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Hybrid elements, which are based on a two-field variational formulation with the displacements and
stresses interpolated separately, are known to deliver very high accuracy, and to alleviate to a large
extent problems of locking that plague standard displacement-based formulations. The choice of the
stress interpolation functions is of course critical in ensuring the high accuracy and robustness of the
method. Generally, an attempt is made to keep the stress interpolation to the minimum number of terms
that will ensure that the stiffness matrix has no spurious zero-energy modes, since it is known that the
stiffness increases with the increase in the number of terms. Although using such a strategy of keeping
the number of interpolation terms to a minimum works very well in static problems, it results either in
instabilities or fails to converge in transient problems. This is because choosing the stress interpolation
functions merely on the basis of removing spurious energy modes can violate some basic principles that
interpolation functions should obey. In this work, we address the issue of choosing the interpolation
functions based on such basic principles of interpolation theory and mechanics. Although this procedure
results in the use of more number of terms than the minimum (and hence in slightly increased stiffness)
in many elements, we show that the performance continues to be far superior to displacement-based
formulations, and, more importantly, that it also results in considerably increased robustness.

1. Introduction

Ever since the pioneering work of Pian et al. [1984; 1986], it is known that hybrid stress-based for-
mulations, which are based on a two-field variational formulation involving displacement and stresses,
are much less susceptible to locking than standard displacement-based formulations. In fact, Simo et
al. [Simo et al. 1989, p. 70], while discussing their interpolation procedure for membrane stresses state,
“. . . the interpolation procedure is closely related to the mixed formulation for plane stress proposed by
Pian and Sumihara (which appears to be optimal).” As discussed in [Jog and Kelkar 2006], conventional
shell elements suffer from a number of shortcomings such as the need to develop reduced constitutive
models, the need for transition elements while interfacing with brick elements, significant reformula-
tion for thick shells etc. Thus, recently, there has been a significant effort towards the development of
three-dimensional solid-shell elements with only displacement degrees of freedom. However, since a
kinematic assumption is being made in their development, even these elements would need a significant
reformulation for thick shells.

Since no kinematic assumption is being made in the development of hybrid elements, since the treat-
ment is full three-dimensional with no plane-stress or any other such assumption being made (which
allows for easy implementation of material nonlinearities), since there are no stabilization parameters
that need to be adjusted as in some “strain-based” formulations, and since they are relatively much

Keywords: hybrid finite elements, linear/nonlinear, static/transient, structural analysis.

507



508 C. S. JOG

more immune to locking, and converge more rapidly than standard displacement-based elements, hybrid
elements can be used very effectively (with no modification of the formulation) to model problems as
diverse as beams/plates/shells on one hand, and problems involving “chunky” geometries on the other.
Even from a user viewpoint, since the stress degrees of freedom are condensed out at an element level,
the formulation ultimately involves only displacement degrees of freedom, so that the same input data
(nodal coordinates, connectivity, boundary conditions etc.) that is used for conventional displacement-
based elements can be used for the hybrid formulation also. The drawback of hybrid elements that is
often mentioned is the need to invert a small matrix to construct the element stiffness matrix. However,
since the element stiffness matrices can be constructed independent of each other, this process can be
easily parallelized. Even without parallelization, this cost is negligible compared to the cost of solving
the global set of equations, and, as already mentioned, this is considerably less in the case of hybrid
elements due to the coarser meshes that are required to achieve a given level of accuracy.

Needless to say, the choice of the stress interpolation functions is critical in ensuring the accuracy
of hybrid elements. Almost all works, such as [Punch and Atluri 1984; Lee and Rhiu 1986; Rhiu and
Lee 1987], choose the stress interpolation function based on removal of spurious zero-energy modes so
that the element stiffness matrix is full-rank (apart from rigid-body modes). It is well-known that the
minimum number of stress-interpolation terms to ensure a full-rank element stiffness matrix is equal to
the number of displacement degrees of freedom minus the number of rigid-body modes. It is also well
known that adding more terms to the stress interpolation adds more stiffness. In the light of these two
facts, efforts have naturally focused on keeping the number of stress interpolation terms to a minimum;
henceforth, we will call such an interpolation with the minimum number of terms as a minimal stress
interpolation. While such a strategy works extremely well for static problems, it was found recently in
[Jog and Motamarri 2009] that it can result in instabilities on transient problems.

The cause of these problems is that the minimal stress interpolation in most (but not all) elements
violates some basic tenets that interpolation functions should obey. To give a simple example, [Lee and
Rhiu 1986; Rhiu and Lee 1987] discuss the interpolations for a 9-node quadrilateral element; the authors
recommend dropping the term η2 from the stress interpolation for the normal stress τ ξξ , where (ξ, η) de-
note the natural coordinates, since the kinematic mode which this term suppresses is non-communicable.
Thus, the interpolation for τ ξξ uses the set {1, ξ, η, ξη, ξη2

}, and in a similar manner, the interpolation for
τ ηη uses the set {1, ξ, η, ξη, ξ 2η}. Although the use of this interpolation yields excellent results on static
problems, it results in instabilities on transient problems [Jog and Motamarri 2009]. The instabilities do
not arise immediately (in fact, the results at small times match quite well with the expected results), but
gradually creep in as the simulation progresses, and finally pollute the entire solution. The exclusion of
η2 and ξ 2 in the interpolations for τ ξξ and τ ηη violates one of the basic principles that an interpolation
function should obey, namely, that all terms starting from the lowest and upto the highest order should be
included, and is the cause of the aforementioned instability. Another problem that commonly occurs in a
minimal interpolation is that a β term is shared, or in other words, some stress components are coupled.
As we will show, this can cause spurious stresses to arise even in static problems.

The focus of this work is to formulate a set of rules for the selection of the stress interpolation functions,
so that problems of the type mentioned above do not occur, thus increasing the robustness of the resulting
hybrid elements. Of course, adherence to these rules can result in an increase in the number of terms
in the stress interpolation, and hence to a (slight) stiffening of the elements. But as we show by means
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of several challenging examples (including nonlinear static and transient problems), the performance of
the resulting hybrid elements continues to be far better than the displacement-based elements. To give
an analogy, in a displacement-based formulation, reduced integration yields better results in many cases
as compared to full integration, but can lead to spectacular failures as well. Thus, just as full integration
results in elements that are stiffer but more robust, the rules enumerated here (which, besides the require-
ment that the element be free of spurious zero-energy modes, are based on some basic principles that
interpolation functions should satisfy) result in stress interpolations with more terms than the minimal
one for several elements, but are more robust in the sense that they do not result either in instabilities or
in spurious stresses. We also mention that since we are usually using more terms than the mimimal one,
the satisfaction of the inf-sup conditions [Xue et al. 1985] is not affected.

2. Choice of stress interpolation functions

In this section, we discuss the choice of stress interpolation functions for some three-dimensional hybrid
elements in the light of our experience with static and transient simulations. If d is the number of
displacement degrees of freedom, and r is the number of rigid body modes, then it is known that to obtain
a formulation free of spurious energy modes, the number of chosen stress interpolation modes s must be
at least d−r [Punch and Atluri 1984]. As mentioned in the Introduction, since each additional mode adds
more stiffness, an attempt is usually made to keep the number of stress modes to a minimum, i.e., s= d−r .
However, it was shown in [Jog and Motamarri 2009] that some higher-order hybrid elements that satisfy
this requirement, and are free of zero-energy modes, can still give rise to instabilities in transient problems.
It was shown that if the normal stresses are obtained by differentiating the displacement field, then these
instabilities do not arise. It is possible to interpolate the normal stresses in this manner, and such that
the requirement s = d − r , and the requirement that the element matrix be free of spurious modes are
still satisfied (see [Jog and Motamarri 2009] for examples). However, this involves dropping some of the
lower-order terms in the shear interpolation, and this results in bad performance even on static problems.
Thus, in order to obtain a robust element, one necessarily needs s > d − r at least for some elements.
Since static solutions can be considered as steady-state solutions to transient problems, one should use
the same stress interpolations in static and transient simulations. To conclude, although using more
stress modes than the minimal one does result in a slight stiffening, it is essential from the viewpoint of
increased robustness of the element.

Based on this discussion, we propose the following set of rules (besides the obvious one that there be
no spurious zero-energy modes) for choosing the stress interpolation functions in a hybrid formulation:

(1) The normal stress components should be obtained simply by differentiating the displacement in-
terpolation functions. For example, in a three-dimensional hexahedral element, the interpolations
for τ ξξ , τ ηη and τ ζ ζ are obtained by differentiating the displacement interpolation functions with
respect to ξ , η and ζ respectively.

(2) All the lower-order terms should be incorporated in the shear interpolation functions, e.g., a con-
stant term in the case of a 8-node hexahedral element, or trilinear terms in the case of a 27-node
hexahedral element. The higher-order terms in the shear interpolation are chosen so as to eliminate
any spurious zero-energy modes, so that the element stiffness matrix is full-rank (apart from rigid-
body modes). In addition, all the terms of the corresponding order of interpolation should also be
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included (although they may not suppress any zero-energy mode). For example, in the case of the 27-
node hexahedral element, only the higher-order terms (ζ 2ξ, ζ 2η) are required in the interpolation
for the shear component Sξη to suppress the zero-energy modes. However, all the terms of the
corresponding order (bilinear) of interpolation, namely (ζ 2, ζ 2ξ, ζ 2η, ζ 2ξη), should be included.
Using an interpolation that violates this rule results in the transient algorithm diverging after a few
time steps in the example discussed in Section 3H.

(3) The stress components should be allowed to vary independently of each other, i.e., there should be
no shared β terms between stress components. This is especially important in problems involving
either orthotropic materials where the three shear moduli Gxy , G yz and Gxz could be different, or in
materials with nonlinear constitutive relations where the shear stresses are not simply proportional
to the corresponding shear strains. Not enforcing this requirement can result in spurious stresses
even in linear problems, as we show below in the case of the 6-node wedge element.

(4) Finally, the stress interpolations should be such that the same results are obtained irrespective of
the order of node-numbering in the connectivity specification. As we shall see, this requirement is
difficult to satisfy in wedge elements.

We now discuss the choice of stress interpolation functions for several hybrid elements in the literature
in the light of the rules above. Once the stress interpolation functions are chosen, the stiffness matrices
are constructed as in [Jog and Kelkar 2006] and [Jog and Motamarri 2009] for the (nonlinear) static and
transient cases, respectively. In what follows S denotes the second Piola-Kirchhoff stress tensor, while
(u, v, w) denote the displacement components.

2A. Eight-node hexahedral element. We use the same interpolation for S as suggested by Pian and
Tong [Pian and Tong 1986] in the context of linear problems, i.e.,

Sξξ = β1+β2η+β3ζ +β4ηζ, Sηη = β5+β6ξ +β7ζ +β8ξζ, Sζ ζ = β9+β10ξ +β11η+β12ξη,

Sξη = β13+β14ζ, Sηζ = β15+β16ξ, Sξζ = β17+β18η.

This stress interpolation satisfies all the rules specified above. If the Jacobian matrix is given by

J =

∂x/∂ξ ∂y/∂ξ ∂z/∂ξ
∂x/∂η ∂y/∂η ∂z/∂η
∂x/∂ζ ∂y/∂ζ ∂z/∂ζ

≡
a1 b1 c1

a2 b2 c2

a3 b3 c3

 , (2-1)

then the transformation relation between the stress components expressed with respect to the natural and
Cartesian coordinate systems is given by 

Sxx

Syy

Szz

Sxy

Syz

Sxz


= T



Sξξ

Sηη

Sζ ζ

Sξη

Sηζ

Sξζ


, (2-2)

where



IMPROVED HYBRID ELEMENTS FOR STRUCTURAL ANALYSIS 511

T =



a2
1 a2

2 a2
3 2a1a2 2a2a3 2a1a3

b2
1 b2

2 b2
3 2b1b2 2b2b3 2b1b3

c2
1 c2

2 c2
3 2c1c2 2c2c3 2c1c3

a1b1 a2b2 a3b3 (a2b1+a1b2) (a2b3+a3b2) (a1b3+a3b1)

b1c1 b2c2 b3c3 (b2c1+b1c2) (b2c3+b3c2) (b1c3+b3c1)

a1c1 a2c2 a3c3 (a1c2+a2c1) (a3c2+a2c3) (a3c1+a1c3)


.

2B. Twenty-seven-node hexahedral element. We use the following “90β” interpolation:

Sξξ = β1+β2ξ +β3η+β4ζ +β5ξη+β6ηζ +β7ξζ +β8ξηζ

+β9ξη
2
+β10ξζ

2
+β11ξηζ

2
+β12ξη

2ζ +β13ξη
2ζ 2

+β14η
2
+β15ζ

2
+β16η

2ζ +β17ηζ
2
+β18η

2ζ 2,

Sηη = β19+β20ξ +β21η+β22ζ +β23ξη+β24ηζ +β25ξζ +β26ξηζ

+β27ξ
2η+β28ηζ

2
+β29ξ

2ηζ +β30ξηζ
2
+β31ξ

2ηζ 2

+β32ξ
2
+β33ζ

2
+β34ξ

2ζ +β35ξζ
2
+β36ξ

2ζ 2,

Sζ ζ = β37+β38ξ +β39η+β40ζ +β41ξη+β42ηζ +β43ξζ +β44ξηζ

+β45ξ
2ζ +β46η

2ζ +β47ξ
2ηζ +β48ξη

2ζ +β49ξ
2η2ζ

+β50ξ
2
+β51η

2
+β52ξ

2η+β53ξη
2
+β54ξ

2η2,

Sξη = β55+β56ξ +β57η+β58ζ +β59ξη+β60ηζ +β61ξζ +β62ξηζ

+β63ξζ
2
+β64ηζ

2
+β85ζ

2
+β88ζ

2ξη,

Sηζ = β65+β66ξ +β67η+β68ζ +β69ξη+β70ηζ +β71ξζ +β72ξηζ

+β73ξ
2η+β74ξ

2ζ +β86ξ
2
+β89ξ

2ηζ,

Sξζ = β75+β76ξ +β77η+β78ζ +β79ξη+β80ηζ +β81ξζ +β82ξηζ

+β83ξη
2
+β84η

2ζ +β87η
2
+β90ξη

2ζ.

(2-3)

The transformation to Cartesian components is carried out using (2-2).
The minimum number of interpolation terms required for this element is 75, and indeed such an

interpolation was developed in [Jog 2005] within a linear context. However, such an interpolation violates
Rules (1) and (3), and results in instabilities in some transient problems [Jog and Motamarri 2009]. Thus,
increased robustness necessitates using the 90β element above, although it is stiffer compared to the 75β
element (but note that it is still more flexible compared to the 8-node hexahedral element for a given
number of degrees of freedom). As per Rule (1), one constructs the interpolation for the normal stresses
simply by differentiating the displacement interpolation functions. To construct the shear-interpolation,
one first includes all the lower-order (i.e., trilinear) terms. Among the higher-order terms, the (β63, β64),
(β73, β74) and (β83, β84) terms are included to suppress the zero-energy modes

u = α1(1− 3η2)(1− 3ζ 2), v = 0, w = 0;

u = 0, v = α2(1− 3ξ 2)(1− 3ζ 2), w = 0;

u = 0, v = 0, w = α3(1− 3ξ 2)(1− 3η2).
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These modes can be suppressed by using only three β terms. However, this would violate Rule (3) that
the stress components be allowed to vary independently. The β85–β90 terms are included to comply with
Rule (2). According to this rule, along with the terms ζ 2ξ and ζ 2η which are required to suppress the zero-
energy modes in Sξη, one should also include the terms ζ 2 and ζ 2ξη; thus, the terms in the interpolation
for Sξη that one finally obtains are given by products of the set {1, ξ, η, ξη} with the set {1, ζ, ζ 2

}. Note
that in both the 8-node and 27-node hexahedral elements, the terms in the final interpolations for the
shear stresses Si j are the terms that are common in the interpolations for the normal stresses Si i and S j j .

2C. Six-node wedge element. The requirement imposed by Rule (4) is difficult to satisfy in the case of
wedge elements. In particular, if one formulates the stress modes in terms of natural coordinates as in the
case of hexahedral elements, and if one uses the minimum number of stress modes, then this requirement
is violated. To overcome this problem, Sze et al. [Sze et al. 2004a] proposed a novel idea of using a local
Cartesian system to express the stress interpolation functions. Their proposed interpolation with respect
to this local Cartesian system x ′-y′-z′ is

Sx ′x ′ = β1+β2ζ, Sy′y′ = β3+β4ζ, Sz′z′ = β5+β6ξ +β7η,

Sx ′y′ = β8+β9ζ, Sy′z′ = β10+β12x ′, Sx ′z′ = β11−β12 y′.

Quite unfortunately, it violates the requirement that the stresses be allowed to vary independently of
each other since β12 is shared between Sy′z′ and Sx ′z′ . If one considers a single element, with the local
and global coordinate systems coinciding, then the displacement field u = 0, v = xz, w = 0, within a
linear context, yields Syz = Gx , Sxz = 0, while the numerical strategy yields a nonzero Sxz due to its
coupling with Syz; thus, using a shared β results in a spurious Sxz component. One would surmise that
the situation can be corrected by using

Sx ′x ′ = β1+β2ζ, Sy′y′ = β3+β4ζ, Sz′z′ = β5+β6ξ +β7η,

Sx ′y′ = β8+β9ζ, Sy′z′ = β10+β12x ′, Sx ′z′ = β11+β13 y′.

However, numerical experiments show that such an interpolation fails to converge on the (nonlinear)
pinched hemisphere problem even with the use of a large number of load steps.

Hence, we finally use the following interpolation which, similar to hexahedral elements, uses the
natural coordinate system:

Sξξ = β1+β2ζ, Sηη = β3+β4ζ, Sζ ζ = β5+β6ξ +β7η,

Sξη = β8+β9ζ, Sηζ = β10+β11ξ +β12η, Sξζ = β13+β14ξ +β15η.

The transformation to Cartesian components is carried out using (2-2). Since the Sηζ and Sξη components
use interpolations that are symmetric in ξ and η, Rule (4) is satisfied.

Once again, we see that compliance with the 4 requirements results in an element with higher number
of β’s than the minimum, which is 12. Numerical experiments show that this element is only marginally
better than the displacement-based 6-node wedge element.

2D. Eighteen-node wedge element. The displacement shape functions are obtained as the product of the
standard 6-node (quadratic) triangle shape functions with the quadratic one-dimensional shape functions.
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The stress interpolation functions are

Sξξ = β1+β2ξ +β3η+β4ζ +β5ξζ +β6ηζ +β7ζ
2
+β8ξζ

2
+β9ηζ

2,

Sηη = β10+β11ξ +β12η+β13ζ +β14ξζ +β15ηζ +β16ζ
2
+β17ξζ

2
+β18ηζ

2,

Sζ ζ = β19+β20ξ +β21η+β22ξ
2
+β23ξη+β24η

2
+β25ζ

+β26ξζ +β27ηζ +β28ξ
2ζ +β29η

2ζ +β30ξηζ,

Sξη = β31+β32ξ +β33η+β34ζ +β35ξζ +β36ηζ +β37ζ
2
+β38ξζ

2
+β39ηζ

2,

Sηζ = β40+β41ξ +β42η+β43ζ +β44ξζ +β45ηζ,

Sξζ = β46+β47ξ +β48η+β49ζ +β50ξζ +β51ηζ.

(2-4)

The transformation to Cartesian components is carried out using (2-2). An 18-point (6 × 3) Gauss
quadrature rule is used to carry out the integrations.

Notes. • Removing the β37 term does not affect the rank of the element stiffness matrix (or, in other
words, this term does not suppress any zero energy modes). But excluding this term violates Rules (2)
and (4); i.e., the results become sensitive to the order of numbering in the connectivity list. Thus, again,
a slightly higher number of stress functions than the minimum are required to ensure robustness.

• Numerical experiments show that although the 21-node wedge element of [Jog 2005] performs
slightly better than the above 18-node wedge element on coarser meshes, the convergence of the latter
element with mesh refinement is more rapid. The reason is that derivatives of the bubble function intro-
duced in the 21-node element formulation are part of the shear interpolation shape functions, which tends
to make the 21-node stiffness matrix overstiff, especially in plate or shell structures. The development
of the 18-node wedge element is also simpler because there is no bubble function — no local Cartesian
system needs to be introduced as in the 21-node element to ensure insensitivity to node numbering.

• Even from a mesh-generation viewpoint, using the 18-node wedge element is advantageous since
it is a standard element that is offered by many meshing softwares.

2E. Tetrahedral elements. Since meshing is far easier with tetrahedral elements than with hexahedral
elements, the question naturally arises if tetrahedral elements can be improved using the hybrid element
methodology. Since the shape functions of the 4-node linear and 10-node quadratic tetrahedral elements
involve complete polynomials, the displacement-based and hybrid methodologies yield identical results
for these elements. Lo and Ling [2000] suggested an improvement for the 10-node tetrahedral element
based on an incompatible displacement field. Here, we shall investigate if an improvement in this element
is possible by introducing a bubble mode associated with a node in the interior (say, at the centroid) of
this element. Thus, let ξ , η, ζ be the standard volume coordinates, let α= 1−ξ−η−ζ , and let Nb= ξηζα

be the bubble mode associated with the eleventh node. The displacement shape functions are now

N1 = ξ(2ξ − 1)+ 32Nb, N5 = 4ξη− 64Nb, N9 = 4ηα− 64Nb,

N2 = η(2η− 1)+ 32Nb, N6 = 4ηζ − 64Nb, N10 = 4ζα− 64Nb,

N3 = ζ(2ζ − 1)+ 32Nb, N7 = 4ξζ − 64Nb, N11 = 256Nb.

N4 = α(2α− 1)+ 32Nb, N8 = 4ξα− 64Nb,
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The stress shape functions can be formulated directly with respect to the global Cartesian system as

Sxx = β1+β7ξ +β13η+β19ζ +β25 ∂Nb/∂x,

Syy = β2+β8ξ +β14η+β20ζ +β26 ∂Nb/∂y,

Szz = β3+β9ξ +β15η+β21ζ +β27 ∂Nb/∂z,

Sxy = β4+β10ξ +β16η+β22ζ,

Syz = β5+β11ξ +β17η+β23ζ,

Sxz = β6+β12ξ +β18η+β24ζ,

where, with J given by (2-1), we have∂Nb/∂x
∂Nb/∂y
∂Nb/∂z

= J−1

∂Nb/∂ξ

∂Nb/∂η

∂Nb/∂ζ

 .
Unfortunately, the improvement of the 11-node hybrid element over the displacement-based 10-node
tetrahedral element is marginal, so it is preferable simply to use the 10-node displacement-based element.

2F. Four-node axisymmetric element. With the Jacobian matrix given by

J =

[
∂r/∂ξ ∂z/∂ξ
∂r/∂η ∂z/∂η

]
,

we use the same shape functions for S as developed in [Jog and Annabatula 2006] for linear problems,
namely,Srr

Szz

Sr z

=
 J 2

11 J 2
21 2J11 J21

J 2
12 J 2

22 2J12 J22

J11 J12 J21 J22 J11 J22+ J12 J21


Sξξ

Sηη

Sξη

 and Sθθ = β6+β7(J12ξ + J22η),

where
Sξξ = β1+β4η, Sηη = β2+β5ξ, Sξη = β3.

2G. Nine-node axisymmetric element. With the Jacobian matrix as in the case of the 4-node axisym-
metric element, the shape functions are given bySrr

Szz

Sr z

=
 J 2

11 J 2
21 2J11 J21

J 2
12 J 2

22 2J12 J22

J11 J12 J21 J22 J11 J22+ J12 J21


Sξξ

Sηη

Sξη


and

Sθθ = β17+β18ξ +β19η+β20ξη+β21ξ
2
+β22η

2
+β23(J12ξ

2η+ J22ξη
2),

where
Sξξ = β1+β2ξ +β3η+β4ξη+β5η

2
+β6ξη

2,

Sηη = β7+β8ξ +β9η+β10ξη+β11ξ
2
+β12ξ

2η,

Sξη = β13+β14ξ +β15η+β16ξη.
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The higher-order terms in Sθθ are chosen to be of the same order as Srr . Although excluding them would
still ensure a full-rank stiffness matrix (modulo the rigid-body mode), including them ensures that one
gets an almost symmetrical solution in the thick sphere problem of Section 3F.

3. Numerical examples

In this section, we present several linear and nonlinear example problems, both static and transient, to
demonstrate the good performance of the hybrid elements. The displacement-based and hybrid n-noded
(where n is either 8 or 27) brick elements are denoted by Bn and Sn respectively, the displacement-based
and hybrid n-noded wedge elements (where n is either 6 or 18) are denoted by Bn and Wn respectively,
while the displacement-based and hybrid n-noded (where n is either 4 or 9) axisymmetric elements are
denoted by Bn and An respectively. The WSMP sparse matrix solver [Gupta 2000; 2002] is used. Full
integration is used to construct the element stiffness matrices in all cases. We use the expressions given by
Equation (30) of [Jog and Kelkar 2006] to compute the stiffness and load vectors in the case of pressure
loading for both the displacement-based and hybrid elements. For axisymmetric problems, with 1, 2 and
3 denoting the r , z and θ directions, the matrix R and vector (cof F)ñ0 in these expressions are

Rk
=

[
0 0 −Fk

33ñ0
2 Fk

33ñ0
1 Fk

22ñ0
1− Fk

21ñ0
2

Fk
33ñ0

2 −Fk
33ñ0

1 0 0 Fk
11ñ0

2− Fk
12ñ0

1

]
, (cof Fk)ñ0

=

[
Fk

22 Fk
33ñ0

1− Fk
21 Fk

33ñ0
2

−Fk
12 Fk

33ñ0
1+ Fk

11 Fk
33ñ0

2

]
,

where (ñ0
1, ñ0

2)= (∂z/∂ξ,−∂r/∂ξ) denotes the normal in the reference configuration, and k denotes the
iteration number.

As in [Jog and Kelkar 2006], to ensure a fair comparison of the results, meshes with the same number
of global degrees of freedom are used; e.g., on any given problem involving hexahedral elements, results
obtained using 8N eight-node brick elements are compared with those obtained using N twenty-seven-
node brick elements, with identical nodal coordinate data and boundary conditions used in both meshes.
In all problems, uniform meshes are used. In the case of the hybrid elements, the nodal stresses are
obtained by finding the nodal values in each element using the stress interpolation and then averaging,
while in the case of the displacement-based elements, the stresses are found by extrapolating the values
from the Gauss points, followed by averaging. A Saint Venant–Kirchhoff material model (default) or a
neo-Hookean material model with strain energy density and constitutive relation either given by

W (C)= 1
8λ(log det C)2+ 1

2µ(tr C − 3− log det C),

S(C)= 2
∂W
∂C
=
λ

2
(log det C)C−1

+µ(I −C−1),
(3-1)

or by

W (C)= c1( Ī1− 3)+ 1
2κ(J − 1)2,

S(C)=
(
−

2
3 c1 I1 I−1/3

3 + κ(I3− I 1/2
3 )

)
C−1
+ 2c1 I−1/3

3 I,
(3-2)

where C = FT F, I1 = tr C, I3 = det C, Ī1 = (I3)
−1/3 I1, and κ = λ + 2µ/3 is the bulk modulus,

is used in all the examples (the strains are recovered from the stresses as outlined in [Jog and Kelkar
2006]). Typically, on all the static nonlinear shell-type problems presented, convergence is achieved in
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Figure 1. Rollup of a beam. The beam is shown discretized using ten 27-node elements.

about a tenth of the number of iterations reported in [Sze et al. 2004b]. As expected, the results obtained
using the proposed hybrid elements are slightly stiffer compared to results obtained using elements with
minimal stress interpolations. This is the cost for the increased robustness; however, as we show, the
performance is still much better compared to displacement-based elements.

3A. Roll-up of a beam (elastica problem). An initially flat shell of length L = 10, width w = 1 and
thickness t = 0.1 is subjected to a bending moment as shown in Figure 1. The moment is applied through
a linearly varying distributed traction on the right face. The material properties are E = 12× 106 and
ν = 0. The shell solution for the tip displacements of the midsurface is

u = R sin X
R
, v = 0, w = R

(
1− cos X

R

)
, (3-3)

where R = E I/M is the radius of curvature. For M = 2πE I/L , the beam rolls up into a complete
circle. We apply the linearly varying traction corresponding to this value of the moment; note that,
since this traction remains normal to the surface as the beam deforms, we have to consider the loading
as deformation dependent. The deformed shapes obtained using the S27 and B27 elements, obtained
using approximately a total of 60 and 90 iterations, respectively, are shown in Figure 2, and should be
compared with the solution in Figure 4 of [Jog and Kelkar 2006], which was obtained using the minimum
number of stress interpolation terms, namely 75. It is evident from this figure that the 90β interpolation
used in this work does not result in any additional stiffening compared to the 75β interpolation, and
continues to perform much better compared to the displacement-based element which not only locks,
but also takes more number of iterations to converge. The small deviation from the exact solution seen
in the S27 element results could be because the load is not being applied in a manner consistent with the
three-dimensional exact solution (since this exact solution is not known), but rather in an approximate

Figure 2. Deformed geometries for the elastica problem obtained using the S27 (left)
and the B27 (right) elements.
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Pd

RR
αα

Figure 3. Shallow spherical cap subjected to an asymmetric point load P .

way. Sze et al. [2004b] report having to use more than 700 iterations to solve this problem using shell
elements from a commercial software.

3B. Shallow spherical cap subjected to an asymmetric point load. This example was solved in [Daniel-
son and Tielking 1993] using Fourier elements. The setup is shown in Figure 3. The geometric parameters
shown are R = 4.76 in, d = 0.328 in and α = 10.9◦, and the thickness is 0.01576 in. The material
parameters are E = 107 psi and ν = 0.3. Meshes nR×nα×nφ of 1×7×8 and 2×14×16 of higher and
lower-order wedge/hexahedral elements are used to discretize the structure. Wedge elements are used in
the layer closest to the apex, and hexahedral elements are used elsewhere. The load-deflection curves for
the displacement at the apex and under the point load are shown in Figure 4, and should be compared
with Danielson and Tielking’s Figures 8 and 9. The number of iterations required to converge at each
load step is about 4 or 5. As mentioned in their article, this problem is challenging because the shell
almost buckles as it folds through: the final deflection at P = 60 lb is more than an order of magnitude
greater than the linear solution.
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cap problem.
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Figure 5. Pinched hemispherical shell with and without an 18◦ hole; only a quadrant is
modelled in both problems due to symmetry.

3C. Hemispherical shell subjected to alternating radial loads. A hemisphere with and without an 18◦

hole at the top is subjected to pinching loads; only a quadrant is modelled due to symmetry as shown
in Figure 5 with F = 1 and F = 200 for the linear and nonlinear cases respectively. The properties are
E = 6.825× 107, ν = 0.3, mean radius R = 10, and thickness h = 0.04. Meshes of 4× 4× 2, 8× 8× 2
and 16× 16× 2 eight-node brick elements, and 2× 2× 1, 4× 4× 1 and 8× 8× 1 twenty-seven-node
brick elements are used in the case where the hemisphere has a hole; meshes with the same number of
nodes per side are used for the full hemisphere case, with the layer around to the pole being modelled
by wedge elements. For the linear case, the results for the displacement at the point of application of the
forces, normalized against the solutions of 0.09355 and 0.0924, are presented in Table 1.

For the nonlinear case, the reference solutions for the displacements at points A and B are 4.067 and
8.178 in the case of the hemisphere with a hole, and 4.0754 and 8.1449 in the case of the hemisphere
without a hole [Sze et al. 2004b]. The normalized results are presented in Table 2. The solutions in all

Hemisphere with hole Hemisphere without hole
Nodes/side B27 S8 S27 B18/B27 W6/S8 W18/S27

5 0.00146 0.0896 0.5879 0.00109 0.0186 0.0437
9 0.02174 0.8645 0.9514 0.01157 0.4120 0.7846

17 0.25715 0.9942 0.9892 0.19478 0.9561 0.9849

Table 1. Normalized displacements for the pinched hemisphere problem: linear case.

Nodes Hemisphere with hole Hemisphere without hole
per Point A Point B Point A Point B
side B27 S8 S27 B27 S8 S27 B18/B27 W6/S8 W18/S27 B18/B27 W6/S8 W18/S27

5 .00669 .30582 .59848 .00334 .20494 .58447 .00494 .08113 .14896 .00267 .04395 .16284
9 .09463 .76729 .82610 .05130 .70661 .76408 .06869 .67206 .79258 .03619 .57386 .72805

17 .50568 .94674 .96256 .37750 .93283 .94663 .45291 .93293 .95312 .30843 .91480 .93710

Table 2. Normalized displacements for the pinched hemisphere problem: nonlinear case.
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cases are obtained using a single load step, and the number of iterations is approximately 9 for the hybrid
elements, while with the use of the finest mesh, the number of iterations required for the two problems
with the displacement-based approach is 21 and 18 respectively.

3D. Thick and thin shell subjected to line loading. This example has been solved in [Reese et al. 2000]
using an enhanced strain method. A hollow cylindrical shell of mean radius 9 mm is simply supported
at its bottom, and subjected to a uniform line load q at the top as shown in Figure 6. Two cases are
considered: (i) a moderately thick shell with t = 2 mm and q = 500 N/mm, and (ii) a thin shell with
t = 0.2 mm and q = 8.5/15 N/mm. As in that reference, only a quarter of the domain is modelled by
using meshes nr × nθ × nz of 1× 8× 4, 1× 16× 8 and 1× 32× 16 27-node hexahedral elements, and
2× 16× 8, 2× 32× 16 and 2× 64× 32 8-node hexahedral elements. The material model used is the
compressible neo-Hookean model given by (3-1) with λ = 24000 N/mm2 and µ = 6000 N/mm2 (the
value of λ is stated as 240000 N/mm2 in [Reese et al. 2000] due to a typographical error). The variation
of the vertical displacement at A with mesh refinement for the thick and thin shells is shown in Figure 7,
and should be compared with Reese’s Figure 2.

As can be seen, the displacement-based elements lock severely in the thin shell case, despite our use
of a higher-order element. The number of iterations is also substantially more for the displacement-based

t

30 mm

q N/mm

A
9 mm

Figure 6. Hollow cylinder subjected to line loading. Only a quarter of the domain is
modelled due to symmetry.
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Figure 7. Convergence study for the thick and thin shell examples.
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Figure 8. Deformed shape of the thin shell subjected to line load.

elements. Although the performance of the lower-order hybrid elements is slightly poorer compared to
their corresponding higher-order hybrid counterparts on coarse meshes, they converge very rapidly with
mesh refinement as seen from Figure 7; this is a trend observed in all the examples where a lower-order
hybrid element yields slightly poorer results compared to its higher-order counterpart on a coarse mesh.
For both the thick and thin shell cases, convergence for both the 8-node and 27-node hexahedral elements
is achieved in a single load step and approximately 8 iterations. In contrast, with the finest mesh of B27
elements, convergence is achieved in 5 load steps and a total of 34 iterations for the thick shell case,
and 20 load steps and a total of 120 iterations for the thin shell case! To give an idea of the extreme
deformation involved in this problem, the deformed shape of the thin shell is shown in Figure 8.

3E. Elastic wave propagation in a circular disk. A part of one face of a circular disk is subjected to
an axisymmetric pressure loading while the remainder of the boundary is free of tractions as shown in
Figure 9; compare [Cherukuri and Shawki 1996]. The parameters used are H = 1, R = 1.5, rp = 0.25,
t1 = 2µs, t2 = 5µs, t3 = 7µs, P = 105, while the material properties are E = 9.1× 106, ν = 0.2
and ρ = 2.0835× 10−4. A uniform mesh nr × nz of 30× 20 A9 elements is used to discretize the
domain, and the time step used is t1 = 0.1µs. The energy-momentum conserving algorithm of [Jog and
Motamarri 2009] is used to advance the solution in time. As opposed to the conditionally stable algorithm
in [Cherukuri and Shawki 1996], our time-stepping strategy is unconditionally stable, allowing one to
take larger time steps. As noted in this reference, the time required for a longitudinal wave to traverse
the thickness once is approximately 4.54µs. During the time of interest (60µs), multiple reflections
take place, and consequently the numerical strategy should be sufficiently robust to accurately predict
the displacements during and after these reflections.

z rp

H

R

1
t t2 t3 t

p

P

Figure 9. Elastic wave propagation in a circular disk.
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The radial and axial displacements obtained using the A9 element are shown in the top two graphs of
Figure 10; these should be compared with Figures 10 and 11 of [Cherukuri and Shawki 1996]. Similarly,
the radial, longitudinal, shear and hoop stresses are shown in the remaining graphs of Figure 10, which
should be compared with Figures 12–15 of the same reference.
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A

B D

C

Figure 11. An almost incompressible sphere subjected to internal pressure. Only the
part of the domain shown is modelled using axisymmetric elements.

3F. Thick almost incompressible sphere subjected to internal pressure. This example shows the rela-
tive immunity of hybrid elements to volumetric locking under finite deformations when the material is
an almost incompressible neo-Hookean material [Heisserer et al. 2008]. The inner radius of the sphere
is 10 mm and outer radius is 30 mm. Using symmetry, only a part of the domain is modelled using
axisymmetric elements as shown in Figure 11. Meshes of 2× 2, 4× 4 and 8× 8 A9 or B9 elements and
4×4, 8×8 and 16×16 A4 elements are used to discretize the domain. The neo-Hookean material model
given by (3-2) with c1 = 0.5 MPa, κ = 105 MPa (which corresponds to a Poisson ratio of 0.499995) is
used. The internal pressure is 1 MPa and the outer surface is traction free. The normalized results for
the radial displacement at the inner surface, obtained by using the reference solution of 5.50198336
[Heisserer et al. 2008] are presented in Table 3.

While the displacement-based element locks severely, the performance of the hybrid elements, and
especially the A9 element even with a very coarse mesh, is quite remarkable. As already mentioned,
adding the higher-order terms to Sθθ is critical in ensuring the symmetry of the solution at points A and
B, although these terms are not required to remove any zero-energy mode. This is yet another example
of an improvement of performance by using more (judiciously chosen) terms in the stress interpolation
than the minimum number based purely on elimination of zero-energy modes.

Now consider the linear counterpart of this problem. The inner radius and outer radii of the sphere
are now 1 and 5, respectively, and the internal pressure is of unit magnitude. The material properties
are E = 1000 and ν = 0.499. Uniform meshes of 4× 4, 8× 8 and 16× 16 A4, and 2× 2, 4× 4 and
8× 8 A9 meshes are used. The analytical solution for the radial displacement is 7.5556× 10−4. The

Point A Point B
Nodes/side B9 A4 A9 B9 A4 A9

5 0.00040 0.96029 1.01086 0.00040 0.91544 0.99578
9 0.00362 0.99719 1.00278 0.00362 0.97808 1.00094

17 0.05858 1.00076 1.00039 0.05858 0.99447 1.00016

Table 3. Normalized radial displacements at the inner surface in the thick-sphere prob-
lem: nonlinear case.
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Point A Point B
Nodes/side B9 A4 A9 B9 A4 A9

5 0.03035 0.80279 0.83023 0.03030 0.80482 0.80708
9 0.14847 0.92708 0.95947 0.14846 0.92369 0.95704

17 0.60879 0.97865 0.99528 0.60881 0.97677 0.99504

Table 4. Normalized radial displacement at the inner surface in the thick-sphere prob-
lem: linear case.

Nodes Radial stress Hoop stress
per Point C Point D Point C Point D
side B9 A4 A9 B9 A4 A9 B9 A4 A9 B9 A4 A9

5 −17.857 0.816 −0.601 −17.857 0.881 −0.465 19.579 0.162 3.122 19.579 1.118 3.061
9 −7.068 0.942 0.750 −7.068 0.930 0.772 8.028 0.800 1.201 8.028 0.990 1.179

17 −5.217 0.980 0.948 −5.217 0.977 0.952 6.965 0.952 1.048 6.965 0.993 1.043

Table 5. Normalized radial and hoop stresses in the thick-sphere problem: linear case.

normalized results obtained are presented in Table 4. Note again the severe locking in the displacement-
based elements, and the relative immunity of the hybrid elements.

The results for the radial and hoop stresses (in the spherical coordinate system) at points C and D
located at the mean radius as shown in Figure 11, normalized against the analytical values of −0.0292712
and 0.0267324, are presented in Table 5. Note that the even the sign of the radial stress (besides, of course,
the magnitude) for the finest B9 mesh is in error.

3G. Circular plate subjected to pressure. A thin circular plate clamped at its outer edge is subjected
to pressure loading as shown in Figure 12. This example has been solved using the p-FEM method
in [Yosibash et al. 2007]. The neo-Hookean material model given by (3-2) with c1 = 0.5 MPa and
κ = 2000 MPa (which corresponds to a Poisson ratio of 0.49975) is used. We solve this example using
both axisymmetric and wedge/hexahedral elements. This example provides an especially good test for
the wedge/hexahedral elements since the mesh is distorted (because of the circular domain that is being
modelled), the plate is thin, the material is almost incompressible, and the loading is of follower type so
that the stiffness matrix depends on the load. Meshes of 8× 1, 16× 1 and 32× 1 A9 (or B9) elements,
16×2, 32×2 and 64×2 A4 elements, 8×8×1 (nr ×nθ ×nz), 16×16×1 and 32×32×1 W18/S27 (or

r

1 mm

z

0.1 mm

p = 0.01 MPa

Figure 12. A thin circular plate clamped at its outer edge and subjected to pressure loading.
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Axisymmetric elements Wedge/hexahedral elements
Nodes/side B9 A4 A9 B18/B27 W6/S8 W18/S27

17 0.85562 0.99302 0.98709 0.85559 0.99018 0.98555
33 0.88409 0.99755 0.99524 0.88409 0.99649 0.99456
65 0.89663 0.99996 0.99847 0.89661 0.99956 0.99822

Table 6. Normalized vertical displacement at the center of the top surface of the thin
circular plate: nonlinear analysis.

B18/B27) elements, and 16× 16× 2, 32× 32× 2 and 64× 64× 2 W6/S8 elements are used. In the case
of wedge/hexahedral elements, only a quarter of the plate is modelled with wedge elements used in the
layer closest to the center, and hexahedral elements elsewhere. The displacements at the center of the
top surface normalized against the reference solution of 0.182647 [Yosibash et al. 2007] are presented
in Table 6.

Note that the results obtained using wedge/hexahedral elements, inspite of the mesh distortion, are
almost as good as those obtained using axisymmetric elements. The results for all the hybrid elements
are obtained within a total of only 12 iterations. In contrast, the displacement-based elements not only
converge very slowly, but also require approximately 280 iterations (spread over 50 load steps) to obtain
the solution.

Now consider the linear counterpart of the problem. A simply-supported circular plate of radius 10,
and with ν = 0.3, is subjected to a unit pressure load on the top surface. Two cases are considered (i)
E = 104, h = 1 (“thick plate”), and (ii) E = 1010, h = 0.01 (“thin plate”). The analytical solutions
for the center-point deflection are 0.70388 and 0.69563, respectively. The normalized results for the
center-point deflection are presented in Table 7.

Note the exceptionally high accuracy of the hybrid axisymmetric elements, even when the thick-
ness/radius ratio is as small as 1/1000. One of the interesting features of the stress solution in the
thin plate case is that while the A4, A9 and W18/S27 elements yield transverse shear stress values at the

Thick plate (h = 1)
Nodes/side B18/B27 W6/S8 W18/S27 B9 A4 A9

5 0.94419 0.88661 0.98465 0.97980 1.02418 1.00277
9 0.99256 0.98659 0.99551 0.99616 1.00749 0.99853

17 0.99551 0.99640 0.99580 0.99607 0.99753 0.99608

Thin plate (h=0.01)
Nodes/side B18/B27 W6/S8 W18/S27 B9 A4 A9

5 0.12700 0.63708 0.44493 0.95746 1.02555 1.00453
9 0.66715 0.87905 0.80732 0.98996 1.00898 0.99954

17 0.93986 0.96304 0.97489 0.99984 1.00020 0.99989

Table 7. Normalized center-point displacements in the simply-supported circular plate
problem: linear analysis.
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center of the plate that are close to zero, the B9 element yields values ranging from 175 to 2600, while
the other elements in the table, and the W21 of [Jog 2005] yield values of the order of 105!

3H. Large strain vibration of a long half cylinder. The base of a half-cylinder travelling with a uniform
initial velocity v is suddenly brought to rest as shown in Figure 13, left, due to which it vibrates from left
to right. This example was solved in [Bonet et al. 2001] using an averaged nodal deformation gradient
formulation. The neo-Hookean material model given by (3-2) is used, with c1 = 1.7855× 105 Pa and
κ = 1.667×106 Pa, and the density is 1000 kg/m3. Uniform meshes nr ×nθ ×nz of 4×8×40 W18/S27
(or B18/B27) and 8× 16× 80 W6/S8 elements, and a time step t1 = 0.0025 s is used. The deformed
centerline at various times is shown in Figure 14, left, and should be compared with Figure 4 of [Bonet
et al. 2001].

Although the solutions are shown for the W18/S27 mesh, almost identical solutions are obtained with
the W6/S8 and B18/B27 meshes. Moreover, almost identical solutions are also obtained with coarser
meshes of 2×4×20 W18/S27 (or B18/B27) and 4×8×40 W6/S8 elements, and a time step t1= 0.005 s,
showing convergence with respect to mesh refinement. Since the velocity is zero at the base, and since
the remaining surface is traction free, the total energy (kinetic+strain energy) should be conserved by the
numerical algorithm. As is seen from Figure 14, right, this is achieved by our numerical algorithm. We
would like to state that the use of an interpolation obtained by excluding Rule (2) fails to converge (after
a few time steps) on this problem showing the importance of this rule.

3I. Inflation of a square airbag. This example, in which a flat square isotropic membrane is gradually
inflated by a constant pressure until its magnitude reaches 5 kPa, has been solved using a wrinkling
model in [Jarasjarungkiat et al. 2009]. The geometry and material properties are shown in Figure 13,
right.

R=0.32 m

3.24 m

v=1.88 m/sy

z

M x

y
CC

A

uB rA

B

Figure 13. Left: geometry and initial conditions for the long half cylinder problem.
Right: geometry and material properties for the airbag problem. The thickness is
0.06 cm, the length AC is 120 cm, and E = 58.8 kN/cm2, v = 0.4.
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semicircle at various times (left) and total energy as a function of time (right).

Figure 15. Top and isometric views of the inflated airbag.

Due to the presence of wrinkles, the stiffness matrix can become singular, and hence we solve this
problem using the transient algorithm described in [Jog and Motamarri 2009] with an appropriate amount
of damping to damp out the transients, and reach to a steady-state solution. A 50× 50× 1 mesh of 27-
node hybrid hexahedral elements is used to discretize a quarter of the domain due to symmetry. The total
pressure of 5 kPa is applied gradually in a linearly varying fashion over the time interval [0, 5], and then
maintained constant after that. The time step used in the transient analysis is t1 = 0.002. The values
of density ρ and damping parameter α used are 2700 kg/m3 and 106, respectively. The steady-state
solution is reached after 6 seconds, and is shown in Figure 15.

In contrast to solutions obtained using wrinkle models, the strategy above yields the details of the
wrinkles (including the wavelength and amplitude), and accurate values of stresses within the entire
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membrane. The values of the displacement wM , rA and u B (in cm) obtained using our method are
(21.45, 4.63, 16.63), while the values presented in [Jarasjarungkiat et al. 2009] are (21.669, 6.92, 12.37).
The reason for the significant difference in the displacement at point B is that, in reality, there is a sharp
ridge around that point (see Figure 15), which is smoothened out when one uses a wrinkle model, as in
Figure 6 of that reference.

4. Conclusions

The use of a minimal stress interpolation that does not satisfy the rules enumerated in this work, often
results in instabilities, non-convergence or spurious stresses. As shown by means of several examples,
stress interpolations obeying these rules result in increased robustness. Although the number of inter-
polation terms in some of the higher-order elements, such as the 27-node hexahedral and the 9-node
axisymmetric elements, is much more than the minimum required, their performance continues to be far
superior to the displacement-based elements, and in many problems superior to the 8-node hexahedral
and 4-node axisymmetric hybrid elements, respectively. More importantly, they result in far greater ro-
bustness, especially in transient simulations, where, as our numerical experiments show, stable solutions
are obtained even over very long time simulations. Another advantage is that the rules enumerated, since
they require the polynomials to be complete in some sense, result in a unique interpolation function
for the stresses. One of the interesting conclusions in the case of the 8-node and 27-node hexahedral
elements, the 18-node wedge element, and the 4-node and 9-node axisymmetric elements is that for a
robust formulation, the normal stress interpolations (except, of course, the hoop stress interpolation in
the case of axisymmetric elements) are obtained simply by differentiating the displacement field, while
the interpolations for the shear stress components Si j are composed of terms that are common to the
interpolations for the normal stresses Si i and S j j .
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