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This paper is respectfully dedicated to Marie-Louise and Charles Steele.

The dynamics of a vertical stack of particles subject to gravity and a sequence of small, periodically
applied taps is considered. First, the motion of the particles, assumed to be identical, is modeled as a
system of ordinary differential equations, which is analyzed with an eye to observing connections with
finite-dimensional Hamiltonian systems. Then, two approaches to obtaining approximate continuum
models for large numbers of particles are described: the long-wave approximation that yields partial
differential equations and the BSR method that employs integro-partial differential models. These
approximate continuum models, which comprise infinite-dimensional dynamical systems, are studied
with a focus on nonlinear wave type behavior, which naturally leads to investigating links to infinite-
dimensional Hamiltonian systems. Several examples are solved numerically to show similarities among
the solution properties of the finite-dimensional (lattice-dynamics), and the approximate long-wave and
BSR continuum models. Extensions to higher dimensions and more general dynamically driven particle
configurations are also sketched.

1. Introduction

There are several extant explanations of the dynamical behavior of configurations of particles subjected
to small periodic tapping forces, most of which are aimed at conforming to a number of empirically
derived formulas currently in use. Our primary intention is to apply fundamental principles of physics to
obtain dynamical models for the evolution of systems of particles subjected to such tapping perturbations,
and from them deduce simpler dynamical models - accessible to modern dynamical systems analysis —
that are capable of predicting some of the most important aspects of the evolution of these systems
with acceptable accuracy. Two of our main tools shall be the long-wave limit procedure, which has
been successfully applied to particle dynamics by researchers such as Nesterenko, Daraio and their
collaborators [Daraio et al. 2006; Nesterenko 1983; Nesterenko et al. 2005; Porter et al. 2009], and
simplified integro-differential dynamical models developed in [Blackmore and Dave 1997; 1999; 2000].
In this regard, one should mention that there also is the related direct lattice-dynamics of FPU-chains
approach of [Sen and Manciu 1999; 2001], which deals directly with the dynamics of long chains of
particles, without going to a limit, and provides many opportunities for comparison with the results of the
continuum approximation methods especially with regard to nonlinear wave type behavior of solutions.
In addition, we shall briefly consider possible generalizations of these approximate continuum modeling
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approaches to higher-dimensional tapping problems and even more general granular flow phenomena.
Along the way, we shall indicate some of the most interesting dynamical systems aspects of the models
that are introduced and analyze them from a more theoretical perspective.

We begin in Section 2 with a continuous one-dimensional dynamical model for the vertical column
of particles (assuming Walton–Braun–Mindlin type interaction laws) expressed as a system of ordinary
differential equations (ODEs) in the usual Newtonian way. The initial system of second order equations
is converted to a system of first order equations emphasizing the comparison with the Hamiltonian system
obtained for perfectly elastic collisions. In Section 3, we illustrate the dynamics with numerical solutions
for a couple of cases with relatively small numbers of particles, and also deduce a theorem about the
existence of chaotic dynamics.

Then, in Sections 4 and 5, we use this system in two different ways to obtain approximate contin-
uum models for the tapping dynamics of a monodisperse column of particles in the form of infinite-
dimensional dynamical systems comprised of partial differential equations (PDEs) or integro-partial
differential equations (IPDEs). In particular, the PDEs are obtained using a standard long-wave limit,
such as in [Daraio et al. 2006; Nesterenko 1983; Nesterenko et al. 2005; Porter et al. 2009; Zabusky
and Kruskal 1965], as the number of particles goes to infinity, and then using the simplified model in
[Blackmore et al. 1999]. A monodisperse system of particles is chosen in the interest of simplicity, since
the dynamics of polydisperse systems are considerably more difficult to approximate using continuum
models, especially for the long-wave limit method. After developing approximate continuum models
for the tapping dynamics via the long-wave (L-W) and Blackmore–Samulyak–Rosato (BSR) methods,
we also formulate the associated boundary-initial value problems corresponding to the one-dimensional
vertical tapping regime under investigation in these sections, respectively.

In Section 6, we turn our attention to some of the mathematical properties of the L-W and BSR
dynamics, with a focus on the Hamiltonian and near Hamiltonian infinite-dimensional dynamical systems
associated with these continuum models. Some of the results for the approximate L-W and BSR models
have already been proved in the literature, and some related theorems shall only be stated since their
proofs, which shall be treated in forthcoming work, are a bit too technical to include in this paper. We
follow this in Section 7 with numerical solutions of the L-W and BSR approximations corresponding to
the numerical simulations of the tapping regimes considered in Section 3, and find good qualitative agree-
ment among the solutions of the exact and both approximate continuum models. Finally, in Section 7,
we summarize the work presented and outline some of our plans for future research — both with regard
to granular flow applications and infinite-dimensional dynamical system theory - for higher-dimensional
systems and more general particle configurations and forcing scenarios.

2. Newtonian model

We begin with a mathematical model for the tapping motion of the column of particles obtained using
Newtonian and Hamiltonian principles assuming that the particle-particle and particle-floor interaction
forces are of Walton–Braun–Mindlin type [Blackmore et al. 1999; MacKay 1999; Blackmore and Dave
1997; Daraio et al. 2006; Sen and Manciu 1999; Nesterenko 1983]. The results obtained have certain
aspects in common with the approaches of the last four works just cited and of [Blackmore et al. 2000;
Fermi et al. 1965; Nesterenko et al. 2005; Porter et al. 2009; Sen and Manciu 2001], among many
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other works. In particular, we consider a configuration of N particles pi , 1≤ i ≤ N , aligned along the
(vertical) positive y-axis, stacked one above the other starting with p1, under the action of gravity — with
constant gravitational acceleration g — and interacting inelastically (according to the Walton–Braun–
Mindlin model) with neighboring particles and a “container” bottom, denoted as y0, initially at the origin
that is moving in a manner that simulates a periodic nearly impulsive tapping force applied vertically to
the floor. The moving bottom and particle centers are located, respectively, at the points

0≤ y0(t) < y1 < · · ·< yN (1)

in the semi-infinite interval I := {y : 0 ≤ y}, and we assume that the particles have masses and radii
m1, r1, . . . ,m N , rN , respectively.

In order to model the periodic tapping, we assume that y0(t) is a periodic function of period T > 0
represented as

y0(t) :=
{

a sinωt if 0< t ≤ π/ω,
0 if t = 0 or π/ω ≤ t ≤ T

(2)

for 0≤ t ≤ T , where π/ω� T , and the amplitude a is a small positive number. Note that the derivative
of (2) with respect to t , denoted by a dot over the variable, is the discontinuous function given as

ẏ0(t) :=
{

aω cosωt if 0< t ≤ π/ω,
0 if t = 0 or π/ω ≤ t ≤ T .

(3)

Our intention is to determine the motion of the particles after each of a periodic sequence of taps, and
compare the positions of the particles after being given time to settle following each of the taps — say at
times .99T, 1.99T, 2.99T, . . ., in order to determine trends after many such taps, with the evolution of
the linear particle density being of particular interest.

We shall assume that the particles and bottom interact inelastically according to a simplified Walton–
Braun–Mindlin law, so that the equations of motion obtained from Newton’s second and third laws take
the form of a system of N second-order ODEs:

mi ÿi = Fi (1≤ i ≤ N ), (4)

where the forces on the particles are expressed as

Fi := −mi g+ f i−1
i + f i+1

i (5)

for 1≤ i ≤ N , where f i−1
i is the force exerted by pi−1 (or the bottom when i = 1) on pi and f i+1

i is the
force exerted by pi+1 on pi when 1≤ i ≤ N − 1. These interaction forces are given by

f 0
1 :=

(
K 0

1 − K̂ 0
1σ(ẏ1− ẏ0)

)(
r1− (y1− y0(t))

)
χ
(
r1− (y1− y0(t))

)
,

f i+1
i := −

(
K i+1

i − K̂ i+1
i σ(1ẏi )

)
(ri + ri+1−1yi )χ(ri + ri+1−1yi ), (6)

f N+1
N := 0,

for 1≤ i ≤ N − 1, with
f i−1
i =− f i

i−1 (7)

for 2≤ i ≤ N . Here
1yi := yi+1− yi , 1ẏi := ẏi+1− ẏi , (8)
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for 1≤ i ≤ N − 1, the K i+1
i and K̂ i+1

i are constants with 0< K̂ i+1
i ≤ K i+1

i for all 1≤ i ≤ N − 1, and σ
and χ denote the signum and step functions defined, respectively, by

σ(τ) :=


−1 if τ < 0,

0 if τ = 0,
1 if τ > 0,

and χ(τ) :=


0 if τ < 0,
1
2 if τ = 0,
1 if τ > 0.

(9)

With the definitions above, the system (4) may now be rewritten as

ÿi = Yi :=
1

mi
Fi =−g+ 1

mi
( f i−1

i + f i+1
i ) (1≤ i ≤ N ), (10)

which can be recast in vector form for y := (y1, . . . yN ) as

ÿ = Y( y, ẏ, t;µ), (11)

where Y := (Y1, . . . YN )=
(
−g+m−1

1 ( f 0
1 + f 2

1 ), . . . ,−g+m−1
N−1( f N−2

N−1 + f N
N−1),−g+m−1

N f N−1
N

)
, and

µ is a parameter (vector) incorporating a, ω, T , all the particle masses and radii, and all of the interaction
parameters K i+1

i and K̂ i+1
i . As is usual for such second-order systems, we shall find it convenient to

recast it as the following system of 2N first-order ODEs, which is better suited to direct numerical
solution by such schemes as a Runge–Kutta solver:

ẏi = vi , v̇i = Yi , (12)

for 1≤ i ≤ N . Of course, we can also write this succinctly in (the Hamiltonian related) vector form as

ẋ = X(x, t;µ), (13)

where

x := (x1, x2, . . . , x2N−1, x2N ) := (y1, v1, . . . , yN , vN ),

X := (X1, X2, . . . , X2N−1, X N ) := (v1, Y1, . . . , vN , YN ). (14)

Observe that only the second coordinate (component) of X depends explicitly on t , and by definition,
X is periodic of period T in the independent time variable t . Also, X2 is the only coordinate that depends
explicitly on the parameters a and ω. The forces defined above are chosen so that the inelasticity of the
particle-particle and particle-bottom interactions is manifested by a loss of energy upon impact that
is essentially represented by a spring constant of K i+1

i + K̂ i+1
i when the particles are approaching one

another or the bottom and a spring constant of K i+1
i − K̂ i+1

i when the particles are moving away from one
another or the bottom after impact. From this perspective, the case K̂ i+1

i = 0 represents a perfectly elastic
interaction. We also note that the discontinuities in (13) are somewhat inconvenient from a theoretical
standpoint, but they can easily be handled by a standard numerical scheme, such as a Runge–Kutta
solver, and the forces can also be approximated to any degree of accuracy by smooth (= C∞) functions
if necessary.

So in summary, we want to solve (13), and this can be accomplished numerically via say a variable
step size Runge–Kutta scheme subject to the initial condition

x(0)= (y1(0), 0, y2(0), . . . , 0, yN (0), 0), (15)
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which represents a stacked configuration of particles initially at rest. Here we have to determine the
values of the yk(0) by requiring that the stack of particles is initially at rest and in equilibrium, and
because the particles are assumed to be non-rigid we shall have to determine these values in a way that
guarantees that y0(t) < y1(t) < y2(t) < · · ·< yN (t) for all t ≥ 0, which we shall demonstrate in the sequel
for the monodisperse case. We also want to make comparisons of the positions of the particles at times,
say at .99T, 1.99T, 2.99T, . . . , k.99T for rather large positive integer values of k. In these simulations
it makes sense to simplify matters by taking all the K ′s equal and all the K̂ ′s equal, with 0≤ K̂ = eK ,
with 0< e < 1, and all the radii and masses equal or having at most a pair of possible values. Note that
in this context, the coefficient of restitution %, which is the standard measure of elasticity with 0≤ % ≤ 1
and the left (0) and right (1) extremes representing the perfectly inelastic and elastic cases, respectively,
is given as

%2
=

1− e
1+ e

, or, equivalently, e =
1− %2

1+ %2 . (16)

For the other parameters, some good choices are as follows: 20 ≤ N , T = 1, π/ω < 1/10, a ≤ 1/50,
ri = r and mi = m, with 0< r < 1/100 and 0< m < 1/20, and it makes sense to run several cases for
(13)–(15) for different parameter values satisfying these inequalities.

With the assumptions that all K ′s and K̂ ′s are the same and K̂ = eK , the equations of motion take
the form

ÿi = Yi := −g+
K
mi
( f i−1

i + f i+1
i ) (1≤ i ≤ N ), (17)

where

f 0
1 := [1− eσ(ẏ1− ẏ0(t))](r1− y1+ y0(t))χ(r1− y1+ y0(t)),

f i+1
i := −[1− eσ(1ẏi )](ri + ri+1−1yi )χ(ri + ri+1−1yi ), (18)

f N+1
N := 0.

Whence, the Newtonian equations of motion are

ÿ1 =−g− K
m1

(
[1−eσ(1ẏ1)](r1+r2−1y1)χ(r1+r2−1y1)

−[1−eσ(ẏ1− ẏ0(t))]
(
r1−y1+y0(t)

)
χ
(
r1−y1+y0(t)

))
,

ÿi =−g− K
mi

(
[1−eσ(1ẏi )]

(
ri+ri+1−1yi

)
χ
(
ri+ri+1−1yi

)
−[1−eσ(1ẏi−1)](ri−1+ri−1yi−1)χ(ri−1+ri−1yi−1)

)
(2≤ i ≤ N−1),

ÿN =−g+ K
m N
[1−eσ(1ẏN−1)](rN−1+rN−1yN−1)χ(rN−1+rN−1yN−1).

(19)

The natural initial conditions for the tapping dynamics are then

y1(0), y2(0), . . . , yN (0) determined by assuming initial equilibrium of column,

ẏ1(0)= ẏ2(0)= ẏ3(0)= · · · = ẏN (0)= 0.
(20)

It is instructive to observe that (13) can be written in the form

ẋ =8(x)+9(x, t;µ), (21)
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where
ẋ =8(x) (22)

is an autonomous Hamiltonian system that is completely integrable in the Liouville–Arnold sense (L-A
integrable) and 9 may be viewed as a (non-Hamiltonian) perturbation of the integrable system (22) that
goes to zero as e, a→ 0; see, for example, [Arnold 1978; Błaszak 1998; Guckenheimer and Holmes
1983; Katok and Hasselblatt 1995; Prykarpatsky et al. 1999]. We also note that the periodicity in t can
be used to recast (21) in the autonomous form

ẋ =8(x)+9(x, θ;µ), θ̇ = 2π/T (23)

on the (2N + 1)-dimensional cylinder R2N
×S1, where S1 is the unit circle.

2.1. Monodisperse particle configuration. In the interest of transparency and simplicity, we shall con-
fine our attention to a monodisperse column of particles, so that we assume now and hereafter that
m1 = · · · = m N := m and r1 = · · · = rN := r . This assumption naturally simplifies each of the equations
(17), (18) and (19); for example, (19) becomes

ÿ1 =−g−K
m

(
[1−eσ(1ẏ1)](2r−1y1)χ(2r−1y1)−[1−eσ(ẏ1−ẏ0(t))](r−y1+y0(t))χ

(
r−y1+y0(t)

))
,

ÿi =−g−K
m

(
[1−eσ(1ẏi )](2r−1yi )χ(2r−1yi )[1−eσ(1ẏi−1)](2r−1yi−1)χ(2r−1yi−1)

)
(1< i < N ),

ÿN =−g+K
m
[1−eσ(1ẏN−1)](2r−1yN−1)χ(2r−1yN−1),

(24)

and the initial conditions (20) reduce to

y1(0), y2(0), . . . , yN (0) to be determined and ẏ1(0)= · · · ẏN (0)= 0, (25)

and (21)–(23) are modified analogously.
To determine the initial positions, we assume that the configuration is initially at rest and in equilibrium,

so (24) implies that the following equations must be satisfied:

−2y1(0)+ y2(0)= r +M,

yk−1(0)− 2yk(0)+ yk+1(0)=M (1< k < N − 1),

yN−1(0)− yN (0)=−2r +M,

(26)

where
M :=

mg
K
.

It is straightforward to show that (26) has the solution

yk(0)= (2k− 1)r − (k/2)(2N − k+ 1)M (1≤ k < N − 1),

yN (0)= (2N − 1)r − (1/2)[(N − 1)N + 2]M.
(27)

As we naturally require that yk(0)− yk−1(0) > 0 for all 1≤ k ≤ N , this leads to the condition

M<
r
N
, or, equivalently, Ng

r
<

K
m
, (28)
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which must be imposed in order to maintain physical realism. We note here that the maximum height S
of the column of particles where they are all just touching one another is

S = 2Nr. (29)

We shall study the solutions of (24)–(25) directly, and also analyze the dynamics of the corresponding
first-order system (21)–(23), with the monodisperse assumption imposed to simplify the expressions.
One slightly troubling feature from a theoretical standpoint is the fact is that although (20), or (24), is
piecewise linear, it has jump discontinuities, which we should add can be easily handled using a numerical
scheme such as the Runge–Kutta method. Theoretically, we can always adjust the systems to be smooth
(= C∞) by using appropriate approximations of the signum and step functions. A rather good choice for
smooth approximations is

σ(s)∼= σα(s) := tanhαs, χ(s)∼= χα(s) := 1
2(1+ tanhαs), (30)

where α� 1.

3. Dynamics of Newtonian model

In this section we shall briefly investigate the dynamical properties of the system (21) using both nu-
merical simulation and analytical means. We begin with some numerical simulations of the solutions
of (24)–(25) employing a standard ODE solver of the type used in the molecular dynamics simulation
codes developed by Rosato and his collaborators, which have been applied to advantage in many studies
of granular flows, such as in simulations of examples in [Blackmore et al. 1999].

For these simulations, with monodisperse particle stacks, we fix T = 50, m = 1, r = 1.0 cm, a/2r =
0.53, e= 0.09, g= 980.67 cm/sec2, and following (29), K = (2Ng/r), and vary the number of particles N
over the values N = 5, 10. Note that the frequency ω= 2π0 is varied for the two cases, with 0 = 2.4019
for N = 5 and 0 = 3.8476 for N = 10, mainly to obtain better resolution for the particle configurations.
The dynamics for the five-particle and the ten-particle cases are illustrated in Figure 1, which plots of
y1(t) through yN (t) for all choices N over a time interval long enough to include four periodic taps.
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Figure 1. Particle trajectories for tapping of five (left) and ten (right) particle stacks.
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Observe that in order to more clearly establish the quiescent state, the formulas for the initial conditions
above are translated by 50 time steps in the numerical simulations. One can see from these time series
plots for the positions of the particles how the density of the particles varies with time by observing the
evolution of the interparticle distances.

From the perspective of modern dynamical systems theory, one can use the same arguments as en-
listed in [Blackmore and Dave 1997; Blackmore et al. 2000] to prove the following result (see also
[Guckenheimer and Holmes 1983; Prykarpatsky et al. 1999]).

Theorem 1. Fixing all parameters save the amplitude of the taps, there exist sufficiently large values of
a for which (21) has periodic solutions of arbitrarily large period, and ultimately there exist large values
of a such that the system of particles exhibits chaotic motion. Moreover, if all the parameters are fixed
but the period T of the taps, then there exist chaotic orbits when the period is sufficiently small.

Before moving on to continuum approximations for the system (24) for very large N , we should
mention a very important related body of work in the realm of lattice dynamics, which deals with a
direct analysis of these equations of motion — usually focusing on finding solutions of a particular wave
related form. Important representatives of this type of one-dimensional lattice dynamics research (which
has yielded the existence of solitary wave solutions, solitons and breathers, to name a few examples) can
be found in [Friesecke and Wattis 1994; MacKay 1999; MacKay and Aubry 1994; Poggi and Ruffo 1997;
Sen and Manciu 1999; 2001; Treschev 2004; Yoshimura and Doi 2007; Zolotaryuk et al. 2000]. There
are also some useful studies of the finite systems, such as in [Blackmore and Dave 1997; Blackmore
et al. 2000; Yang and Wylie 2010] devoted to finding special properties of certain orbits of the dynamical
systems of N particles, where N need not be particularly large.

4. Long-wave continuum approximation

We shall first use the standard long-wave continuum limit method to find an approximation for our discrete
system of particles in the form of a nonlinear partial differential equation (PDE). One of the most famous
examples of this approach is the continuum approximation of the Fermi–Pasta–Ulam (FPU) model [Fermi
et al. 1965] obtained by Zabusky & Kruskal [Zabusky and Kruskal 1965] that established a connection
between the FPU system and the Korteweg–de Vries equation that was a vital link in the chain leading
to an explanation of the existence of solitons and their connection with integrable PDEs.

Toward this end, we focus on the middle equation of (24) in the monodisperse case; namely

ÿi =−g−
K
m

(
[1−eσ(1ẏi )](2r−1yi )χ(2r−1yi )−[1−eσ(1ẏi−1)](2r−1yi−1)χ(2r−1yi )

)
. (31)

Next we introduce the alternative variable z for y to avoid confusion in our notation, and define h := 2r
to be the (mean) distance between the particles (“springs”). The underlying assumption in the long-wave
approximation method is that the wavelength L of the wave phenomena embodied in the motion of the
particles satisfies h� L , which as it turns out is quite a reasonable supposition for a wide range of granular
flow regimes, including the one under consideration here. Our intention is to find an approximate PDE
representing the dynamics of (31) as N →∞. For this we assume that yi represents the function y(z, t),
which is at least of class C4 in all of its variables, and

yi±1 := y(z± h, t), (32)
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which can be expanded in Taylor series up to the fourth order in h as

yi±1 := y(z± h, t)= yi ± yzh+ 1
2 yzzh2

±
1
6 yzzzh3

+
1

24 yzzzzh4
+ · · · , (33)

and we also have

ẏi±1 := yt(z± h, t)= ẏi ± yt zh+ 1
2 yt zzh2

±
1
6 yt zzzh3

+
1

24 yt zzzzh4
+ · · · . (34)

Substituting (32), (33) and (34) in (31), we find after a long and tedious but straightforward calculation
that up to the fourth order in h we have the fourth order PDE on (z, t) ∈ R+×R+ = [0,∞)×[0,∞):

yt t =−g+
K h2

m

(
1
3 A(+)yzz −

1
3 h[Byz + eσ ′(0)A(+)yt z]yzz

+ h2( 1
36 A(−)yzzzz + 2rσ ′(0)y2

z yzz + eσ ′(0)Byz yzz yt z +
1
6 eσ ′(0)A(+)yzz yt zz

))
, (35)

where
A(±) := 3χ(0)+ 6rσ ′(0)± 8r3σ ′′′(0) and B := σ ′(0)+ 4r2σ ′′′(0), (36)

and we have assumed that σ and χ are convenient smooth approximations of the signum and step func-
tions such as given in (30) and such that all even derivatives of σ and χ vanish at the origin. If we use
the approximation for σ in (31), then (35) takes the form

yt t =−g−
K h2

m

(
1
3 A(+)yzz −

1
3 h[Byz + eαA(+)yt z]yzz

+ h2( 1
36 A(−)yzzzz +α(2r y2

z yzz + eByz yzz yt z +
1
6 eA(+)yzz yt zz)

))
, (37)

with
A(±) := 3χ(0)+ 6rα∓ 16r3α3 and B := α(1− 8r2α2). (38)

We can take (37) as our long-wave continuum approximation for the dynamics of the particle system as
N →∞. Note that if we choose χ(0)= 1

2 and α = 1/h = 1/(2r), then

A(+) = 2.5, A(−) = 13.5 and B =−(1/h).

Observe that this is a highly nonlinear wave type equation. Of course, we shall need to impose
appropriate auxiliary conditions on (35) or (37) in order to obtain well-posedness, and also include the
periodic external (tapping) motion given by (2) and (3). Suitable initial and boundary conditions are

y(z, 0)= z, y(0, t)= y0(t), (39)

but more has to be done in order to (approximately) model the actual evolution of the system primarily
due to the vertical nature of the particle stack and the influence of gravity; something that makes analysis
of a horizontal particle configuration considerably easier to handle.

We shall now briefly explain these attendant difficulties, and describe the simplified method used
in this paper to deal with the intricacies of numerically solving (37). This problem is defined on the
semi-infinite first quadrant of the t, z-plane in a way that actually makes it analogous to a free boundary
problem that also necessitates an adjustment of the right-hand side of (37) consistent with evolution of
the lower and upper boundaries of the initial “particle interval”, 0≤ y(z, 0)= z ≤ S. What is required is
to find the evolution of the top point S of the vertical continuum of particle matter, 0≤ z ≤ S, defining a
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curve z = ϕ(t) in the in the t, z-plane, above which the force on the right-hand side of (37) has to be set
to zero. In addition, the gravity term g on the right-hand side of (37) must be set equal to zero along the
moving bottom y0(t), which defines the motion of the lower boundary point of the initial particle interval.
We choose to deal with these mathematical difficulties completely in a forthcoming paper dedicated to
just these matters, and use a much simpler hybrid method for our numerical treatment of the solution of
(37) in the sequel. In particular, we use our numerical solutions of the finite-dimensional initial value
problem (24)–(25) to track the (upper) “free boundary” of the evolution of the initial particle continuum
of height S, and then make the adjustments in (37) that we have just indicated.

As noted earlier, we also need to impose constraints on the parameters so that the initial stack of
particles, now approximated by a continuum of height S does not collapse. To this end, noting that we
are assuming h = 2r to be the average distance between the particles, it follows from (27) and (28) that
we must have

K h2

m
=

4Kr2

m
> 4Ngr = 2Sg. (40)

So, for example, K h2/m = 2.5 Sg would be a safe choice.
With regard to the PDEs (35) and (37), note that they represent (infinite-dimensional) integrable Hamil-

tonian dynamical systems when e = 0 (see [Ablowitz and Segur 1981; Błaszak 1998; Blackmore et al.
≥ 2011; Dickey 1991; Faddeev and Takhtajan 1987; Prykarpatsky and Mykytiuk 1998]), which is not
all that surprising since they are obtained as continuum approximations of the finite-dimensional system
(21), which can be rewritten as an L-A integrable Hamiltonian system when e = 0.

It is useful to observe that if (37) is solved imposing the auxiliary conditions described above, we can
then use the continuity equation to determine the particle density ρ via the equation

∂ρ

∂t
+ yt

∂ρ

∂z
+ yt zρ = 0, (41)

subject to the auxiliary (Cauchy) condition

ρ(z, 0)= constant=
m
2r
. (42)

5. Alternative continuum approximation: BSR model

There is another, more direct, method for finding continuum approximations of granular flow equations
that was developed in [Blackmore et al. 1999] and used in [Blackmore and Dave 1997] to approximate
the dynamics of a large number of particles moving along a horizontal line with one fixed boundary
(wall) and subject to a periodic forcing function. This approach leads first to the following integro-PDE
(IPDE) for the dynamics of the granular motion being considered:

ut + uuz =

−g−
K
m

∫
∞

0

(
[1−eσ(1ẏi )](2r−1yi )χ(2r−1kyi )−[1−eσ(1ẏi−1)](2r−1yi−1)χ(2r−1yi−1)

)
dz, (43)

where u is the velocity yt = zt . In order to obtain the correct expression for the integral, we need to
reinterpret the local force (appearing as the integrand) on a particle at the point y in the manner of
[Blackmore et al. 1999].
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The actual force expression at z ∈ [0,∞), which must be “averaged” over a neighborhood (z− y, z+ y)
corresponding to the near-neighbors in the lattice dynamics formulation in Section 2.1 is

−
K
m
[1− eσ(u(z+ y)− u(z))](2r − |y|)χ(2r − |y|),

and this suggests the following as a first approximation for the integrated force in (42):

−
K
m

∫ h

−h
[1− eσ(u(z+ y)− u(z))](2r − |y|)χ(2r − |y|) dy.

However, this does not account for the probabilities of an abutting particle (or bottom) that actually
causes the force on a particle centered at z. A reasonable choice is that of a normal distribution that
depends on z in a way that the force goes rapidly to zero as z→∞ having the form

2(y, z; b, c) :=
1

b
√

2π
exp

(
−
((z+ y)− b)2

2c2

)
, (44)

where a and b are positive constants that can be tuned to match results obtained by simulation or exper-
iment. For the sequel, we choose b = 7h and c = 3h. Whence, our IPDE becomes

ut + uuz =−g−
K
m

∫ h

−h
2(y, z; 7h, 3h)[1− eσ(u(z+ y)− u(z))](2r − |y|)χ(2r − |y|) dy. (45)

Again we require auxiliary conditions for well-posedness, and these take the form

u(z, 0)= 0, u(0, t)= ẏ0(t). (46)

Once again, it is worth noting that when e = 0, (45) represents an infinite-dimensional Hamiltonian
dynamical system, inasmuch as it can be written in the form

ut = θ ◦∇H(u), (47)

where H is a smooth function, called the Hamiltonian function, ∇ is the standard variational gradient
operator for functions and θ is what is called an implectic operator, which plays a role for infinite-
dimensional Hamiltonian systems analogous to that of the 2N × 2N matrix

J =
(

0 IN

−IN 0

)
,

where IN is the identity matrix of order N . These notions are all standard in the theory of Hamiltonian
dynamical systems, as found in texts such as [Ablowitz and Segur 1981; Arnold 1978; Blackmore et al.
≥ 2011; Błaszak 1998; Dickey 1991; Faddeev and Takhtajan 1987; Guckenheimer and Holmes 1983;
Katok and Hasselblatt 1995; Prykarpatsky and Mykytiuk 1998], but are a bit too mathematical to delve
into here.

Observe that in a manner analogous to that in the L-W formulation above, one also can use the solution
u = (z, t) to determine the density via

∂ρ

∂t
+ u

∂ρ

∂z
+ uzρ = 0, (48)

subject to the Cauchy data (46).
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6. Dynamics of continuum models

If, as indicated by our preliminary study here, the infinite-dimensional dynamical systems in the form of
PDEs and IPDEs obtained using the L-W and BSR methods, respectively, provide good approximations
to the behavior of a fairly rich variety of granular flows, it follows that we may be able to bring many of
the tools of nonlinear dynamics to bear on a multitude of related problems of practical interest. Here we
shall only give a couple of examples - in the form of theorems — related to wave propagation in granular
media.

First, we consider the L-W approximation (37) and the possible existence of the kind of persistent
stable wave structure associated with solitons, which were first described by Zabusky and Kruskal [1965]
and have since become an important fixture of the modern theory of dynamical systems, as indicated by
such treatments as [Ablowitz and Segur 1981; Blackmore et al. ≥ 2011; Błaszak 1998; Dickey 1991;
Faddeev and Takhtajan 1987; Prykarpatsky and Mykytiuk 1998]. And these solitons associated with
integrable systems have become increasingly important in applied research in general, and granular flow
investigations in particular. Nesterenko [1983] was the first to analytically show the existence of solitons
in L-W approximations of a horizontal chain of particles with perfectly elastic Hertzian interactions,
which he validated by observing soliton like behavior in actual physical experiments. His equations
were obtained by fourth order L-W approximations analogous to (37), except for the gravity term. He
showed that his equations can be transformed into the Korteweg–de Vries equation, which is well known
to be integrable and so admit soliton solutions. The transformation that he used can be readily modified
for our vertical, Walton–Braun rather than Hertzian interactions, to prove the following result.

Theorem 2. The infinite-dimensional Hamiltonian system (37) is integrable when e = 0; therefore it
admits soliton solutions.

Several years after Nesterenko’s pioneering work on solitons in L-W approximations of one-dimen-
sional Hertzian particle chains, Blackmore and Dave [1997] analyzed approximate models of the same
kind of particle chains assuming Walton–Braun particle-particle and particle-wall interactions using the
BSR method. They found that a further approximation using the BSR approach yielded Burgers’ equation,
which is another well-known example of an integrable PDE admitting soliton solutions. The Hamiltonian
system obtained from (45) when e = 0 is also integrable, and this can be proved by showing that there
exists another independent representation of the form (47) satisfying certain assumptions guaranteeing
that the system is bi-Hamiltonian (cf. [Błaszak 1998]) in a way that implies integrability. We shall only
state this result here, leaving the proof to a forthcoming paper.

Theorem 3. If e = 0, the BSR model (45) is an integrable Hamiltonian dynamical system.

7. Illustrative examples

Here we present examples of a numerical solution of the one-dimensional tapping equations (together
with auxiliary data) obtained using both the L-W and BSR methods. In each case we use the simplified
hybrid method — described for the L-W model in Section 4 and the BSR model in Section 5. The partial
differential operators in equations (37) and (45) are approximated using central differences with equal
time and distance steps of 0.01 and the integral in (45) is computed using the trapezoidal approximation.
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Figure 2. L-W (left) and BSR (right) approximations of tapping solution surface with
parameters in Figure 1, right.

We use the same parameters as in the ten-particle example in Figure 1, right, but consider a much longer
tap duration, so that we can compare the approximate numerical solutions of the continuum models to
the numerical solutions of the exact Newtonian initial value problem (24)–(25).

The solution surfaces of the approximate L-W and BSR solutions are shown in the two halves of
Figure 2. One can see that both approximate continuum solutions are very close to one another —
both qualitatively and quantitatively — and they show good qualitative agreement with the (numerical)
solution of the exact system of ODEs as depicted in Figure 1, right.

8. Concluding remarks and future research

We have shown that both the L-W and BSR approximate continuum models for the one-dimensional
tapping problem have solutions that are in rather good qualitative agreement with exact lattice solutions.
It seems reasonable to assume then that both of the approximate continuum approaches employed in this
paper are viable predictive tools for higher-dimensional and more varied granular flows. Consequently,
it just may be that a wealth of useful information can be mined from a dynamical systems oriented
investigation of these relatively simple continuum models. With this in mind, we plan, in our future
research, to investigate the potential of these infinite-dimensional models using a combined dynamical
systems, simulation and visualization approach.

From the dynamical systems perspective, we shall first generalize the two continuum approaches to
two- and three-dimensional tapping flows. Extension of the L-W method to two and three dimensions
is inherently more difficult than the BSR approximation, because the lattice equations from which it
is derived get quite a bit more complicated due to the increasing number of possible regular lattices
(square, hexagonal, cubic, tetrahedral and more) to choose from and the increased complexity of nearest-
neighbor dynamical equations, as indicated in [Ruiz-Ramírez and Macías-Díaz 2010; Zolotaryuk et al.
2000]. Naturally, we shall have to perfect our numerical treatment of the resulting boundary-initial value
problems (which we conveniently simplified using a hybrid method in this paper) in order to validate
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the dynamical predictions obtained from the continuum models. And having a rigorously formulated
and coded numerical simulation approach will be a must as we extend the continuum approximation
approach to additional types of (higher-dimensional) granular flow regimes.

We also expect the nonlinear dynamics approach to be especially useful in detecting and analyzing
such phenomena as jamming and force chains. Roughly speaking, jamming can be associated with nearly
invariant subregions of the dynamical systems, and force chains can be identified with connected nearly
invariant networks in the resulting stress tensor fields. From a more mathematical perspective, we envis-
age obtaining new theoretical results linking the integrability of the limiting continuum approximations
with the integrability of the exact finite systems, possibly yielding new examples of higher-dimensional
integrable systems and novel KAM theory type results for systems that are only nearly integrable to begin
with (see [Arnold 1978; Katok and Hasselblatt 1995; Kuksin 1993], for example) or results akin to those
in [Prykarpatsky et al. 1999] when slight inelasticity renders the dynamics only nearly Hamiltonian.

Our approach using dynamical systems theory is intended to go hand-in-hand with novel refinements
and extensions of existing simulation capabilities in a manner that both informs and validates the analysis.
One of the applications intended for the models we have discussed in this paper is that of “density
relaxation”, in which a vessel of granular materials subjected to vibrations or tapping experiences an
increase in its bulk density. Because the ability of granular materials to undergo this change in density
is an inherent property that is not well-understood, this remains a critical impediment in developing
predictive models of flowing bulk solids. We intend to address this issue in future studies by applying
the dynamical systems models described in this paper to a system of uniform spheres in an attempt to
determine how the various features of the motion scale with the total mass, and the details (e.g., amplitude
and frequency) of the floor motion. In particular, our recent stochastic and discrete element findings on
density relaxation, reported in [Dybenko et al. 2007; Rosato et al. 2010a; 2010b], have suggested the
importance of the tap amplitude in the evolution of granular microstructure, as well as a strong effect of
the bulk mass of the system.

An indispensable component of our future research is the kind of sophisticated dynamical systems
oriented computer visualization that has come to the fore in recent year in work such as [Haller 2001;
Lindeberg 1998; Tricoche et al. 2008]. As our theoretical and computational investigation moves toward
more complex, higher-dimensional, and larger-scale granular systems, the interpretation and analysis of
our models will become significantly more difficult and require dedicated tools that do not yet exist. We
are therefore initiating a research thrust in visual data analysis aimed at supporting the characterization
of salient structural and quantitative properties of the systems. Our work will explore an approach
connecting the dynamical systems perspective to differential geometric structure definitions. The latter
will then form the basis of abstract visual representations that address the visual clutter of large particulate
assemblies.

Specifically we will apply a topological framework [Tricoche et al. 2008] to characterize the structural
skeleton of the stress field acting upon the system and study its relationship with relaxation and jamming
behaviors. Moreover we will study invariant manifolds of the system’s dynamics by extending to the
discrete setting the notion of Lagrangian coherent structures that has been recently introduced in the non-
linear dynamics and fluid mechanics literature [Haller 2001]. Finally, we will devise a novel scale space
framework [Lindeberg 1998] suitable for the detection of salient core and edge manifolds in granular
assemblies and explore their relationship with observed physical properties of granular flows.
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