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INFINITESIMAL MECHANISM

TIBOR TARNAI AND ANDRÁS LENGYEL

Dedicated to the memory of Marie-Louise Steele

This paper is concerned with the static and kinematic behavior of two chain-like bar-and-joint assemblies
which have the same topology. One is a structure which is both statically and kinematically indeterminate,
and constitutes a higher-order infinitesimal mechanism. The other is a structure which is both statically
and kinematically determinate, introduced by Leonardo da Vinci in the Codex Madrid. Proceeding along
the internal joints from the bottom to the top of the assembly, the lateral components of the displacements
of the internal joints of the infinitesimal mechanism show an exponential decay, and the forces in the
internal bars of Leonardo’s structure show an exponential growth. It is pointed out that, in the elastic
model of Leonardo’s structure, the propagation of displacements of internal joints and the propagation
of forces in internal bars also show an exponential character in a modified form. This work also provides
some hints for overcoming difficulties arising in higher-order infinitesimal mechanisms, and corrects
minor mistakes made by Leonardo.

1. Introduction

Cable nets, cable domes, and tensegrity structures, from the mechanical point of view, are usually bar-
and-joint assemblies that constitute infinitesimal mechanisms. The answer to the important question of
whether self-stress may impart first-order stiffness to such a structure depends on whether or not it is
an infinitesimal mechanism of first or higher order [Pellegrino and Calladine 1986]. (An infinitesimal
mechanism is of the n-th order (n = 1, 2, . . . ) if it involves no elongation of any bar up to and including
the n-th order but exhibits an elongation of order n+ 1 in at least one bar.)

In [Tarnai 1989], we discussed problems of definition and determination of the order of an infinitesimal
mechanism, and presented, among other things, an example of a higher-order infinitesimal mechanism
where the propagation of the displacements of the joints shows exponential decay. On the other hand,
Nielsen [1998] called attention to a drawing of a structure by Leonardo da Vinci (see page 597) taken from
the Codex Madrid [Leonardo 1493], which contains notes and drawings of his mechanical studies, and
which was believed to be lost until the stunning announcement, in 1967, of its accidental rediscovery
in the National Library in Madrid. In this structure, the propagation of forces in the bars shows an
exponential growth.

In this paper, the accidental similarity between the two structures, as well as the duality between the
exponential decay of the displacements and the exponential growth of the bar forces, are investigated.
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2. Higher-order infinitesimal mechanisms

A structure is called an infinitesimal mechanism if it has only infinitesimal free motions. Koiter defined

“an infinitesimal mechanism of the first order by its property that any infinitesimal displacement
of the mechanism is accompanied by second order elongations of at least some of the bars. An
infinitesimal mechanism is called of second (or higher) order if there exists an infinitesimal
motion such that no bar undergoes an elongation of lower than the third (or higher) order”
[Koiter 1984].

Koiter’s definition can be mathematically formulated as follows. Consider a bar-and-joint assembly
which contains b bars and consider a system of infinitesimal displacements of the joints. Let us denote
an infinitesimal displacement component of a characteristic joint by u and the elongation of the bar k
due to u by ek . Write the power-series expansion of ek in u:

ek = a1ku+ a2ku2
+ a3ku3

+ · · · (k = 1, 2, . . . , b). (1)

For an infinitesimal mechanism, there always exists a system of infinitesimal displacements of joints
such that, in (1), a1k = 0 for k = 1, 2, . . . , b. Such a system of infinitesimal displacements is obtained
as the solution of a set of homogeneous compatibility equations. The displacement vector coordinates
depend on the chosen coordinate system but the positions of the displaced joints do not. However, it is
advantageous if one axis of the coordinate system is chosen in the direction of the displacement of the
characteristic joint.

Definition 1 [Tarnai 1984]. An infinitesimal mechanism is of order at least n (n ≥ 1) if there exists a
system of infinitesimal displacements of joints such that, in (1), a1k = a2k = · · · = ank = 0 for k = 1, 2,
. . . , b. An infinitesimal mechanism is of order n if it is of order at least n, but not of order at least n+ 1.

Consider, for example, the mechanism in Figure 1, left. If we move it as in the middle figure, the
lengthening of the horizontal bars is quadratic in the displacement u (for small u; see next section
for details). The length of the vertical bars does not change. Therefore, for this displacement, all the
coefficients a1k in (1) vanish, so the system has order at least 1.

However, we can also consider the displacement in Figure 1, right. Here, if the central joint moves
by u keeping the length of the bars attached to it constant and the far ends of these bars along the center
line, the far ends move up and down by an amount proportional to u2, and so the length of the horizontal
bars increases by an amount proportional to u4. For this displacement, then, a1k , a2k and a3k vanish for
all k. So in fact this system has order at least 3.

Figure 1. A two-DOF infinitesimal mechanism in the plane. Left: initial state. Middle:
a displacement where the horizontal bars undergo second-order elongation. Right: a
displacement where the same bars undergo fourth-order elongation.
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Remark. We see from this example that, for multi-degree of freedom (DOF) infinitesimal mechanisms,
displacements corresponding to different DOFs can result in different numbers n; but according to
Definition 1, the maximum n will be the order of the infinitesimal mechanism. Thus, the definition
can be reformulated as follows. For a system of infinitesimal displacements, consider the exponent of
the first nonvanishing term in the series (1) for each bar, and take the minimum of these exponents. Then
determine this minimum for each possible system of infinitesimal displacements, and take the maximum
of these minima. The number obtained is one more than the order n of the infinitesimal mechanism.

Thus, in the assembly of Figure 1, we can say that the order is at least 1, based on the DOF whose
displacement is illustrated in the middle diagram. But another DOF, illustrated in the diagram on the
right, ensures that the order is at least 3. Since we have to take the maximum, we can declare that the
assembly in Figure 1, left is a third-order infinitesimal mechanism. (It can be shown that no displacement
leads to a higher order.)

In mathematics, the term “n-th order infinitesimal mechanism” is not used. Mathematicians usually
deal with n-th order rigidity and n-th order flexes instead [Connelly 1980].

3. A series of infinitesimal mechanisms

Consider the bar-and-joint assembly in Figure 2a, all bars being of unit length. As shown in the figure, we
denote by x the horizontal component of the displacement of joint B and by 2y the vertical component
of the displacement of joint A. We constrain the displacements so that bars 1 and 2 undergo the same
elongation, denoted by e, and bars 3 and 4 are inextensional (elongation zero). We can express the
displacement component y in terms of x , and the elongation e in terms of y, as

y = 1−
√

1− x2 and e =
√

1+ (2y)2− 1.

Taking the binomial series expansion of these functions, we get

y = 1
2 x2
+

1
8 x4
+

1
16 x6
+ · · · , (2)

e = 1
2 (2y)2− 1

8 (2y)4+ · · · . (3)
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Figure 2. A planar assembly composed of (a) two and (b) three three-pinned frame units
of collinear joints, and their infinitesimal free displacements.
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Introduction of (2) into (3) yields

e = 1
2 x4
+

1
4 x6
+

1
32 x8
+ · · · ,

that is, fourth-order elongations arise in bars 1 and 2. Bars 3 and 4 have no elongation, by assumption.
Thus, n + 1 = 4, and so n = 3: the assembly in Figure 2a is an infinitesimal mechanism of order at
least 3. It can be shown that no displacement leads to a higher order, so the assembly in Figure 2a is a
third-order infinitesimal mechanism. (A similar calculation applied to the rightmost configuration of the
structure in Figure 1 justifies our earlier assertion that that structure has order at least 3.)

Now let us supplement the bar-and-joint assembly in Figure 2a with a horizontal three-pinned frame
of collinear joints, connected to joint B, as in Figure 2b. All bars have unit length, and bars 3, 4, 5,
and 6 are taken as inextensional. Let us apply a vertical displacement z at joint C . In this case, the
displacement components x and y shown in Figure 2b and the elongation e of bars 1 and 2 are related by

x =
√

1− (1− y)2, (z− y)2+
(
2− x −

√
1− z2

)2
= 1, e =

√
1+ (2y)2− 1.

Using Maple to eliminate x and y and to expand the resulting formula for e in powers of z, we obtain
for the elongation of bars 1 and 2 the series

e = 1
2 z8
+

1
2 z10
− z11

+
11
16 z12

+ · · · ;

that is, eighth-order elongations arise in bars 1 and 2. Thus, the assembly in Figure 2b is an infinitesimal
mechanism of order at least 7. It can be shown that no displacement leads to a higher order, so the
assembly in Figure 2b is a seventh-order infinitesimal mechanism.

More generally, it can be shown [Tarnai 1989] that an the assembly composed of M three-pinned
frame units with collinear joints, as in Figure 3, is an infinitesimal mechanism of order 2M

− 1.

Figure 3. A planar assembly composed of
M three-pinned frame units of collinear joints.
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4. A chain-like infinitesimal mechanism

Let the value of M be equal to 9; thus we have the assembly in Figure 4, which is both statically and
kinematically indeterminate, constituting an infinitesimal mechanism of order n = 29

− 1 = 511. We
selected M = 9 because later we want to compare this infinitesimal mechanism to the similar structure
by Leonardo, mentioned in the Section 1. Let each bar be 6 m long. We suppose that all bars are inex-
tensional except the uppermost two, where extensions are allowed to develop freely. Let us investigate



A REMARKABLE STRUCTURE OF LEONARDO AND A HIGHER-ORDER INFINITESIMAL MECHANISM 595

Figure 4. A chain-like planar assembly
composed of nine three-pinned frame units of
collinear joints, and displacements of middle joints
(numbered 1 through 9) when the lowest joint (joint 1)
has a prescribed vertical displacement of 1 m.
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the motion of the assembly if the lowermost joint (joint 1) has a vertical displacement of 1 m. In this
investigation, we apply the approximation

√
1+ a ≈ 1+ 1

2 a, and consider only the lateral displacement
of the middle joint of a three-pinned frame unit, that is, the vertical displacement for a horizontal three-
pinned unit and the horizontal displacement for a vertical three-pinned unit. The axial displacements of
the middle joints are neglected. If the lateral displacement of joint i is δi then, from this, a displacement
δi+1 arises at joint i + 1, and the directions of the two displacements are perpendicular to each other.
According to the approximations above, we have

δi+1 = 2
(

6−
√

62− δ2
i

)
,

which yields δi+1 =
1
6 δ

2
i , that is,

δi =
( 1

6

)2i−1
−1 i = 1, 2, . . . , 9. (4)

It is easy to see that, proceeding from the bottom to the top of the assembly, the displacements are
exponentially decreasing.

It is also possible to calculate the exact position and displacement of the joints, taking into account the
displacement in the axial direction in addition to that in the lateral direction. In fact, the numbered joints
move along circular arcs centered at the supported joints (not numbered) to which they are connected by
6-meter bars. Once the position of joint 1 is defined, the next one can be calculated geometrically as the
intersection of two circles centered at joint 1 and the next supported joint, respectively. The procedure
goes on this way for all the numbered joints. The results are only slightly different from those of the
approximate calculations.

The displacements δi obtained both by approximate calculations, according to (4), and by exact ones
are given for the first few joints in Table 1. Thus the 1 m displacement of the first joint decreases to
approximately 5 mm at the third joint, and 4µm at the fourth joint. The displacement of the fifth joint
is only 2 pm, less than the size of an atom. (Atomic radii lie in the range 50–200 pm.) From a practical
point of view, this means that from the fourth joint on there is basically no displacement. This surprising
result illustrates the most important property of higher-order infinitesimal mechanisms: mathematically
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i δ
approx
i (m) δexact

i (m)

1 1 1
2 6−1

= 1.667× 10−1 1.674× 10−1

3 6−3
= 4.630× 10−3 4.674× 10−3

4 6−7
= 3.572× 10−6 3.641× 10−6

5 6−15
= 2.127× 10−12 2.210× 10−12

Table 1. Lateral displacements of the middle joints of three-pinned units of the assembly
in Figure 4. (At joint i , the approximate value δapprox

i and the exact value δexact
i of the

lateral displacement are given).

they have only infinitesimal free motions, but physically they behave locally like finite mechanisms. The
motion of mechanisms of this kind was also investigated in [Hortobágyi 2000].

5. Leonardo’s structure

5.1. Structure in the Codex Madrid. On folio 75R of the Codex Madrid [Leonardo 1493], which we
reproduce in Figure 5, there is a drawing of a chain-like structure composed of 12-unit-long cables. Each
cable is V-shaped, and the distance between the midpoint of the cable and the straight line connecting the
end points of the cable is 1 unit. The straight lines connecting the end points of the cables are alternately
horizontal and vertical. (The bar-and-joint model of Leonardo’s structure shown in Figure 6 is both
statically and kinematically determinate, unlike the infinitesimal mechanism studied in Section 4.)

Leonardo investigated the propagation of forces in the structure if the bottom cable is loaded at its
midpoint with a weight of one pound. He made an approximate analysis. He considered the cables to be
inextensional and neglected the fact that a cable segment, joining another cable at its midpoint, has an
inclination: he calculated the forces in the cables as if the direction of the joining cable segment were
perpendicular to the straight line connecting the end points of the cable. In this way, Leonardo obtained
equal forces in both segments of a cable. Let ϕ denote the angle of inclination of cable segments. From
the geometrical data it follows that

sinϕ = 1
6 .

By resolving the forces horizontally and vertically at the node loaded by the one-pound weight, force
S1 in the lowermost cable is obtained: S1 = 3 pounds. For the second cable, this member force of
3 pounds acts as a load and, because of the above-mentioned approximation, the force in the second
cable is S2 = 3S1. The force in the k-th cable from below is Sk = 3Sk−1, that is,

Sk = 3k pounds.

Therefore, the propagation of forces in cables is exponentially increasing: the forces form a geometric
progression with ratio 3. From the 1 pound load applied at the midpoint of the lowermost cable, a force
S9 of 19,683 pounds (S9 = 39 pounds) arises in the uppermost cable. (Leonardo wrote 19,530 pounds
for that force; indeed, we see in Figure 5 that in two steps of the progression his multiplications by 3
are slightly off: 27→ 80, instead of 81, and 2160→ 6510, instead of 6480. The reason for this is not
known.)
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Figure 5. Leonardo da Vinci’s drawing of a planar assembly [Leonardo 1493, folio
75R]. The forces in the cables, arising from a one-pound load at the lowest cable, are
written on the respective cables. Leonardo, as usual, made this note in mirror image.
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Figure 6. The inextensional bar-and-joint
model of Leonardo’s structure. The values of
the forces in the bars, arising from a one-pound
vertical load at the lowest internal joint, are written
on the respective bars. Forces in the two bars of a three-
pinned frame unit are different (except in the lowest unit).
In the upper right-hand corner, the equilibrium of a joint is
shown by the vector triangle of bar forces acting at the joint.
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5.2. Structure with rigid members subject to unit load. These minor inaccuracies compel us to analyse
the equilibrium of Leonardo’s structure in detail. We consider all nodes in their exact positions and all
members in their exact directions. We call the middle points of the three-pinned frame units internal
joints and the bars connecting two internal joints internal bars. Regarding all members as infinitely rigid,
one can obtain the bar forces at all nodes from a vector triangle. A typical equilibrium system is shown
in the upper right-hand corner of Figure 6. The bar forces are displayed at their corresponding locations
rounded to the nearest integer. Note that the exponential growth of the forces in the internal bars follows
the quotient

Sk+1

Sk
=

1
sin 2ϕ

=
1

2 sinϕ cosϕ
=

1

2 1
6

√
35
6

=
18
√

35
= 3.042555 . . . ,

which is slightly larger than 3.

5.3. Structure with elastic members subject to a load. Leonardo’s discovery that a single load at the
lowermost node produces an approximately twenty thousand times magnified cable force at the top
indicates that the elastic deformations of the members ought to be considered.

Let all members of length L be linearly elastic with Young’s modulus E and cross-sectional area A. Let
us apply a single load at the lowermost node similarly to Leonardo’s drawing. We expect an exponential
growth in the bar forces upwards. The elastic elongations ek = Sk L/(E A) of the members due to bar
forces Sk result in increasing nodal displacements downwards in a twofold way. On the one hand, longer
bars of three-pinned frame units result in larger heights, and, on the other hand, they produce a shorter
base length (and consequently a larger height) in the next three-pinned frame unit attached. Thus, this
double exponential change in the bar forces and the displacements implies that a surprisingly small force
can produce large displacements even if the structure is quite stiff.
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E A (kN) D (mm) S9,10 (kN) σ9,10 (MPa) δ1 (m)

100 7.979× 10−2 4.410× 10−3 8.819× 102 4.596× 100

101 2.523× 10−1 1.721× 10−2 3.441× 102 4.293× 100

102 7.979× 10−1 6.306× 10−2 1.261× 102 3.847× 100

103 2.523× 100 2.201× 10−1 4.402× 101 3.253× 100

104 7.979× 100 7.365× 10−1 1.473× 101 2.533× 100

105 2.523× 101 2.326× 100 4.652× 100 1.728× 100

106 7.979× 101 6.538× 100 1.308× 100 9.295× 10−1

107 2.523× 102 1.427× 101 2.853× 10−1 3.183× 10−1

108 7.979× 102 2.038× 101 4.076× 10−2 5.493× 10−2

109 2.523× 103 2.184× 101 4.368× 10−3 6.096× 10−3

Table 2. Extremal values of bar forces and nodal lateral displacements under the vertical
load F = 1 N applied at joint 1. The cross-section diameter D, the maximal force S9,10,
the normal stress σ9,10 in bar {9, 10} (according to the numbering of Figure 7), and the
maximal vertical displacement δ1 of joint 1 are given for different values of the normal
stiffness E A of the bars.

In order to bring this structure closer to reality and have a better picture of its behavior, let us choose
steel as our material, with Young’s modulus E = 200 GPa, apply a small unit load (F = 1 N) at the
lowermost node, and consider a series of different values of tensile stiffness: E A = 100, 101, . . . , 109 kN.
Let the 6 m-long bars be of circular cross-section. Table 2 shows the cross-section diameter, the largest
bar force (at the top of the structure), the stress, and the largest vertical displacement (at the lowermost
node) as functions of the tensile stiffness. As the tensile stiffness increases, the bar forces also increase but
at a lesser rate. Consequently, the stresses and deformations decrease, resulting in smaller displacements.
The larger the tensile stiffness, the more closely the force-displacement system approximates that of the
infinitely rigid structure of Section 5.2. The maximal force in the table also gives a hint of the rate of the
force propagation in the chain, which is less than that in the case of the rigid structure. This is because
when the displacements are large the vector triangles change significantly.

However, a relatively good match (for example, in the range E A = 108–109 kN) can only be obtained
for unrealistically large cross-sections, which means that this cable structure with ordinary cross-sections
(such as E A = 103–104 kN) indeed undergoes large displacements even for a small load. Figure 7 shows
the deformed structure with tensile stiffness E A = 104 kN. The member forces SF

i,i+1 and the lateral
components δF

i of the nodal displacements are listed in Table 3. The results were obtained by a large
displacement iterative analysis.

According to Table 3, the forces SF
i,i+1 in internal bars form a monotonically increasing sequence where

the ratio SF
i+1,i+2/SF

i,i+1 is monotonically increasing with an increase in i (i = 1, 2, . . . , 8). Thus, the
bar forces show an exponential-like increase, but the change is faster than in a geometric progression. A
similar observation can be made for the displacements, but in an inverse manner. The lateral components
δF

i of the displacements of the internal joints form a monotonically decreasing sequence where the
ratio δF

i+1/δ
F
i is monotonically decreasing with an increase in i . Thus, the lateral components of the

displacements show an exponential-like decrease, but the change is faster than in a geometric progression.
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Figure 7. The equilibrium shape of the bar-and-
joint model of Leonardo’s structure with 6 m-long
linearly elastic bars of stiffness E A = 104 kN and with
a vertical load F = 1 N at joint 1. The dashed lines show
the structure at the rest position.
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{i, i + 1} SF
i,i+1 (kN) S1T

i,i+1 (kN) i δF
i (m) δ1T

i (m) δ1T lim
i (m)

{1, 2} 8.884× 10−4 7.365× 10−4 1 2.533× 100
−1.011× 100

−1.000× 100

{2, 3} 1.130× 10−3 2.630× 10−3 2 1.756× 100
−1.621× 10−1

−1.636× 10−1

{3, 4} 1.804× 10−3 8.357× 10−3 3 1.040× 100
−4.381× 10−2

−4.931× 10−2

{4, 5} 3.741× 10−3 2.568× 10−2 4 5.088× 10−1
−8.882× 10−3

−1.579× 10−2

{5, 6} 9.526× 10−3 7.806× 10−2 5 2.078× 10−1 2.275× 10−3
−5.139× 10−3

{6, 7} 2.707× 10−2 2.365× 10−1 6 7.509× 10−2 5.880× 10−3
−1.675× 10−3

{7, 8} 8.041× 10−2 7.154× 10−1 7 2.555× 10−2 6.931× 10−3
−5.409× 10−4

{8, 9} 2.427× 10−1 2.162× 100 8 8.432× 10−3 6.864× 10−3
−1.684× 10−4

{9, 10} 7.365× 10−1 6.542× 100 9 2.574× 10−3 5.595× 10−3
−4.255× 10−5

Table 3. Forces in internal bars and lateral displacements of internal joints of the struc-
ture with bar stiffness E A = 104 kN. Force SF

i,i+1 in bar {i, i + 1}, the lateral component
δF

i of displacement of internal joint i for a vertical load F = 1 N applied at joint 1, force
S1T

i,i+1 in bar {i, i+1}, and the lateral component δ1T
i of the displacement of internal joint

i for temperature drop 1T =−40◦ C are given. δ1T lim
i provides the lateral component

of displacement of internal joint i in the limit state due to a decrease in temperature.
Downward and rightward displacement components are considered positive.

5.4. Thermal effect. We have seen that Leonardo’s structure is extremely sensitive to small deformations
of the members. Let us now examine the effects of the shortening of the elements contrary to the
elongations due to tensile forces.

Consider a simultaneous shortening of the lengths L as a kinematic load, for example, due to uniform
cooling of all bars. Denoting the thermal expansion coefficients by α [1/◦C], all bars undergo elongation
e= L ·α ·1T due to a temperature rise 1T [◦C] (or shortening due to a temperature drop, as in our case).
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Figure 8. The shape of the structure, subject
to a uniform decrease in temperature, in the limit
state where the joints of the lowermost three-pinned unit
become collinear.
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The new position of the internal nodes can be calculated, starting with the uppermost, proceeding to the
one below it, and then to the one to the right, and so on. The shortening of the bars makes the height
of a three-pinned frame unit smaller, and at the same time the base length of the next unit longer. Thus
in each step the nodal displacements are magnified. This phenomenon is similar to the one described in
Section 5.3 but in the opposite direction. This means that the internal nodes now move towards the base
of the frame units, that is, upwards and leftwards, alternately.

Note that none of the base lengths can exceed 2L , which sets a limit on the measure of the cool-
ing. This limit occurs at a small e = −0.00000709091. . . m shortening (which is equivalent to a
1T =−0.0984849 . . .◦ C change in temperature in the case of steel with α = 1.2 · 10−51/◦ C). Now
the joints of the last three-pinned frame unit are collinear (as shown in Figure 8). This is a limit state
where the originally both statically and kinematically determinate structure becomes a statically and
kinematically indeterminate structure. Until this decrease in temperature, the assembly is free of stresses.

At this limit state, the lateral displacements δ1T lim
i of all the internal nodes are summarized in the last

column of Table 3. The direction is emphasized by the use of the minus signs before the displacement
values. Proceeding from the bottom to the top of the structure, the lateral displacements are exponentially
decreasing, which can be easily illustrated in a semilogarithmic scale plot (Figure 9). The line in the figure
is approximately linear except at the first and last nodes. The ratio of decrease is around 3.1−1

= 0.32 . . . .
If the cooling continues, stresses appear in the structure. In further calculations, the elastic properties

of the structure, considered in Section 5.3, should be taken into account. The same algorithm has been
applied to calculate the equilibrium shape as in Section 5.3. Our calculations show that the structure
basically tightens up, at this point having only tensile forces, and only minor displacements occur beyond
that. The shape of the structure is similar to the one shown in Figure 8. The bar forces and the stresses
naturally increase with the change in temperature but the elongations are countered with the thermal
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Figure 9. Lateral displacement of the internal nodes in the limit state.

shortenings. The member forces S1T
i,i+1 and the lateral components δ1T

i of the nodal displacements are
listed in Table 3 for 1T =−40◦ C. In accordance with our earlier notation, the positive displacement
values refer to rightward or downward motion, while the negative displacement values refer to leftward
or upward motion. In the progression of the forces in the internal bars, the ratio is decreasing from
3.572 . . . to 3.0265 . . . ; in a longer range, it is around 3.03, that is, close to the value of 3.0425 . . .
found for the infinitely rigid structure loaded with a concentrated force at joint 1.

6. Concluding remarks

It is ascertained that, proceeding from bottom to top, the lateral components of the displacements of
internal joints of the inextensional mechanism in Figure 4 show an exponential decay, where the dis-
placements decrease much faster than a geometric progression, and the forces in the internal bars of
Leonardo’s infinitely rigid structure in Figure 6 show an exponential growth according to a geometric
progression with common ratio 3.0425 . . . . If the members in Leonardo’s structure are linearly elastic
equal bars, then elastic deformations change the structural behavior. Though the lateral components
of the displacements of internal joints and the forces in internal bars show exponential-like decrease
and increase, respectively, the change is not as fast as in the case of the inextensional members. In the
investigated structure (with E A= 104 kN), the sequence of the lateral components of nodal displacements
has a ratio monotonically decreasing from 1.4426−1 to 3.2761−1, and the sequence of bar forces has a
ratio monotonically increasing from 1.2721 to 3.0352, that is, the ratio of change in both is approximately
the same. If the force unit is Newtons instead of pounds, then the force in bar {9, 10} of the infinitely rigid
structure is 22,031 N (Figure 6). As a consequence of the elastic properties of the structure, however,
this value is decreased to 736 N (Table 3), that is, to approximately one thirtieth of its value.

With numerical calculation we found that, with a decrease in the magnitude of the load F on the elastic
structure, while keeping monotonicity, the ratio in the sequence of forces in the internal bars increases,
and converges to 3.042555 . . . , the common ratio of the geometric progression of bar forces in the
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infinitely rigid structure. For F = 10−5 N, for instance, the ratio varies from 3.0368 . . . to 3.042553 . . . .
The nodal displacements are less regular: the ratio monotonically decreases from 3.0336−1 to 3.2891−1.

The determination of the order of a chain-like infinitesimal mechanism was straightforward. This
can give the impression that the determination of the order of an infinitesimal mechanism is an easy
task. Unfortunately, this is not the case. Connelly called attention to difficulties [Tarnai 1989; Connelly
and Servatius 1994] which partly come from the definitions of higher-order infinitesimal mechanisms.
One problem can be if the elongation functions are not analytic at a point, for instance, where there is
a cusp in the configuration space. This particular problem can be resolved by using series expansion
with fractional exponents [Gáspár and Tarnai 1994]. Another, quite general mathematical problem is the
parametrization. The displacement vector of any joint can be given as a function of parameter u, but we
can define a new displacement vector as a function of parameter u2. The result of this reparametrization
is that the order of the infinitesimal mechanism will be twice as large as for the original parametrization.
Consequently, the order can be arbitrarily large. This problem is not yet settled. A very promising
approach was presented recently by [Stachel 2007] who suggested that the definition of an n-th order
infinitesimal mechanism must be based on irreducible representations of flexes. Although the notion
of a higher-order infinitesimal mechanism is a purely geometrical term, to simplify the analysis Koiter
suggested the introduction of elasticity in the bars, that is, the use of the elastic energy function of
the assembly and interpretation of the infinitesimal mechanism as the buckling mode of the assembly
under zero loading. Koiter’s idea overcomes the difficulties mentioned by Connelly, and, indeed, was
successfully applied, for instance, by [Salerno 1992].

Our analysis in Section 5.2 has shown that the forces in Leonardo’s structure show an exponential
growth with ratio 3.0425 . . . , which is different from Leonardo’s own value of 3. However, it is possible
to introduce a modification to the original structure to fit this number (see Figure 10). Now each cable

Figure 10. The modified inextensional
bar-and-joint model of Leonardo’s structure.
The forces in the bars, arising from a one-pound
vertical load at the lowest internal joint, are written
on the respective bars. The forces in both bars of a
three-pinned frame unit are equal. In the upper right-
hand corner, the equilibrium of a joint is shown by the
vector triangle of bar forces acting at the joint.
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is connected to the middle point of the next one at an angle of 90◦+ϕ in a symmetric way as shown in
the inset in the upper right-hand corner.
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