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VARIABLE-ORDER FINITE ELEMENTS FOR NONLINEAR,
FULLY INTRINSIC BEAM EQUATIONS

MAYURESH J. PATIL AND DEWEY H. HODGES

Fully intrinsic equations and boundary conditions involve only force, moment, velocity, and angular
velocity variables, but no displacement or rotation variables. This paper presents variable-order finite
elements for the geometrically exact, nonlinear, fully intrinsic equations for both nonrotating and rotating
beams. The finite element technique allows for hp-adaptivity. Results show that these finite elements
lead to very accurate solutions for the static equilibrium state as well as for modes and frequencies
for infinitesimal motions about that state. For the same number of variables, the accuracy of the finite
elements increases with the order of the finite element. The results based on the Galerkin approximation
(which is a special case of the present approach) are the most accurate but require evaluation of complex
integrals. Cubic elements are shown to provide a near optimal combination of accuracy and complexity.

1. Introduction

Beam-like structures are used in a wide range of applications, from rotor blades and high-aspect-ratio
wings to nanosensors. The displacement formulation of the geometrically exact equations of motion for
beams was presented in [Borri and Mantegazza 1985; Simo and Vu-Quoc 1988; Bauchau and Kang 1993].
A mixed formulation was presented in [Hodges 1990], which gave the partial differential equations of
motion in so-called intrinsic form, following the terminology of [Green and Laws 1966; Reissner 1973]
for beams and [Danielson 1970] for shells. Intrinsic equations are independent of the way displacement
and rotation are parametrized. In the mixed formulation of [Hodges 1990], the kinematical partial dif-
ferential equations relate the chosen displacement and rotation variables to the generalized strain and
velocity measures. It was later discovered that one can have the complete beam formulation of [Hodges
1990] without carrying displacement or rotation variables as unknowns. This approach may be inferred
from [Hegemier and Nair 1977] though exclusion of rotation variables was not mentioned therein; see
[Hodges 2009] for additional details of the pertinent history. As a result, the fully intrinsic, geometrically
exact partial differential equations of motion and kinematical partial differential equations were presented
in [Hodges 2003]. These fully intrinsic equations and boundary conditions involve only force, moment,
velocity and, angular velocity variables, with no displacement or rotation variables; see (1)–(6) below.

The goal of this paper is to present a variable-order finite element solution to the fully intrinsic equa-
tions. The research assumes that a suitable cross-sectional analysis is available for beams of arbitrary
geometry and material distribution. These cross-sectional properties can be calculated using an analytical
thin-walled theory [Volovoi and Hodges 2000; Patil and Johnson 2005] or computational FEM analysis
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[Giavotto et al. 1983; Cesnik and Hodges 1997; Yu et al. 2002] for general configurations. Although the
work of [Volovoi and Hodges 2000] addresses both closed- and open-section beams, the present work
pertains only to closed-section beams. The beam formulation of [Hodges 1990; 2003] is not appropriate
for beams with open cross-section, which require a separate warping displacement variable and associated
boundary conditions [Simo and Vu-Quoc 1991; Yu et al. 2005]. The book [Hodges 2006] gives a more
comprehensive treatment for beams of all types.

Beam dynamics analysis can be broken up into five parts:

• Cross-sectional analysis to determine elastic constants and stress/strain recovery relations;

• Beam partial differential equations;

• Techniques for solving those equations (including discretization);

• Nonlinear model-order reduction schemes;

• Application to coupled-field problems such as aeroelasticity, active blades, and control design.

The focus of the present work is on the third item, that is, discretization and solution of the geometrically
exact, intrinsic beam equations.

Beam equations. There are a number of geometrically exact formulations for the nonlinear dynamics of
beams that can be used for analysis and design [Borri and Mantegazza 1985; Simo and Vu-Quoc 1988;
Bauchau and Kang 1993]. The present work is based on the “intrinsic” formulation developed in [Hodges
1990], which can be written in a simple matrix form with only second-degree nonlinearities. To say that
these equations are intrinsic is to say that they are independent of displacement and rotation measures.
They were used along with generalized strain- and velocity-displacement measures to solve for beam
dynamics, yielding excellent agreement with experimental results as given in [Hodges and Patil 2004].
Recently, a set of generalized strain-velocity compatibility relations were derived in [Hodges 2003] which,
along with the equations of motion, make up a complete set of intrinsic equations that can be solved
without using displacement/rotation measures for certain loading and boundary conditions. Although
they incorporate all the nonlinearities and anisotropic couplings, these equations are very simple.

Discrete equations of motion. The equations described above are partial differential equations in space
and time for 12 variables (force, moment, velocity, and angular velocity vectors). The solution of these
equations requires discretization in space to convert the equations to ordinary differential equations in
time. For example, one may use finite elements or a series of assumed functions. It is also possible to use
a combination of the two, where the order of the polynomials within the elements as well as the number
of elements both vary, leading to variable-order (or hp) finite elements [Gui and Babuška 1986].

A simple nonlinear finite element representation of the beam equations was presented in [Hodges
2003]. The FEM equations were used successfully to conduct nonlinear dynamic analysis and control
design of integrally actuated helicopter blades [Traugott et al. 2006] as well as the nonlinear aeroelas-
tic analysis of high-aspect-ratio flying wing configurations [Patil and Hodges 2006]. A new nonlinear,
energy-consistent, Galerkin approach has been developed recently and can be found in [Patil and Al-
thoff 2006]. The Galerkin approach leads to a highly accurate solution with a low computational cost.
The application of the nonlinear Galerkin approach is feasible because of the simplicity of the intrinsic
equations. Since the highest degree nonlinearity is quadratic, the Galerkin integrals can be evaluated
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exactly without resorting to numerical quadrature when the properties are uniform along the span. This
contributes to the method’s accuracy and efficiency.

The Galerkin approach leads to the exact nonlinear solution (to five decimal places) with as few as
10 assumed functions per variable. Also it is clear [Patil and Althoff 2006] from the slow convergence
of the low-order FEM approach, that one would require very large number of finite element nodes to
generate results with the same order of accuracy as those generated by the Galerkin approach using 10
functions per variable.

The nonlinear Galerkin approach leads to an approximate solution that is more accurate for a given
number of unknowns (or that has fewer unknowns for a given level of accuracy). This is especially
important if one needs to conduct numerous optimizations, simulations, and control scenarios. The
limitation of the Galerkin approach is the handling of discontinuities. Thus, when one has a complex
beam, such as a helicopter rotor blade with multiple changes in properties along the span, then it will
be more accurate to break the beam into multiple finite elements, to each of which one can apply the
Galerkin approach. This would lead to variable-order finite elements. It is the focus of this research to
develop a variable-order finite element scheme to optimally model future structures, including helicopter
blades and aircraft wings.

2. Nonlinear, intrinsic beam equations

The nonlinear, fully intrinsic governing equations for the dynamics of a nonuniform, initially curved and
twisted, anisotropic beam undergoing large deflections and rotations are given as

F ′+ (k̃+ κ̃)F + f= Ṗ + �̃P, (1)

M ′+ (k̃+ κ̃)M + (ẽ1+ γ̃ )F +m= Ḣ + �̃H + Ṽ P, (2)

V ′+ (k̃+ κ̃)V + (ẽ1+ γ̃ )�= γ̇ , (3)

�′+ (k̃+ κ̃)�= κ̇, (4)

where ( )′ denotes the partial derivative with respect to the axial coordinate of the undeformed beam, ˙( )
denotes the partial derivative with respect to time, z̃ is the skew-symmetric cross-product operator matrix
corresponding to the column matrix z, F(x, t) and M(x, t) are the measure numbers of the internal force
and moment vectors (cross-section stress resultants), P(x, t) and H(x, t) are the measure numbers of the
linear and angular momentum vector (generalized momenta), γ (x, t) and κ(x, t) are the beam strains and
curvatures (generalized strains), V (x, t) and �(x, t) are velocity and angular velocity measures (general-
ized velocities), and f(x, t) and m(x, t) are the external force and moment measures. Measure numbers of
all variables except for k are calculated in the deformed beam cross-sectional frame. The initial twist and
curvature of the beam are represented by k(x)= bk1(x) k2(x) k3(x)c, the measure numbers of which
are in the undeformed beam cross-sectional frame. Finally, e1 = b1 0 0cT . The first two equations in
the above set are the equations of motion [Hodges 1990] while the last two are the intrinsic kinematical
equations [Hodges 2003] derived from the generalized strain- and velocity-displacement equations.

The cross-sectional stress resultants of the beam are related to the generalized strains via the cross-
sectional stiffnesses or flexibilities. These cross-sectional properties can be calculated using an analytical
thin-walled theory [Volovoi and Hodges 2000; Patil and Johnson 2005] or computational FEM analysis
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[Cesnik and Hodges 1997; Yu et al. 2002] for a general configuration. Such an analysis gives the linear
constitutive law {

γ

κ

}
=

[
R S
ST T

]{
F
M

}
, (5)

where R(x), S(x), and T(x), are the cross-sectional flexibilities of the beam. This linear constitutive law
is valid only for small strain, but the beam deflections and rotations due to deformation still may be large.

The generalized momenta are related to the generalized velocities via the cross-sectional inertia matrix{
P
H

}
=

[
µ1 −µξ̃

µξ̃ I

]{
V
�

}
=

[
G K

KT I

]{
V
�

}
, (6)

where µ(x), ξ(x), I (x) are, respectively, the mass per unit length, the mass center offset (a vector in the
cross-section from the beam reference axis to the cross-sectional mass center), and the cross-sectional
inertia matrix consisting of mass moments of inertia per unit length on the diagonals, with I11 = I22+ I33,
plus the mass product of inertia per unit length I23.

Usually, the constitutive laws are used to replace some variables in terms of others. Here it was
decided to express the generalized strains in terms of the cross-section stress resultants, allowing easy
specification of zero flexibility, and the generalized momenta in terms of generalized velocities, allowing
easy specification of zero inertia. Thus, the primary variables of interest are F , M , V , and �.

Finally the boundary conditions need to be specified. For the given beam of length L, there will be
two boundary conditions at each end. In this paper we consider only primitive boundary conditions of
the form

V (0, t)= V0 or F(0, t)= F0, �(0, t)=�0 or M(0, t)=M0,

V (L, t)= VL or F(L, t)= FL, �(L, t)=�L or M(L, t)=ML,
(7)

Boundary conditions involving attached springs or bodies at the ends may be formulated in terms of fully
intrinsic variables as well.

For ease of presentation, we consider a beam clamped at its root. It should be noted that the formu-
lation as well as the conclusions presented are general enough to be applicable to all possible boundary
conditions [Sotoudeh and Hodges 2011]. Thus, the assumed boundary conditions are

V (0, t)= V0, �(0, t)=�0, F(L, t)= FL, M(L, t)=ML. (8)

These equations are intrinsic and do not contain displacement and rotation variables. To calculate the
displacements and rotations, the following equations, which relate the strains and curvatures to displace-
ments and rotations, are used:

(r + u)′ = Cdef(γ + e1), Cdef′
=−(κ̃ + k̃)Cdef, (9)

where r is the position vector of the beam axis from the origin of the reference frame, u is the dis-
placement, and Cdef is the rotation matrix of the deformed beam cross-sectional frame relative to the
undeformed beam cross-sectional frame.



VARIABLE-ORDER FINITE ELEMENTS FOR NONLINEAR, FULLY INTRINSIC BEAM EQUATIONS 483

3. Energy-consistent weighting

Let us assume that the beam is discretized into n elements as shown in the figure. To create a finite
element model we need to choose trial functions as well as weighting functions.

x0 x1 x2 x3 xn−2 xn−1 xn

L1 L2 L3 Ln−1 Ln

Let the solution in the i-th element be given by V i , �i , F i , and M i . We require that it satisfy
(approximately) the equations of motion, the kinematic equations, and the boundary conditions given
above. We also require that continuity equations be satisfied (approximately) between adjacent elements:

V i (Li , t)= V i+1(0, t), �i (Li , t)=�i+1(0, t), F i (Li , t)= F i+1(0, t), M i (Li , t)= M i+1(0, t).

These continuity conditions will be modified for any node at which there is a concentrated mass, a rigid
body, a nodal force or moment, or a kink in the axis.

Now consider the following weighting of the equations of motion, kinematical equations, continuity
conditions, and boundary conditions:

n∑
i=1

〈∫ Li

0

{
V i T
[Ṗ i
+�̃i P i

−F i ′
−(k̃i
+ κ̃ i )F i

− f i
]+�i T

[Ḣ i
+�̃i H i

+ Ṽ i P i
−M i ′

−(k̃i
+ κ̃ i )M i

−(ẽ1+γ̃
i )F i
−mi
]+F i T

[γ̇ i
−V i ′

−(k̃i
+ κ̃ i )V i

−(ẽ1+γ̃
i )�i
]+M i T

[κ̇ i
−�i ′

−(k̃i
+ κ̃ i )�i

]
}

dx i
〉

+

n−1∑
i=1

〈
F i+1(0, t)[V i (Li , t)− V i+1(0, t)] +M i+1(0, t)[�i (Li , t)−�i+1(0, t)]

+V i (Li , t)[F i (Li , t)−F i+1(0, t)]+�i (Li , t)[M i (Li , t)−M i+1(0, t)]
〉
−F1(0, t)T [V 1(0, t)−V0

]

−M1(0, t)T [�1(0, t)−�0
] + V n(Ln, t)T [Fn(Ln, t)−FL

] +�n(Ln, t)T [Mn(Ln, t)−ML
] = 0.

Note that the constitutive equations are not included, as these equations are satisfied exactly. Since the
continuity conditions and the boundary conditions are satisfied weakly, we will not get exact satisfaction
of the boundary conditions and the variables will not be continuous at the nodes.

We are conducting a weighted residual above and thus there are no guarantees in terms of energy
conservation. Furthermore, we are adding the weighted residuals of various types of equations including
equations describing kinetics, kinematics, and continuity. But, if we appropriately choose the weighting
function (for each equation over space and relative to the other equations), energy conservation can result.
We know that the exact solution satisfies energy conservation, but by the correct choice of the weighting
functions we can maintain energy conservation in the reduced space. To prove energy conservation, we
integrate these weighted residual equation by parts and simplify to give

n∑
i=1

∫ Li

0
(V i T

Ṗ i
+�i T

Ḣ i )dx +
n∑

i=1

∫ Li

0
(F i T

γ̇ i
+M i T

κ̇ i )dx

=

n∑
i=1

∫ Li

0
(V i T

f i
+�i T

mi )dx + [V n(Ln, t)T FL
+�n(Ln, t)T ML

−F1(0, t)T V0
−M1(0, t)T�0

]. (10)
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The first term above is the rate of change of kinetic energy, and the second is the rate of change of
potential energy. The third is the rate of work done (power) due to applied forces in the interior of the
beam, and the fourth is the power due to applied forces at the boundaries. The equation states that the
rate of change of the energy of the beam is equal to the rate of work done on the beam. Thus, the above
weighting of all the equations leads to an energy balance, on the basis of which we derive the FEM
equations. It should be noted that energy conservation is not an approximation but is satisfied exactly.

4. Variable-order FEM

The independent trial functions used are the shifted Legendre polynomials [Abramowitz and Stegun
1964], denoted by P j(x̄), which constitute a complete set of polynomials that are orthogonal over the
shifted interval 0≤ x̄ ≤ 1, so that ∫ 1

0
P j(x̄)Pk(x̄)dx̄ =

δ jk

2i + 1
. (11)

These polynomials can be obtained from the recursive relations

P0(x̄)= 1, P1(x̄)= 2x̄ − 1, Pi+1(x̄)=
(2i + 1)(2x̄ − 1)Pi(x̄)− i Pi−1(x̄)

i + 1
. (12)

The use of orthogonality makes certain of the linear coefficient matrices diagonal.
Expanding all twelve variables in terms of these polynomials, one finds that the unknowns can be

written as

V i (x i , t)=
m∑

j=0

P j(x̄ i )v j,i (t), �i (x i , t)=
m∑

j=0

P j(x̄ i )ω j,i (t),

F i (x i , t)=
m∑

j=0

P j(x̄ i ) f j,i (t), M i (x i , t)=
m∑

j=0

P j(x̄ i )m j,i (t),

(13)

where x̄ i
= x i/Li , and v j,i , ω j,i , f j,i , and f j,i are column matrices of the unknowns of the formulation,

corresponding to the i-th element and j-th order. With i = 1, 2, . . . , n and j = 0, 1, . . . ,m, we have a
total of 12(m+ 1)n variables.

The FEM equations for the i-th element can be derived based on the energy-conserving integral equa-
tion (10) as∫ Li

0
Pk
[(Gi P j v̇ j,i

+Ki P j ω̇ j,i )+ P̃lωl,i (Gi P jv j,i
+Ki P jω j,i )−P j ′ f j,i

− (k̃i
+

˜Si T Pl f l,i + ˜Ti Plml,i )P j f j,i
− f i
]dx i
+Pk(1)[P j(1) f j,i

−P j(0) f j,i+1
] = 0, (14)∫ Li

0
Pk
[(Ki T

P j v̇ j,i
+I i P j ω̇ j,i )+P̃lωl,i (Ki T

P jv j,i
+I i P jω j,i )+P̃lvl,i (Gi P jv j,i

+Ki P jω j,i )−P j ′m j,i

− (k̃i
+

˜Si T Pl f l,i + ˜Ti Plml,i )P j m j,i
− (ẽ1+ R̃i Pl f l,i + ˜Si Plml,i )P j f j,i

−mi
]dx i

+Pk(1)[P j(1)m j,i
−P j(0)m j,i+1

] = 0, (15)
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0
Pk
[(Ri P j ḟ j,i

+Si P j ṁ j,i )−P j ′v j,i
− (k̃i

+
˜Si T Pl f l,i + ˜Ti Plml,i )P jv j,i

− (ẽ1+ R̃i Pl f l,i + ˜Si Plml,i )P jω j,i
]dx i
+Pk(0)[P j(1)v j,i−1

−P j(0)v j,i
] = 0, (16)∫ Li

0
Pk
[(Si T

P j ḟ j,i
+Ti P j ṁ j,i )−P j ′ω j,i

− (k̃i
+

˜Si T Pl f l,i + ˜Ti Plml,i )P jω j,i
]dx i

+Pk(0)[P j(1)ω j,i−1
−P j(0)ω j,i

] = 0. (17)

In these equations Ri , Si , and Ti are the cross-sectional flexibility coefficients for the i-th element, Gi ,
Ki , I i are the cross-sectional inertia coefficients for the i-th element, ki is the initial curvature for the i-th
element, and f i and mi define the loading for the i-th element. In the equations, summation is assumed
over indices j and l. Thus we have a set of equation for each i (element) and k (order), giving us a total
of 12(m+ 1)n equations for as many unknowns.

We need to calculate the above integrals so as to obtain the equations in a form suitable for solution.
For demonstration, we assume that the cross-sectional properties, the initial twist and curvature, and the
distributed loading are all constant within each element. With the above assumptions, the FEM equations
for the i-th element can be derived and we obtain the discretized equations of motion as

Ak j Li (Gi v̇ j,i
+Ki ω̇ j,i )+Ck jlLi ω̃ l,i (Giv j,i

+Kiω j,i )−Bk j f j,i

−Ak j Li k̃i f j,i
−Ck jlLi (S̃i T f l,i + T̃i ml,i ) f j,i

−DkLi f i
+Pk

1 P
j
1 f j,i

−Pk
1 P

j
0 f j,i+1

= 0, (18)

Ak j Li (Ki T
v̇ j,i
+ I i ω̇ j,i )+Ck jlLi ω̃ l,i (Ki T

v j,i
+ I iω j,i )+Ck jlLi ṽ l,i (Giv j,i

+Kiω j,i )−Bk j m j,i

−Ak j Li k̃i m j,i
−Ck jlLi (S̃i T f l,i + T̃i ml,i )m j,i

−Ak j Li ẽ1 f j,i
−Ck jlLi (R̃i f l,i + S̃i ml,i ) f j,i

−DkLi mi
+Pk

1 P
j
1m j,i

−Pk
1 P

j
0m j,i+1

= 0, (19)

Ak j Li (Ri ḟ j,i
+Si ṁ j,i )−Bk jv j,i

−Ak j Li k̃iv j,i
−Ck jlLi (S̃i T f l,i + T̃i ml,i )v j,i

−Ak j Li ẽ1ω
j,i
−Ck jlLi (R̃i f l,i + S̃i ml,i )ω j,i

−Pk
0 P

j
0v

j,i
+Pk

0 P
j
1v

j,i−1
= 0, (20)

Ak j Li (Si T
ḟ j,i
+Ti ṁ j,i )−Bk jω j,i

−Ak j Li k̃iω j,i
−Ck jlLi (S̃i T f l,i + T̃i ml,i )ω j,i

−Pk
0 P

j
0ω

j,i
+Pk

0 P
j
1ω

j,i−1
= 0. (21)

In the above equations summation is implied over indices j and l, and Ak j , Bk j , Ck jl , and Dk are
dimensionless integrals, given by

Ak j
=

∫ 1

0
Pk(x̄)P j(x̄)dx̄, Bk j

=

∫ 1

0
Pk(x̄)

(
P j(x̄)

)′dx̄,

Ck jl
=

∫ 1

0
Pk(x̄)P j(x̄)Pl(x̄)dx̄, Dk

=

∫ 1

0
Pk(x̄)dx̄ .

(22)

Now, representing all the system unknowns of the i-th element as
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q i (t)=



v0,i (t)
ω0,i (t)
f 0,i (t)

m0,i (t)
...

vm,i (t)
ωm,i (t)
f m,i (t)

mm,i (t)



and q(t)=


q1(t)
q2(t)
...

qn(t)

 , (23)

the complete system consists of N = 12n(m+ 1) equations and unknowns. The equations can then be
written in the form

A j i q̇i + B j i qi +C j ik qi qk + D j = 0, (24)

where summation is assumed over the indices i and k.

5. Results

The equations were solved using the variable-order FEM for a simple prismatic beam case with these
data:

Span 16 m
Chord 1 m
Mass per unit length 0.75 kg/m
Mom. inertia (50% chord) 0.1 kgm
Spanwise elastic axis 50% chord
Center of gravity 50% chord
Bending rigidity 2× 104 Nm2

Torsional rigidity 1× 104 Nm2

Bending rigidity (chordwise) 4× 106 Nm2

Shear/extensional rigidity ∞

Three examples are presented: (1) a beam undergoing large deformation due to a tip follower force,
(2) the natural frequencies and modeshapes of a beam, and (3) the natural frequencies and modeshapes of
a rotating beam (this involves calculation of the nonlinear steady state and linearizing the system about
this nonlinear steady state).

Let us first consider a beam loaded at the tip with a transverse follower force. As the force increases,
the deformation increases; and due to the large deformation, the force direction as well as its position
relative to the beam root changes. The correct nonlinear solution thus has a lower root bending moment
as compared to the linear solution. The exact solution to the problem satisfies the transcendental equation

1
6

m̄
√

4− m̄4 p̄2+
2
√

2
3
√

p̄
F
[

sin−1
(

m̄
√

p̄
√

2

) ∣∣∣∣−1
]
= 1− x̄, (25)
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where m̄ is the bending moment made dimensionless by P L , p̄ is the tip force made dimensionless by
E I/L2, x̄ is the axial coordinate made dimensionless by L , and F(φ|k) is the elliptic integral of the first
kind with k =−1 and sinφ = m̄

√
p̄/
√

2.
Figure 1 shows the root bending moment calculated using variable-order finite elements compared to

exact results for p̄ = 3. Figure 1a shows the convergence of the root bending moment as the order of
the system increases. The red line corresponds to the h-version, and the blue line corresponds to the
p-method. Finally, the green dots correspond to the hp-method. As expected, for this simple case, the
Galerkin approximation (the p-version) is the best of the three. It should be noted that when the Galerkin
approximation is applied to beams with properties varying along the span, it may not be possible to
calculate the integrals exactly. Thus, the Galerkin approach may become computationally intensive for
a general configuration. Figure 1b shows the convergence of the various methods. The Galerkin approx-
imation is seen to reach the exact result with error of the order of machine precision using twelfth-order
polynomials. The linear, first-order finite elements have about third-order convergence, that is, for every
doubling of the number of finite elements, the error decreases by a factor of eight (that is, 23). Figure 1c
shows the convergence of the error for finite elements of various orders. The quadratic finite elements
exhibit fifth-order convergence, and the cubic finite elements have seventh-order convergence. Finally,
the quartic finite elements show a whopping ninth-order convergence, that is, for every doubling of the
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Figure 1. Results for the root bending moment due to follower force at the tip: (a) con-
vergence of root bending moment; (b) error in root bending moment; (c) error in root
bending moment for various model orders; (d) error in root bending moment relative to
computational time.
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number of finite elements there is a reduction in the error by a factor of 512. In other words, the element
of n-th order has a convergence of order 2n+ 1, so that doubling of the number of elements decreases
the error by a factor of 22n+1.

To further understand the effect of order on the accuracy and computational time, we have plotted
the error in results relative to computational time for various order finite elements. It should be noted
that the computational time used in this plot does not include time for calculation of the analytical
integrals, which can be calculated once for constant properties and stored. For variable properties one
will have to recalculate the integrals which can take considerable time. In the present case for a constant
property beam, for the same amount of time (0.4 s) we can use 54×12 variables (27 elements) for m = 1,
45×12 variables (15 elements) for m = 2, 32×12 variables (8 elements) for m = 3, and between 20×12
and 25×12 variables (4–5 elements) for m = 4. One can see that in terms of computational time (even
without recalculation of integrals), the various order finite elements are much closer together. The linear
finite elements still have relatively slow convergence, but the quadratic finite elements have behavior
more like cubic ones, and the cubic finite elements are still more like the quartic ones. The calculations
were done using the Matlab linear equation solver for sparse matrices. So, we can see that sparsity
matters and we can analyze more variables with lower order finite elements, but the order of accuracy
of higher-order finite elements increases at a faster rate than the computational time and thus they are
in general preferable. For beams with varying properties one may increase efficiency by using more
elements so that the preference will be for lower-order finite elements. One can recalculate the integrals
and matrices for higher-order elements analytically or by Gauss integrations by taking into account
the variations, but it may increase substantially the computational effort. Thus, one should use very
high-order finite elements or the Galerkin form only if model order reduction is important (for example,
in control design) or if we are reusing the calculated integrals multiple times (for example, for time
marching). Finally, for problems with multiple (stiffness or load) discontinuities, we would have no
choice but to place nodes at the discontinuities, as the solution using higher-order elements (without
nodes at discontinuities) will not give good results near the discontinuities. Again, hp finite elements are
good in that one can pick and choose an appropriate order depending on the problem at hand.

Now consider the frequencies of nonrotating as well as rotating beams. Table 1 lists the calculated
frequencies and compares them with exact results from [Wright et al. 1982]. The frequency predictions

Cantilevered beam Rotating cantil. beam Rot. cantil. beam with offset
ω = 0, v = 0 ω = 3.189 rad/s, v = 0 ω=3.189 rad/s, v=51.03 m/s

Mode Exact n = 9 n = 3 n = 1 Exact n = 9 n = 3 n = 1 Exact n = 9 n = 3 n = 1
m = 1 m = 3 m = 9 m = 1 m = 3 m = 9 m = 1 m = 3 m = 9

1st bending 2.243 2.243 2.243 2.243 4.114 4.114 4.114 4.114 5.703 5.703 5.703 5.703
2nd bending 14.06 14.03 14.06 14.06 16.23 16.21 16.23 16.23 18.72 18.69 18.72 18.72
3rd bending 39.36 39.22 39.38 39.36 41.59 41.44 41.62 41.59 44.50 44.33 44.53 44.50

1st torsion 31.05 31.05 31.05 31.05
2nd torsion 93.14 93.17 93.14 93.14

Table 1. Beam structural frequencies (rad/s).
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for a nonrotating as well as a rotating beam using the present approach with mn = 9 are shown. For
m = 9 and n = 1, that is, a single, high-order element, the frequencies are obtained to three significant
digits for both the bending and torsion modes. This approach is equivalent to the Galerkin approach
discussed in [Patil and Althoff 2006] and to formulations commonly referred to as p-version [Babuška
et al. 1981]. On the other hand, for m = 1 and n = 9, the maximum number of the crudest possible
elements for mn = 9, the solution is not as accurate, leading to errors greater than 0.3% for the third
bending mode. This approach corresponds to the lowest-order FEM method, commonly referred to as
h-version, consisting of linear shape functions. Finally, the case of m = 3 and n = 3 is a good balance
between these two extreme approaches. Here cubic polynomials are used to represent the variables in
each of three elements. The results are quite good with negligible errors.

The left column of Figure 2 presents the convergence of results for the first bending mode of a nonro-
tating beam. Figure 2a shows the convergence of frequencies with increase in the order of the system. As
expected, again the Galerkin approximation is the best of the three. Figure 2b shows the convergence of
the various methods. The Galerkin approximation is seen to reach the exact result with error of the order
of machine precision using eighth-order polynomials. Figure 2c shows the convergence of the error in
the first frequency for finite elements of various orders. Similar to the nonlinear solution results, for the
linearized perturbation results the linear finite element shows third-order convergence, quadratic finite
elements show a fifth-order convergence, cubic finite elements show a seventh-order convergence, and
quartic finite elements show a ninth-order convergence. Finally, Figure 2d shows the convergence of
mode shape for three implementations. The mode shape obtained by the Galerkin approach is the closest
to the exact mode shape. The mode shape predicted by the lowest-order, linear finite elements shows
deviation from the exact mode shape and is discontinuous as expected, because the continuity conditions
are weakly satisfied. Similarly, the mode shape does not satisfy the boundary conditions exactly because
of weak satisfaction of the boundary conditions.

The right column of Figure 2 shows the corresponding plots for the first torsion mode. For the torsional
frequencies the Galerkin approximation again leads to the most accurate results while the accuracy
increases with the increase in the order of the finite element. The order of the relative error is third-
order, fifth-order, seventh-order and, ninth-order for the linear, quadratic, cubic, and quartic elements
respectively.

Figure 3 shows the results for the first bending mode of a rotating beam with root velocity. For
the rotating beam, the static steady-state solution is nontrivial. Thus, the accuracy of the frequencies
obtained from linearizing about the nonlinear steady state is dependent on the accuracy of the steady-
state solution and the accuracy of the linearized perturbation. We obtain the exact steady-state solution
for finite elements of second and higher order. The errors are in general higher for the rotating beam as
compared to the nonrotating beam. Furthermore, the rate of convergence for the rotating beam is slightly
slower than that of the nonrotating beam.

We have addressed the impact of bandedness or sparsity of the matrices in the variable-order finite
element formulation. For low-order elements, the coefficient matrices are very sparse and one can take
advantage of this. In addition, the coefficient matrices for low-order elements can be calculated using
lower-order Gauss integration thus further reducing the computational time. The higher-order element,
though more accurate, may not be computationally as efficient as the low-order element. This aspect
has not been addressed in the present paper. For example, a global Galerkin approximation requires
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Figure 2. Results for the first bending mode (left column) and the first torsion mode
(right column) of a nonrotating cantilevered beam: (a,e) convergence of frequency;
(b,f) error in frequency; (c,g) error in frequency; (d,h) convergence of mode shape.
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Figure 3. Results for the first bending mode of a rotating cantilevered beam with offset:
(a) convergence of first bending frequency; (b) error in first bending frequency; (c) error
in first bending frequency; (d) convergence of first bending mode shape.

calculation of complex integrals and will lead to fully populated matrices. But, if one is interested
in using nonlinear beam analysis as a part of a multidisciplinary analysis (aeroelasticity), preliminary
design (HALE aircraft, helicopter flight mechanics), and control synthesis, the reduced number of de-
grees of freedom is essential. We have presented a way to calculate the nonlinear dynamics of the
beam accurately using a low number of degrees of freedom that will lead to significant advancement in
nonlinear aeroelastic calculations (which lead to loss of sparsity anyway), flight dynamics simulations
(with complete geometrically nonlinear aeroelasticity), and design optimization. A detailed assessment
of the computational cost of the method vis-à-vis the accuracy for various types of beams and various
applications will be addressed in a later paper.

6. Conclusions

A variable-order finite element technique is presented and applied to beams with uniform properties
along the span. This technique is based on a geometrically exact, fully intrinsic formulation. The results
presented show that one can obtain approximately third-order, fifth-order, seventh-order, and ninth-order
convergence for the linear, quadratic, cubic, and quartic finite elements. It is recommended that one use
quadratic- or higher-order finite elements for a better approximation of mode shapes. The cubic finite
elements provide an especially good balance of accuracy, computational efficiency, and applicability to
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general configurations. Additional work needs to be done to assess the method’s accuracy when applied
to beams with properties varying along the span.
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