
Journal of

Mechanics of
Materials and Structures

FINITE STRAIN MICROMECHANICAL MODELING OF
THERMOVISCOELASTIC MATRIX COMPOSITES

Jacob Aboudi

Volume 6, No. 1-4 January–June 2011

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 6, No. 1-4, 2011

msp

FINITE STRAIN MICROMECHANICAL MODELING OF
THERMOVISCOELASTIC MATRIX COMPOSITES

JACOB ABOUDI

A finite strain micromechanical analysis is generalized for the modeling of thermoviscoelastic matrix
composites. The thermoviscoelastic matrix of the composite is represented by a finite thermoviscoelas-
ticity theory that permits (in contrast to finite linear thermoviscoelasticity theories) large deviations away
from thermodynamic equilibrium. As a result, it is possible to subject the composite to large thermome-
chanical loadings. In addition, the possibility of evolving damage in the matrix is included. The derived
micromechanical model is applied to investigate the behavior of a thermoviscoelastic rubber-like matrix
reinforced by steel fibers in various circumstances. By subjecting the composite to mechanical loading
under isentropic conditions, the micromechanical model is employed for the prediction of thermoelastic
inversion point at which the Gough–Joule phenomenon at the rubber-like phase occurs. Results are given
that show the effect of damage, elevated temperature and viscoelasticity of the matrix on the global
response of the composite including its creep and relaxation behavior.

1. Introduction

The viscoelastic effects of polymers that are undergoing large deformations can be modeled by finite
linear viscoelasticity. In the framework of this theory the strains are finite, but the deviations away
from thermodynamic equilibrium are assumed to be small. This implies that the equations that control
the evolution of the internal variables are linear; see [Lockett 1972; Christensen 1982; Holzapfel 2000;
Simo 1987], for example. For large deviations from equilibrium the finite linear viscoelasticity is not
applicable any more and nonlinear evolution laws must be introduced to allow more accurate modeling.
To this end a finite viscoelasticity theory was formulated in [Reese and Govindjee 1998b] in which the
equations of evolution are nonlinear thus allowing very large strains to take place. In [Govindjee and
Reese 1997] comparisons have been made between the finite linear viscoelasticity of [Simo 1987] and
their developed finite viscoelasticity theory.

The development of thermoviscoelasticity theories at finite strain that include viscous and nonisother-
mal effects is very important since the behavior of polymeric materials is strongly influenced by tempera-
ture changes. A thermoviscoelasticity theory at finite strains was presented in [Holzapfel and Simo 1996].
In this formulation, however, the evolution equations of the internal variables are linear and, therefore, this
theory can be considered as finite linear thermoviscoelasticity. Finite thermoviscoelasticity theories that
allow finite perturbations away from thermodynamic equilibrium were presented by [Lion 1996; Reese
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and Govindjee 1998a]. The formulation in the latter reference is based on entropic elasticity and involves
nonlinear evolution equations that allow the modeling of significant thermomechanical deformations of
the material and permits large deformation rates.

The derived constitutive equations of [Reese and Govindjee 1998a] are based on the multiplicative
decomposition of the deformation gradient into elastic and viscous parts. In addition, the free energy is
decomposed into equilibrium (which corresponds to time-independent thermoelastic deformation) and
nonequilibrium (which corresponds to the time-dependent deformation) parts. Damage considerations
are not included in the finite thermoviscoelasticity of that paper. In the present investigation, evolving
damage in finite thermoviscoelastic materials is included by adopting, in the framework of continuum
damage mechanics, the derivation of [Lin and Schomburg 2003; Miehe and Keck 2000], according to
which the rate of damage depends upon the kinematic arc-length. Isothermal finite viscoelasticity with
evolving damage is obtained as a special case, and by neglecting the thermal and viscous effects, the
special case of a hyperelastic material with evolving damage is obtained.

In [Aboudi 2004], a micromechanical analysis was proposed for the prediction of the behavior of
composites undergoing large deformations in which one of the phases is modeled by the finite linear
thermoviscoelasticity theory of [Holzapfel and Simo 1996]. In the present investigation, this finite strain
micromechanical analysis, referred to as high-fidelity generalized method of cells (HFGMC), is extended
to incorporate polymeric phases that can be modeled by the finite thermoviscoelasticity of [Reese and
Govindjee 1998a] in which damage can evolve, the rate of which depends upon the kinematic arc-length.
As a result of the present generalization, finite strain constitutive equations that govern the macroscopic
behavior of the anisotropic thermoviscoelasticity composites undergoing large deformations with evolv-
ing damage in the polymeric phase are established. These equations involve the damaged instantaneous
mechanical and thermal tangent tensors as well as a global tensor that includes the current viscoelas-
ticity and damage effects. Every one of these three tensors is given by closed-form expressions that
involve the instantaneous properties of the phases and the corresponding current mechanical, thermal
and viscoelastic-damage tensors which have been established from the micromechanical procedure. The
special case of composites that consist of finite viscoelastic phases has been recently investigated in
[Aboudi 2010].

Results are given for a thermoviscoelastic rubber-like matrix reinforced by thermoelastic steel fibers.
The thermoviscoelastic rubber-like matrix consists of a system of a thermoelastic element together with a
single Maxwell element which is represented by the equilibrium and the nonequilibrium parts of the free
energy. The thermoelastic inversion point which is characteristic for rubber-like materials at which the
Gough–Joule effect occurs is determined by analyzing an isentropic process that provides the induced
temperature by stretching the composite in the transverse direction (perpendicular to the fibers). In addi-
tion, the effects of elevated temperature, viscoelasticity and damage on the steel/rubber-like composite
response to mechanical and thermal loading-unloading conditions are examined, as well as its creep and
relaxation behavior.

This paper is organized as follows. After a brief summary in Section 2 of the thermoviscoelastic
model of [Reese and Govindjee 1998a] for monolithic materials and its coupling with evolving damage,
the HFGMC analysis is described in Section 3. Section 4 includes the application of the finite strain
thermoviscoelastic composite model in various circumstances, followed by conclusions and suggestions
for future research.
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2. Finite strain thermoviscoelasticity coupled with damage model of monolithic materials

In the present section we briefly present the constitutive behavior of finite strain thermoviscoelastic
polymeric materials that exhibit evolving damage. The presentation follows the papers of [Reese and
Govindjee 1998a] where no damage is accounted to and [Lin and Schomburg 2003] where evolving
damage is included. The present thermoviscoelastic modeling allows finite strain and large deviations
from the thermodynamic equilibrium state.

Let X and x denote the location of a point in the material with respect to the initial (Lagrangian)
and current systems of coordinates, respectively, and t is the time. In terms of the local deformation
gradient tensor F(X, t), dx= F(X, t)d X . The deformation gradient F is expressed by the multiplicative
decomposition

F(X, t)= Fe(X, t)Fv(X, t), (1)

where Fe and Fv are the elastic and viscous parts. The Jacobians that correspond to F and Fe are:
J = det F and J e

= det Fe, respectively.
The modeling that is presented herein is based on a single Maxwell and elastic elements, but it can

be extended to include several Maxwell elements. The total free energy per unit reference volume
is decomposed into equilibrium (EQ) which represents the strain energy of the elastic element and a
nonequilibrium (NEQ) part that accounts for the Maxwell element:

ψ = ψEQ
+ψNEQ. (2)

The equilibrium part is given by

ψEQ
= (1− D)

[
fEQψ

EQ
0 + (e0)EQ

(
1− θ

θ0

)
+ c0

(
θ − θ0− θ log θ

θ0

)]
, (3)

where D denotes the amount of damage such that 0 ≤ D ≤ 1, θ and θ0 are the current and reference
temperatures, respectively, and c0 is the heat capacity. In this relation fEQ and (e0)EQ are of the form

fEQ =
θ

θ0
, (e0)EQ = K eαe log Jθ0, (4)

where K e and αe are the bulk modulus and thermal expansion coefficient, respectively, of the elastic ele-
ment. It follows from (3) that ψEQ

0 is the equilibrium part of the free energy at the reference temperature
θ0 in the presence of damage.

The nonequilibrium part is given by

ψNEQ
= (1− D)

[
fNEQψ

NEQ
0 + (e0)NEQ

(
1− θ

θ0

)]
, (5)

where

fNEQ =
θ

θ0
and (e0)NEQ = K vαv log Jeθ0, (6)

K v and αv being the bulk modulus and thermal expansion coefficient, respectively, of the viscous part
of the material. Here too, ψNEQ

= ψ
NEQ
0 for θ = θ0 and D 6= 0.
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The Kirchhoff stresses can be derived from the free-energy expressions above:

τEQ
= 2F

∂ψEQ

∂C
FT
≡ (1− D)τEQ

0 , (7)

C = FT F being the right Cauchy–Green deformation tensor, and

τNEQ
= 2F

∂ψNEQ

∂C
FT
= 2Fe ∂ψ

NEQ

∂Ce FeT
≡ (1− D)τNEQ

0 , (8)

where Ce
= FeT Fe and τEQ

0 , τNEQ
0 correspond to the Kirchhoff stresses of the undamaged material.

Let the left Cauchy–Green tensor B = F FT be represented in terms of its eigenvalues bp and unit
principal directions ep, p = 1, 2, 3:

B = diag [b1, b2, b3], i.e., B =
3∑

p=1

bp ep⊗ ep. (9)

With J = det F =
√

b1b2b3, the volume preserving tensor B = J−2/3 B can be accordingly represented
in the form

B = diag [b̄1, b̄2, b̄3] = (b1b2b3)
−1/3 diag [b1, b2, b3]. (10)

The finite strain isothermal contribution ψEQ
0 can be modeled by the Ogden’s compressible material

representation [Ogden 1984; Holzapfel 2000] as follows

ψ
EQ
0 =

3∑
p=1

µe
p

αe
p

(
(b̄1)

αe
p/2+ (b̄2)

αe
p/2+ (b̄3)

αe
p/2− 3

)
+

K e

4

(
J 2
− 2 log J − 1

)
, (11)

where µe
p and αe

p are material parameters of the elastic element.
For Maxwell’s element, the isothermal free energy ψNEQ

0 is represented by [Reese and Govindjee
1998a]:

ψ
NEQ
0 =

3∑
p=1

µvp

αvp

(
(b̄e

1)
αvp/2+ (b̄e

2)
αvp/2+ (b̄e

3)
αvp/2− 3

)
+

K v

4

(
(J e)2− 2 log J e

− 1
)
, (12)

where
Be
= Fe
[Fe
]
T
= diag [be

1, be
2, be

3] (13)

and J e
=
√

be
1be

2be
3, b̄e

A = (J
e)−2/3be

A, and µvp, αvp, are material parameters.
The entropy of the system can be determined from

η =−
∂ψ

∂θ
=−

∂ψEQ

∂θ
−
∂ψNEQ

∂θ

=−(1− D)
[

1
θ0
ψ

EQ
0 −

1
θ0
(e0)EQ− c0 log

θ

θ0

]
− (1− D)

[
1
θ0
ψ

NEQ
0 −

1
θ0
(e0)NEQ

]
≡ (1− D)η0. (14)

The evolution equation for the internal variables is given in [Reese and Govindjee 1998a]:

−
1
2

Lv[Be
][Be
]
−1
=

1
2ηD

dev [τNEQ
] +

1
9ηV

trace [τNEQ
], (15)
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where ηD and ηV are the deviatoric and volumetric viscosities, respectively, and Lv[Be
], the Lie deriva-

tive of Be, can be expressed as
Lv[Be

] = FĊv−1 FT , (16)

with Cv
= FvT Fv. For elastic bulk behavior, 1/ηV = 0 and the relaxation time is given by ξ = ηD/µ

where µ is the small strain shear modulus of the Maxwell element (the nonequilibrium part).
The integration of the evolution equation (15) is performed by means of the return mapping algorithm

in conjunction with the logarithmic strain and the backward exponential approximation which were
developed in the framework of elastoplasticity, see [Weber and Anand 1990; Eterovic and Bathe 1990;
Cuitino and Ortiz 1992; Simo 1992]. Thus, by employing the exponential mapping algorithm, (15) is
reduced to

εe
n+1,A = ε

e trial
n+1,A−1t

[
1

2ηD
dev [τNEQ

A ] +
1

9ηV
trace [τNEQ

]

]
n+1

, (17)

with A= 1, 2, 3, where the principal values of the elastic logarithmic strain εe
A are given by εe

A =
1
2 log be

A
and 1t is the time increment between the current and previous step. In (17), the trial values of εe trial

n+1,A
can be expressed in terms of the eigenvalues be trial

n+1,A of Be trial
n+1 namely, εe trial

n+1,A =
1
2 log be trial

A,n+1, where

Be trial
n+1 = fn+1 Be

n f T
n+1, (18)

with
fn+1 = Fn+1 F−1

n , (19)

Equation (17) forms a system of coupled nonlinear equations in the unknowns εe
n+1,A, A = 1, 2, 3. It

can be rewritten in terms of the elastic logarithmic strain increments in the form

1εe
A = ε

e trial
n+1,A− ε

e
n,A−1t

[
1

2ηD
dev [τNEQ

A ] +
1

9ηV
trace [τNEQ

]

]
n+1

. (20)

In this equation, the principal values of τNEQ are given according to (8) by

τ
NEQ
A = 2

∂ψNEQ

∂bA
bA = 2

∂ψNEQ

∂be
A

be
A. (21)

The rate of damage evolution is given by (see [Lin and Schomburg 2003; Miehe and Keck 2000])

Ḋ =
ż
ηdam

(D∞− D), (22)

where the rate of kinematic arc length is defined by

ż =
√

2
3‖Ḣ‖, H = 1

2 log C, (23)

with the saturation value
D∞ =

1
1+ D∞0 exp (−βdam/αdam)

(24)

and
βdam = max

0≤ξ≤t

√
2
3‖H(ξ)‖. (25)

In these relations, ηdam, D∞0 and αdam are material parameters.
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The incremental form of the constitutive equations of the finite thermoviscoelastic material and the
corresponding instantaneous tangent tensor that are needed in the following micromechanical analysis,
are determined as follows. From (8) the following expression can be established

1τ
NEQ
A = (1− D)1τNEQ

0A − τ
NEQ
0A 1D. (26)

Let the second-order tensor MNEQ be defined by

MNEQ
= [MNEQ

AB ] ≡

[
∂τ

NEQ
0A

∂εe
B

]
, A, B = 1, 2, 3, (27)

In addition, the components of the thermal stress vector 0NEQ are determined from

0
NEQ
A =−

∂τ
NEQ
0A

∂θ
, A = 1, 2, 3. (28)

In conjunction with (20), we obtain from (26) that

1τ
NEQ
A = (1− D)MNEQ

AB

{
εe trial

n+1,B − ε
e
n,B −1t

[
1

2ηD
dev [τNEQ

B ] +
1

9ηV
trace [τNEQ

]

]
n+1

}
− (1− D)0NEQ

A 1θ − τ
NEQ
0A 1D. (29)

Let 1εe
A and 1εved

A be defined by

1εA ≡ ε
e trial
n+1,A− ε

e
n,A,

1εved
A ≡1t

[
1

2ηD
dev [τNEQ

A ] +
1

9ηV
trace [τNEQ

]

]
n+1
+ [MNEQ

]
−1
ABτ

NEQ
0B

1D
1− D

. (30)

Therefore (29) can be represented by

1τ
NEQ
A = (1− D)

{
MNEQ

AB [1εB −1ε
ved
B ] −0

NEQ
A 1θ

}
≡ (1− D)[MNEQ

AB 1εB −0
NEQ
A 1θ ] −1W NEQ

A , (31)

where the components 1W NEQ
A involve the thermoviscoelastic and damage effects.

The fourth-order tangent tensor dNEQ is defined by

dNEQ
= 2

∂SNEQ

∂C
= 4

∂2ψNEQ

∂C∂C
, (32)

where SNEQ is the second Piola–Kirchhoff stress tensor:

SNEQ
= 2

∂ψNEQ

∂C
= 2[Fv

]
−1 ∂ψ

NEQ

∂Ce [F
v
]
−T , (33)

whose the principal values are given by

SNEQ
A = 2

∂ψNEQ

∂bA
=

2
bvA

∂ψNEQ

∂be
A
, A = 1, 2, 3, (34)
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with bvA = bA/be
A being the principal values of Bv

= Fv
[Fv
]
T
= diag [bv1, bv2, bv3]. The principal values

of dNEQ can be determined from the following expression [Holzapfel 2000]:

dNEQ
=

3∑
A=1

3∑
B=1

1
λB

∂SNEQ
A

∂λB
NA⊗ NA⊗ NB ⊗ NB

+

3∑
A=1

3∑
B 6=A=1

SNEQ
B − SNEQ

A

(λB)2− (λA)2
(NA⊗ NB ⊗ NA⊗ NB + NA⊗ NB ⊗ NB ⊗ NA), (35)

where
1
λB

∂SNEQ
A

∂λB
= 2

∂SNEQ
A

∂bB
=

4
bvAbvB

∂2ψNEQ

∂be
Abe

B
, (36)

with λA =
√

bA and NA denotes the principal referential orthonormal directions. It should be noted that
for λA = λB , a Taylor expansion shows that

lim
λB→λA

SNEQ
B − SNEQ

A

(λB)2− (λA)2
=

1
2λB

[
∂SNEQ

B

∂λB
−
∂SNEQ

A

∂λB

]
. (37)

The second-order thermal stress tensor γ NEQ is determined from

γ NEQ
=−

∂SNEQ

∂θ
=−2

∂2ψNEQ

∂C∂θ
(38)

and its principal values are given by

γ
NEQ
A =−2

∂2ψNEQ

∂bA∂θ
=−

2
bvA

∂2ψNEQ

∂be
A∂θ

. (39)

The values of γ NEQ
A can be readily related to 0NEQ

A in (28) by employing the relation: τ = FSFT from
which the equality 0NEQ

A = bAγ
NEQ
A is obtained.

The fourth-order first tangent tensor RNEQ which is defined by

RNEQ
=
∂T NEQ

∂F
, (40)

where T NEQ is the first Piola–Kirchhoff stress tensor, can be determined from

RNEQ
= F dNEQ FT

+ SNEQ
⊗ I, (41)

with I denoting the unit second-order tensor. Thus, the rate form of the nonequilibrium portion of the
constitutive equations of the finite thermoviscoelastic material is given by

Ṫ NEQ
= RNEQ

: Ḟ− HNEQθ̇ − V̇ NEQ, (42)

where by taking into account the relation between the Kirchhoff τ and the first Piola–Kirchhoff T stress
tensors: τ = FT , the following expressions for the thermal stress HNEQ and viscous-damage V̇ NEQ
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terms can be established:

HNEQ
= F−10NEQ

= γ NEQ FT , (43)

V̇ NEQ
= F−1 ẆNEQ. (44)

The same procedure can be followed for the establishment of the first tangent tensor REQ of equilibrium
elastic element where ẆEQ involves this time the damage effects only and Fv

= I . It yields

Ṫ EQ
= REQ

: Ḟ− HEQθ̇ − V̇ EQ. (45)

The final total rate form of the finite thermoviscoelastic material is as follows

Ṫ = R : Ḟ− H θ̇ − V̇ , (46)

where Ṫ = Ṫ NEQ
+ Ṫ EQ, R = RNEQ

+ REQ, H = HNEQ
+ HEQ, and V̇ = V̇ NEQ

+ V̇ EQ. Constitutive
equations can be obtained from (46) as specials cases in the presence/absence of damage and viscous
effects.

3. Finite-strain micromechanical analysis

Finite strain HFGMC micromechanical analyses for the establishment of the macroscopic constitutive
equations of various types of composites with doubly periodic microstructure undergoing large defor-
mations have been previously reviewed by [Aboudi 2008]. These micromechanical analyses are based
on the homogenization technique in which a repeating unit cell of the periodic composite can identified.
This repeating unit cell represents the periodic composite in which the double periodicity is taken in
the transverse 2− 3 plane, so that the axial 1-direction corresponds to the continuous direction; see
Figure 1. (For a unidirectional fiber-reinforced material, for example, the 1-direction coincides with the

Repeating

Unit Cell

X3

X2 Y3

Y2

Figure 1. A multiphase composite with doubly periodic microstructures defined with
respect to global initial coordinates of the plane X2 − X3. The repeating unit cell is
defined with respect to local initial coordinates of the plane Y2− Y3.
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fiber orientation.) In the framework of these HFGMC micromechanical models, the displacements are
asymptotically expanded and the repeating unit cell is discretized. This is followed by imposing the
equilibrium equations, the displacement and traction interfacial conditions as well as the conditions that
ensure that the displacements and tractions are periodic across the repeating unit cell. In particular, the
imposition of the equilibrium equations provide the strong form of the Lagrangian equilibrium conditions
of the homogenization theory that must be satisfied. In addition, since the solution of the repeating unit
cell is determined with a constant vector, the corners of this cell are rigidly clamped to prevent this
indeterminacy. The resulting homogenization derivation establishes the deformation concentration tensor
A(Y , θ), where Y are the local Lagrangian system of coordinates with respect to which field variables
in the repeating unit cell are characterized. This tensor relates the rate of the local deformation gradient
Ḟ(Y , θ) at a material point Y within the repeating unit cell to the externally applied deformation gradient
rate ˙̄F on the composite in the form

Ḟ(Y , θ)= A(Y , θ) : ˙̄F+ Ath(Y , θ)θ̇ + Ȧvd(Y , θ), (47)

where Ath and Ȧvd are the thermal concentration tensor and the viscous-damage contribution. The
mechanical concentration tensor A is determined at every increment of loading when the thermal and
viscous-damage effects are absent. Similarly, the thermal concentration tensor Ath is determined at
every increment in the absence of mechanical and viscous-damage effects. Finally, the current Ȧvd can
be determined when no mechanical or thermal effects are present. It follows from (47) and in conjunction
with (46) that the local stress rate at this point is given by

Ṫ (Y , θ)= R(Y , θ) :
[

A(Y , θ) : ˙̄F+ Ath(Y , θ)θ̇ + Ȧvd(Y , θ)
]
−H(Y , θ)θ̇ − V̇ (Y , θ). (48)

Hence the resulting rate form of the macroscopic constitutive equation for the multiphase thermovis-
coelastic composite undergoing large deformation is given by

˙̄T = R∗ : ˙̄F− H∗θ̇ − ˙V , (49)

where ˙̄T is the rate of the overall (global) first Piola–Kirchhoff stress tensor and R∗ is the instantaneous
effective stiffness (first tangent) tensor of the multiphase composite. It can be expressed in terms of the
first tangent tensors of the constituents R(Y , θ) and the established deformation concentration tensor
A(Y , θ) in the form

R∗ =
1
SY

∫∫
SY

R(Y , θ) A(Y , θ) d SY , (50)

where SY is the area of the repeating unit cell. The effective instantaneous thermal stress tensor H∗ in
(49) is established from

H∗ =−
1
SY

∫∫
SY

[
R(Y , θ) Ath(Y , θ)− H(Y , θ)

]
d SY . (51)

Finally, the current viscous-damage contribution to the macroscopic constitutive equations (49) is given
by

˙V =−
1
SY

∫∫
SY

[
R(Y , θ) : Ȧvd(Y , θ)− V̇ (Y , θ)

]
d SY . (52)
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More details can be found in [Aboudi 2008]. It should be noted that the current values of R∗, H∗ and
˙V of the composite are affected by the current value of damage variable through the instantaneous value
of the tensors R(Y , θ), H(Y , θ) and V̇ (Y , θ) of the finite strain constituents.

The finite strain HFGMC micromechanical model predictions were assessed and verified by compar-
ison with analytical and numerical large deformation solutions in [Aboudi and Pindera 2004; Aboudi
2009] for composites with hyperelastic and hyperelastic coupled with damage constituents, respectively.

4. Applications

In the present section, applications are given that exhibit under various circumstances the response of
a composite undergoing large deformations, which consists of a thermoviscoelastic rubber-like material
reinforced by continuous thermoelastic fibers. The thermoviscoelastic matrix is characterized by the free
energy functions (3) and (5) that represent elastic and maxwell elements, respectively in conjunction
with the corresponding isothermal free-energy functions (11) and (12). The parameters in these functions
[Reese and Govindjee 1998a] are given in Tables 1 and 2, together with ηD and 1/ηV = 0 (assuming
elastic bulk deformations). The damage mechanism affects the thermoviscoelastic matrix only and its
parameters which appear in (22)–(24) are: ηdam = 0.1, D∞0 = 1 and αdam = 1. The effect of damage can
be totally neglected by choosing 1/ηdam = 0.

The continuous thermoelastic steel fibers are oriented in the 1-direction and they are characterized by
the free energy function [Reese and Govindjee 1998a]

ψ steel
=
(µ1)st

(α1)st

[
(b̄1)

(α1)st/2+ (b̄2)
(α1)st/2+ (b̄3)

(α1)st/2− 3
]
+

Kst

4

[
J 2
− 2 log J − 1

]
, (53)

where (µ1)st , (α1)st and Kst are material parameters of the steel fibers which are given in Table 3. The
volume fraction of the fibers is v f = 0.05 which is characteristic for a rubber-like material reinforced by
steel fibers.

µe
1 (MPa) µe

2 (MPa) µe
3 (MPa) αe

1 αe
2 αe

3 K e (MPa) αe(K−1) ce
0 (MPa K−1)

0.13790 −0.04827 0.01034 1.8 −2 7 50 223.33× 10−6 1.7385

Table 1. Material parameters in the function ψEQ
0 of (11). The parameters µe

p and αe
p,

p = 1, 2, 3 are the Ogden’s material constants, K e is the bulk modulus, αe is its thermal
expansion coefficient and ce

0 is its heat capacity. In the small strain domain, the shear
modulus of this material is 0.208 MPa.

µv1 (MPa) µv2 (MPa) µv3 (MPa) αv1 αv2 αv3 K v (MPa) ηD (MPa s) αv (K−1)

0.3544 −0.1240 0.0266 1.8 −2 7 50 9.38105 223.33× 10−6

Table 2. Material parameters in the function ψNEQ
0 of (12). The parameters µvp and αvp,

p = 1, 2, 3 are the Ogden’s material constants, K v is the bulk modulus and αv is its
thermal expansion coefficient. ηD and ηV are the viscoelastic constants with ηV →∞

implying elastic bulk behavior. In the small strain domain, the shear modulus of this
material is 0.536 MPa.
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(µ1)st (MPa) (α1)st Kst (MPa) (α)st(K−1) (c0)st (MPa K−1)

80769.231 2 121153.85 12× 10−6 3.768

Table 3. Material parameters in the function ψ steel of (53). The parameters (µ)st and
(α)st are the Ogden’s material constants of the steel fibers, Kst is the bulk modulus,
(α)st its coefficient of thermal expansion and (c0)st is its heat capacity. In the small
strain domain, the shear modulus of the material is 80769.231 MPa.

4.1. The thermoelastic inversion effect. Consider a uniaxially stretched specimen of rubber in the 1-
direction that is subjected to thermal loading (isomeric behavior). For low values of constant stretch, the
graph of the gradient of the stress against temperature is negative (as in glass and metals), but becomes
positive at certain critical stretching. This change of gradient sign characterizes the thermoelastic inver-
sion effect also referred to as the Gough–Joule effect. Similarly, in ordinary materials with a prescribed
stress and subjected to a thermal loading (isotonic behavior), the gradient of deformation with respect to
temperature is always positive, but in rubbers this gradient becomes negative at loadings beyond a critical
value. As was shown by [Ogden 1992], the derivative of the stress T11 with respect to the temperature
θ at constant stretch λ1: (∂T11/∂θ)λ1 , and the derivative of the temperature θ with respect to the stretch
λ1 at constant entropy η: (∂θ/∂λ1)η (isentropic behavior) vanish simultaneously. Thus, it is possible
to detect the critical value of stretch at which the thermoelastic inversion takes place by considering a
strip of rubber subjected to a uniaxial stress loading under isentropic conditions, namely η̇ = 0. The
minimum value of the generated temperature against applied stretch graph corresponds to the critical
inversion point.

For a homogeneous material the (undamaged) entropy η0 is given by (14). Under uniaxial stress
loading in the 1-direction, the principal values b2 and b3 of the left Cauchy–Green deformation tensor
B can be expressed in terms of the stretch λ1 =

√
b1 and temperature θ . Hence η0 = η0(λ1, θ). For

isentropic stretching

dη0(λ1, θ)=

(
∂η0

∂λ1

)
θ

dλ1+

(
∂η0

∂θ

)
λ1

dθ = 0, (54)

where (
∂η0

∂λA

)
θ

= 2

√
be

A

bvA

∂η0

∂be
A
, A = 1, 2, 3. (55)

This relation provides

dθ
dλ1
=−

(∂η0/∂λ1)θ

(∂η0/∂θ)λ1

. (56)

The integration of this differential equation provides the graph of temperature deviation 1θ = θ − θ0

against the stretch λ1 which shows initially a falling and then rising temperature, thus exhibiting the
thermoelastic inversion effect. The critical value of stretch where thermoelastic inversion effect takes
place correspond to the minimum of this curve.
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For a rubber specimen that is subjected to prescribed stress, the critical value of the stress at which
the slope of (∂λ1/∂θ)T11 changes sign can be determined as follows. The Maxwell relations(

∂T11

∂θ

)
λ1

=−

(
∂η0

∂λ1

)
θ

,

(
∂λ1

∂θ

)
T11

=

(
∂η0

∂λ1

)
θ

(57)

show that (∂T11/∂θ)λ1
= 0 yields (∂η0/∂λ1)θ = 0; namely, (∂λ1/∂θ)T11

= 0. But from

dT11 =

(
∂T11

∂λ1

)
θ

dλ1+

(
∂T11

∂θ

)
λ1

dθ (58)

and (54) we obtain that (∂η0/∂λ1)θ = 0 implies that (∂θ/∂T11)η0
= 0. Hence the critical value of stress

T11 can be determined from the minimum of the curve θ vs. T11 generated during an isentropic procedure.
In order to determine the thermoelastic inversion effect in thermoviscoelastic composites, the follow-

ing tensor is defined in terms of its principal values ∂η0/∂λp and unit principal directions kp, p = 1, 2, 3:

K =
∂η0

∂F
= diag

[
∂η0

∂λ1
,
∂η0

∂λ2
,
∂η0

∂λ3

]
, i.e., K =

3∑
p=1

∂η0

∂λp
kp⊗ kp. (59)

It follows that the increment of the local value of the entropy is given by

1η0(Y , θ)= K (Y , θ) :1F(Y , θ)+ P(Y , θ)1θ, (60)

where P = c0/θ of the constituent. By substituting (47) in this relation the following expression is
established

1η0(Y , θ)= K (Y , θ) :
[

A(Y , θ) :1F̄+ Ath(Y , θ)1θ +1Avd(Y , θ)
]
+ P(Y , θ)1θ. (61)

The increment of the global entropy of the composite is given by

1η̄0 =
1
SY

∫∫
SY

1η0(Y , θ) d SY . (62)

Consider a thermoviscoelastic composite that subjected to a uniaxial stress loading in the transverse
2-direction such that all components of T are zero except T̄22. Here, there are eight unknown deformation
gradients 1F (except 1F̄22) and 1θ . There are, on the other hand eight equations 1T = 0 (except 1T̄22)
and for isentropic procedure there is the additional relation: 1η̄0 = 0. Thus, the above relations enable
the computation of the temperature θ that is generated at applying a transverse stretch F22 in a stepwise
manner. Figure 2(a) shows the generated temperature deviation 1θ = θ−θ0 under isentropic and uniaxial
stress loading conditions against the applied average transverse deformation gradient F22. This figure
shows the resulting behavior of the homogeneous (unreinforced) and the unidirectional steel/rubber-like
composite where the matrix is considered as thermoviscoelastic (TVE) as well as thermoelastic (TE) in
which the viscous effects have been neglected. The minima of the curves correspond to the critical stretch
F22 at which the thermoelastic inversions take place. It can be readily observed that the viscous effects on
the critical points are negligible. The critical stretch of the TVE homogeneous matrix occurs at a stretch
of F22 = 1.023, but due to the presence of reinforcement it moves to F22 = 1.032. The corresponding
graph which exhibits the resulting temperature deviation 1θ against transverse stress T 22 is shown in
Figure 2(b). This latter figure also shows the locations of the inversion thermoelastic points when the
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Figure 2. Temperature deviations generated by applying, under isentropic conditions, a
uniaxial transverse stress loading on thermoviscoelastic (TVE) and thermoelastic (TE)
composites. Also shown are the corresponding temperature deviations generated in the
homogeneous (H) unreinforced matrix. The minima correspond to the locations of the
thermoelastic inversions. Temperature deviations are plotted against average transverse
deformation gradient (a) and against average transverse stress (b).

composite and its homogeneous unreinforced matrix are subjected to a thermal loading in conjunction
with a prescribed transverse uniaxial stress. These critical stresses occur at about T 22 = 0.1 MPa and
T22 = 0.05 MPa for the composite and its homogeneous matrix, respectively.

4.2. The composite and its unreinforced matrix responses. We now study the behaviors of the uni-
directional thermoviscoelastic composite and its matrix under various circumstances. Figures 3 and 4
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Figure 3. Response of the homogeneous thermoviscoelastic (TVE) and thermoelastic
(TE) rubber-like material to uniaxial stress loading in the 1-direction, applied at elevated
temperature 1θ = 100 K at a rate of r = Ḟ11 = 0.01/s: stress-deformation gradient
response (a), damage evolution (b), and stress-deformation gradient response in the ab-
sence of damage (c).
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show the behavior under uniaxial stress loading in the 1-direction (i.e., when all components T are zero
except T11) of the homogeneous (unreinforced) thermoviscoelastic (TVE) rubber-like matrix at elevated
temperature 1θ = 100 K as well as the thermoelastic (TE) matrix when the viscous effects have been
neglected. Figure 3(a) compares the response of the TE and TVE matrix, whereas Figure 3(b) shows the
evolution of damage in the matrix as the loading proceeds. Here and in the following, the value of the
damage refers to its maximum amount that evolves in all locations of the rubber-like phase. Figure 3(c)
shows the counterpart behavior of the homogeneous matrix in the absence of any damage effects (note
that the scale of the plot in the latter case is twice that of the damaged case). In all cases the rate of
loading is r = Ḟ11 = 0.01/s. This figure exhibits very well the significant viscous and damage effects
on the rubber-like material behavior.

Figure 4 provides comparisons of the rubber-like material response at the reference temperature (i.e.,
1θ = 0) such that the material behavior is viscoelastic (VE), and at elevated temperature 1θ = 100 K
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Figure 4. Top row: stress-deformation gradient response of the homogeneous viscoelas-
tic (a) and thermoviscoelastic (b) rubber-like material to uniaxial stress loading in the
1-direction, applied at two rates: r = Ḟ11 = 1/s and 0.01/s. In (a) the VE material is
kept at θ = θ0, in (b) the TVE material undergoes a temperature change of 1θ = 100 K.
Bottom row: corresponding results in the absence of damage effects.
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Figure 5. Response of the steel/rubber-like thermoviscoelastic (TVE) and thermoelastic
(TE) composite to uniaxial stress loading in the transverse 2-direction, applied at elevated
temperature1θ = 100 K at a rate of r = Ḟ22= 0.01/s: global stress-deformation gradient
response (a), damage evolution (b), and global stress-deformation gradient response in
the absence of damage (c).

resulting in a thermoviscoelastic behavior (TVE). In this figure, comparisons are also shown when the
uniaxial stress loading is applied at two rates r = 1/s and 0.01/s in the presence and absence of damage
(in the latter case the scale of the graph is twice the former). Significant differences between the various
cases can be clearly observed.

Similar studies can be carried out in order to show the behavior of the unidirectional steel/rubber-like
composite. In this case, the application of a transverse uniaxial stress loading perpendicular to the fiber
direction is the most interesting loading, since for loading in the fiber direction (1-direction) the much
stiffer elastic steel will dominate the response of the composite. In this type of loading all components
of the average stress T are equal to zero except T 22. The transverse loading is performed by applying
the average transverse deformation gradient F22 at a rate of r = Ḟ22. Figure 5 exhibits the viscous and
damage effects of the rubber-like phase on the behavior of the composite loaded at a rate of r = 0.01/s
(note that the scale of the plot in the undamaged case is three times the damaged one). Figure 6 shows
the effect of elevated temperature, rate of loading and damage on the macroscopic transverse response
of the composite.

Let the unidirectional steel/rubber-like thermoviscoelastic composite be subjected to a cyclic thermal
loading at a rate θ̇ = 1 K/s while keeping the composite traction-free (T = 0). In this thermal loading case,
the temperature deviation increases/decreases linearly such that −100 K≤1θ ≤ 100 K. The resulting
average of the transverse deformation gradient F22 caused by this thermal loading is shown in Figure 7
during 7 cycles followed by 1/4 cycle after which the applied temperature deviation reaches 1θ = 100 K,
where the damage reaches the value of D = 0.5. This figure shows the transverse deformation gradient in
both the presence and absence of evolving damage in the rubber-like matrix. In presence of damage, its
evolution with applied thermal loading is shown in Figure 7(b). It can be readily observed that the effect
of damage on the resulting transverse deformation gradient is negligible, and that the induced strains are
quite small and can be regarded to belong to the infinitesimal domain. In addition, it turns out that the
rate of applied thermal loading has no appreciable effect on these strains.
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Figure 6. Top row: global stress-deformation gradient response of the steel/rubber-like
viscoelastic and thermoviscoelastic composite to uniaxial stress loading in the transverse
2-direction, applied at two rates: r = Ḟ22 = 1/s and 0.01/s. In (a) the VE material is
kept at θ = θ0, in (b) the TVE material undergoes a temperature change of 1θ = 100 K.
Bottom row: corresponding results in the absence of damage effects.

Although the previous thermal loading case that was shown in Figure 7 indicates that the effect of
evolving damage on the free-thermal expansion response of the thermoviscoelastic composite appears
to be minor, it should be interesting to investigate the response of the composite by applying a uniaxial
transverse stress of loading and unloading at a rate of r = Ḟ22 = 1/s, which immediately follows the
previously applied 7.25 cycles of thermal loading, −100 K≤1θ ≤ 100 K, which will be referred to as
case 1. The response of the composite in case 1 is compared to the response which results by subjecting
the steel/rubber-like composite to a uniaxial transverse stress of loading and unloading applied at a rate
of r = Ḟ22 = 1/s at elevated temperature 1θ = 100 K, referred to as case 2. The resulting comparison is
shown in Figure 8 together with the evolving damage in both cases. It is readily observed that although
the cyclic thermal loading ends with a damage of D = 0.5 in the rubber-like matrix, its effect on the
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Figure 7. Response of the thermoviscoelastic steel/rubber-like composite that is sub-
jected to cyclic thermal loading −100 K ≤ 1θ ≤ 100 K at a rate of θ̇ = 1 K/s, while
keeping it traction-free: transverse deformation gradient variation with cycles (a), dam-
age evolution with cycles (b), and transverse deformation gradient variation with cycles
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Figure 8. Response of thermoviscoelastic steel/rubber-like composite subjected to (1)
cyclic thermal loading −100 K≤1θ ≤ 100 K at a rate θ̇ = 1 K /s, while staying traction-
free, then to a uniaxial transverse stress loading-unloading, applied at a rate of r =
Ḟ22 = 1/s, at elevated temperature 1θ = 100 K; and (2) stress loading-unloading alone,
as in (1). Plot (a) shows the average transverse stress deformation gradient, plot (b) the
damage evolution.

subsequent mechanical transverse loading is quite small. Applying the uniaxial transverse stress loading
at the lower rate of r = Ḟ22 = 0.01/s gave the same closeness between the two cases.

The following four figures exhibit the creep behavior of the composite under various circumstances.
Figure 9(a) compares the creep behavior of the thermoviscoelastic steel/rubber-like composite with the
corresponding behavior of the homogeneous (H) matrix. In both cases a uniaxial transverse stress loading
is applied at elevated temperature 1θ = 100 K such that all components of the stress T are zero except
T 22 = 1 MPa. Figure 9(b) shows the evolving damage to saturation in the thermoviscoelastic matrix of
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Figure 9. Creep behavior of thermoviscoelastic steel/rubber-like composite subjected
to a uniaxial transverse stress loading T 22 = 1 MPa at elevated temperature 1θ = 100 K.
Also shown is the corresponding creep behavior of the homogeneous (H) unreinforced
thermoviscoelastic matrix. As functions of time, the plots show the global transverse de-
formation gradient (a), damage evolution (b), and global transverse deformation gradient
in the absence of damage effects.

the composite as well is in the unreinforced material. Finally, Figure 9(c) is the counterpart of Figure 9(a)
in the absence of any damage effects.

It is interesting to observe that whereas the existence of the steel fibers decreases, as expected, the
resulting macroscopic deformation gradient of the composite, the damage induced in the reinforced
matrix is higher that the one that evolves in the homogeneous material. Figure 10 compares the creep
behavior of thermoviscoelastic steel/rubber-like composite when it is subjected to uniaxial transverse
stress loadings of T 22 = 1 MPa and 2 MPa at elevated temperature 1θ = 100 K. This figure shows that
by doubling the value of the applied stress, the global transverse displacement gradient F22− 1 of the
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Figure 10. Comparison between the creep behaviors of the thermoviscoelastic
steel/rubber-like composite which is subjected to uniaxial transverse stress loadings
T 22 = 1 MPa and 2 MPa at elevated temperature 1θ = 100 K. As functions of time,
the plots show the global transverse deformation gradient (a), damage evolution (b), and
global transverse deformation gradient in the absence of damage effects.
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Figure 11. Comparison between the creep behaviors of thermoviscoelastic (TVE) and
thermoelastic (TE) steel/rubber-like composites where in the latter the viscous effects
in the matrix phase have been neglected. Both composites are subjected to uniaxial
transverse stress loading T 22 = 1 MPa at elevated temperature 1θ = 100 K. As functions
of time, the plots show the global transverse deformation gradient (a), damage evolution
(b), and global transverse deformation gradient in the absence of damage effects (c).

composite increases due to the nonlinearity by about 1.25 times only. On the other hand, the amount of
saturation value of damage increase is just about 1.03 times. Next, Figure 11 shows the viscous effects
in the matrix phase of the composite. This figure compares the creep response to uniaxial transverse
stress loading T 22 = 1 MPa of the thermoviscoelastic (TVE) steel/rubber-like composite at elevated
temperature 1θ = 100 K with the corresponding thermoelastic (TE) one in which the viscoelasticity of
the matrix is neglected and, therefore, there is no creep effect. The graphs show that the viscous effects
are significant. It increases the saturated transverse macroscopic displacement gradient of the composite
and the saturation value of damage by about 1.8 and 1.14 times, respectively. Finally, in Figure 12 the
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Figure 12. Comparison between the creep behaviors of thermoviscoelastic (TVE) at
elevated temperature 1θ = 100 K, and viscoelastic (VE) at the reference temperature
(1θ = 0) of steel/rubber-like composites. Both are subjected to uniaxial transverse stress
loading T 22 = 1 MPa. Global transverse deformation gradient (a), damage evolution (b),
and global transverse deformation gradient in the absence of damage effects (c).
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Figure 13. Relaxation behavior of the thermoviscoelastic steel/rubber-like composite
which is subjected to a uniaxial transverse stress loading such that F22 = 2 at elevated
temperature 1θ = 100 K. Also shown is the corresponding relaxation behavior of the
homogeneous (H) unreinforced thermoviscoelastic matrix. Global transverse stress (a),
damage evolution (b), and global transverse stress in the absence of damage effects (c).

effect of elevated temperature on the creep of the thermoviscoelastic (TVE) steel/rubber-like composite
loaded by a transverse stress T 22 = 1 MPa at 1θ = 100 K is compared with that of a viscoelastic (VE)
composite that is subjected to the same loading but by keeping the composite at the reference temperature
θ = θ0. This figure shows that the effect of elevated temperature on the creep of the composite and the
evolving damage in its matrix are not appreciable.

Corresponding to these four figures that describe the creep behavior of the composite and its matrix
in various circumstances, the following four figures show the relaxation behavior of the composite and
its matrix. Figure 13(a) and (c) display the relaxation at elevated temperature 1θ = 100 K of the ther-
moviscoelastic steel/rubber-like composite and its homogeneous (H) unreinforced matrix when they are
subjected to a transverse deformation gradient of F22 = 2 under uniaxial stress loading conditions (all
components of T are equal to zero except T 22) in the presence and absence of damage effects in the matrix.
(Note that the scale of the graph when D = 0 is three times the scale of the damaged case.) Figure 13(b)
shows is the damage evolution with time. The effect of the steel fibers is well exhibited in this figure.

The effect of doubling the applied transverse displacement gradient F22− 1 on the relaxation behavior
of the composite is displayed in Figure 14 in the presence and absence of damage (it should be noted
that the scale of the plot in the latter case is four time the scale of the former one). Doubling the
applied deformation gradient generates a stress at saturation of about 5.3 and 7 times in the damaged
and undamaged case, respectively. The damage increases by about 1.1 times, however.

The viscous effects in the rubber-like matrix on the relaxation behavior of the composite are shown in
Figure 15 at elevated temperature 1θ = 100 K in the presence and absence of damage. The relaxation
stresses of the thermoviscoelastic (TVE) composite are observed to be much lower than the thermoelastic
(TE) case in which no relaxation effects exist. In both cases, however, the viscoelasticity has a very small
effect on the damage evolution in the matrix.

The final illustration is given in Figure 16, where a comparison between the relaxation behaviors of
the thermoviscoelastic (TVE) composite at elevated temperature 1θ = 100 K and a viscoelastic (VE)
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Figure 14. Comparison between the relaxation behaviors of the thermoviscoelastic
steel/rubber-like composite which is subjected to uniaxial transverse stress loadings such
that F22 = 2 and 3 at elevated temperature 1θ = 100 K. Global transverse stress (a),
damage evolution (b), and global transverse stress in the absence of damage effects (c).
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Figure 15. Comparison between the relaxation behaviors of thermoviscoelastic (TVE)
and thermoelastic (TE) steel/rubber-like composites where in the latter the viscous ef-
fects of in the matrix phase have been neglected. Both composites are subjected to
uniaxial transverse stress loading such that F22 = 2 at elevated temperature 1θ = 100 K.
Global transverse stress (a), damage evolution (b), and global transverse stress in the
absence of damage effects (c).

composite which is kept at the reference temperature θ = θ0. As in the creep case, the effect of elevated
temperature appears to be moderate.

Conclusions

The finite strain HFGMC micromechanical model which is capable of predicting the global behavior of
thermoviscoelastic rubber-like matrix composites that are subjected to arbitrarily large thermomechanical
loading has been presented. The rubber-like matrix is modeled by finite thermoviscoelasticity, which in
contrast to finite linear thermoviscoelasticity where the deformations are large but the deviations from
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Figure 16. Comparison between the relaxation behaviors of thermoviscoelastic (TVE)
at elevated temperature 1θ = 100 K, and viscoelastic (VE) at the reference temperature
(1θ = 0) of steel/rubber-like composites. Both composites are subjected to uniaxial
transverse stress loading such that F22 = 2. Global transverse stress (a), damage evolu-
tion (b), and global transverse stress in the absence of damage effects (c).

equilibrium are small (i.e., Be
≈ I , implying that the dependence on the strain is nonlinear but the

dependence on the strain rate is linear), permits large deviation from equilibrium. In addition, the effect
of evolving damage in the finite thermoviscoelastic matrix is incorporated. The finite strain HFGMC
analysis establishes the rate form of the macroscopic constitutive equations that govern the composite’s
global response. The results exhibit the response of the composite and its unreinforced thermoviscoelastic
matrix under various circumstances including their creep and relaxation behaviors.

The present derivation is confined to one-way thermomechanical coupling according to which the me-
chanical effects do not affect the temperature. It is possible, however, to generalize the micromechanical
analysis by including a full (two-way) thermomechanical coupling.

The established global finite strain constitutive equations of the unidirectional composite can be em-
ployed to investigate the behavior of thermoviscoelastic laminates. They can be also employed to inves-
tigate the response of thermoviscoelastic structures such as laminated plates and shells undergoing large
deformations. This can be performed by coupling the present micromechanical model to a finite element
software such that the nonlinear composite structure response at each integration point is governed by
the established macroscopic constitutive equations at each increment. This multiscale approach has been
recently implemented by [Kim 2009] who coupled the hyperelastic HFGMC model to the finite element
ABAQUS software in order to investigate the behavior of various types of tissue materials including the
human arterial wall layers and porcine aortic valves leaflets.
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