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REFLECTION OF TRANSIENT PLANE STEP-STRESS WAVES:
SOME CONSIDERATIONS OF ORTHOTROPY AND THERMOELASTICITY

LOUIS MILTON BROCK

To Charles and Marie-Louise Steele

Governing transient equations and (dimensionless) wave speeds for isotropic and orthotropic solids, and
for isothermal and thermoelastic cases, are presented. For the orthotropic solid, propagation occurs in
a principal plane. The thermoelastic cases treat Fourier heat flow and thermal relaxation, and stress-
and temperature-step waves of a class that does not exhibit attenuation and dispersion. Reflection of
incident step-waves by a half-space surface is then treated. Situations vary in the combinations of model
features noted above. Isotropic limit cases of orthotropic results are also examined, for isothermal and
thermoelastic situations. Finally, restrictions on angles of incidence and reflection due to anisotropy are
identified, and some related calculations presented.

1. Introduction

The reflection of transient plane waves by traction-free surfaces of elastic solids is an important consid-
eration in seismology [Cagniard 1962] and in models for layers and layered media [Brekhovskikh 1957;
Achenbach 1973; Miklowitz 1978]. The reflection process is more complicated in the orthotropic elastic
solid [Lindsay 1960] because elastic wave speeds depend on propagation direction. Similarly, isotropic
thermoelastic solids [Chadwick 1960; Lord and Shulman 1960; Green and Lindsay 1972; Ignaczak and
Ostoja-Starzewski 2010] exhibit waves both with and without dispersion and attenuation.

Whether isothermal [Scott and Miklowitz 1967] or thermoelastic [Sharma and Sidhu 1986], anisotropic
solids are often studied in terms of the plane harmonic wave. Thus effects of step-stress (shock) signals
in a reflection process are not as readily discerned as in transient analyses of, for example, isotropic
isothermal solids [Achenbach 1973; Miklowitz 1978]. Plane wave propagation without dispersion can
occur in an isotropic solid subject to thermal relaxation [Ignaczak and Ostoja-Starzewski 2010]. For
the orthotropic solid, a class of plane waves exhibits neither dispersion nor attenuation [Brock 2010],
whether Fourier conduction [Chadwick 1960] or thermal relaxation [Lord and Shulman 1960; Green
and Lindsay 1972] holds. The class includes the step-stress. For plane wave propagation in an arbitrary
direction, displacement and stress are in effect defined by the temperature change. For propagation in a
principal plane, out-of-plane displacement uncouples from temperature, and travels as a shear wave of
arbitrary form. In the isotropic limit both displacement components parallel to the wave fronts travel as
shear waves of arbitrary form.

This study examines problems of reflection of a transient plane step-wave by the traction-free sur-
face of a half-space. Two problems involve isotropic solids that are governed by the thermal relaxation
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models of [Lord and Shulman 1960] and [Green and Lindsay 1972], respectively. The former exhibits
a single relaxation time, while the latter has two such times. A third problem involves an orthotropic
solid governed by the Fourier model [Chadwick 1960], and a fourth problem concerns an isothermal
orthotropic situation. For simplicity, orthotropic problems treat plane wave propagation in a principal
plane, and include the corresponding isotropic cases as limits. The incident wave in the fourth problem
is a step-stress. The first three problems consider incident stress- and temperature-step waves without
attenuation or dispersion [Brock 2010].

It should be noted, for the Fourier model in particular, that several problems involve restrictions on
the particular combination of natural boundary conditions imposed. Nevertheless, the solutions de facto
represent nonconventional thermoelastic processes [Ignaczak and Ostoja-Starzewski 2010], and allow in-
sight into propagation without dispersion and attenuation for plane waves with temperature or stress steps.

As indicated above, a substantial literature exists for isothermal wave propagation. For purposes of
illustration and the use of uniform definitions of parameters and functions, however, some key results
for these problems are included. It is also noted that a plane wave in an infinite isothermal solid is
obtained from the solution to an eigenvalue problem. That is, the solution defines the wave speeds and
couples components of displacement (and also stress). The work in [Brock 2010] differs only in that a
class of solutions — including the step-stress (shock) case — does not exhibit the typical attenuation and
dispersion of coupled thermoelasticity.

The study begins with a presentation of governing equations for the orthotropic isothermal and the
orthotropic thermoelastic solid. Corresponding equations for propagation of plane waves in a principal
plane are then extracted, and characteristic wave speeds for the isothermal and thermoelastic cases exam-
ined. The isotropic limit speeds are obtained, and asymptotic formulas for the speeds when orthotropy
is weak are then presented. Consideration of the four problems and isotropic limit cases follows.

2. Governing equations for orthotropic elasticity

In terms of principal Cartesian basis x = (x1, x2, x3) and time t , linear momentum balance requires that

∂k Tki = µ̄D2ui , D =
∂t

v̄
, v̄ =

√
µ̄/ρ (i, k = 1, 2, 3). (1)

Here ∂i and ∂t signify derivatives with respect to xi and t , and ui , Tik are the components of displacement
vector u and stress tensor T (x, t). For the isothermal case the components of T are[T11

T22

T33

]
= µ̄

[ C1 C12 C13

C12 C2 C23

C13 C23 C3

][∂1u1

∂2u2

∂3u3

]
, (2a)

T23 = µ̄C4(∂2u3+ ∂3u2), T31 = µ̄C5(∂3u1+ ∂1u3), T12 = µ̄C6(∂1u2+ ∂2u1), (2b)

µ̄Ci = ci i , µ̄Cik = cik (i 6= k). (2c)

Here ρ is mass density, the cik are the nine elastic constants for orthotropic elasticity [Sokolnikoff 1956;
Jones 1999], µ̄ is a reference shear modulus chosen for convenience from the set (c44, c55, c66), and v̄
is a corresponding reference speed that becomes the shear (rotational) wave speed in the isotropic limit
[Achenbach 1973]. A positive-definite elastic strain energy requires [Jones 1999] that the determinant
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of the coefficient matrix in (2a) be positive, and that

Ck > 0 (k = 1, 2, 3, 4, 5, 6), (3a)

Ci Ck −C2
ik > 0 (i, k = 1, 2, 3, i 6= k), (3b)

|Ci j Cik −Ci C jk |<

√(
Ci C j −C2

i j

)(
Ci Ck −C2

ik

)
(i, j, k = 1, 2, 3 all distinct). (3c)

The summation convention does not hold in (3c). Equations (1), (2b), (2c) and (3) hold for a thermoelastic
solid initially at uniform (absolute) temperature T0, but coupling of (u, T ) with the change in absolute
temperature θ(x, t) requires that (1) be augmented by

(hi∂
2
i − D̃D)θ − DD

( ε1

K1
∂1u1+

ε2

K2
∂2u2+

ε3

K3
∂3u3

)
= 0, (4)

with D, D̃, εi , hi defined below. The gradient column matrix in (2a) and (3) are also modified:[
∂1u1− K1 D̂θ
∂2u2− K2 D̂θ
∂3u3− K3 D̂θ

]
with

[K1
K2
K3

]
=

[ C1 C12 C13
C12 C2 C23
C13 C23 C3

][
α1
α2
α3

]
, (5a)

αi , Ki > 0 (i = 1, 2, 3). (5b)

For the Fourier model [Chadwick 1960], denoted by F, and the thermal relaxation models of [Lord and
Shulman 1960] and [Green and Lindsay 1972], denoted by I and II, respectively, the operators D, D̃, D̂
are

F : D, D̃, D̂ = 1, (6a)

I : D, D̃ = 1+ hI D, D̂ = 1, (6b)

II : D = 1, D̃ = 1+ hI D, D̂ = 1+ hII D. (6c)

Here εi , hi are dimensionless thermal coupling constants and hI, hII are thermal characteristic lengths;
their expressions are

εi =
T0

cV
(v̄Ki )

2, hi =
ki

cV
√
µ̄ρ
, hI = v̄ tI, hII = v̄ tII, (7)

where tI, tII are thermal relaxation times, with tII > tI, while ki , αi , cV are the conductivity, coefficient of
linear expansion, and specific heat at constant volume. In the isotropic limit, µ̄= µ reduces to the shear
modulus µ, while v̄ reduces to the isotropic shear (rotational) wave speed vS =

√
µ/ρ; we then have,

with λ the first Lamé constant and ν Poisson’s ratio,

C1,C2,C3 =
λ

µ
+ 2, C4,C5,C6 = 1, C12,C13,C23 =

λ

µ
=

2ν
1−2ν

, (8a)

K1, K2, K3 = K =
(

3 λ
µ
+ 2

)
α, ε1, ε2, ε3 = ε =

T0

cV

[
νr

(
3 λ
µ
+ 2

)
α
]2
, (8b)

h1, h2, h3 = h =
k

cV
√
µρ
. (8c)
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3. Plane wave propagation in arbitrary direction: formulation

The formulation for plane wave propagation in an arbitrary direction is given in [Brock 2010] for the
thermoelastic case. For purposes of this article, it is sufficient to consider propagation in the x1x2-
principal plane. Thus the Cartesian basis (x, y, z) is defined with respect to the principal basis x by the
transformation

x = x1 cosφ− x2 sinφ, y = x1 sinφ+ x2 cosφ, z = x3 (|φ|< π/2). (9)

Because propagation occurs in the x1x2-plane it is convenient to choose

µ̄= c66, v̄ = v6 =

√
c66
ρ
, τ = v6t, D = ∂τ . (10)

The temporal variable τ has dimensions of length, and D now signifies differentiation with respect to τ .
When propagation is in the x-direction and (y, z)-dependence is suppressed, (1) gives

∂x Txx = c66 D2ux , ∂x Tyx = c66 D2u y, ∂x Tzx = c66 D2uz. (11)

Similarly, in place of (2), [Txx

Tyx

Tzx

]
= c66

[ Cx Cxy 0
Cxy Cy 0
0 0 Czx

][∂x ux

∂x u y

∂x uz

]
, (12a)

[Tyy

Tzz

Tyz

]
= c66

[C x
y C y

y 0
C x

z C y
z 0

0 0 Cyz

][∂x ux

∂x u y

∂x uz

]
, (12b)

Txy =Tyx , Tyz = Tzy, Txz = Tzx . (12c)

In (12a) the dimensionless coefficients are

Cx = C1 cos4 φ+C2 sin4 φ+ (1+ 1
2C12) sin2 2φ, (13a)

Cy = cos2 2φ+ 1
4(C1+C2− 2C12) sin2 2φ, (13b)

Cxy =
1
2 [C2 sin2 φ−C1 cos2 φ+ (2+C12) cos 2φ] sin 2φ, (13c)

Czx = C5 cos2 φ+C4 sin2 φ. (13d)

In (12b) the coefficients are

C x
y = C12(cos4 φ+ sin4 φ)+ [14(C1+C2)− 1] sin2 2φ, (14a)

C y
y =

1
2 [C2 cos2 φ−C1 sin2 φ− (2+C12) cos 2φ] sin 2φ, (14b)

C x
z = C13 cos2 φ+C23 sin2 φ, C y

z = (C23−C13) sinφ cosφ, (14c)

Cyz = (C4−C5) sinφ cosφ. (14d)

The matrix in (12a) is symmetric but that in (12b) is not, and

Cxy +C y
y = (C2−C1) sinφ cosφ, Cx +Cy = 1+C1 cos2 φ+C2 sin2 φ. (15)
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For the thermoelastic case, (11) is coupled with

(hx∂
2
x − D̃D)θ − DD∂x

( εx

Kx
ux +

εy

K y
u y

)
= 0. (16)

The modifications of the gradient column matrices in (12a) and (12b) are[ ∂x ux−Kx D̂θ
∂x u y−K yx D̂θ

∂x uz

]
,

[∂x ux−K x
y D̂θ

∂x u y−K3 D̂θ
∂x uz

]
. (17)

In (16) and (17),

hx = h1 cos2 φ+ h2 sin2 φ, εx =
T0

cV
(v6Kx)

2, εy =
T0

cV
(v6K yx)

2. (18)

The K coefficients in (16)–(18) are given by

Kx = K1 cos2 φ+ K2 sin2 φ, K x
y = K1 sin2 φ+ K2 cos2 φ, (19a)

K yx = (K2− K1) sinφ cosφ, Kx + K yx = K1+ K2. (19b)

4. Isothermal plane waves

Studies of isothermal waves in isotropic, transversely isotropic and orthotropic solids are available in
[Achenbach 1973; Payton 1983; Lindsay 1960; Scott and Miklowitz 1967]. For the sake of transparency
and notational consistency, however, basic results are presented here: (11) can be uncoupled, and (12a)
then gives

(Czx∂
2
x − D2)uz = 0, (20a)[

Cx∂
2
x − D2 Cxy∂

2
x

Cxy∂
2
x Cy∂

2
x − D2

][
ux

u y

]
=

[
0
0

]
. (20b)

For plane wave propagation in the x-direction, (20) admits the general solutions

uξ =Uξ++ (c+τ − x)+Uξ−(c−τ − x), ξ = (x, y), (21a)

uz =Uz(czτ − x), cz = cz(φ)=
√

C5 cos2 φ+C4 sin2 φ . (21b)

The functions Uz and Uξ± are arbitrary but Uξ± is subject to either of two restrictions:

(Cx − c2
±
)U ′′x±+CxyU ′′y± = 0, CxyU ′′x±+ (Cy − c2

±
)U ′′y± = 0 (22)

Here a prime signifies differentiation. The dimensionless speed cz is defined in (21b); the dimensionless
speeds c = c± come from the roots of the secular equation

c4
− (Cx +Cy)c2

+CxCy −C2
xy = 0. (23)

Properties of quadratics [Abramowitz and Stegun 1972], together with (13), (14) and (15), give

c2
+
+ c2
−
= Cx + Cy = 1+C1 cos2 φ+C2 sin2 φ,

c2
+

c2
−
= CxCy −C2

xy = C1 cos2 φ+C2 sin2 φ+� sin2 φ cos2 φ.
(24)
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Solution of (23) gives

2c± = 2c±(φ)= 0+±0−, (25a)

0± =

√
1+C1 cos2 φ+C2 sin2 φ± 2

√
C1 cos2 φ+C2 sin2 φ+� sin2 φ cos2 φ, (25b)

�= (C1− 1)(C2− 1)−m2
= γ−C1−C2, γ = 1+C1C2−m2, m = 1+C12. (25c)

It is noted that c± and cz are symmetric in φ. Parameters (γ,m) and �, respectively, are used by [Payton
1983] and [Brock and Georgiadis 2007] for transversely isotropic materials, but prove useful in the
present study as well. In the isotropic limit �= 0 and (21b) and (25) give

v6 = vr , cz = c− = cS = 1, c+ = cD =

√
λ

µ
+ 2> 1 (|φ|< π/2). (26)

Subscript D and S signify quantities associated with isotropic dilatational and shear waves. For ortho-
tropic materials, c+ > c− > 0 in any of these situations:

A1 : γ2
− 4C1C2 < 0, |φ|< π/2; (27a)

A2 : γ2
− 4C1C2 > 0, γ > 0, |φ|< π/2; (27b)

A3 : γ2
− 4C1C2 > 0, γ < 0, |φ|<8A−, 8A+ < |φ|< π/2, (27c)

where

8A± = tan−1 1
√

2C2

√
−γ∓

√
γ2− 4C1C2. (27d)

If in A3 we take instead |φ| =8A±, then 0+ = 0− > 0 and c+ > 0, c− = 0. If 8A−< |φ|<8A+, then
0+, 0− are complex conjugates with positive real parts, and c+ is positive real, but c− is imaginary.

5. Thermoelastic plane waves

Equation (1) again uncouples to produce (20a) and (21b). However, (ux , u y) and θ are coupled by (16);
as a consequence [Chadwick 1960; Achenbach 1973; Ignaczak and Ostoja-Starzewski 2010] we get for
isotropic materials a secular equation that gives complex dimensionless speeds c; that is, ux , u y, θ exhibit
dispersion and exponential decay.

However one can consider a restricted class of forms [Brock 2010]

θ =

N∑
k=1

2k−1(cτ − x)k−1 (cτ ≥ x) (28)

with N = 4 for F and N = 3 for I, II. Here the 2k are constants; the 20 term represents a propagating
temperature step. The secular equations then become

F : c4
− I F

1 c2
+ I F

2 = 0, (29a)

I : c6
− (lx + I F

1 )c
4
+ [lx(c2

+
+ c2
−
)+ I F

2 ]c
2
− lx c2

+
c2
−
= 0, (29b)

II : c6
− (lx + Ī1)c4

+ [lx(c2
+
+ c2
−
)+ Ī2]c2

− lx c2
+

c2
−
= 0. (29c)
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The coefficients in (29a) are

I F
1 = 1+ F1 cos2 φ+ F2 sin2 φ, I F

2 = F1 cos2 φ+ F2 sin2 φ+�F sin2 φ cos2 φ, (30a)

with

�F = (F1− 1)(F2− 1)−m2
F = γF− F1− F2, γF = 1+ F1 F2−m2

F, mF = 1+ F12, (30b)

F1 = C1+ ε1, F2 = C2+ ε2, F12 = C12+
√
ε1ε2. (30c)

In (29b) and (29c), c+ and c− are given by (25), and

Ī1 = l I F
1 + (1− l)(c2

+
+ c2
−
), Ī2 = l I F

2 + (1− l)c2
+

c2
−
, lx =

hx

hI
> 1, l =

hII

hI
> 1. (31)

The inequalities in (31) are based on data [Ignaczak and Ostoja-Starzewski 2010; Brock 2009]. The
roots of (29a), (29b) and (29c) give dimensionless speeds c = cF±, c = c1I, c2I, c3I and c = c1II, c2II, c3II

. Properties of quadratic and cubic equations [Abramowitz and Stegun 1972] show that
c2

F++ c2
F− = I F

1 , c2
F+c2

F− = I F
2 , (32a)

c2
1I+ c2

2I+ c2
3I = lx + I F

1 , c2
1II+ c2

2II+ c2
3II = lx + Ī1, (32b)

c2
1Ic

2
2I+ c2

2Ic
2
3I+ c2

3Ic
2
1I = lx I1+ I F

2 , c2
1IIc

2
2II+ c2

2IIc
2
3II+ c2

3IIc
2
1II = lx I1+ Ī2, (32c)

c2
1Ic

2
2Ic

2
3I = c2

1IIc
2
2IIc

2
3II = lx I2. (32d)

For model F, (29a) and (30) give symmetric real functions of φ:

2cF± = 2cF±(φ)= 0
+

F ±0
−

F , (33a)

0±F =

√
1+ F1 cos2 φ+ F2 sin2 φ± 2

√
F1 cos2 φ+ F2 sin2 φ+�F sin2 φ cos2 φ. (33b)

In the isotropic limit, �F vanishes and (30) and (33) give, for all |φ|< π/2,

v6 = vr , cz = cF− = cS = 1, cF+ = cF =
√

c2
D + ε > 1. (34)

The parameter set (γF,mF, �F) is the thermoelastic counterpart of (γ,m, �). For the orthotropic material,
the behavior of cF± is governed by conditions that can be obtained from (27) in Section 4 by replacing
c±, 0±, γ,m, �,C1,C2 with cF±, 0

±

F , γF,mF, �F, F1, F2, respectively.
Formal expressions for the roots c2

1I, c2
2I, c2

3I of (29b) and basic inequalities that guarantee positive real
values are given in [Brock 2010] for Model I. The isotropic case is of interest here, and it can be shown
that (29b) gives, for all |φ|< π/2,

v6 = vS, c1I = cI+, c2I = cI−, c3I = cz = cS = 1, (35a)

2cI± = 0
+

I ±0
−

I , 0±I =

√
(cD ±

√
lx)2+ ε. (35b)

Available data [Brock 2009] suggest that 1 < cI− < cD < cF < cI+. Equation (35a) shows that the
components of ux , u y corresponding to c3I uncouple from θ , i.e., are shear waves defined by arbitrary
functions of τ − x .
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Equation (29c) for Model II yields roots cz, c1II, c2II, c3II. Formal expressions for these, and basic
inequalities that guarantee positive real values, are given in [Brock 2010]. As with Model I the isotropic
case is of interest here:

v6 = vS, c1II = cII+, c2II = cII−, c3II = cz = cS = 1, (36a)

2cII± = 0
+

II ±0
−

II , 0II =

√
(cD ±

√
lx)2+ lε (36b)

Available data [Brock 2009] suggest that 1< cII− < cD < cF < cII+.
The components of ux , u y that correspond to cF−, c3I, c3II are seen from equations (34), (35a), (36a),

respectively, to uncouple from θ , and become shear waves that are arbitrary functions of τ − x . Moreover
(35) and (36) give the dimensionless speeds in transient two-dimensional studies that are valid for short
times (τ/hI� 1 and τ/hII� 1 respectively); see [Brock 2009].

6. Speeds in weakly orthotropic solids

The limit (26) of (25) can be defined in terms of dimensionless parameters C1 and �, and likewise the
limit (34) of (33) in terms of F1 and �F:

C1→ C2, �→ 0 : c+(φ)= cD, c−(φ)= 1, (37a)

F1→ F2, �F→ 0 : cF+(φ)= cF, cF−(φ)= 1, (37b)

In similar fashion, results from [Brock 2010] show that

C1→ C2, F1→ F2, h1→ h2, �,�F→ 0 :
{c1kI(φ)= cI+, c2I(φ)= cI−, c3I(φ)= 1, (38a)

c1II(φ)= cII+, c2II(φ)= cII−, c3II(φ)= 1, (38b)

When orthotropy is weak, i.e., when C1, F1, h1, �,�F are close to the limits indicated in (37) and (38),
asymptotic formulas can be derived. The derivation does not require explicit formulas such as (25a) and
(33a). A first-order variation of (24) and (29), under constraints (23) and (32), gives

c+(φ)≈ cD +
δC1

2cD
cos2 φ−

�

8mcD
sin2 2φ, c−(φ)≈ 1+

�

8m
sin2 2φ, (39a)

cF+(φ)≈ cF+
δF1

2cF
cos2 φ−

�F

8mFcF
sin2 2φ, cF−(φ)≈ 1+

�F

8mFcF
sin2 2φ, (39b)

[c1I(φ), c2I(φ)]≈cI±+
1

2cI±

cos2 φ

PIc2
I±+ QI

(l0�−c2
I±�F) sin2 φ+(c2

I±−1)
[
c2

I±δF1−l0δC1+(c2
I±−c2

D)
δh1
hI

]
,

(39c)

[c1II(φ), c2II(φ)] ≈ cII±+
1

2cII±

cos2 φ

PIIc2
II±+ QII

×[�(l0+ c2
II±(l − 1))− lc2

II±�F] sin2 φ

+(c2
II±− 1)

[
lc2

II±δF1+ (c2
II±(1− l)− l0)δC1+ (c2

II±− c2
D)
δh1

hI

]
, (39d)
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c3I(φ)≈ 1+
l0�−�F

1− c2
F+ml0

1
8

sin2 2φ, (39e)

c3II(φ)≈ 1+
(l0+ l − 1)�− l�F

1− lc2
F+ml0+ 2c2

D(l − 1)
1
8

sin2 2φ, (39f)

where l0 = h/hI is the limit value of lx , the parameters PI, PII, QI, QII are defined by

PI = 1+ c2
F− 2l0, PII = 1+ c2

D + lε− 2l0, (40a)

QI = 3l2
0 + l0[c2

F+ 2(ε− 1)] − 2c2
F, (40b)

QII = 3l0[l0+ ε(l − 1)] + l0[c2
F+ 2(ε− 1)] − 2(c2

D + lε), (40c)

and δC1, δF1, δh1, �,�F are small:

δC1 = C1−C2, δF1 = F1− F2, δh1 = h1− h2, (41a)∣∣∣∣C1

C2
− 1

∣∣∣∣� 1,
∣∣∣∣F1

F2
− 1

∣∣∣∣� 1,
∣∣∣∣h1

h2
− 1

∣∣∣∣� 1,
∣∣∣∣ γ

C1+C2
− 1

∣∣∣∣� 1,
∣∣∣∣ γF

F1+ F2
− 1

∣∣∣∣� 1. (41b)

7. Isotropic case: shear wave reflection for model I

The isotropic half-space x1 > 0 is initially at rest at uniform temperature T0. An incident plane shear
step-wave travels in the negative x-direction, and reaches surface point (x1, x2)= 0 at time t = 0 (τ = 0):

(ux , uz)= 0, Txy = Gi +G ′i (τ + x)(τ + x ≥ 0). (42)

Here Gi ,G ′i are given constants. In view of (9), the wave (42) generates, for x1 = 0 and τ + x2 sinφ ≥ 0,

θ = 0, (T12, T11)= (cos 2φ,− sin 2φ)[Gi +G ′i (τ + x2 sinφ)] (43)

Reflection of (43) generates plane waves governed by (11), (28), (29b) and (34). These travel away
from the surface, i.e., in positive x-directions whose angles differ from φ. In view of (9), (12) and (17),
therefore, we have, for x1 = 0 and τ − x2 sinφS ≥ 0,

θ = 0, (T12, T11)= (cos 2φS,− sin 2φS)[GS +G ′S(τ − x2 sinφS)]. (44)

For x1 = 0, cI±τ − x2 sin θ± ≥ 0 we have

θ =2±+2
′

±
(cI±τ − x2 sinφ±), (45a)

(T12, T11)=−
µK
d±

(sin 2φ±,C±)[2±+2′±(cI±τ − x2 sinφ±)], (45b)

C± = c2
I±− 2 sin2 φ±, d± = c2

I±− c2
D, d+d− =−εc2

D. (45c)

Here GS,G ′S,2±,2
′
±

are unknown constants. The half-space surface remains traction-free and is
governed by thermal convection [Chadwick 1960]:

x1 = 0 : T12 = T11 = 0, ∂1θ −βθ = 0 (46)
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Parameter β is related to the Biot number [Boley and Weiner 1985]. Satisfaction of (46) by the summation
of (43)–(45) requires that

φS =−φ, φ± =− sin−1(cI± sinφ) (cI± sinφ ≤ 1). (47)

It follows that (46) produces the equations

2′
±
=±

β

1
(2++2−), 1= cosφ+− cosφ−, (48a)

µK
(
2+
d+

sin 2φ++
2−
d−

sin 2φ−
)
+GS cos 2φS +Gi cos 2φ = 0, (48b)

−µK
(
2+
d+

C++
2−
d−

C−
)
+GS sin 2φS −Gi sin 2φ = 0, (48c)

µK β

1

(cI+
d+

sin 2φ+−
cI−
d−

sin 2φ−
)
(2++2−)+G ′S cos 2φS +G ′i cos 2φ = 0, (48d)

−µK β

1

(cI+
d+

C+−
cI−
d−

C−
)
(2++2−)+G ′S sin 2φS −G ′i sin 2φ = 0. (48e)

Equation (45a) implies a spike (Dirac) function δ(τ + x2 sinφ) at the wave intersection in the heat flux
term in (46). Therefore (48) is subject to the restriction

cI−2+ cosφ++ cI+2− cosφ− = 0. (49)

The equation set (48b)–(48e) is solved for (GS,G ′S,2±), whereupon (48a) yields 2′
±

. The surface
temperature change generated by reflection is of particular interest, and it can be shown that, for x1 = 0
and τ + x2 sinφ ≥ 0,

θ =
εc2

D

µK
G ′i N2I sin 4φ

R2I R3I

[1
β
+ (cI+− cI−)(τ + x2 sinφ)

]
, (50a)

RkI = d−ck
I+R+− d+ck

I−R−, NkI = d−ck
I+R++ d+ck

I−R− (k = 1, 2, 3), (50b)

R± = 2 sin 2φ sinφ
√

s2
I±− sin2 φ− cos2 2φ, sI± =

1
cI±

. (50c)

The function R± is of the Rayleigh type [Achenbach 1973] in the isothermal case, and R2I is a thermo-
elastic counterpart. Investigation of possible roots of functions (NkI, RkI) is beyond the scope of this
article, but is necessary to complete this analysis.

Equation (50a) represents the effects of heat production from a shear wave by mode conversion. It is
noted that the step-stress term Gi does not contribute to surface temperature. Moreover, restriction (49)
is satisfied only when the incident shear wave parameters (Gi ,G ′i ) are related by[

β
Gi

G ′i
(cI+ cosφ−− cI− cosφ+)+ 1− cosφ+ cosφ−

]
R3I− c2

I+c2
I−R1I sin2 φ = 0 (51)

That is, the surface in general exhibits a spike in the heat flux.
The restriction in (47) indicates that reflections moving at speed cI−vS travel parallel to the surface

when cI+ sinφ = 1. Therefore φ = sin−1 sI+ is the minimum grazing angle of incidence. For this angle
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cosφ+ = 0 and (50) gives

R+ =−(1− 2s2
I+)

2, R− = 4s2
I+

√
1− s2

I+

√
s2

I−− s2
I+− (1− 2s2

I+)
2. (52)

Use of (52) causes distinct changes in the forms of (50a) and (51). However, this does not give corre-
spondingly distinctive behavior.

8. Isotropic case: shear wave reflection for model II

Equations (29c) and (34) now govern. Thus (42)–(44) and (45a) hold, but with cI± replaced by cII±. In
place of (45b) and (45c) we have, for x1 = 0 and cII±τ − x2 sinφ± ≥ 0,

(T12, T11)=−
µK
d±

(sin 2φ±,C±)[2±+2′±(hIIcII±+ cII±τ − x2 sinφ±)], (53a)

d± = c2
II±− c2

D, d+d− =−ε
hII

hI
c2

D (53b)

Equations (48a), (48d), (48e) and (49) still hold, with cI± replaced by cII±. Equations (47), (48b) and
(48c) are replaced by

φr =−φ, φ± =− sin−1(cII± sinφ)(cII+ sinφ ≤ 1), (54a)

µK
(

p+
2+
d+

sin 2φ++ p−
2−
d−

sin 2φ−
)
+GS cos 2φS +Gi cos 2φ = 0, (54b)

−µK
(

p+
2+
d+

C++ p−
2−
d−

C−
)
+GS sin 2φS −G ′i sin 2φ = 0, (54c)

p+ = 1+ β
1

cII+hII, p− = 1− β
1

cII−hII. (54d)

In this case, for x1 = 0 and τ + x2 sinφ ≥ 0, we have

θ =
εc2

D

µK
hII

hI

G ′i N2II sin 4φ
R2II R3II

[
1

β
+ (cII+− cII−)(τ + x2 sinφ)

]
, (55a)

RkII = d− p+ck
II+R+− d+ p−ck

II−R−, NkII = d− p+ck
II+R++ d+ p−ck

II−R− (k = 1, 2, 3). (55b)

Equation (50c) still holds, with cI± replaced by cII±. The counterpart to (51) does not hold and a surface
heat flux spike will arise unless

β
Gi

G ′i
(cII− cosφ+− cII+ cosφ−)R3I+ (1− cosφ+ cosφ−)R3II− c2

II+c2
II−R1II sin2 φ = 0. (56)

Here R3I, R3II both appear, with cI± replaced by cII± in (50b). Completion of this analysis will require
study of possible roots of NkII, RkII. Equation (54a) shows that the minimum grazing angle is φ =
sin−1 sII+. Then (52) holds, with sI+ replaced by sII+. Equations (55a) and (56) do not exhibit distinctive
behavior for this angle.
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9. Orthotropic case: thermal wave reflection for model F

Consider the temperature change θ =2i , traveling as a plane step-wave with speed cF+v6 in the negative
x-direction toward the surface x1 = 0 of half-space x1 > 0. Arrival at surface point (x1, x2)= 0 occurs
at time t = 0 (τ = 0). The material is orthotropic and satisfies the Fourier model equations, and (33a)
for cF± = cF±(φ) in particular. This problem is treated in [Brock 2010], so only key steps are presented:

For x1 = 0, cF+(φ)τ + x2 sinφ ≥ 0 the incident wave generates

θ =2i , T12 =−c66
Q(cF+, φ)

S(cF+, φ)
2i , T11 =−c66

P(cF+, φ)

S(cF+, φ)
2i (57)

In (57) the functions Q, P are defined by

Q(c, φ)= (K1+ K2)c2(φ) sinφ cosφ+ Q12 sin2 φ(1+ 2 cos 2φ)+ Q21 cos2 φ(1− 2 cos 2φ), (58a)

Q12 = K1m cos2 φ− K2(C1 cos2 φ+ sin2 φ), (58b)

Q21 = K2m sin2 φ− K1(C2 sin2 φ+ cos2 φ), (58c)

P(c, φ)= [F1K1 cos2φ+(mF−1)K2 sin2φ]c2(φ)+ [F1 P1 cos2φ+(mF−1)P2 sin2φ] sinφ cosφ, (59a)

P1 = K1(m cos 2φ+ 1+ 2C2 sin2 φ)− K2(C1 cos 2φ+ 2m sin2 φ), (59b)

P2 = K2(m cos 2φ− 1− 2C1 cos2 φ)− K1(C2 cos 2φ− 2m cos2 φ). (59c)

The function S is defined by

S(c, φ)

= [c2(φ)−1](ε1 cos2 φ+ε2 sin2 φ)+[(C2−1)
√
ε1−m

√
ε2]
√
ε1+[(C1−1)

√
ε2−m

√
ε1]
√
ε2. (60)

Here only the condition that the half-space surface remains traction-free is imposed. In accordance with
(28) and (29a), reflected plane waves travel in positive x-directions that form angles φ± with the positive
x1-axis at speed cF±(φ±)v6. The temperature steps are 2±, Equations (58)–(60) hold with φ replaced
by φ±, and for x1 = 0 and cF±(φ±)τ − x2 sinφ± ≥ 0 we have

θ =2±, T12 =−c66
Q(cF±, φ±)

S(cF±, φ±)
2±, T11 =−c66

P(cF±, φ±)

S(cF±, φ±)
2±. (61)

Reflection requires that

cF+(φ) sinφ++ cF+(φ+) sinφ = 0, cF+(φ) sinφ−+ cF−(φ−) sinφ = 0. (62)

This equation is satisfied when

φ+ =−φ, φ− =− sin−1 sinφ
cF

12(φ)
, (63a)

cF
12(φ)=

1
√

F1

√

(1+ F1)c2
F+(φ)− F1 cos2 φ− (F2+�F) sin2 φ. (63b)
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Imposing a traction-free surface gives

2+ =−2i
Q(cF+, φ)P(cF−, φ−)− P(cF+, φ)Q(cF−, φ−)

Q(cF+,−φ)P(cF−, φ−)− P(cF+,−φ)Q(cF−, φ−)
, (64a)

2− =−2i
S(cF−, φ−)

S(cF+, φ)

P(cF+, φ)Q(cF+,−φ)− Q(cF+, φ)P(cF+,−φ)

Q(cF+,−φ)P(cF−, φ−)− P(cF+,−φ)Q(cF−, φ−)
. (64b)

It is noted that 2i +2++2− 6= 0, i.e., the Fourier model predicts surface temperature change. Moreover
a surface heat flux spike occurs in ∂1θ unless

(2i −2+) cosφ−2− cosφ− = 0. (65)

The nature of cF
12 depends on material categorization that differs from the counterpart to (27) mentioned

in Section 5, e.g., γF < 0 implies �F < 0, and �F−m2
F > 0 implies �F > 0. Therefore (63b) gives the

positive real results

cF
12(8A±)=

1
√

F1

√
1+ F1 cos28A±+ F2 sin28A± , (66a)

cF
12(8B±)=

√
F1 cos28B±+ (F2+�F cos28B±) sin28B± . (66b)

However, when (F1− F2)
2
−4�F < 0 and (1+ F1)(F1− F2)−2(F2+�F) > 0, the value of cF

12 vanishes
when |φ| =8± and is imaginary for 8− < |φ|<8+, where

8± = tan−1

√
F1

2

√
(1+ F1)[F1− F2±

√
(F1− F2)2− 4�F] − 2(F2+�F) (67)

This behavior implies that (63a) is subject to the restriction sin2 φ < [cF
12(φ)]

2. It can be shown that the
restriction is satisfied except in the following cases:

B1 : Q B > 0, 8B1 < |φ|< π/2 (68a)

B2 : P2
B + Q B > 0, PB < 0, Q B < 0, 8−2B < |φ|<8

+

2B, (68b)

with

81B = tan−1 1
√

Q B

√
PB +

√
P2

B + Q B, 8±2B = tan−1 1
√
−Q B

√
−PB ∓

√
P2

B + Q B, (68c)

PB = 1−
F1

2
(1+ F1)(1+ F2), Q B = F1 F2+�F(1+ F2). (68d)

For angles of incidence φ that lie outside of the ranges prescribed by B1 and B2, a reflected wave travels
in the negative x2-direction at speed cF+v6. In view of (68) and the thermoelastic counterpart to (27) in
Section 4, (61) and (64) are governed by two cases. A study of the various limits |φ| =8A±,81B,8

±

2B ,
as well as study of possible situations for which (61) and (64) vanish or become unbounded, is beyond
the scope of this single paper. Such efforts are planned for a longer format.
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As observed above the reflections uncouple as a thermal and a shear wave in the isotropic limit. Thus
for x1 = 0 the incident and reflected fields give

for cFτ + x2 sinφ ≥ 0 : θ =2i , T12 =−
µK Q(φ)

mFε
2i , T11 =−

µK P(φ)
mFε

2i ; (69a)

for cFτ − x2 sinφF ≥ 0 : θ =2F, T12 =−
µK Q(φF)

mFε
2F, T11 =−

µK P(φF)

mFε
2F; (69b)

for τ − x2 sinφS ≥ 0 : θ = 0, T12 = TS cos 2φS, T11 = TS sin 2φS. (69c)

Here TS is the unknown stress Txy due to the reflected shear wave, and

Q(φ)= c2
F sin 2φ− 1+ cos2 2φ, (70a)

P(φ)= c2
F(c

2
F− 2 sin2 φ)+ 8 sin3 φ cos3 φ. (70b)

A traction-free surface now requires that

φF =−φ, φS =− sin−1 sinφ
cF

, (71a)

TS =
2µK2i

mF D0ε
[4(1− 2 cos2 2φ)+ c2

F(c
2
F− 2 sin2 φ)] sin 2φ, (71b)

2F =2i

[
− 1+ 4

D0
(c2

F sinφS cosφS − sin2 2φ cos 2φS) sin 2φ
]
, (71c)

D0 = Q(−φ) sin 2φS − P(−φ) cos 2φS. (71d)

On the surface we have 2F+2i 6= 0, and a heat flux spike occurs unless

(2i −2F) cosφ = 0. (72)

The parameter c12(φ) equals cF when F1 = F2 and �F = 0, and for the weakly orthotropic case

cF
12(φ)≈ cF+ (1+ cos2 φ)

δF1

2cF
−

cF

mF
�F sin2 φ. (73)

Here δF1, �F are governed by (41).

10. Orthotropic isothermal case: stress wave reflection

Consider the situation in Section 9, except that material response is isothermal, and an incident plane
wave moves with speed c+(φ)v6 toward the half-space surface. In terms of the traction Ti , the wave is
defined in accordance with (20)–(22) as step-stresses

Txx = Ti c2
+
(φ)[cos2 2φ+ (C1+C2− 2C12) sin2 φ cos2 φ− c2

+
(φ)], (74a)

Txy =−Ti c2
+
(φ)[C2 sin2 φ−C1 cos2 φ+ (2+C12) cos 2φ] sinφ cosφ, (74b)

Tyy = Ti c2
+
(φ)[C12 cos2 2φ+ (C1+C2+ 2C12− 4) sin2 φ cos2 φ] − Ti (C12+� sin2 φ cos2 φ). (74c)

For x1 = 0 and c+(φ)τ + x2 sinφ ≥ 0, the step-stresses Txx , Txy, Tyy generate traction

T11 = Ti P(c+, φ), T12 = Ti Q(c+, φ), (75)
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where P, Q are defined by

P(c, φ)= c2(φ)[C12 cos2 2φ+ 2C2 sin2 φ−C1 cos 2φ− 8 sin2 φ] sin2 φ

+ (C1 cos2 φ+C2 sin2 φ) cos2 φ+� cos 2φ sin2 φ cos2 φ−C12 sin2 φ, (76a)

Q(c, φ)=−c2(φ)[(C1+C2) sin2 φ cos2 φ+C12(cos4 φ+ sin4 φ)+ cos2 2φ] sin 2φ

+ [C12+C1 cos2 φ+C2 sin2 φ+ 2� sin2 φ cos2 φ] sinφ cosφ. (76b)

(Thus P is symmetric and Q is antisymmetric in φ.) Reflection generates plane waves Txx , Txy, Tyy that
travel away from the surface with speed c±(φ±)v6, so that for x1 = 0 and c±(φ)τ − x2 sinφ± ≥ 0 we
have

T11 = T±P(c±, φ±), T12 = T±Q(c±, φ±). (77)

In this case a traction-free surface requires that

φ+ =−φ, φ− =− sin−1 sinφ
c12(φ)

, (78a)

T+ = Ti
Q(c+, φ)P(c−, φ−)− Q(c−, φ−)P(c+, φ)
Q(c+, φ)P(c−, φ−)+ Q(c−, φ−)P(c+, φ)

, (78b)

T− =−2Ti
Q(c+, φ)P(c+, φ)

Q(c+, φ)P(c−, φ−)+ Q(c−, φ−)P(c+, φ)
, (78c)

c12(φ)=
1
√

C1

√
(1+C1)c2

+
(φ)−C1 cos2 φ− (C2+�) sin2 φ . (78d)

The behavior of (78d) is analogous to that of (63b), so that (78a) must be subject to the restriction sin2 φ <

c2
12(φ). Condition (68) in Section 9 again holds, but with (cF

12, �F, F1, F2) replaced by (c12, �,C1,C2).
Consistent with the observations in Sections 7, 8 and 9, study of (78a) in light of (27), (68) and their
analogues, and consideration of cases for which (78b) and (78c) vanish or become unbounded, is reserved
for future work.

However, for some insight into both (27) in Section 4 and the isothermal analogue to (68) given
in Section 9, Table 2 in the Appendix provides calculations for four orthotropic wood materials (see
Table 1) under isothermal conditions. The table entries show that c± exists for these materials, i.e., there
are no angles 8A± that restrict angle of incidence φ. Similarly, the entries show that only the isothermal
counterpart of restriction B1 governs reflection; that is, 8B1 exists, but 8±2B does not.

The isotropic limit case is a standard problem [Achenbach 1973]. However, for completeness some
results are presented here:

φD =−φ, φS =− sin−1 sinφ
cD

, TD = Ti
N
R
, TS =−

Ti

R
sin 2φ(c2

D − 2 sin2 φ), (79a)

N = 2 sin 2φ sinφ
√

c2
D − sin2 φ− (c2

D − 2 sin2 φ)2, (79b)

R = 2 sin 2φ sinφ
√

c2
D − sin2 φ+ (c2

D − 2 sin2 φ)2. (79c)
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The isothermal counterpart to (73) is

c12(φ)≈ cD + (1+ cos2 φ)
δC1

2cD
−

cD

m
� sin2 φ. (80)

Here δC1, � are governed by (41).

11. Some observations

The results of Sections 7 and 8 illustrate the alteration in half-space temperature that occurs when an
isothermal (shear) step-stress wave is reflected from its surface, and only the wave class studied in [Brock
2010] is considered. In Section 7 thermal relaxation with a single relaxation time [Lord and Shulman
1960] governs. The [Green and Lindsay 1972] model, with an additional thermal relaxation time, governs
in Section 8, and this time is coupled with the convection parameter β in the solution. A minimum grazing
angle of incidence arises in both Sections, but distinctive changes in solution behavior do not seem to
occur at this angle.

Section 9 treats an incident temperature step-wave that propagates without dispersion or attenuation
[Brock 2010] in an orthotropic half-space governed by the Fourier law [Chadwick 1960]. Only two cor-
responding reflection waves arise, so that only the requirement of a traction-free surface is met. Formulas
for reflection angles are also presented. In the isotropic limit one reflection becomes an isothermal shear
wave, and an asymptotic reflection angle formula valid for weak orthotropy is given.

Section 10 involves the commonly studied isothermal wave reflection process in an orthotropic half-
space. For comparison with Section 9 the incident wave is a step-stress. In the isotropic limit the
two waves generated by reflection reduce to the standard dilatational/shear wave pair. As in Section 9,
distinctive behavior does not seem to occur at the minimum grazing angle. The reflection angle, its
isotropic limit, and an asymptotic form for weak orthotropy are also given.

These results can in general be predicted by work in Sections 4 and 5. There governing equations
and associated (dimensionless) speeds for plane wave propagation in a principal plane of isothermal
and thermoelastic orthotropic solids are examined. Only the wave class discussed in [Brock 2010] is
treated in the latter instance. Isotropic limits for the dimensionless wave speeds are also given, as well
as asymptotic formulas for weakly orthotropic solids.

Sections 7, 8 and 9 demonstrate the limited applicability of thermoelastic plane wave ensembles that
travel without dispersion or attenuation [Brock 2010], both for isotropic and orthotropic solids. Because
the Fourier model allows only two signals, stress-free surfaces can result only if a prescribed uniform
temperature and associated heat flux spite form the thermal boundary conditions. General time-harmonic
[Chadwick 1960] or transient [Brock 2005; Brock and Hanson 2006] studies admit three, so the “missing”
signal corresponds to the Fourier paradox of infinite speed.

However, Sections 7, 8 and 9 also demonstrate that there are combinations of speed, wave profile and
angle of incidence that do not couple prescribed stress and thermal boundary conditions. As implied at the
outset, moreover, problems that do couple conditions represent in effect special cases of nonconventional
thermoelastic processes [Ignaczak and Ostoja-Starzewski 2010]. Such boundary conditions are artificial.
Nevertheless, the problems discussed here do illustrate that the transient response of thermoelastic solids
subject to surface reflection can differ from that described by analyses based on time-harmonic waves,
dispersion and attenuation.
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Finally, it is noted again that the restrictions imposed on wave travel by orthotropic elastic solids,
whether thermoelastic or isothermal, need to be examined in more detail. The work by Kraut [1963] and
Payton [1983] in isothermal transversely isotropic cases, and by Ignaczak and Ostoja-Starzewski [2010]
in isotropic thermoelasticity with relaxation, are models in this regard. At present work is also proceeding
on thermoelastic plane waves that exhibit a particular form of attenuation, but without dispersion.

Appendix

Data for four orthotropic wood materials — balsa (B), yellow birch (YB), Douglas fir (DF) and Sitka
spruce (SS) — are taken from [Crandall and Dahl 1959, pp. 224–228] and summarized here:

S22/S11 S33/S11 S12/S11 S23/S11 S13/S11 S44/S11 S55/S11 S66/S11

B 20 70 −0.3 −15 −0.5 18 200 27
DF 13 20 −0.5 −9 −0.5 14 60 15
YB 15 20 −0.4 −7 −0.5 16 140 13
SS 13 23 −0.4 −6 −0.5 16 20 16

Table 1. Compliance ratios.

The dimensionless constants C1,C2,C12 can be obtained from [Jones 1999]:

C1 =
S66

S11s

[
S22

S11

S33

S11
−

( S23

S11

)2
]
, C2 =

S66

S11s

[
S33

S11
−

( S13

S11

)2
]
, C12 =

S66

S11s

[
S13

S11

S23

S11
−

S33

S11

S12

S11

]
,

s =
S22

S11

S33

S11
−

( S23

S11

)2
−

S22

S11

( S13

S11

)2
−

S33

S11

( S12

S11

)2
+ 2

S12

S11

S13

S11

S23

S11
.

Equations (25), (27) and the isothermal analogue of (68) then give results in Table 2 for the various
dimensionless parameters.
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Table 2. Dimensionless parameters. The conditions for existence of 8A± and 8±2B are
not met.



104 LOUIS MILTON BROCK

[Brekhovskikh 1957] L. M. Brekhovskikh, Volny v sloistyh sredah, Izd. Akad. Nauk SSSR, Moscow, 1957. Translated
as Waves in layered media, Academic Press, New York, 1960.

[Brock 2005] L. M. Brock, “The coupled transversely isotropic bimaterial: interface crack extension”, J. Appl. Mech (ASME)
72 (2005), 68–75.

[Brock 2009] L. M. Brock, “Basic problems of coupled thermoelasticity with thermal relaxation and pre-stress: aspects ob-
served in exact and asymptotic solutions”, J. Therm. Stresses 32 (2009), 593–622.

[Brock 2010] L. M. Brock, “Reflection and diffraction of plane temperature-step waves in orthotropic thermoelastic solids”, J.
Therm. Stresses 33 (2010), 879–904.

[Brock and Georgiadis 2007] L. M. Brock and H. G. Georgiadis, “Multiple-zone sliding contact with friction on an anisotropic
half-space”, Int. J. Solids Struct. 44 (2007), 2820–2836.

[Brock and Hanson 2006] L. M. Brock and M. T. Hanson, “Transient analysis of a suddenly-opening crack in a coupled
thermoelastic solid with thermal relaxation”, J. Mech. Mater. Struct. 1:7 (2006), 1257–1268.

[Cagniard 1962] L. Cagniard, Reflection and refraction of progressive seismic waves, McGraw-Hill, New York, 1962. (E. A.
Flinn and C. H. Dix, translators).

[Chadwick 1960] P. Chadwick, “Thermoelasticity. The dynamical theory”, pp. 263–328 in Progress in solid mechanics, vol. 1,
edited by I. N. Sneddon and R. Hill, North-Holland, Amsterdam, 1960.

[Crandall and Dahl 1959] S. H. Crandall and N. C. Dahl, An introduction to the mechanics of solids, McGraw-Hill, New York,
1959.

[Green and Lindsay 1972] A. E. Green and K. A. Lindsay, “Thermoelasticity”, J. Elasticity 2 (1972), 1–7.

[Ignaczak and Ostoja-Starzewski 2010] J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with finite wave speeds, Ox-
ford, New York, 2010.

[Jones 1999] R. M. Jones, Mechanics of composite materials, 2nd ed., Brunner-Routledge, New York, 1999.

[Kraut 1963] E. A. Kraut, “Advances in the theory of anisotropic elastic wave propagation”, Rev. Geophys. 1 (1963), 401–448.

[Lindsay 1960] R. B. Lindsay, Mechanical radiation, McGraw-Hill, New York, 1960.

[Lord and Shulman 1960] H. W. Lord and Y. Shulman, “Generalized dynamical theory of thermoelasticity”, J. Mech. Phys.
Solids 17 (1960), 297–309.

[Miklowitz 1978] J. Miklowitz, The theory of elastic waves and waveguides, North-Holland, Amsterdam, 1978.

[Payton 1983] R. G. Payton, Elastic wave propagation in transversely isotropic materials, Martinus Nijhoff, The Hague, 1983.

[Scott and Miklowitz 1967] R. A. Scott and J. Miklowitz, “Transient waves in anisotropic plates”, J. Appl. Mech (ASME) 34
(1967), 104–110.

[Sharma and Sidhu 1986] J. N. Sharma and R. S. Sidhu, “On the propagation of plane harmonic waves in anisotropic general-
ized thermoelasticity”, Int. J. Eng. Sci. 24 (1986), 1511–1516.

[Sokolnikoff 1956] I. S. Sokolnikoff, Mathematical theory of elasticity, 2nd ed., McGraw-Hill, New York, 1956.

Received 13 Mar 2010. Revised 16 May 2010. Accepted 30 May 2010.

LOUIS MILTON BROCK: brock@engr.uky.edu
Department of Mechanical Engineering, University of Kentucky, 265 RGAN, Lexington, KY 40506-0503, United States

mathematical sciences publishers msp


