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Geometries and rigidities involving the presence of more than one neutral axis during finite (plane-strain)
bending of a multilayered elastic (incompressible) block make numerically stiff the differential equations
governing the incremental problem necessary to investigate diffuse-mode instabilities. We have devel-
oped a compound matrix method to solve these cases, so that we have shown that the presence of two
neutral axes occurs within sets of parameters where the elastic system may display long-wavelength
bifurcation modes. Following the predictions of the theory, we have designed and realized qualitative
experiments in which these modes become visible.

1. Introduction

Recently Roccabianca et al. [2010] have addressed, solved and experimented the problem of bifurcation
of a layered incompressible elastic block, subject to finite bending in plane strain. They were able to show
that a layered system exhibits bifurcation loads and angles of bending completely different from those
occurring in a uniform elastic block. They found that for several geometries and stiffness contrasts the
first (“critical”) bifurcation load corresponds to a long-wavelength mode, which results to be very close to
the bifurcation load associated with the surface instability limit of vanishing wavelength,1 a feature also
common to the behavior of a uniform elastic block. This feature explains the experimental observation
(on uniform blocks [Gent and Cho 1999; Gent 2005] and bilayers [Roccabianca et al. 2010]) that short-
wavelength modes become visible, instead of the long-wavelength modes that are predicted to occur
before. Therefore, the question was left open whether or not wavelength modes longer than the short-
wavelength modes available at surface instability and visible in the experiments can be experimentally
displayed with a layered system in which an appropriate selection is made of stiffness and thickness
contrasts between layers. We provide a positive answer to this problem in the present article, so that our
calculations, based now on the compound matrix method [Backus and Gilbert 1967; Ng and Reid 1979a;

Financial support of PRIN grant no. 2007YZ3B24 “Multiscale Problems with Complex Interactions in Structural Engineering”
financed by Italian Ministry of University and Research is gratefully acknowledged. Experiments have been conducted by S. R.
at the Laboratory for Physical Modeling of Structures and Photoelasticity of the University of Trento, managed by D. B.; see
http://www.ing.unitn.it/dims/ssmg.
Keywords: nonlinear elasticity, neutral axis, instability, composite plate, compound matrix method.

1 Surface instability occurs in a uniformly strained half space as a bifurcated mode of arbitrary wavelength, corresponding
to a Rayleigh wave of vanishing speed. In the limit of vanishing wavelength, surface instability can be viewed as a bifurcation
mode adaptable to every boundary and state of stress of a strained body, so that it becomes a local instability mode (also called
“failure of the complementing condition” in [Benallal et al. 1993]).
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Figure 1. Bifurcation of a two-layer rubber block under finite bending evidencing long-
wavelength bifurcation modes. Stiffness and thickness ratios between the layers are
(2.687 N/mm2)/(0.095 N/mm2) and (3 mm)/(40 mm). The stiff layer (86 mm × 3 mm
× 150 mm, made up of natural rubber, marked with a white pencil on the sample) is at
the compressive side and coats a neoprene layer (86 mm × 40 mm × 150 mm).

1979b; 1985], allow us to conclude that there are situations in which the long-wavelength modes are well-
separated from the surface instability, so that systems exhibiting bifurcation modes of long wavelength
can be designed. These systems have been realized by us and qualitatively tested, showing that the theory
predictions are generally followed, Figure 1.

It turns out that the hunt for long-wavelength modes can be related2 to the presence of more than
one neutral axis (namely, the line of null normal stresses) during bending, an issue that was noted in
[Roccabianca et al. 2010], but not investigated in detail.

In a bilayer, two neutral axes typically occur when a stiff layer is placed at the compressive side of the
system, a case in which the differential equations become numerically stiff, so that we have employed
an ad hoc version of the compound matrix method, which is shown to allow systematic investigation of
the situations in which more than one neutral axis occurs. In these cases we find a sort of inversion of
the sequence of bifurcation modes with the aspect ratio of the system, so that high-wavenumber modes
are relevant for lower slender ratios than small-wavenumber modes.

2. Finite bending of an elastic multilayer and incremental bifurcations

We review the theory developed in [Roccabianca et al. 2010] for finite bending of an elastic incompress-
ible multilayered block and for incremental bifurcations, both addressed here only in the special case of
a Mooney–Rivlin material,3 a choice which affects results, but simplifies the treatment.

We denote a generic layer with a superscript (s) (s = 1, . . . , N ), so that, in the reference stress-free
configuration, a Cartesian coordinate system O(s)

0 x0(s)
1 x0(s)

2 x0(s)
3 is introduced for each layer, centered at

2 The relation is that within the parameter range in which long-wavelength bifurcations occur well-separated from surface
instability, two neutral axes are often found.

3 Bending of an elastic homogeneous block has been solved in [Rivlin 1949], while incremental bifurcations have been
analyzed in [Triantafyllidis 1980; Dryburgh and Ogden 1999; Coman and Destrade 2008; Destrade et al. 2009; 2010].
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its centroid, with basis vectors e0
i (i = 1, 2, 3), x0(s)

1 ∈ [−h(s)0 /2, h(s)0 /2], x0(s)
2 ∈ [−l0/2, l0/2], and with

x0(s)
3 denoting the out-of-plane coordinate.

The deformed configuration of each layer is a sector of a cylindrical tube of half-angle θ̄ , so that it
becomes convenient to introduce a cylindrical coordinate system O(s)r (s)θ (s)z(s), with basis vectors er ,
eθ and ez , r (s) ∈ [r (s)i , r (s)i + h(s)], θ (s) ∈ [−θ̄ ,+θ̄ ], and with out-of-plane coordinate z(s).

The imposition of incompressibility (conservation of volume) yields

r (s)i =
l0h(s)0

2θ̄h(s)
−

h(s)

2
, (1)

where h(s) is the current thickness of the s–th layer. Following [Roccabianca et al. 2010], the imposition
of the incompressibility constraint in terms of principal stretches (λr , λθ and λz) and of the boundary
conditions at x0(s)

2 =±l0/2 and x0(s)
1 =−h(s)0 /2 provides

λ(s)r =
1

αr (s)
, λ

(s)
θ = αr (s), λ(s)z = 1, (2)

where α = 2θ̄/ l0; note that α is independent of index s.
The N layers forming the multilaminated structure are assumed to be perfectly bonded to each other,

so that

r (s)i = r (s−1)
i + h(s−1) (s = 2, . . . , N ), (3)

where r (s)i is given by (1). Condition (3) provides all thicknesses h(s) (s = 2, . . . , N ) as a function of the
thickness of the first layer h(1), remaining the sole kinematical unknown of the problem, to be determined
as the solution of the boundary-value problem.

Since the layers are assumed to be perfectly bonded, all radial coordinates r (s) can be referred to
the same origin O of a cylindrical coordinate system Orθ z, common to all deformed layers; therefore,
the index s will be omitted in the following in all coordinates and the deformed configuration will be
described in terms of the global system Orθ z.

Finally, the kinematics provides all stretches in the multilayer which can be represented as

λr =
1
λ
=

l0

2θ̄r
, λθ = λ=

2θ̄r
l0
, λz = 1, (4)

and the current thickness of the s–th layer, h(s), as a function of h(s−1), namely

h(s) =−
l0h(s−1)

0

2θ̄h(s−1)
−

h(s−1)

2
+

√√√√( l0h(s−1)
0

2θ̄h(s−1)
+

h(s−1)

2

)2

+
l0h(s)0

θ̄
(s = 2, . . . , N ), (5)

determining all current thicknesses as functions of the thickness of the first layer, h(1) (in [Roccabianca
et al. 2010, Equation (21)], corresponding to our (5), a minus sign appears by mistake instead of a plus
in front of the last term under the square root).
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A constitutive prescription between the principal components of the Cauchy stress Ti (i = 1, 2, 3) and
the principal stretches λi (i = 1, 2, 3) can be written as

Ti =−π + λi
∂W (λ1, λ2, λ3)

∂λi
, λ1λ2λ3 = 1, (6)

where the index i is not summed and π is an arbitrary Lagrangian multiplier representing the undeter-
mined hydrostatic pressure.

For a generic layer s, the Cauchy stress can be represented in polar coordinates as

T (s)
= T (s)

r er ⊗ er + T (s)
θ eθ ⊗ eθ + T (s)

z ez ⊗ ez, (7)

and calculated from the constitutive equations (6). Here, we adopt the Mooney–Rivlin strain-energy
function defined in terms of the moduli c1 and c2 and of the left Cauchy–Green deformation tensor B as
(for layer s)

W (s)
=

c(s)1

2
(tr B− 3)+

c(s)2

2
(tr B−1

− 3). (8)

For a plane-strain deformation, defining the shear modulus µ0 as

µ
(s)
0 = c(s)1 + c(s)2 , (9)

the integration of the equilibrium equation (div T = 0) within each layer yields, for the components of
Cauchy stress,

T (s)
r = Ŵ (s)

+ γ (s) =
µ
(s)
0

2

(
λ2
+

1
λ2

)
+ γ (s),

T (s)
θ =

(
λŴ (s)

)′
+ γ (s) =

µ
(s)
0

2

(
3λ2
−

1
λ2

)
+ γ (s),

(10)

where Ŵ (s)(λ) = W (s)(1/λ, λ, 1), γ (s) is an integration constant, and ()′ denotes differentiation with
respect to the stretch λ. The component T (s)

z can be inferred from (6). Note that in plane strain, the
definition of W in (8) specializes to

W (s)
=

c(s)1 + c(s)2

2

(
λ2
+

1
λ2 − 2

)
=
µ
(s)
0

2

(
λ2
+

1
λ2 − 2

)
. (11)

The N constants γ (s) can be determined by imposing the boundary conditions at the external sides of
the layered system, namely

T (1)
r (r (1)i )= 0, T (N )

r (r (N )e )= 0, (12)

and the interfacial continuity conditions

T (s−1)
r (r (s−1)

e )= T (s)
r (r (s)i ) (s = 2, . . . , N ), (13)

where r (s−1)
e = r (s−1)

i +h(s−1) (s = 2, . . . , N +1). In particular, the constant γ (N ) can be calculated from
(12)2 using (10)1 as

γ (N ) =−
µ
(N )
0

2

[
(αr (N )e )2+

1

(αr (N )e )2

]
, (14)
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while from (13) the following recursion rule, useful in computing all the remaining constants γ (s), can
be inferred

γ (s−1)
=
µ
(s)
0 −µ

(s−1)
0

2

[
(αr (s−1)

e )2+
1

(αr (s−1)
e )2

]
+ γ (s) (s = 2, . . . , N ), (15)

where r (s)i = r (s−1)
e . In the special case N = 2, (15) and (12)1 provide

µ
(1)
0

2

[
(αr (1)i )2+

1

(αr (1)i )2

]
+
µ
(2)
0 −µ

(1)
0

2

[
(αr (1)e )2+

1

(αr (1)e )2

]
+ γ (2) = 0, (16)

in which r (1)i , r (1)e and γ (2) are all functions of h(1), through (1), (5), and (15). Therefore, (16) can be
numerically solved to obtain the current thickness of the first layer, h(1), which determines the solution
of a bilayer subject to finite bending.

Now that the bending solution is known, this can be used as the fundamental solution in an analysis of
incremental bifurcations. The incremental equilibrium is expressed in terms of the updated incremental
first Piola–Kirchhoff stress 6 by

div6 = 0, (17)

where

6 = ṠFT , Ṡ= Ṫ F−T
− T LT F−T , (18)

S= T F−T and a superposed dot is used to denote a first-order increment. L is the gradient of incremental
displacements with cylindrical components

L = ur,r er ⊗ er +
ur,θ − uθ

r
er ⊗ eθ + uθ,r eθ ⊗ er +

ur + uθ,θ
r

eθ ⊗ eθ , (19)

subject to the constraint tr L = 0 (incremental incompressibility), namely,

rur,r + ur + uθ,θ = 0. (20)

The linearized constitutive equation is

6 = CL− π̇ I, (21)

where C is the fourth-order tensor of instantaneous elastic moduli and, since 6 = Ṫ − T LT [see (18)],
the balance of rotational momentum yields

612−621 = T2L12− T1L21, (22)

so that

Ci j j i + Ti = C j i j i (i 6= j), (23)

where the indices i and j are not summed.
For an incompressible isotropic elastic material, the components of C can be written as functions of

two incremental moduli, denoted by µ and µ∗, that depend on the current deformation. In cylindrical
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coordinates, the nonvanishing components of C are (see [Hill and Hutchinson 1975; Gei and Ogden
2002])

Crrrr = Cθθθθ = 2µ∗+ p, Cθrθr = µ−0,

Crθrθ = µ+0, Crθθr = Cθrrθ = µ+ p,
(24)

where

0 =
Tθ − Tr

2
and p =−

Tθ + Tr

2
, (25)

describe the state of prestress. Hence, the incremental constitutive equations (21) take the explicit form

6rr =−π̇ + (2µ∗+ p)ur,r , 6θθ =−π̇ + (2µ∗+ p)
ur + uθ,θ

r
,

6rθ = (µ+0)
ur,θ − uθ

r
+ (µ+ p)uθ,r , 6θr = (µ+ p)

ur,θ − uθ
r

+ (µ−0)uθ,r .
(26)

For a Mooney–Rivlin material deformed in plane strain, the two moduli µ and µ∗ coincide and are equal
to [see (8)]

µ= µ∗ =
µ0

2
(λ4
+ 1)
λ2 . (27)

We seek bifurcation represented by an incremental displacement field in the form
ur (r, θ)= f (r) cos nθ,

uθ (r, θ)= g(r) sin nθ,

π̇(r, θ)= k(r) cos nθ,

(28)

so that (20) can be reformulated as

g =−
( f + r f ′)

n
, (29)

and the incremental equilibrium equations as

k ′ = D f ′′+
(

C,r + D,r +
C + 2D

r

)
f ′+

E(1− n2)

r2 f,

k =
r2C
n2 f ′′′+

F + 3C
n2 r f ′′+

(
F
n2 − D

)
f ′−

1− n2

n2

F
r

f,
(30)

where coefficients C , D, E and F can be expressed (for a Mooney–Rivlin material) as

C = µ−0 =
µ0

λ2 , D = 2µ∗−µ=
µ0

2
λ4
+ 1
λ2 ,

E = µ+0 = µ0λ
2, F = rC,r +C =−

µ0

λ2 .

(31)

By differentiating (30)2 with respect to r and substituting the result into (30)1, a single differential
equation in terms of f (r) is obtained:

r4 f ′′′′+ 2r3 f ′′′−
(
3+ n2(λ4

+ 1)
)
r2 f ′′+

(
3+ n2(1− 3λ4)

)
r f ′+ (n2

− 1)(3+ n2λ4) f = 0, (32)
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defining the function f (r) within a generic layer. Once f (r) is known for each layer, the other functions,
g(r) and k(r), can be calculated by employing (29) and (30)2, respectively, so that function f (r) becomes
the primary unknown.

The differential equation (32) for the functions f (s)(r) (s = 1, . . . , N ) is complemented by the follow-
ing boundary conditions:

• continuity of incremental tractions and displacements across interfaces:

f (s)
∣∣
r=r (s)e

= f (s+1)
∣∣
r=r (s+1)

i
,{

f + r f ′
}(s)∣∣∣

r=r (s)e
=
{

f + r f ′
}(s+1)

∣∣∣
r=r (s+1)

i

,

{
µ0

(
r3 f ′′′+ 2r2 f ′′−

(
1+ n2( 1

2(3+ λ
4)− γ̄

))
r f ′+ (1− n2) f

)}(s)∣∣∣∣
r=r (s)e

=

{
µ0

(
r3 f ′′′+ 2r2 f ′′−

(
1+ n2(1

2(3+ λ
4)− γ̄

))
r f ′+ (1− n2) f

)}(s+1)
∣∣∣∣
r=r (s+1)

i

,

{
µ0

(
r2 f ′′+

(1
2(3+ λ

4)+ γ̄
)
r f ′+ (1− n2)

( 1
2(λ

4
− 1)+ γ̄

)
f
)}(s)∣∣∣∣

r=r (s)e

=

{
µ0

(
r2 f ′′+

( 1
2(3+ λ

4)+ γ̄
)
r f ′+ (1− n2)

( 1
2(λ

4
− 1)+ γ̄

)
f
)}(s+1)

∣∣∣∣
r=r (s+1)

i

,

(33)

where γ̄ (s) = γ (s)λ2/µ
(s)
0 ;

• null tractions (for dead loading) at the external surfaces (r = r (1)i and r = r (N )e ):{
r3 f ′′′+ 2r2 f ′′−

(
1+ n2(2+ λ4)

)
r f ′+ (1− n2) f

}(1),(N )∣∣∣
r=r (1)i ,r (N )e

= 0,

{
r2 f ′′+ r f ′+ (n2

− 1) f
}(1),(N )∣∣∣

r=r (1)i ,r (N )e
= 0;

(34)

• null incremental normal displacement and nominal shear stress (at θ =±θ̄ ), which yields

n =
2mπ
αl0

(m = 1, 2, 3, . . . ). (35)

3. The compound matrix method for a bilayer

The compound matrix method was initially proposed in [Backus and Gilbert 1967] and applied to prob-
lems of fluid mechanics [Backus and Gilbert 1967; Ng and Reid 1979a; 1979b; 1985, Anturkar et al. 1992;
Yiantsios and Higgins 1988] and solid mechanics [Lindsay 1992; Lindsay and Rooney 1992]. Haughton
and Orr [1995] used the method in incremental elasticity, while Haughton [1999], Dryburgh and Ogden
[1999] and Destrade et al. [2009; 2010] employed it to investigate instabilities of a homogeneous block
subjected to finite flexure. Our aim is to show the application to elastic multilayers subject to finite
bending, in the simple case of a bilayer.
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The differential equation (32) can be rewritten as a linear system of first-order ODEs, that in the case
of two elastic layers can be cast in the standard form

y′ = Ay, z′ = Bz, (36)

where the vectors y and z are defined as

y(r)=
[

f (1)(r) f (1)
′
(r) f (1)

′′
(r) f (1)

′′′
(r)
]T
,

z(r)=
[

f (2)(r) f (2)
′
(r) f (2)

′′
(r) f (2)

′′′
(r)
]T
,

(37)

and the matrices A and B, which depend on the radial coordinate r , as

A(r)=


0 1 0 0
0 0 1 0
0 0 0 1

A41 A42 A43 A44

 , B(r)=


0 1 0 0
0 0 1 0
0 0 0 1

B41 B42 B43 B44

 . (38)

The components of A and B, as well as those of other matrices and vectors introduced in this Section
are listed in Appendix A.

The boundary conditions at the two external surfaces of the layer, equations (34), are equivalent to

C y(ri )= 0, Dz(re)= 0, (39)

where ri = r (1)i , re = r (2)i + h(2) and matrices C and D are

C =
[

C11 C12 C13 C14

C21 C22 C23 0

]
, D =

[
D11 D12 D13 D14

D21 D22 D23 0

]
. (40)

The continuity conditions (33) between the two layers, can be written as

G y(rm)+ H z(rm)= 0, (41)

where rm = r (1)i + h(1) and matrices G and H are defined as

G =


G11 G12 G13 G14

G21 G22 G23 0
G31 0 0 0
G41 G42 0 0

 , H =


H11 H12 H13 H14

H21 H22 H23 0
H31 0 0 0
H41 H42 0 0

 . (42)

It is now convenient to rearrange the four solutions of (36): two for the first layer, yI , yII , and two for
the second layer, z I , zII , [these solutions already satisfy the boundary conditions (39), but still not the
interface conditions (42)] into two matrices sharing the common structure

∗
I
1 ∗

II
1

∗
I
2 ∗

II
2

∗
I
3 ∗

II
3

∗
I
4 ∗

II
4

 (43)
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(where the symbol ∗ stands for either y or z) and defining the so-called compound matrices. Moreover,
we introduce the vectors φy

i (i = 1, . . . , 6) and φz
i (i = 1, . . . , 6) collecting the components of the minors

of matrices (43) as
φ∗1 = ∗

I
1 ∗

II
2 −∗

I
2 ∗

II
1 , φ

∗

4 = ∗
I
2 ∗

II
3 −∗

I
3 ∗

II
2 ,

φ∗2 = ∗
I
1 ∗

II
3 −∗

I
3 ∗

II
1 , φ

∗

5 = ∗
I
2 ∗

II
4 −∗

I
4 ∗

II
2 ,

φ∗3 = ∗
I
1 ∗

II
4 −∗

I
4 ∗

II
1 , φ

∗

6 = ∗
I
3 ∗

II
4 −∗

I
4 ∗

II
3 .

(44)

With the definitions (43) and (44), the differential problem (36) can be shown [Ng and Reid 1979a]
to be equivalent to the new problem(

φy)′
= P Aφy,

(
φz)′
= P Bφz, (45)

where, introducing the symbol �, equal to A (to B) for φy (for φz), we define

P�
=



0 1 0 0 0 0

0 0 1 1 0 0

�42 �43 �44 0 1 0

0 1 0 0 1 0

−�41 0 0 �43 �44 1

0 −�41 0 −�42 0 �44


. (46)

The system of differential equations (45) has to be solved using a Runge–Kutta (4,5) numerical method
(we have used Matlab version 7.9) to determine the compound matrices φy and φz .

The solution of the bifurcation problem can be written as a linear combination of the solutions yI , yII ,
z I , and zII ,

y = ξ1 yI
+ ξ2 yII, z = ξ3z I

+ ξ4zII, (47)

where the arbitrary coefficients ξi (i = 1, . . . , 4), which set the amplitude of the bifurcation mode, remain
undefined in a linearized analysis. The conditions at the internal interface (41) can be recast as

Mξ = 0, with [ξ ] = [ξ1 ξ2 ξ3 ξ4]
T , (48)

where

M =



(
G yI

)
1

(
G yII

)
1

(
H z I

)
1

(
H zII

)
1(

G yI
)

2

(
G yII

)
2

(
H z I

)
2

(
H zII

)
2(

G yI
)

3

(
G yII

)
3

(
H z I

)
3

(
H zII

)
3(

G yI
)

4

(
G yII

)
4

(
H z I

)
4

(
H zII

)
4

 , (49)

so that the bifurcation condition, depending on the bending half-angle θ̄ , the undeformed aspect ratios
l0/h0 and h(1)0 /h(2)0 , and the stiffness ratio µ(1)0 /µ

(2)
0 , becomes

det(M)= 0. (50)
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Condition (50) can be rewritten as the sum of 2×2-determinants as

1∑
i=0

(−1)i
{∣∣∣∣∣M1+i,1 M1+i,2

M41 M42

∣∣∣∣∣
∣∣∣∣∣M2−i,3 M2−i,4

M33 M34

∣∣∣∣∣−
∣∣∣∣∣M2+i,1 M2+i,2

M11 M12

∣∣∣∣∣
∣∣∣∣∣M3−i,3 M3−i,4

M43 M44

∣∣∣∣∣
−

∣∣∣∣∣M2+2i,1 M2+2i,2

M31 M32

∣∣∣∣∣
∣∣∣∣∣M4−2i,3 M4−2i,4

M13 M14

∣∣∣∣∣
}
= 0. (51)

The determinants can be expressed in terms of the compound matrices φy and φz as∣∣∣∣∣Mk1 Mk2

Ml1 Ml2

∣∣∣∣∣= (Gk1Gl2−Gk2Gl1)φ
y
1 + (Gk1Gl3−Gk3Gl1)φ

y
2 + (Gk1Gl4−Gk4Gl1)φ

y
3

+ (Gk2Gl3−Gk3Gl2)φ
y
4 + (Gk2Gl4−Gk4Gl2)φ

y
5 + (Gk3Gl4−Gk4Gl3)φ

y
6 (52)

and ∣∣∣∣∣Mk3 Mk4

Ml3 Ml4

∣∣∣∣∣= (Hk1 Hl2− Hk2 Hl1)φ
z
1+ (Hk1 Hl3− Hk3 Hl1)φ

z
2+ (Hk1 Hl4− Hk4 Hl1)φ

z
3

+ (Hk2 Hl3− Hk3 Hl2)φ
z
4+ (Hk2 Hl4− Hk4 Hl2)φ

z
5+ (Hk3 Hl4− Hk4 Hl3)φ

z
6, (53)

where the indices k and l take the values corresponding to the representation (51).
Once the undeformed aspect ratios l0/h0 and h(1)0 /h(2)0 and the stiffness ratio µ(1)0 /µ

(2)
0 have been

fixed, the bifurcation condition (50), through representation (51), becomes a function of the bending
half-angle θ̄ only, to be solved numerically (we have used the function “fzero” of Matlab). An example
of the advantage related to the use of the compound matrix method over the usual determinantal method
is reported in Figure 2, where det(M) is plotted as a function of θ̄ for a stiff case, in which the superiority
of the former approach is evident (note the spurious oscillations of the determinantal method). In this
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Figure 2. The compound matrix method (dashed line) against the determinantal method
(solid line): det(M) is evaluated at different angles θ̄ , for l0/h0 =0.1, h(1)0 /h(2)0 =

(1 mm)/(5 mm) and µ(1)0 /µ
(2)
0 = (7 N/mm2)/(1 N/mm2). Bifurcation corresponds to the

vanishing of det(M); note the spurious oscillations of the latter method.
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particular case, the 2-norm condition number of the matrix M is equal to 9.37× 1027, a value confirming
that the matrix is bad conditioned.

4. Bifurcations of a two-layer system

Results for bifurcation of bent configurations for bilayers are shown in Figure 3, in terms of criti-
cal half-angle θ̄cr (upper graphs) and critical stretch λcr (r

(1)
i ) at the compressed side of the specimen
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Figure 3. Critical angle θ̄cr and critical stretch λcr (evaluated at the internal boundary,
r = r (1)i ) versus aspect ratio l0/h0 for a Mooney–Rivlin bilayer coated with a stiff layer
and subject to bending with h(1)0 /h(2)0 and µ(1)0 /µ

(2)
0 as indicated above the graphs. The

stiff layer is located at the side in compression. In each plot, a small circle denotes a
transition between two integer values of m (the parameter which sets the circumferential
wavenumber). In the lower plots, the insert contains a magnification of the region where
bifurcations occur at low l0/h0. Two neutral axes occur in the region marked gray.
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(lower graphs) as functions of the global aspect ratio, that is, the initial length divided by the ini-
tial total thickness. The ratios between the thicknesses and the shear coefficients µ0 of the layers
are (1 mm)/(5 mm) and (7 N/mm2)/(1 N/mm2) for the left half of Figure 3, and (3 mm)/(40 mm) and
(2.687 N/mm2)/(0.095 N/mm2) for the right half. The various curves reported in the figure represent
solutions corresponding to different bifurcation modes, singled out by the circumferential wavenumber
m. The mode visible in an experiment is that corresponding to the lower value of the critical half-angle,
θ̄cr , or to the higher value of critical stretch at the compressed side, λcr . Note that the gray zone represents
the range of aspect ratios and bending half-angle for which two neutral axes occur.

Within the set of aspect ratios and stiffness contrast analyzed in the left part of Figure 3, a bifurcation
only appears when two neutral axes have been formed, while it may occur when two or one neutral axes
are present in the right half of the figure. In all cases analyzed, including Figure 3, we have found that
the gray zone in the θ̄cr –l0/h0 graphs is bounded by a straight line, becoming a horizontal line in the
λcr –l0/h0 representation. An explanation for this fact is given in Appendix C.

The special feature emerging from Figure 3, left (and not found within the set of parameters and
geometries investigated in [Roccabianca et al. 2010]) is that the mode m =1 of bifurcation becomes
the critical mode for a sufficiently high slenderness, so that here long-wavelength bifurcations (corre-
sponding to small m) become well-separated from surface modes (corresponding to high m) and thus
fully visible. This feature is also present in Figure 3, right, which has been produced with values of
parameters corresponding to commercially available rubbers (and tested by us; see Appendix B). In this
way it has been possible to produce the two samples shown in Figures 1 and 4, differing only in the
aspect ratio (taken equal to 2 for the sample shown in Figure 1 and 1.5 for that shown in Figure 4) and
evidencing long-wavelength bifurcation modes.

The progression of bending is shown in Figure 4, referred to a 64.5 mm × 3 mm × 150 mm rubber
strip glued to a 64.5 mm × 40 mm × 150 mm neoprene plate (in which the larger dimension is that out-
of-plane, taken sufficiently large, 150 mm, to simulate the plane strain condition). At a certain stage of
finite bending, namely at a certain bending half-angle θ̄cr , a long-wavelength mode can be detected to
appear on the surface of the sample (Figure 4, right), which qualitatively confirms our findings.

Figure 4. Progressive bending of a two-layer rubber block (undeformed configuration
is shown on the left, a bent configuration in the center), evidencing bifurcation with
long-wavelength bifurcation modes (shown on the right). Stiffness and thickness ratios
between layers are (2.687 N/mm2)/(0.095 N/mm2) and (3 mm)/(40 mm), respectively.
The stiff layer (64.5 mm × 3 mm × 150 mm, made up of natural rubber, marked with
a white pencil on the sample) is at the compressive side and coats a neoprene layer
(64.5 mm × 40 mm × 150 mm).
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From a quantitative point of view, the critical half-angle for bifurcation results from modeling to
be equal to 39.40◦ for the sample shown in Figure 1 and 35.49◦ for that shown in Figure 4, values
that are definitely higher than those found experimentally (30.00◦ for the former sample and 21.00◦ for
the latter). The fact that the theoretical predictions correspond to bifurcation angles larger than those
observed experimentally is also common to all previous experiments [Gent and Cho 1999; Roccabianca
et al. 2010] and can be explained as the usual effect of imperfections (so that for instance the bending
mode associated with the Euler buckling is always experimentally observed to become visible before
the achievement of the critical load). The fact that the discrepancy between theoretical and experimental
values is larger in the cases reported in the present article can be motivated in terms of the effect of the
different sensitivity to imperfections. In fact, short-wavelength undulations introduced in the reference
configuration begin to amplify and to become visible much closer to the bifurcation threshold than
long-wavelength imperfections, a feature demonstrated through finite element numerical simulations
[Roccabianca 2011].

5. Conclusions

Incremental bifurcations emanating from a finitely bent configuration of an elastic incompressible multi-
layered block have been reconsidered after the article [Roccabianca et al. 2010]. It has been shown that
the presence of two neutral axes is linked to the possibility of finding long-wavelength bifurcation modes
well-separated from (short-wavelength) surface modes, a circumstance which was pointed out without
proof in that article and is now definitely demonstrated. Since the equations governing the bifurcation
become stiff (specially when more than one neutral axis is present), the treatment of the computational
problem has been possible only through an use of the compound matrix method. Our findings have been
substantiated by qualitative experiments, giving full evidence to long-wavelength modes.

Appendix A. Components of the compound matrices in (38), (40), (42), and (46)

A41(r)=
(n2
− 1)(F (1)− r F (1),r − n2 E (1))

C (1)r4 , A42(r)=
2F (1)− (r F (1)+ 2rn2 D(1)),r

C (1)r3 ,

A43(r)=
2n2 D(1)

− (r F (1)),r − 4F (1)

C (1)r2 , A44(r)=−2
F (1)+ 2C (1)

C (1)r
.

B41(r)=
(n2
− 1)(F (2)− r F (2),r − n2 E (2))

C (2)r4 , B42(r)=
2F (2)− (r F (2)+ 2rn2 D(2)),r

C (2)r3 ,

B43(r)=
2n2 D(2)

− (r F (2)),r − 4F (2)

C (2)r2 , B44(r)=−2
F (2)+ 2C (2)

C (2)r
.

C11 = F (1)(n2
−1), C12 = ri [F (1)−n2(2D(1)

+C (1))], C13 = r2
i (F

(1)
+3C (1)),

D11 = F (2)(n2
−1), D12 = re[F (2)−n2(2D(2)

+C (2))], D13 = r2
e (F

(2)
+3C (2)),

C14 = r3
i C (1), C21 = n2

−1, C22 = ri , C31 = r2
i ,

D14 = r3
e C (2), D21 = n2

−1, D22 = re, D23 = r2
e .
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G11 = F (1)(n2
−1), G12 = rm[F (1)−n2(2D(1)

+C (1)
−T (1)

r )],

H11 = F (2)(1−n2), H12 = rm[n2(2D(2)
+C (2)

−T (2)
r )−F (2)],

G13 = r2
m(F

(1)
+3C (1)), G14 = r3

mC (1), G21 = (n2
−1)(C (1)

−T (1)
r ),

H13 =−r2
m(F

(2)
+3C (2)), H14 =−r3

mC (2), H21 = (1−n2)(C (2)
−T (2)

r ),

G22 = rm(C (1)
+T (1)

r ), G23 = r2
mC (1), G31 = 1, G41 = 1, G42 = rm,

H22 =−rm(C (2)
+T (2)

r ), H23 =−r2
mC (2), H31 =−1, H41 =−1, H42 =−rm .

P A
31 =

2F (1)−(r F (1)+2rn2 D(1)),r

C (1)r3 , P A
32 =

2n2 D(1)
−(r F (1)),r−4F (1)

C (1)r2 , P A
33 =
−2(F (1)+2C (1))

C (1)r
,

P A
51 =

(1−n2)(F (1)−r F (1),r −n2 E (1))
C (1)r4 , P A

54 =
2n2 D(1)

−(r F (1)),r−4F (1)

C (1)r2 , P A
55 =
−2(F (1)+2C (1))

C (1)r
,

P A
62 =

(1−n2)(F (1)−r F (1),r −n2 E (1))
C (1)r4 , P A

64 =
(r F (1)+2rn2 D(1)),r−2F (1)

C (1)r3 , P A
66 =
−2(F (1)+2C (1))

C (1)r
.

P B
31 =

2F (2)−(r F (2)+2rn2 D(2)),r

C (2)r3 , P B
32 =

2n2 D(2)
−(r F (2)),r−4F (2)

C (2)r2 , P B
33 =
−2(F (2)+2C (2))

C (2)r
,

P B
51 =

(1−n2)(F (2)−r F (2),r −n2 E (2))
C (2)r4 , P B

54 =
2n2 D(2)

−(r F (2)),r−4F (2)

C (2)r2 , P B
55 =
−2(F (2)+2C (2))

C (2)r
,

P B
62 =

(1−n2)(F (2)−r F (2),r −n2 E (2))
C (2)r4 , P B

64 =
(r F (2)+2rn2 D(2)),r−2F (2)

C (2)r3 , P B
66 =
−2(F (2)+2C (2))

C (2)r
.

Appendix B. Experimental determination of the stiffness coefficient µ0 of the employed materials

In our qualitative experiments to detect bifurcation, we have imposed finite bending to bilayered systems
made up of a natural rubber strip (3 mm thick) and a neoprene block (40 mm thick). The bilayer is
obtained by gluing the neoprene block to the natural rubber strip (we have used ethyl cyanoacrylate,
Pattex©).

Four dog-bone-shaped standard ISO 5277-1/1BA 30 mm × 5 mm specimens have been sampled from
the two materials to characterize them in terms of Mooney–Rivlin model. Result of the tests (performed
at room temperature with a Messphysik Midi 10 testing machine equipped with Doli Edc 222 acquisition
and control electronics) are shown in Figure 5, in terms of true stress versus stretch. The selected ranges
of stress and stretch for the tests correspond to the values expected in the bending experiments.

In the plots, the interpolation with the Mooney–Rivlin material (which provides a nearly linear re-
sponse at the stretch under consideration) selected for the calculations is also included. The least square
method provides for the natural rubber c(natrub)

1 = 0.007 N/mm2, c(natrub)
2 = 2.68 N/mm2 (corresponding

to µ(natrub)
0 ' 2.687 N/mm2) and for the neoprene c(neopr)

1 = 0.09 N/mm2, c(neopr)
2 = 0.005 N/mm2, giving

µ
(neopr)
0 ' 0.095 N/mm2.
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Figure 5. Uniaxial tests and material characterization of the natural rubber and the
neoprene plate employed for the specimens to be subject to bending. Dotted curves
represent Mooney–Rivlin interpolations employed in the analysis.

Appendix C. A justification of the fact that the region in which two neutral axes are present
is bounded by a straight line in Figure 3

We provide a justification of the finding that, when two neutral axes occur in a bilayer, the stretch (at the
compressed side) is independent of the global aspect ratio l0/h0, so that the gray zone (corresponding
to the presence of two neutral axes) is bounded by a horizontal (inclined) line in the λcr –l0/h0 (in the
θ̄cr –l0/h0) representation, Figure 3.

The explanation of this effect is based on two observations:

i. During progressive bending of a bilayer with the stiff layer under compression, one neutral axis is
present from the beginning of the deformation within the soft layer, while the second neutral axis
always nucleates at the interface between the two layers (and then moves in the stiff layer).

ii. When the second neutral axis nucleates, the radial Cauchy stress Tr at the interface between layers
takes a value independent of the initial aspect ratio l0/h0. We can therefore operate on a single
layer by imposing, in addition to the usual bending, a pressure Pext at one of its external sides (of
initial length l0) to correspond to the radial stress at the interface between layers. In particular, we
can apply Pext at the side where the longitudinal stretch is greater than 1.

To operate in dimensionless form, we introduce, from (2) and (4), the kinematic unknowns

ᾱ =
2θ̄
a
, r̄ =

r
h0
, h̄ =

h
h0
, (C.1)

where a = l0/h0 is the aspect ratio of the undeformed configuration. The internal and external nondi-
mensional radii, from (1), are

r̄i =
a

2θ̄ h̄
−

h̄
2
, r̄e = r̄i + h̄. (C.2)
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As we want to write the bending problem in terms of the variable λi = λ(r̄i ), we calculate θ̄ as a function
of a, h̄ and λi , so that (4)2 gives

θ̄ =
a
h̄

(
1
h̄
− λi

)
, (C.3)

and the condition λe = λ(r̄e) becomes

λe =
2
h̄
− λi . (C.4)

The boundary conditions for the layer under consideration are now

Tr (r̄i )= 0, Tr (r̄e)= Pext, (C.5)

where

Tr =
µ0

2

(
λ2
+

1
λ2

)
+ γ,

can be written from (10)1. Equation (C.5)2 provides the coefficient γ in the form

γ = Pext
−
µ0

2

(
λ2

e +
1
λ2

e

)
, (C.6)

while, on the other hand, (C.5)1 is equivalent to

λ2
i +

1
λ2

i
+ 2

Pext

µ0
−

[(
2
h̄
− λi

)2

+

(
2
h̄
− λi

)−2
]
= 0, (C.7)

from which it is clear that the unknown h̄ is independent of a (but remains dependent on λi , µ0, and
Pext). Therefore, since a neutral axis corresponds to

Tθ (r̄e)= 0, (C.8)

equations (10)2, (C.6), and (C.4) show that the neutral axis condition is independent of a, so that the
solution in terms of λi becomes only a function of µ0 and Pext.
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