a rigorous derivation via the variational principle
that such direct replacement in the partial nonlocal derivation is not only unjustified but also results in
intriguing solutions with respect to physical intuition, modeling and numerical simulation using other
non-nonlocal approaches such as strain gradient, coupled stress, molecular dynamic simulation, etc., as
well as experiments considering nanoscale effects. It will be verified herein that this statement can also
extended to wave propagation in shear deformable carbon nanotubes.

Unlike virtually all previous analyses using nonlocal stress modeling, a true nonlocal nanotube requires
that the equilibrium conditions and dynamic equations of motion should be consistently derived through
consideration of a nonlocal stress field. For a thick nanotube, the correct governing equations can be
derived from the virtual work variational principle by considering strain energy and kinetic energy. The
strain energy density of a nanotube consists of two parts: the normal deformation strain energy density
[Lim 2009; 2010]

un = u1+ u2+ u3, (11)

where

u1 =
1
2 Eε2

xx , u2 =
1
2 E

∞∑
n=1
(−1)n+1τ 2n(ε〈n〉xx )

2
, u3 = E

∞∑
n=1

(
τ 2(n+1)

n∑
m=1

(−1)m+1ε〈m〉xx ε
〈2(n+1)−m〉
xx

)
, (12)

and the shear deformation strain energy on the nanotube cross section

us =
1
2 Gγ 2

xz, (13)

where G is the shear modulus and γxz is the shear strain when γxz = ∂w/∂ x̄−ϕ. Details of the derivation
of un are given in the Appendix. The total strain energy of the deformed nanotube with volume V is

U =
∫
v

(un + us) dV . (14)

The kinetic energy K of a nanotube is

K =
ρ

2

∫ L

0

(
A
(dw

dt

)2
+ I

(dϕ
dt

)2
)

dx=
ρAL3

2T 2

∫ 1

0

((dw
dt

)2
+

I
AL2

(dϕ
dt

)2
)

dx̄ . (15)
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The first term in the integral contributes to the translational kinetic energy while the second term con-
tributes to the rotational kinetic energy. Define the total energy functional F as

F =U − K . (16)

Substituting Equations (11)–(15) into (16) yields the variation of the energy functional F as

δF = δ(U − K )

= δ

∫ 1

0

∫
V

(
1
2 Eε2

x +
1
2 E

∞∑
n=1
(−1)n+1τ 2n(ε〈n〉x )

2

+ E
∞∑

n=1

(
τ 2(n+1)

n∑
m=1

(−1)m+1ε〈m〉x ε〈2(n+1)−m〉
x

)
+

1
2 Gγ 2

xz

)
dV dt

−δ
ρAL3

2T 2

∫ 1

0

∫ 1

0

((
∂w
∂t

)2
+

I
AL2

(
∂ϕ
∂t

)2
)

dx̄ dt

= δ

∫ 1

0

∫
V

(
−

1
2 Ez

(
∂ϕ
∂ x̄

)2
−

1
2 Ez

∞∑
n=1

(−1)n+1τ 2n(ϕ〈n+1〉)
2

+ Ez2
∞∑

n=1

(
τ 2(n+1)

n∑
m=1

(−1)m+1ϕ〈m+1〉ϕ〈2n−m+1〉
)
+

1
2 G
(
∂w
∂ x̄
−ϕ

)2
)

dV dt

−δ
ρAL3

2T 2

∫ 1

0

∫ 1

0

((
∂w
∂t

)2
+

I
AL2

(
∂ϕ
∂t

)2
)

dx̄ dt

=

∫ 1

0

∫
V

(
−Ezϕ〈1〉δϕ〈1〉− Ez

∞∑
n=1

(−1)n+1τ 2nϕ〈n+1〉 δϕ〈n+1〉

+ Ez2
∞∑

n=1

(
τ 2(n+1)

n∑
m=1

(−1)m+1(δϕ〈m+1〉ϕ〈2n−m+1〉
+ϕ〈m+1〉 δϕ〈2n−m+1〉))

+
1
2 G
(
2w〈1〉 δw〈1〉− 2w〈1〉δϕ− 2ϕ δw〈1〉+ 2ϕ δϕ

))
dV dt

−
ρAL3

2T 2

∫ 1

0

∫ 1

0

(
2ẅ δẅ+ 2I

AL2 ϕ̈ δϕ̈
)

dx̄ dt . (17)

Integrating (17) by parts for each term in the integrand, we obtain

δF = E I
L

∫ 1

0

∫ 1

0

(
AGκL2

E I

(
∂w
∂ x̄
−ϕ

)
−

∞∑
n=1
(2n− 3)τ 2(n−1)ϕ〈2n〉

−
ρL2

ET 2
∂2ϕ
∂t2

)
δϕ dx̄ dt

+

∫ 1

0

∫ 1

0

(
AGκL

(
∂2w
∂ x̄2 −

∂ϕ
∂ x̄

)
−
ρAL3

T 2
∂2w
∂t2

)
δw dx̄ dt

+
E I
L
[ϕ δϕ]10+

E I
L

∞∑
n=1

(
(−1)n+1τ 2n

n+1∑
m=0

ϕ〈n+1+m〉 δϕ〈n−m〉
∣∣∣1
0

)
+

E I
L

∞∑
n=1

τ 2(n+1)
n∑

m=1

(
2n+1−m∑

i=0
(−1)m+i+1ϕ〈2+m+i〉δϕ〈2n+1−m−i〉

∣∣∣1
0

+

m−1∑
i=0

(−1)m+i+1ϕ〈2n+2−m+i〉 δϕ〈1+m−i〉
∣∣∣1
0

)
, (18)
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Using the definition of nonlocal bending moment in (8)2, the variation of the energy functional in (18)
can be rewritten as

δF =
∫ 1

0

∫ 1

0

(
E I
L

(
Q−M 〈1〉xx +2

∞∑
n=1

τ 2n M 〈2n+1〉
xx −

ρL2

ET 2
∂2ϕ
∂t2

)
δϕ+

(E I
L
∂Q
∂ x̄
−
ρAL3

T 2
∂2w
∂t2

)
δw

)
dx̄ dt

+
E I
L

[(
Q−M 〈1〉xx − 2

∞∑
n=1

τ 2n M 〈2n+1〉
xx

)
δϕ+

(
−M xx + 2

∞∑
n=1

τ 2n M 〈2n〉
xx

)
δϕ〈1〉

−

(
τ 2 M 〈1〉xx + 2

∞∑
n=1

τ 2(n+1)M 〈2n+1〉
xx

)
δϕ〈2〉+

(
2τ 4

∞∑
n=1

τ 2(n−1)M 〈2n〉
xx

)
δϕ〈3〉

−

(
τ 4 M 〈1〉xx + 2

∞∑
n=1
τ 2(n+2)M 〈2n+1〉

xx

)
δϕ〈4〉+

(
τ 6 M 〈2〉xx + 2

∞∑
n=1
τ 2(n+3)M 〈2(n+1)〉

xx

)
δϕ〈5〉 · · ·

]1

0
, (19)

where

Q =
AGκL2

E I

(
∂w
∂ x̄
−ϕ

)
(20)

is the dimensionless form of the shear force Q =
∫

A Gγxz d A= AGκ(∂w/∂x−ϕ) on the cross section of
the nanotube [Hagedorn and Dasgupta 2007], and κ is the shear correction factor due to shear deformation
in nanotube.

The variational principle requires the variation of energy function to be zero at an extremum:

δF = δ(U − K )= 0. (21)

Because w, ϕ, ϕ〈1〉, ϕ〈2〉, ϕ〈3〉, . . . are arbitrary functions whose variations do not vanish, the variational
principle requires that their multipliers be zero. From the first two terms in the integrand in (19), the
governing equations of motion for a shear deformable nanotube are

E I
L
∂Q
∂ x̄
=
ρAL3

T 2

∂2w

∂t2 , Q−
∂M xx

∂ x̄
+ 2

∞∑
n=1

(τ )2n ∂
(2n+1)M xx

∂ x̄ (2n+1) =
ρL2

ET 2

∂2ϕ

∂t2 (22)

the second of which can be rewritten as

Q−
∂Mef

∂ x̄
=
ρL2

ET 2

∂2ϕ

∂t2 , (23)

where

Mef = M xx − 2
∞∑

n=1

τ 2n M 〈2n〉
xx =

∞∑
n=1

(2n− 3)τ 2(n−1)ϕ〈2n−1〉 (24)

is defined as the effective dimensionless nonlocal moment Mef. The remaining terms in (19) constitute
the higher-order boundary conditions which have been unavailable in all other research papers of nonlocal
wave propagation [Wang and Hu 2005; Wang 2005; 2006; Wang et al. 2006b; 2006c; 2008; Lu et al.
2007; Heireche et al. 2008; Liew et al. 2008; Wang and Varadan 2007; Xie et al. 2007a; 2007b; Hu et al.
2008]. These equations of motion and the corresponding higher-order boundary conditions are new and
their physical interpretation and consequence will be discussed at length in due course.
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Equations (22) and (23) represent the transverse equation of motion and rotational equation of motion,
respectively, and they are expressed in terms of nonlocal stress resultants. These two equations can also
be expressed in terms of dimensionless deflection w and angle of rotation ϕ as

GκL
(
∂2w
∂ x̄2 −

∂ϕ
∂ x̄

)
−
ρL3

T 2
∂2w
∂t2 = 0, (25)

AGκL2

E I

(
∂w
∂ x̄
−ϕ

)
−

∞∑
n=1

(2n− 3)τ 2(n−1)ϕ〈2n〉
−
ρL2

ET 2
∂2ϕ
∂t2 = 0. (26)

Equations (25) and (26) are obtained from the first two terms in the integration in (18). Alternatively,
(25) and (26) can be obtained by substituting (8)2 and (20) into (23) and (24).

Wave propagation in a shear deformable carbon nanotube. For analyzing the effect of τ on wave
propagation in a carbon nanotube, terms of order O(τ 6) in the equations of motion are omitted. The
corresponding expressions for (25) and (26) are

GκL
(
∂2w
∂ x̄2 −

∂ϕ
∂ x̄

)
=
ρL3

T 2
∂2w
∂t2 , (27)

AGκL2

E I

(
∂w
∂ x̄
−ϕ

)
+
∂2ϕ
∂ x̄2 − τ

2 ∂
4ϕ
∂ x̄4 − 3τ 4 ∂

6ϕ
∂ x̄6 =

ρL2

ET 2
∂2ϕ
∂t2 . (28)

For wave propagation, the functions of deflection w(x̄, t) and rotation ϕ(x̄, t) are expressed as

w(x, t)=W ei(k̄ x̄−ω̄t), (29)

ϕ(x, t)=8ei(k̄ x̄−ω̄t), (30)

where k is wavenumber, ω is angle frequency and the dimensionless forms of these two variables are
k̄ = kL and ω̄ = ωT . Hence (27) and (28) can be reduced to linear system(

ρL3

T 2 ω̄
2
−

Gκ
L

k̄2
)

W − i Gκ
L

k̄8= 0, (31)

i AGκL2

E I
k̄3W +

(
ρL2

ET 2 ω̄
2
−

AGκL2

E I
− k2
− τ 2k̄4

+ 3τ 4k̄6
)
8= 0, (32)

or, in matrix form, as

Ax = 0, (33)

where the elements of the matrix A are

a11 =
ρL3

T 2 ω̄
2
−

Gκ
L

k̄2, a12 =−i Gκ
L

k̄, a21 = i AGκL2

E I
k̄3,

a22 =
ρL2

ET 2 ω̄
2
−

AGκL2

E I
− k2
− τ 2k̄4

+ 3τ 4k̄6,

(34)

and the vector of generalized displacements is

x =
{
W 8

}T
. (35)
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For nontrivial solutions of W and 8 in (33), we must have |A| = 0 in (34), which yields the characteristic
equation

ρ2L5

ET 4 ω̄
4
−

GLκρ
ET 2

(
k̄2
+

AL4

I

)
ω̄2
+

(Gκ
L
−
ρL3

T 2

)
(1+ τ 2k̄2

− 3τ 4k̄4)k̄2
= 0. (36)

This is a quartic equation whose roots are

ω̄1,2,3,4 =±

√
−b1±

√
b2

1−4a1c1

2a1
, (37)

where a1, b1 and c1 are defined in terms of k̄ as

a1 =
ρ2L5

ET 4 , b1 =−
GLκρ
ET 2

(
k̄2
+

AL4

I

)
, c1 =

(Gκ
L
−
ρL3

T 2

)
(1+ τ 2k̄2

− 3τ 4k̄4)k̄2. (38)

Equations (37) and (38) give the spectrum relation between ω and k based on this new analytical non-
local shear deformable nanotube model. Using the partial nonlocal nanotube model, the corresponding
relation is identical to (37) except that a1, b1, c1 be replaced by a2, b2, c2, given by [Liew et al. 2008]

a2 =
ρ2L5

ET 4 , b2 =−
GLκρ
ET 2

(
k̄2
+

AL4

I

)
, c2 =

(Gκ
L
−
ρL3

T 2

)
(1− τ 2k̄2

+ τ 4k̄4)k̄2. (39)

Obviously the only difference between the solutions of this new analytical nonlocal stress model and the
existing partial nonlocal stress model [Liew et al. 2008] is contributed by c1 and c2. The difference leads
to different characteristics of the two dispersion relations and spectrum relations for wave propagation
in CNTs as discussed in great details in the following section.

3. Results and discussion

Effects of nanoscale on dispersion relation. We now present some numerical examples to illustrate the
contrast between the analytical nonlocal shear deformable nanotube model (ANT) and the partial nonlocal
shear deformable nanotube model (PNT) for wave propagation in a nonlocal nanotube with respect to
the classical shear deformable tube model (CT). In these examples, the nanotubes are considered as
homogeneous and isotropic with geometric and materials properties as in [Liew et al. 2008]: diameter
d = 5 nm, thickness t = 0.34 nm, length L = 10 nm, Young’s modulus E = 0.72 TPa, Poisson’s ratio
υ = 0.254, density ρ = 2.3 g/cm3, vibration period T = 4× 10−13 s and shear correction factor κ = 10

9 .
The dispersion relation between the dimensionless phase velocity c̄ and the dimensionless wave num-

ber k̄ (where c̄ = ω̄/k̄) with various τ is illustrated in Figure 3 for shear deformable nanotube models
based on the PNT solution in (37) and (39) and the ANT solution in (37) and (38). The classical wave
propagation solution for the classical shear deformable nanotube without nonlocal effects can be deduced
by substituting τ = 0 in (38) or (39).

The different dispersion relations based on ANT, PNT and CT are indicated in Figure 3. For the disper-
sion relation based on the CT model, the phase velocity increases linearly for k̄ < 15 approximately, while
a constant c̄ is observed at higher wavenumbers. For PNT models, there exists a critical wavenumber
k̄cri below which the dispersion relation is close to linear and similar to the classical CT solution. Past
k̄cri, linearity fails, and eventually the velocity starts dropping as the wavenumber becomes sufficiently
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Figure 3. Dispersion relation obtained from shear deformable nanotube model.

high. For ANT models, there is also a critical wavenumber below which the phase velocity exceeds the
PNT and CT values. For instance, for k̄ = 5 and τ = 0.1, the phase velocity is c̄ = 0.18 according to
ANT, c̄ = 0.17 for CT and c̄ = 0.16 for PNT. In other words, nonlocality in nanotubes has a stiffening
effect (increase in phase velocity) according to ANT, relative to the classical solutions, but the opposite
effect according to PNT. Past the critical wavenumber, the ANT-predicted phase velocity drops sharply,
differing significantly from the of CT and PNT solutions. Thus, according to ANT, wave propagation in
shear deformable nanotubes decay rapidly after the wavenumber exceeds critical value.

Figure 4 plots the dimensionless angle frequency ω̄ versus the wavenumber k̄ for various τ based on
the different nanotube models. For the classical model, the predicted frequency keeps increasing with

Figure 4. Spectrum relation obtained from shear deformable nanotube model.
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Figure 5. Effect of scale parameter (τ ) on the ratio of the phase velocity predicted by
our models (ANT and PNT) to the classical (CT) solution, for the shear deformable
nanotube model.

the wavenumber. For PNT, it flattens out for wavenumbers beyond the critical value k̄cri. For ANT, the
frequency at first increases as in the first two models but then drops sharply.

As we saw in connection with Figure 3, ANT predicts stiffening below the critical wavenumber, while
the opposite is predicted by PNT. This can also be observed in the frequency/wavenumber relation: for
k̄ = 4 and τ = 0.1, the predicted frequency is ω̄ = 0.8 according to ANT, ω̄ = 0.7 according to PNT, and
ω̄ = 0.75 according to CT.

The presence of a frequency maximum under ANT and the subsequent decay are mainly due to the
strong nanoscale effect contributed by the nonlocal (long-range) stress between molecules and lattice
at high wavenumbers. The critical wavenumber decreases from 14 to 5 as the nanoscale parameter τ
increases from 0.05 to 0.15. It implies for stronger nanoscale effect, the decay wave propagation in
nanotube is more ready to be induced at lower a wavenumber.

The influence of a small scale effect on the dispersion relations is further illustrated in Figure 5, which
plots the velocity ratio relative to the classical solution as a function of τ , for different values of k̄. We
see in this figure that the phase velocity according to the ANT and PNT nonlocal models are very close
to the classical solutions for τ < 0.03; thus wave propagation in the nanotube is hardly influenced by
nanoscale effects in this range. A sharp reduction in wave propagation velocity then occurs for larger
τ . A critical point τcri is seen on each ANT and PNT, which decreases as the wave number increases.
Thus, ANT predicts the values 0.6, 1.2, and 2 for τcri when k̄ = 50, 20, and 10, respectively. This is
consistent with the expectation that propagation at a higher wavenumber requires more kinetic energy.
The contribution due to the presence nanoscale τ is decreasingly sufficient to sustain such status of wave
propagation and hence a smaller τcri corresponds to a higher wavenumber.

As stated in (3), τ is dimensionless quantity representing the small scale parameter e0a. According to
Eringen’s theory of nonlocal elasticity [Eringen and Edelen 1972; Eringen 1972a; 1972b; 1983; 2002],
the internal characteristic length a of material is a simple lattice parameter such as the granular distance
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or bond length. For CNTs, this value could be considered as the C-C bond length, or a = 0.142 nm on
average [Wang 2005; 2006; Wang et al. 2006b; 2006c; 2008; Lu et al. 2007; Heireche et al. 2008; Liew
et al. 2008; Wang and Varadan 2007; Xie et al. 2007a; 2007b; Hu et al. 2008]. The material constant e0 is
a parameter that indicates the small scale effect on the material properties [Eringen 2002] and it was stated
as e0 = 0.39 in [Eringen 1983; 2002]. This result should be further confirmed by experiment or other
approaches such as MD or matching the dispersion relation of atomic lattice dynamics. Furthermore, the
value of e0 is not a constant for different materials and small scale nanostructures. For research of wave
propagation in CNTs, the value of e0 could possibly be in the range 0 < e0a < 210 nm [Wang 2005].
In this paper, 0 ≤ τ ≤ 5 is assumed for comparison between ANT and PNT. For a specific CNT with
L = 10 nm, this implies 0 < e0a < 50 nm. As shown in Figure 5, wave propagation decays very fast
when τ > τcri, which means e0a could not be too high and its specific range depends on L .

It is also clear from Figure 5 that the phase velocity ratios of PNT are never beyond unity while the cor-
responding ANT solutions are different for small τ below the critical value. Thus stiffness enhancement
of nanotube by the presence of nanoscale effect via ANT is further confirmed in this example.

Comparison with molecular dynamic simulation. The MD approach is considered as an authoritative
means to analyze CNTs and extensive research based on MD simulation on the mechanics properties of
CNTs has been published [Liew et al. 2004a; 2004b; 2005; 2008; Kitipornchai et al. 2005; Wang and
Hu 2005; Wang et al. 2006b; 2008; Hu et al. 2008]. Other approaches or models are often compared
with MD to verify the solutions. For this reason and to further confirm the validity of the ANT solutions,
we present in Figure 6 a comparison of the various dispersion relations with MD results [Liew et al.
2008] for a (5, 5) CNT. In this example, the parameters and properties of nanotube are the same as in
the previous subsection, except that we take the Young’s modulus to be E = 0.897 TPa, the diameter
d = 0.96 nm and τ = 0.00355.

As shown in Figure 6, all solutions seem to agree well for k̄ < 1 with respect to the classical solutions.
Consistent with the previous example, the MD simulation also predicts the presence of a critical wave
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Figure 6. Dispersion relation obtained from different models.
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velocity for sufficiently high wavenumber. In this case, wave velocity decreases for k̄ > k̄cri. In addition,
the ANT and MD solutions both predict k̄cri ≈ 4 and they agree more as compared to PNT which predicts
k̄cri ≈ 6. The classical model fails to predict the existence of any critical wavenumber at all.

The comparison should be interpreted in the following manner. The classical solutions without
nanoscale effects should be viewed as the demarcation between the various models. As the wavenumber
increases (smaller wavelength) which indicates more prominent nanoscale influence, on one side of the
demarcation shows increasing wave velocity or equivalently higher stiffness (wave propagates faster in
a more stiff medium) while on the other side of the demarcation shows decreasing wave velocity and
hence decreasing stiffness. It is clear that the analytical nonlocal stress and MD approaches both predict
comparable solutions while the partial nonlocal stress model predicts otherwise. This comparison with
MD solutions concludes that the analytical nonlocal stress model is consistent with MD solutions. It
should be noted that for very high wavenumber, the curves do not agree well. At such length scales
which attain sub-nano ranges, one full wavelength only covers a limited number of molecules and the
medium may not be continuous. In such sub-nano ranges, the validity of all continuum CNT models has
to be further investigated.

In conclusion, it is confirmed that the ANT model predicts more agreeable solutions with respect to
MD simulations in terms of critical values as well stiffness and wave velocity enhancement as compared
to PNT.

4. Further discussion on the analytical nonlocal and partial nonlocal modeling

Equations (22) and (23) express the governing equations of motion for a shear deformable nanotube
which is derived from the variational principle. Comparing with the classical tube dynamic conditions in
(9), consequently, it is concluded that the transverse equation of motion is identical for both the classical
model and the nonlocal stress model, or

Qc = Q (40)

while for the bending moment equation of motion, the classical bending moment Mc should be replaced
by the effective nonlocal bending moment Mef defined in (24) for a nanotube with nonlocal effects.

In virtually all published works in wave propagation based on the partial nonlocal stress model [Wang
and Hu 2005; Wang 2005; Wang et al. 2006c; Lu et al. 2007; Heireche et al. 2008; Liew et al. 2008;
Wang 2006; Wang et al. 2006b; Wang and Varadan 2007; Xie et al. 2007a; Xie et al. 2007b; Wang
et al. 2008; Hu et al. 2008], the dynamic equations of motion were derived by directly replacing the
classical bending moment condition in (9)2 with the nonlocal bending moment defined in (6). The direct
replacement yields

Q−
∂M xx

∂ x̄
=
ρL2

ET 2

∂2ϕ

∂t2 (41)

which was not consistent with the variational principle. By retaining terms of O(τ 4) in (23) in order
to analyze the effect of nanoscale τ , a truncated dynamic equation is obtained as expressed in (28).
Similarly, by substituting the expression (8)2 for the nonlocal moment M xx in into (40) and retaining
terms of O(τ 4), we obtain

AGκL2

E I

(
∂w

∂ x̄
−ϕ

)
+
∂2ϕ

∂ x̄2 + τ
2 ∂

4ϕ

∂ x̄4 + τ
4 ∂

6ϕ

∂ x̄6 =
ρL2

ET 2

∂2ϕ

∂t2 . (42)
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Comparing (23) and (40), or equivalently comparing (28) and (42) for terms O(τ 4), it is concluded that
the partial nonlocal stress model predicts different nonlocal responses for bending and wave propagation
as what have been illustrated in the previous examples.

Equations (22) and (23) in terms of nonlocal stress resultants, or (25) and (26) in terms of displacement
and rotation, are novel governing dynamic equations of motion for a nanotube with nonlocal effect
derived using an exact variational principle. These two equations govern the exact dynamic motion for a
nonlocal shear deformable nanotube. These are new equations of motion first derived here and they are
fundamentally distinct with respect to virtually all previous works. Verification and application of this
new analytical model for analyzing the wave propagation in nanotubes have been demonstrated in the
previous sections.

The conclusion of stiffness strengthening effect of nanotubes with increasing nanoscale effect is con-
sistent qualitatively with other published research works via other non-nonlocal elasticity approaches.
Some noted instances including the strain gradient theory [Nix and Gao 1998; Lam et al. 2003]; a
modified couple stress theory at microscale [Park and Hao 2006; 2008, Ma et al. 2008]; computational
atomistic modeling for free vibration of a carbon nanotube [Li and Chou 2004] which concluded that
the fundamental frequencies of the classical solution could be significantly lower than the atomistic
simulation solutions by 40% to 60%; as well as experimental studies on monolithic films [Was and
Foecke 1996], on harness of nanoindentation of crystalline materials [Nix and Gao 1998], on significant
increased bending stiffness of a nano-cantilever [Lam et al. 2003; McFarland and Colton 2005]. It is
noted that some of the analyses above [Park and Hao 2006; 2008, Ma et al. 2008] considered only effects
at microscale instead of nanoscale. It is not a concern here as to whether it is still valid at nanoscale.
In this paper, the formulations are all non-dimensionalized and hence the presence of a small-scale τ
indicates the deviation expected from the classical theory when size effect is present, irrespective of the
actual size of τ . The paper concludes that the presence of τ induces a minute structure with higher
stiffness and the conclusion is consistent with the prediction of the modified couple stress theory [Park
and Hao 2006; 2008, Ma et al. 2008].

5. Conclusions

An analytical nonlocal stress model for wave propagation in CNTs has been established through consis-
tent variational principle. The CNTs are simulated as shear deformable nanotubes with size dependent
nonlocal effects. New dynamic equations of motion for wave propagation in CNTs have been derived
and new wave propagation behaviors that nonlocal stress enhances stiffness and wave velocity in CNTs
have been predicted.

Analytical expressions for the dispersion relation which relates wavenumber and phase velocity and the
spectrum relation (frequency versus wavenumber) are presented through the analytical nonlocal stress
approach. It has been shown that there exist critical points for the dispersion relation and spectrum
relation by the analytical nonlocal models and these points depend on the nanoscale parameter. For
wavenumber beyond these critical values, wave propagation is decreased sharply. Furthermore, the
analytical nonlocal model confirms that the nanoscale effect promotes wave propagation in nanotube
for wavenumber below the critical points. The phenomenon is verified by comparison with molecular
dynamic simulation.
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Appendix

The strain energy density of a nanotube due to normal deformation un as presented in (10) and (11) [Lim
2009; 2010] can be derived as follows. From (8)1, un can be expressed as

un =

∫ εxx

0
σxx dεxx = E

∞∑
n=1

τ 2(n−1)
∫ εxx

0
ε〈2(n−1)〉

xx dεxx .

Since we have∫ εxx

0
εxx dεxx =

1
2ε

2
xx ,∫ εxx

0
ε〈2〉xx dεxx =

∫ εxx

0
ε〈1〉xx dε〈1〉xx =

1
2(ε
〈1〉
xx )

2,∫ εxx

0
ε〈4〉xx dεxx =

∫ εxx

0
ε〈1〉xx dε〈3〉xx = ε〈1〉xx ε

〈3〉
xx |

εxx
0 −

∫ εxx

0
ε〈3〉xx dε〈1〉xx = ε〈1〉xx ε

〈3〉
xx −

∫ εxx

0
ε〈2〉xx dε〈2〉xx

= ε〈1〉xx ε
〈3〉
xx −

1
2(ε
〈2〉
xx )

2,∫ εxx

0
ε〈6〉xx dεxx =

∫ εxx

0
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〈5〉
xx |

εxx
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∫ εxx

0
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0
ε〈4〉xx dε〈2〉xx
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xx ε
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〈5〉
xx − ε

〈2〉
xx ε
〈4〉
xx +

∫ εxx

0
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= ε〈1〉xx ε
〈5〉
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〈2〉
xx ε
〈4〉
xx +

1
2(ε
〈3〉
xx )

2,

or, concisely,∫ εxx

0
ε〈2(n−1)〉

xx dεxx = ε
〈1〉
xx ε
〈2(n−1)−1〉
xx − ε〈2〉xx ε

〈2(n−1)−2〉
xx + · · ·+ (−1)n−1ε〈n−2〉

xx ε〈n〉xx + (−1)n 1
2(ε
〈n−1〉
xx )2
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n−2∑
m=1

(
(−1)m+1ε〈m〉xx ε

〈2(n−1)−m〉
xx

)
+ (−1)n 1

2(ε
〈n−1〉
xx )2,

which is valid for n ≥ 3, we conclude that the strain energy un at a point is un = u1+ u2+ u3, where the
ui are given by (13).

References

[Ajayan and Zhou 2001] M. Ajayan and O. Z. Zhou, “Applications of carbon nanotubes”, pp. 391–425 in Carbon nanotubes:
synthesis, structure, properties, and applications, edited by M. S. Dresselhaus et al., Topics in Applied Physics 80, 2001.

[Ball 2001] Ball, “Roll up for the revolution”, Nature 414 (2001), 142–144.

[Baughman et al. 2002] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes–the route toward applica-
tions”, Science 297 (2002), 787–792.

[Brenner et al. 2002] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, “A second-
generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”, J. Phys. Condens. Mater. 14
(2002), 783–802.

[Eringen 1972a] A. C. Eringen, “Nonlocal polar elastic continua”, Int. J. Eng. Sci. 10 (1972), 1–16.

http://dx.doi.org/10.1038/35102721
http://dx.doi.org/10.1126/science.1060928
http://dx.doi.org/10.1126/science.1060928
http://dx.doi.org/10.1088/0953-8984/14/4/312
http://dx.doi.org/10.1088/0953-8984/14/4/312
http://dx.doi.org/10.1016/0020-7225(72)90070-5


STIFFNESS AND VELOCITY ENHANCEMENT IN CARBON NANOTUBE WAVE PROPAGATION 475

[Eringen 1972b] A. C. Eringen, “Linear theory of nonlocal elasticity and dispersion of plane waves”, Int. J. Eng. Sci. 10 (1972),
425–435.

[Eringen 1983] A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation and surface
waves”, J. Appl. Phys. 54 (1983), 4703–4710.

[Eringen 2002] A. C. Eringen, Nonlocal continuum field theories, Springer, New York, 2002.

[Eringen and Edelen 1972] A. C. Eringen and D. G. B. Edelen, “On nonlocal elasticity”, Int. J. Eng. Sci. 10 (1972), 233–248.

[Hagedorn and Dasgupta 2007] P. Hagedorn and A. Dasgupta, Vibration and waves in continuous mechanical system, Wiley,
UK, 2007.

[Han et al. 2005] Q. Han, G. X. Lu, and L. M. Dai, “Bending instability of an embedded double-walled carbon nanotube based
on Winkler and van der Waals models”, Compos. Sci. Technol. 65 (2005), 1337–1346.

[Heireche et al. 2008] H. Heireche, A. Tounsi, and A. Benzair, “Scale effect on wave propagation of double-walled carbon
nanotubes with initial axial loading”, Nanotechnology 19 (2008), 185703.

[Hu et al. 2008] Y. G. Hu, K. M. Liew, Q. Wang, X. Q. He, and B. I. Yakobson, “Nonlocal shell model for elastic wave
propagation in single- and double-walled carbon nanotubes”, J. Mech. Phys. Solids 56 (2008), 3475–3485.

[Iijima 1991] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354 (1991), 56–58.

[Kitipornchai et al. 2005] S. Kitipornchai, X. Q. He, and K. M. Liew, “Buckling analysis of triple-walled carbon nanotubes
embedded in an elastic matrix”, J. Appl. Phys. 97 (2005), 114318.

[Lam et al. 2003] D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, “Experiments and theory in strain gradient
elasticity”, J. Mech. Phys. Solids 51 (2003), 1477–1508.

[Li and Chou 2004] C. Y. Li and T. W. Chou, “Vibrational behaviors of multi-walled carbon nanotube-based nanomechancial
resonators”, Appl. Phys. Lett. 84 (2004), 121–123.

[Liew et al. 2004a] K. M. Liew, X. Q. He, and C. H. Wong, “On the study of elastic and plastic properties of multi-walled
carbon nanotubes under axial tension using molecular dynamics simulation”, Acta Materialia 52:9 (2004), 2521–2527.

[Liew et al. 2004b] K. M. Liew, C. H. Wong, X. Q. He, M. J. Tan, and S. A. Meguid, “Nanomechanics of single and multi-
walled carbon nanotubes”, Phys. Rev. B 69 (2004), 115429.

[Liew et al. 2005] K. M. Liew, C. H. Wong, and M. J. Tan, “Buckling properties of carbon nanotube bundles”, Appl. Phys. Lett.
87:4 (2005), 041901.

[Liew et al. 2008] K. M. Liew, Y. Hu, and X. Q. He, “Flexural wave propagation in single-walled carbon nanotubes”, J. Comput.
Theoretical Nanoscience 5 (2008), 581–586.

[Lim 2008] C. W. Lim, “A discussion on the nonlocal elastic stress field theory for nanobeams”, in The Eleventh East Asia–
Pacific Conference on Structural Engineering and Construction (EASEC-11) (Taipei, Taiwan, 2008), 2008.

[Lim 2009] C. W. Lim, “Equilibrium and static deflection for bending of a nonlocal nanobeam”, Adv. Vibr. Eng. 8:4 (2009),
277–300.

[Lim 2010] C. W. Lim, “On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: Equilibrium,
governing equation and static deflection”, Appl. Math. Mech. 31:1 (2010), 37–54.

[Lim and Wang 2007] C. W. Lim and C. M. Wang, “Exact variational nonlocal stress modeling with asymptotic higher-order
strain gradients for nanobeams”, J. Appl. Phys. 101 (2007), 054312.

[Lu et al. 2007] P. Lu, H. P. Lee, C. Lu, and P. Q. Zhang, “Application of nonlocal beam models for carbon nanotubes”, Int. J.
Solids Struct. 44 (2007), 5289–5300.

[Ma et al. 2008] H. M. Ma, X. L. Gao, and J. N. Reddy, “A microstructure-dependent Timoshenko beam model based on a
modified couple stress theory”, J. Mech. Phys. Solids 56:12 (2008), 3379–3391.

[McFarland and Colton 2005] A. W. McFarland and J. S. Colton, “Role of material microstructure in plate stiffness with
relevance to microcantilever sensors”, J. Micromech. Microeng. 15 (2005), 1060–1067.

[Natsuki et al. 2005] T. Natsuki, T. Hayashi, and M. Endo, “Wave propagation of carbon nanotubes embedded in an elastic
medium”, J. Appl. Phys. 97 (2005), 044307.

[Nix and Gao 1998] W. Nix and H. Gao, “Indentation size effects in crystalline materials: A law for strain gradient plasticity”,
J. Mech. Phys. Solids 46:3 (1998), 411–425.

http://dx.doi.org/10.1016/0020-7225(72)90050-X
http://dx.doi.org/10.1063/1.332803
http://dx.doi.org/10.1063/1.332803
http://dx.doi.org/10.1016/0020-7225(72)90039-0
http://dx.doi.org/10.1016/j.compscitech.2004.12.003
http://dx.doi.org/10.1016/j.compscitech.2004.12.003
http://dx.doi.org/10.1088/0957-4484/19/18/185703
http://dx.doi.org/10.1088/0957-4484/19/18/185703
http://dx.doi.org/10.1016/j.jmps.2008.08.010
http://dx.doi.org/10.1016/j.jmps.2008.08.010
http://dx.doi.org/10.1038/354056a0
http://dx.doi.org/10.1063/1.1925334
http://dx.doi.org/10.1063/1.1925334
http://dx.doi.org/10.1016/S0022-5096(03)00053-X
http://dx.doi.org/10.1016/S0022-5096(03)00053-X
http://dx.doi.org/10.1063/1.1638623
http://dx.doi.org/10.1063/1.1638623
http://dx.doi.org/10.1016/j.actamat.2004.01.043
http://dx.doi.org/10.1016/j.actamat.2004.01.043
http://dx.doi.org/10.1103/PhysRevB.69.115429
http://dx.doi.org/10.1103/PhysRevB.69.115429
http://dx.doi.org/10.1063/1.2001135
http://dx.doi.org/10.1166/jctn.2008.019
http://dx.doi.org/10.1007/s10483-010-0105-7
http://dx.doi.org/10.1007/s10483-010-0105-7
http://dx.doi.org/10.1063/1.2435878
http://dx.doi.org/10.1063/1.2435878
http://dx.doi.org/10.1016/j.ijsolstr.2006.12.034
http://dx.doi.org/10.1016/j.jmps.2008.09.007
http://dx.doi.org/10.1016/j.jmps.2008.09.007
http://dx.doi.org/10.1088/0960-1317/15/5/024
http://dx.doi.org/10.1088/0960-1317/15/5/024
http://dx.doi.org/10.1063/1.1849823
http://dx.doi.org/10.1063/1.1849823
http://dx.doi.org/10.1016/S0022-5096(97)00086-0


476 C. W. LIM AND Y. YANG

[Park and Hao 2006] S. K. Park and X. L. Hao, “Bernoulli–Euler beam model based on a modified couple stress theory”, J.
Micromech. Microeng. 16 (2006), 2355–2359.

[Park and Hao 2008] S. K. Park and X. L. Hao, “Variational formulation of a modified couple stress theory and its application
to a simple shear problem”, Z. Angew. Math. Phys. 59 (2008), 904–917.

[Parnes and Chiskis 2002] R. Parnes and A. Chiskis, “Buckling of nano-fibre reinforced composites: a re-examination of elastic
buckling”, J. Mech. Phys. Solids 50 (2002), 855–879.

[Ru 2000a] C. Q. Ru, “Effective bending stiffness of carbon nanotubes”, Phys. Rev. B. 62 (2000), 9973–9976.
[Ru 2000b] C. Q. Ru, “Elastic buckling of singlewalled carbon nanotube ropes under high pressure”, Phys. Rev. B 62 (2000),
10405–10408.

[Treacy et al. 1996] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young’s modulus observed for
individual carbon nanotubes”, Nature 381 (1996), 680–687.

[Wang 2005] Q. Wang, “Wave propagation in carbon nanotubes via nonlocal continuum mechanics”, J. Appl. Phys. 98 (2005),
124301.

[Wang 2006] Q. Wang, “Axi-symmetric wave propagation of carbon nanotubes with non-local elastic shell model”, Int. J.
Struct. Stab. Dyn. 6 (2006), 285–296.

[Wang and Hu 2005] L. F. Wang and H. Y. Hu, “Flexural wave propagation in single-walled carbon nanotubes”, Phys. Rev. B
71 (2005), 195412.

[Wang and Varadan 2006] Q. Wang and V. K. Varadan, “Wave characteristics of carbon nanotubes”, Int. J. Solids Struct. 43
(2006), 254–265.

[Wang and Varadan 2007] Q. Wang and V. K. Varadan, “Application of nonlocal elastic shell theory in wave propagation
analysis of carbon nanotubes”, Smart Mater. Struct. 16 (2007), 178–190.

[Wang et al. 2006a] C. Y. Wang, C. Q. Ru, and A. Mioduchowski, “Vibration of microtubules as orthotropic elastic shells”,
Physica E 35 (2006), 48–56.

[Wang et al. 2006b] L. F. Wang, H. Y. Hu, and W. L. Guo, “Validation of the non-local elastic shell model for studying
longitudinal waves in single-walled carbon nanotubes”, Nanotechnology 17 (2006), 1408–1415.

[Wang et al. 2006c] Q. Wang, G. Y. Zhou, and K. C. Lin, “Scale effect on wave propagation of double-walled carbon nan-
otubes”, Int. J. Solids Struct. 43 (2006), 6071–6084.

[Wang et al. 2008] L. F. Wang, W. L. Guo, and H. Y. Hu, “Group velocity of wave propagation in carbon nanotubes”, Proc. R.
Soc. A-Math Phys. Eng. Sci. 464 (2008), 1423–1438.

[Was and Foecke 1996] G. S. Was and T. Foecke, “Deformation and fracture in microlaminates”, Thin Solid Films 286 (1996),
1–31.

[Xie et al. 2007a] G. Q. Xie, X. Han, and S. Y. Long, “Characteristic of waves in a multi-walled carbon nanotubes”, Computers,
Materials and Continua 6 (2007), 1–11.

[Xie et al. 2007b] G. Q. Xie, X. Han, and S. Y. Long, “Effect of small size on dispersion characteristics of wave in carbon
nanotubes”, Int. J. Solids Struct. 44:3-4 (2007), 1242–1255.

[Yakobson et al. 1996] B. I. Yakobson, C. J. Brabec, and J. Bernholc, “Nanomechanics of carbon tubes: instabilities beyond
linear range”, Phys. Rev. Lett. 76 (1996), 2511–2514.

[Yoon et al. 2005] J. Yoon, C. Q. Ru, and A. Mioduchowski, “Terahertz vibration of short carbon nanotubes modeled as
Timoshenko-beams”, J. Appl. Mech.-Trans. ASME. 72 (2005), 10–17.

[Zhang et al. 2005] Y. Q. Zhang, G. R. Liu, and H. Xu, “Transverse vibrations of double-walled carbon nanotubes under
compressive axial load”, Phys. Lett. A 340 (2005), 258–266.

Received 17 Jul 2009. Revised 24 Nov 2009. Accepted 24 Nov 2009.

C. W. LIM: bccwlim@cityu.edu.hk
Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

Y. YANG: yanyang6@student.cityu.edu.hk
Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

http://dx.doi.org/10.1088/0960-1317/16/11/015
http://dx.doi.org/10.1007/s00033-006-6073-8
http://dx.doi.org/10.1007/s00033-006-6073-8
http://dx.doi.org/10.1016/S0022-5096(01)00101-6
http://dx.doi.org/10.1016/S0022-5096(01)00101-6
http://dx.doi.org/10.1103/PhysRevB.62.9973
http://dx.doi.org/10.1103/PhysRevB.62.10405
http://dx.doi.org/10.1038/381678a0
http://dx.doi.org/10.1038/381678a0
http://dx.doi.org/10.1063/1.2141648
http://dx.doi.org/10.1142/S0219455406001964
http://dx.doi.org/10.1103/PhysRevB.71.195412
http://dx.doi.org/10.1016/j.ijsolstr.2005.02.047
http://dx.doi.org/10.1088/0964-1726/16/1/022
http://dx.doi.org/10.1088/0964-1726/16/1/022
http://dx.doi.org/10.1016/j.physe.2006.05.008
http://dx.doi.org/10.1088/0957-4484/17/5/041
http://dx.doi.org/10.1088/0957-4484/17/5/041
http://dx.doi.org/10.1016/j.ijsolstr.2005.11.005
http://dx.doi.org/10.1016/j.ijsolstr.2005.11.005
http://dx.doi.org/10.1098/rspa.2007.0349
http://dx.doi.org/10.1016/S0040-6090(96)08905-5
http://www.techscience.com/paper.asp?jnl=cmc&issue=v6n1&no=01
http://dx.doi.org/10.1016/j.ijsolstr.2006.06.019
http://dx.doi.org/10.1016/j.ijsolstr.2006.06.019
http://dx.doi.org/10.1103/PhysRevLett.76.2511
http://dx.doi.org/10.1103/PhysRevLett.76.2511
http://dx.doi.org/10.1115/1.1795814
http://dx.doi.org/10.1115/1.1795814
http://dx.doi.org/10.1016/j.physleta.2005.03.064
http://dx.doi.org/10.1016/j.physleta.2005.03.064
mailto:bccwlim@cityu.edu.hk
mailto:yanyang6@student.cityu.edu.hk


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
http://www.jomms.org

Founded by Charles R. Steele and Marie-Louise Steele

EDITORS

CHARLES R. STEELE Stanford University, U.S.A.
DAVIDE BIGONI University of Trento, Italy
IWONA JASIUK University of Illinois at Urbana-Champaign, U.S.A.

YASUHIDE SHINDO Tohoku University, Japan

EDITORIAL BOARD
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