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STUDY OF MULTIPLY-LAYERED CYLINDERS MADE OF FUNCTIONALLY
GRADED MATERIALS USING THE TRANSFER MATRIX METHOD

Y. Z. CHEN

This paper provides a general solution for a multiply-layered cylinder made of functionally graded ma-
terials. The Young’s modulus is assumed to be an arbitrary function of r , and the Poisson’s ratio takes
a constant value. The first step is to study the single-layer case (a < r < b). A transfer matrix is
defined, relating the values of radial stress and displacement at the initial point (r = a) to those at the end
point (r = b). The matrix is evaluated on the basis of two fundamental solutions, which are evaluated
numerically. The final solution is obtained by using many transfer matrices for layers, continuation
conditions between layers, and boundary conditions at inner and outer boundaries. Several numerical
examples are provided.

1. Introduction

Functionally graded materials (FGMs) are widely used in industries such as space structures and fusion
reactors. Therefore, elastic analysis of structures made of FGMs has attracted many researchers. FGMs
are nonhomogeneous elastic mediums. The elastic properties of FGMs are variable with the respect to
spatial location. The difficulties of solving elastic FGM problems can be easily seen. Taking the plane
elasticity problem of FGMs as an example, the complex variable method is no longer useful in this case.
Therefore, it is necessary to develop appropriate methods to solve some problems for FGMs.

Clearly, it is difficult to study the three-dimensional elasticity of FGMs. Researchers have paid atten-
tion to some particular problems for FGMs. For example, crack problems for an elastic medium made
of FGMs were investigated in [Erdogan and Wu 1997; Jain et al. 2004; Fotuhi and Fariborz 2006].

One topic to investigate regarding FGMs is the stress distribution in a thick cylinder of FGMs. The
elasticity problem of a homogeneous hollow circular cylinder has been solved by [Muskhelishvili 1963;
Timoshenko and Goodier 1970].

Earlier research for thick cylinder FGMs was proposed [Horgan and Chan 1999a; 1999b]. A solution
for the pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic
materials was achieved. The material and the thermal properties were assumed to vary along the radius
r according to a power law function.

Recently, many research works have been devoted to the hollow circular cylinder problem for FGMs
[Zhang and Hasebe 1999; Shao 2005; Dryden and Jayaraman 2006; Shi et al. 2007; Tutuncu 2007;
Batra and Iaccarino 2008; Chen and Lin 2008; Theotokoglou and Stampouloglou 2008; Li and Peng
2009]. In most of the studies, the Young’s modulus is assumed in the form of exponential or power
law functions. Thus, the suggested techniques are no longer useful for an arbitrary Young’s modulus
distribution. In the case of a Young’s modulus expression E(r) = E0(r/a)n , a closed form solution
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for displacement was obtained [Horgan and Chan 1999a; 1999b]. In the case of a Young’s modulus
expression E(r)= E0 expβr , an ordinary differential equation for displacement was suggested [Tutuncu
2007]. To obtain the final solution, one needs to complete a detailed derivation.

If the Young’s modulus is an arbitrary function, one needs to derive a numerical method to solve the
problem. For example, the associated elastic problem is reduced to a Fredholm integral equation. By
approximately solving the resulting equation, the distributions of the radial and circumferential stresses
can be determined [Li and Peng 2009].

Some papers were devoted to a multiply-layered cylinder [Zhang and Hasebe 1999; Shi et al. 2007].
However, the homogeneous condition was assumed for individual layers. This means that a cylinder
of FGMs is approximated by many homogeneous layers, and the nonhomogeneous condition is not
considered in individual layers.

In addition, some papers were devoted to the hollow sphere problem for FGMs [Eslami et al. 2005;
You et al. 2005; Chen and Lin 2008]. The solution technique is approximately same as in the case of a
hollow cylinder.

Axisymmetric displacements and stresses in functionally-graded hollow cylinders, disks, and spheres
subjected to uniform internal pressure were determined using plane elasticity theory and the complemen-
tary functions method [Tutuncu and Temel 2009].

This paper provides a general solution for a multiply-layered cylinder of FGMs. The Young’s modulus
is assumed to be an arbitrary function with respect to r , and the Poisson’s ratio takes a constant value.
The first step is to study the single-layer case. A transfer matrix M is defined for the single-layer case
(a < r < b). The matrix relates the values of radial stress and displacement at the initial point (r = a) to
those at the end point (r = b). The matrix is evaluated on the basis of two fundamental solutions, which
are evaluated numerically. By using many transfer matrices for layers, continuation conditions between
layers, and boundary conditions at inner and outer boundaries, the final solution is obtained.

The suggested formulation can be used in the case of an arbitrary Young’s modulus. In this paper,
the Young’s modulus is assumed in the form of an exponential function with respect to r , and Poisson’s
ratio takes a constant value. Numerical examples for a three-layered cylinder are carried out. It is found
that the factor β in the expression of the Young’s modulus has significant influence on the distribution
of stresses.

2. Boundary value problem for a single-layer cylinder

Since the solution for a multiply-layered cylinder has a close relation to the case of a single-layer cylinder,
a formulation for the boundary value problem for a single-layer cylinder is introduced below.

2.1. Elastic analysis for a thick cylinder made of FGM. A long cylinder with inner radius a and outer
radius b is investigated (Figure 1). The cylinder is assumed under some traction or displacement boundary
value conditions at the inner boundary (r = a) and outer boundary (r = b).

The problem can be studied in polar coordinates (r, θ). In the symmetrical deformation case, the
displacement in the r -direction is denoted by u. Two strain components can be expressed as follows (see
[Muskhelishvili 1963; Timoshenko and Goodier 1970]):

εr =
du
dr
, εθ =

u
r

(u = εθr). (1)
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Figure 1. Two typical boundary conditions: (a) σr,a =−q0 at r = a, σr,b = 0 at r = b
and (b) σr,a =−q0 at r = a, ub = 0 at r = b.

From (1), the compatibility condition of displacement will be

εr =
d(rεθ )

dr
, or εr = εθ + r

dεθ
dr
. (2)

For the stress components σr and σθ , the equilibrium equation takes the form

dσr

dr
+
σr − σθ

r
= 0. (3)

Equation (3) can be satisfied automatically, if one introduces a function F(r) and lets

σr =
F(r)

r
, σθ =

d F
dr
. (4)

The following derivation is suitable not only for the continuous case of the Young’s modulus E(r) and
the Poisson’s ratio ν(r) but also for the discontinuous case of E(r) and ν(r). Therefore, the suggested
approach can be used in the general case.

In this paper, it is assumed that the Poisson’s ratio ν (= 0.3) takes a constant value. In addition, one
type of the Young’s modulus takes the following form:

E(r)= E0 exp[β(r −a)/(b−a)], with E(r)|r=a = E0, E(r)|r=b = E0 expβ (a ≤ r ≤ b), (5)

where E0 is a constant, and β takes a negative or positive value and represents the property of the FGMs,
hereafter called the material parameter. It will be seen later that the suggested technique is valid for an
arbitrary function E(r).

In the formulation, the material properties of the FGM are continuous functions of position. Generally,
the material coefficients of FGM manufactured in a perfect process are changed in space without acuity.
From (5), we can define a ratio by γ = E(r)|r=b/E(r)|r=a or γ = exp(β). The value γ represents the
ratio of the Young’s modulus at the outer boundary and at the inner boundary. If β = 0, β = 0.1, β = 0.2,
and β = 1, we have γ = 1, γ = 1.1052, γ = 1.2214, and γ = 2.7183, respectively. Therefore, (5) can
model the material properties of FGM when the properties are not changed significantly along the radial
direction.

In the plane strain case, the stress-strain relation will be

εr =
1− ν2

E(r)

(
σr −

ν

1−ν
σθ

)
, εθ =

1− ν2

E(r)

(
σθ −

ν

1−ν
σr

)
, (6)
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where the Young’s modulus E(r) is an arbitrary function. From (1), (4), and (6), the displacement
component u can be expressed as

u = εθr =
(1− ν2)r

E(r)

(d F
dr
−

ν

1−ν
F
r

)
. (7)

Substituting (4) into (6) and then (6) into (2) yields

d2 F
dr2 +

1
r

d F
dr
−

F
r2 −

(d F
dr
−

ν

1−ν
F
r

)
p(r)= 0, where p(r)=

1
E(r)

d E(r)
dr

(or 3(F(r))= 0). (8)

If the function E(r) is given by (5), we have

p(r)= β

b−a
. (9)

Alternatively, if E(r) is defined by

E(r)= E0[1+(expβ−1)(r−a)/(r−b)], E(r)|r=a=E0, E(r)|r=b=E0 expβ (a ≤ r ≤ b), (10)

we have

p(r)=
expβ − 1

b− a+ (expβ − 1)(r − a)
. (11)

The problem is studied within the range a ≤ r ≤ b. In the analysis, the following notations are used:

σr |r=a = σr,a, u|r=a = ua, (12)

σr |r=b = σr,b, u|r=b = ub. (13)

In (12), σr,a and σr,b denote the stress component σr at r = a and r = b, and ua and ub denote the
displacement u at r = a and r = b, respectively.

For a single-layer cylinder case, there are four possibilities for formulating the boundary problems.
They are as follows:

σr,a = f1, σr,b = f2, (14a)

σr,a = f1, ub = g2, (14b)

ua = g1, σr,b = f2, (14c)

ua = g1, ub = g2, (14d)

where f1, f2, g1, and g2 are values given beforehand.

2.2. Formulation of the transfer matrix for the case of a single-layer cylinder. Physically, if the two
initial values for σr,a and ua are assumed at r = a, we have definite values for σr,b and ub at r = b. This
relation can be written in the form

σr,b = M11σr,a +M12ua, ub = M21σr,a +M22ua, (15)

or in matrix form
{σr,b ub}

T
= M {σr,a ua}

T . (16)

The matrix M is called the transfer matrix hereafter.
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The introduced matrix M is used not only in the single-layer case but also in the multiply-layered
case. In the following analysis, a technique for finding the matrix M will be introduced. In the first step,
two fundamental functions s1(r) and s2(r) are introduced:

3(s1(r))= 0, s1|r=a = 1, ds1
dr

∣∣∣
r=a
= 0 (first fundamental function), (17)

3(s2(r))= 0, s2|r=a = 0, ds2
dr

∣∣∣
r=a
= 1 (second fundamental function), (18)

where the operator 3(F(r)) has been defined by (8).
From the two fundamental solutions and (4), (7), (17), and (18), we have

σr |r=a =
1
a

and u|r=a =−
(1+ ν)ν

E(a)
for the first fundamental solution s1(r), (19)

σr |r=a = 0 and u|r=a =
(1− ν2)a

E(a)
for the first fundamental solution s2(r). (20)

It is assumed that the studied solution for F(r) is expressed as

F(r)= c1s1(r)+ c2s2(r). (21)

Thus, from (19), (20) and (21), we have

σr,a =
1
a

c1, ua =
(1− ν2)a

E(a)

(
−

ν

(1− ν)a
c1+ c2

)
. (22)

Equation (22) may be rewritten as

c1 = aσr,a, c2 =
ν

1− ν
σr,a +

E(a)
(1− ν2)a

ua, (23)

or in matrix form
{c1 c2}

T
= Q {σr,a ua}

T , (24)

where
Q11 = a, Q12 = 0, Q21 =

ν

1−ν
, Q22 =

E(a)
(1− ν2)a

. (25)

Now we consider the conditions at r = b. After numerical integration, from the two fundamental
solutions we obtain

σ 1∗
r |r=b = σ

1∗
r,b, u1∗

|r=b = u1∗
b for the first fundamental solution s1(r). (26)

σ 2∗
r |r=b = σ

2∗
r,b, u2∗

|r=b = u2∗
b for the second fundamental solution s2(r). (27)

The values of σ 1∗
r,b and u1∗

b can be obtained from (4) and (7) by numerically integrating the expression
for s1(r) and taking r = b, and similarly for σ 2∗

r,b and u2∗
b .

From (21), (26) and (27), we have

σr,b = σ
1∗
r,bc1+ σ

2∗
r,bc2, ub = u1∗

b c1+ u2∗
b c2, (28)

or in matrix form
{σr,b ub}

T
= P {c1 c2}

T , (29)
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where
P11 = σ

1∗
r,b, P12 = σ

2∗
r,b, P21 = u1∗

b , P22 = u2∗
b . (30)

Combining (24) with (29), we have

{σr.b ub}
T
= M {σr,a ua}

T , (31)

where the matrix M is defined by
M = P Q. (32)

As claimed previously, once the two initial values for σr,a and ua are assumed at r = a, we have
definite values for σr,b and ub at r = b. The relation shown by (31) is useful for both the single-layered
case and the multiply-layered case.

The evaluation of matrix P depends on the numerical solution of the ordinary differential equation (8).
For example, the two components P11 = σ

1∗
r,b and P12 = u1∗

b are results of the initial boundary value
problem for function s1(r) defined by (17). In the numerical integration, the Runge–Kutta method is
used [Hildebrand 1974]. The components for matrix Q have been defined by (25). Finally, the matrix
M can be evaluated from (32) immediately.

Below, we try to solve the boundary value problem

σr,a = f1, σr,b = f2. (14a)

Substituting condition (14a) into (15) or (31) yields

f2 = M11 f1+M12ua or ua = ( f2−M11 f1)/M12. (33)

Substituting the given σr,a = f1 value and the value ua from (33) into (24), two values c1 and c2 are
obtained. Finally, the function F(r)= c1s1(r)+ c2s2(r) shown by (21) is obtained. This means that the
whole stress field for the single-layer cylinder is obtainable.

2.3. Numerical solution in single-layer case.

Example 1. In this example, the Young’s modulus is E(r)= E0 exp{β(r−a)/(b−a)}, defined by (5). The
cylinder is subject to an inner pressure q0 and the boundary conditions take the following form (Figure 1):

σr,a = σr |r=a =−q0, σr,b = σr |r=b = 0. (34)

Substituting f1 = −q0 and f2 = 0 into (33), we have ua = M11q0/M12. As claimed previously,
from two values σr,a (= −q0) and ua (= M11q0/M12), and two values c1 and c2, the function F(r) =
c1s1(r)+ c2s2(r) and the whole stress field for the single-layer cylinder are obtainable.

Note that the Young’s modulus is expressed by E(r)= E0 exp{β(r − a)/(b− a)}, and changes from
E0 at r = a to E0 expβ at r = b. In the solution of the differential equation, N = 200 divisions are used
in the integration [Hildebrand 1974]. The calculated results for the stresses can be expressed as

σr = f1(β, r)q0, σθ = f2(β, r)q0, σe = σθ − σr = f3(β, r)q0 ( f3 = f2− f1). (35)

The calculated results for f1, f2, and f3 under the conditions a/b = 0.5 and β ∈ {−0.5, 0, 0.5, 1, 1.5}
are plotted in Figures 2, 3, and 4. Since E(a) = E0 and E(b) = E0 expβ, we have E(b)/E(a) =
0.6065, 1.0000, 1.6487, 2.7183, and 4.4817 for β =−0.5, 0, 0.5, 1, and 1.5, respectively.
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We see from the general theory of strength of materials that the strength of the cylinder mainly depends
on the stress component σe = σθ − σr (or f3(β, r)). From Figure 4 we see that the σe distribution along
the interval a ≤ r ≤ b varies rapidly in the homogeneous material case. For example, at β = 0, we have
f3 = 2.6667, 1.1852, and 0.6667, for (r −a)/(b−a)= 0, 0.5, and 1.0, respectively. In addition, a higher
β value can considerably improve the σe distribution along the interval (a ≤ r ≤ b). For example, at
β = 1.5, we have f3 = 1.7283, 1.3428, and 1.5045, for (r − a)/(b− a)= 0, 0.5, and 1.0, respectively.
This means that if outer portion of the cylinder is more rigid, the safe condition is better. On the contrary,
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Figure 2. Nondimensional radial stress f1(β, r), for the σr component in the cylinder,
with a/b = 0.5, inner pressure q0, and E(r)= E0eβ(r−a)/(b−a) (see (35) and Figure 1).
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cylinder, with a/b = 0.5, inner pressure q0, and E(r) = E0eβ(r−a)/(b−a) (see (35) and
Figure 1).
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Figure 4. Nondimensional stress f3(β, r), for the σe=σθ−σr component in the cylinder,
with a/b = 0.5, inner pressure q0, and E(r)= E0eβ(r−a)/(b−a) (see (35) and Figure 1).

if the outer portion of the cylinder is less rigid, the safe condition becomes worse (see the curve for
β =−0.5 in Figure 4). It is found that the plotted results coincide with those obtained previously [Chen
and Lin 2008].

Example 2. In this example, the Young’s modulus is E(r)= E0[1+ (expβ− 1)(r −a)/(r −b)], defined
by (10). The other computed conditions are the same as in Example 1. The computed stresses are
still expressed by (35). The calculated results for f1, f2, and f3, under the conditions a/b = 0.5 and
β ∈ {0.5, 0, 0.5, 1, 1.5} are plotted in Figures 5, 6, and 7.
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Figure 5. Nondimensional radial stress f1(β, r), for the σr component in the cylinder,
with a/b= 0.5, inner pressure q0, and E(r)= E0[1+ (eβ−1)(r−a)/(b−a)] (see (35)
and Figure 1).
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In Example 1, for β = 1.5, we have f3 = 1.7283, 1.3428, and 1.5045, for (r − a)/(b− a) = 0, 0.5,
and 1.0, respectively. However, in the present example, using Young’s modulus of linear distribution, we
have f3 = 1.5398, 1.4289, and 1.2626, for (r −a)/(b−a)= 0, 0.5, and 1.0, respectively (from Figure 7).
The stress distribution in the present case is slightly better than that in Example 1.

In both examples E(r)|r=a = E0 and E(r)|r=b = E0 expβ, Figures 2–4 and Figures 5–7 have similar
shapes.
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Figure 6. Nondimensional circumferential stress f2(β, r), for the σθ component in the
cylinder, with a/b = 0.5, inner pressure q0, and E(r)= E0[1+ (eβ − 1)(r−a)/(b−a)]
(see (35) and Figure 1).
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Figure 7. Nondimensional stress f3(β, r), for the σe=σθ−σr component in the cylinder,
with a/b = 0.5, inner pressure q0, and E(r)= E0[1+ (eβ − 1)(r−a)/(b−a)] (see (35)
and Figure 1).
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3. Solution for multiply-layered cylinder using the transfer matrix method

Based on the concept of the transfer matrix, a solution for multiply-layered cylinder is introduced below.

3.1. Procedure for the solution of multiply-layered cylinder using the transfer matrix method. The
formulation for a cylinder with three layers is introduced below. The cylinder is composed of three
layers along the intervals a j ≤ r ≤ b j ( j = 1, 2, 3) (see Figure 8). In each layer, the Young’s elastic
modulus is assumed as follows:

E ( j)(r)= E ( j)
0 exp[β j (r − a j )/c], a j ≤ r ≤ b j ( j = 1, 2, 3, with c = b− a), (36)

where E ( j)
0 and β j ( j = 1, 2, 3) are given beforehand.

In derivation, the boundary values at the initial point for j-th layer ( j = 1, 2, 3) are denoted by
σ
( j)
r,in, u( j)

in , and at the end point by σ ( j)
r,end, u( j)

end ( j = 1, 2, 3) (see Figure 5). Clearly, the continuation
condition between layers can be expressed in the form

σ
( j)
r,end = σ

( j+1)
r,in , u( j)

end = u( j+1)
in ( j = 1, 2). (37)
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Figure 8. A cylinder with three layers.
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In addition, the relevant matrices are denoted by Q( j), P ( j), and M( j) ( j = 1, 2, 3) — see (24) (29),
(31), and (32) — and the coefficients before the fundamental solutions by c( j)

1 and c( j)
2 — (21).

From the analysis in the single-layer case, or from (31), we have

{σ
( j)
r,end u( j)

end}
T
= M( j)

{σ
( j)
r,in u( j)

in }
T ( j = 1, 2, 3). (38)

It is preferable to write (38) in the form

σ
(1)
r,end = σ

(2)
r,in = M (1)

11 σ
(1)
r,in+M (1)

12 u(1)in , u(1)end = u(2)in = M (1)
21 σ

(1)
r,in+M (1)

22 u(1)in , (39)

σ
(2)
r,end = σ

(3)
r,in = M (2)

11 σ
(2)
r,in+M (2)

12 u(2)in , u(2)end = u(3)in = M (2)
21 σ

(2)
r,in+M (2)

22 u(2)in , (40)

σ
(3)
r,end = M (3)

11 σ
(3)
r,in+M (3)

12 u(3)in , u(3)end = M (3)
21 σ

(3)
r,in+M (3)

22 u(3)in . (41)

From (39)–(41) we see that there are six equations with eight arguments: σ (1)r,in, u(1)in , σ (2)r,in, u(2)in , σ (3)r,in, u(3)in ,
σ
(3)
r,end, and u(3)end.

When the three-layered cylinder subjected to an inner pressure with intensity q0 (at r = a1 = a) and
the outer boundary is traction free (at r = b3 = b), the following boundary value problem is formulated:

σ
(1)
r,in =−q0, σ

(3)
r,end = 0 (or σr,a =−q0, σr,b = 0). (42)

Substituting this condition into (39), we will obtain a solution for six unknowns u(1)in , σ
(2)
r,in, u(2)in , σ (3)r,in,

u(3)in , and u(3)end from the six algebraic equations (39)–(41). In addition, from (24), we have

{c( j)
1 c( j)

2 }
T
= Q( j)

{σ
( j)
r,a u( j)

a }
T ( j = 1, 2, 3). (43)

Finally, the undetermined coefficients c( j)
1 and c( j)

2 ( j = 1, 2, 3) before the fundamental solutions are
obtained. This means that the final solution is obtained.

Clearly, if the boundary condition is different from the one in (42), the problem can be solved in a
similar manner.

3.2. Numerical example for three-layered cylinder.

Example 3. In Example 1, the case of β = 1.5 can provide a better distribution for the stress component
σe = σθ − σr . In the present example, a modification for this case is carried out. For the case of three
layers, the Young’s elastic modulus is assumed as follows (see Figure 8):

E (1)(r)= E0 exp
β(1−α)(r − a1)

c
(a1 ≤ r ≤ b1, with c = b− a), (44a)

E (2)(r)= E (2)0 exp
β(r − a2)

c
(a2 ≤ r ≤ b2), (44b)

E (3)(r)= E (3)0 exp
β(1+α)(r − a3)

c
(a3 ≤ r ≤ b3), (44c)

where a1 = a, a2 = b1 = (2a+ b)/3, a3 = b2 = (a+ 2b)/3, and b3 = b. In (44), the factor α represents
a modification to the case shown by (5).

From the continuation condition for E ( j)(r) ( j = 1, 2, 3), at r = a2 and r = a3, we find

E (2)0 = E0 exp
β(1−α)

3
, E (3)0 = E0 exp

β(2−α)
3

. (45)
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When the three-layered cylinder is subjected to an inner pressure with intensity q0 (at r = a1 = a) and
the outer boundary is traction free (at r = b3 = b), the following boundary value problem is formulated:

σ
(1)
r,in =−q0, σ

(3)
r,end = 0 (or σr,a =−q0 at r = a, σr,b = 0 at r = b). (46)

The procedure for the solution has been suggested in the last section. In the computation, we choose
a/b = 0.5, β = 1.5, and α ∈ {−0.5,−0.25, 0, 0.25, 0.5}. The assumed Young’s modulus is denoted by

E(r)= h(β, α, r)E0. (47)
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Figure 9. Young’s elastic modulus h(β, α, r) (E(r)/E0) (see (44), (45), (47), and Figure 8).
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layer cylinder, with a/b = 0.5 and σr,a =−q0, σr,b = 0 (see (48) and Figure 8).
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In addition, the computed stresses are expressed by

σr = g1(β, α, r)q0, σθ = g2(β, α, r)q0, σe = σθ − σr = g3(β, α, r)q0 (g3 = g2− g1). (48)

The function h(β, α, r) and the computed g1(β, α, r), g2(β, α, r), and g3(β, α, r) are plotted in Figures
9–12. For the homogeneous case of the Young’s modulus or β = 0, the relevant results are also plotted
in those figures.

It is seen from Figure 12 that the condition of β = 1.5 and α =−0.5 can provide a better distribution
for the σe component. In fact, in the homogeneous case (β = 0), we have σe = 0.6667 at r = a, and
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Figure 11. Nondimensional circumferential stress g2(β, α, r), for the σθ component in
a three-layer cylinder, with a/b = 0.5 and σr,a =−q0, σr,b = 0 (see (48) and Figure 8).
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r−a
b−a

N α =−0.5 α =−0.25 α = 0 α = 0.25 α = 0.5

1/6 40 0.7050683358 0.7319400382 0.7577991468 0.7825211369 0.8059881607
1/6 120 0.7050683357 0.7319400381 0.7577991467 0.7825211368 0.8059881604
1/6 200 0.7050683357 0.7319400381 0.7577991467 0.7825211368 0.8059881604
1/2 40 1.0416074339 0.9931088747 0.9446411237 0.8963340949 0.8483207310
1/2 120 1.0416074337 0.9931088746 0.9446411236 0.8963340948 0.8483207308
1/2 200 1.0416074337 0.9931088746 0.9446411236 0.8963340948 0.8483207308
5/6 40 1.2327192411 1.2559360854 1.2771271334 1.2961108296 1.3127162028
5/6 120 1.2327192410 1.2559360853 1.2771271333 1.2961108295 1.3127162025
5/6 200 1.2327192410 1.2559360853 1.2771271333 1.2961108295 1.3127162025

Table 1. Comparison results for nondimensional radial stress g2(β, α, r), for the σθ
component in a three-layer cylinder, with a/b = 0.5, β = 1.5, and σr,a =−q0, σr.b = 0,
and various numbers N of intervals used in the integration. See (48) and Figure 8.

σe = 2.6667 at r = b. Thus, the ratio σe|r=b/σe|r=a = 0.25 is achieved. That is to say, the outer boundary
has too high a safety factor when σe at the inner boundary point reaches its limit value. However, under
condition β = 1.5 and α =−0.5, we have σe = 1.5609 at r = a, and σe = 1.2785 at r = b. In this case,
the relative ratio is σe|r=b/σe|r=a = 0.8087.

To gauge the accuracy of the computations, some results for g2(β, α, r) (σe = q0) were calculated
using N = 40, 120, and 200 divisions in the integration. They are listed in Table 1, where we see that
even 40 divisions suffice to give an accuracy of nine decimals. The choice N = 200 was far beyond the
necessary divisions for providing accurate results.

Example 4. In this example, all parameters, E0, β, α, a1= a, a2= b1= (2a+b)/3, a3= b2= (a+2b)/3,
and b3 = b, are the same as those used in Example 1. However, the following boundary condition is
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Figure 13. Nondimensional radial stress g1(β, α, r), for the σr component in a three-
layer cylinder, with a/b = 0.5 and σr,a =−q0, ub = 0 (see (48) and Figure 8).
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assumed:
σ
(1)
r,in =−q0, u(3)end = 0 (or σr,a =−q0 at r = a, ub = 0 at r = b). (49)

In this case, substituting σ (1)r,in =−q0, u(3)end = 0, into (39), we have a solution for u(1)in , σ (2)r,in, u(2)in , σ (3)r,in,
u(3)in , and σ (3)r,end. The further steps are the same as in Example 3.

In computation, we choose a/b = 0.5, β = 1.5, α = −0.50,−0.25, 0, 0.25 and 0.5. The assumed
Young’s modulus E(r)=h(β, α, r)E0 is same as shown by (47). The computed stresses σr =g1(β, α, r)q0,
σθ = g2(β, α, r)q0, σe = σθ − σr = g3(β, α, r)q0 (g3 = g2− g1), are still expressed by (48).

The function h(β, α, r) is the same as plotted in Figure 9. The computed g1(β, α, r), g2(β, α, r), and
g3(β, α, r) are plotted in Figures 13–15.
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Figure 14. Nondimensional circumferential stress g2(β, α, r), for the σθ component in
a three-layer cylinder, with a/b = 0.5 and σr,a =−q0, ub = 0 (see (48) and Figure 5).
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It is seen from Figure 15 that the condition β = 1.5 and α = −0.5 can provide a better distribution
for the σe component. In fact, in the homogeneous case (or β = 0), we have σe = 1.2308 at r = a, and
σe = 0.3077 at r = b. Thus, the ratio σe|r=b/σe|r=a = 0.25 is achieved. That is to say, the outer boundary
has too much safety factor when σe at the inner boundary point reaches its limit value. However, under
the condition β = 1.5 and α = −0.5, we have σe = 0.8934 at r = a, and σe = 0.3343 at r = b. In this
case, the relative ratio is σe|r=b/σe|r=a = 0.3742.

However, in Example 4, the improvement for the σe component is not as much as in Example 3. For
example, we have σe|r=b/σe|r=a = 0.8087 and 0.3742 in Examples 3 and 4, respectively, which can be
seen from Figures 12 and 15.

4. Conclusion

The transfer matrix method provides an effective way to solve the problem of a multiply-layered cylinder
of functionally graded materials (FGMs). In fact, the transfer matrix for the j-th layer links the radial
stress and displacement at the initial point to those at the end point of the layer. Those matrices for
all layers can be computed and prepared beforehand, and are obtained from two fundamental solutions.
After linking all matrices and considering the continuation condition between layers and the boundary
conditions, the original problem is solved. In the formulation, the Young’s modulus can be arbitrary for
the individual layer. In addition, the solution of the mixed boundary value problem is easy to evaluate.

The merit of the suggested method can be expressed alternatively. In fact, the differential operator
defined in the left hand of (8) has the following property:

3(cs(r))= c3(s(r)) (c is a constant). (50)

Therefore, if s1(r) and s2(r) are two solutions of the ordinary differential equation

3(s(r))= 0, (51)

the function s(r)= c1s1(r)+ c2s2(r) must be a solution of (51). Clearly, the suggested solutions s1(r)
and s2(r) are the solutions from two particular initial conditions. Once the two constants c1 and c2 are
appropriately assumed, the boundary condition at the end point (r = b) will be satisfied. That is to say,
the boundary value problem of the ordinary differential equation is changed into the initial boundary
value problem.

It is found from the computed results that the influence of the inhomogeneity from FGMs on the stress
distribution is significant. From the theory of strength of materials, the stress component σe = σθ − σr

is an appropriate value to predict the component’s safety. From Figure 4, we see that a higher value of
β, for example β = 1.5 can provide a better distribution for σe. Alternatively speaking, if the outer layer
(r = b) is more rigid, the safe condition of cylinder is better.
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COMPUTATIONAL SHELL MECHANICS BY HELICOIDAL MODELING
I: THEORY

TEODORO MERLINI AND MARCO MORANDINI

Starting from recently formulated helicoidal modeling in three-dimensional continua, a low-order kine-
matical model of a solid shell is established. It relies on both the six degrees of freedom (DOFs) on the
reference surface, including the drilling DOF, and a dual director — six additional DOFs — that controls
the relative rototranslation of the material particles within the thickness. Since the formulation pertains to
the framework of the micropolar mechanics, the solid shell mechanical model includes a workless stress
variable — the axial vector of the Biot stress tensor, referred to as the Biot-axial — that allows us to
handle nonpolar materials. The local Biot-axial is approximated with a linear field across the thickness
and relies on two vector parameters. On the reference surface, the dual director is condensed locally
together with one Biot-axial parameter, leaving the surface strains and the other Biot-axial parameter as
the basic variables governing the two-dimensional internal work functional.

The continuum-based shell mechanics are cast in weak incremental form from the beginning. They
yield the two-dimensional nonlinear constitutive law of the shell in incremental form, built dynamically
along the solution process. Poisson thickness locking, related to the low-order kinematical model, is pre-
vented by a dynamical adaptation of the local constitutive law. No hypotheses are introduced that restrict
the amplitudes of displacements, rotations, and strains, so the formulation is suitable for computations
with strong geometrical and material nonlinearities, as shown in Part II.

1. Introduction

This study belongs to the research field, very prolific in the eighties and nineties, aimed at writing non-
linear shell mechanics with a full and consistent account of the rotation of the material surface particles.
In the present decade, however, the scientific community has seemed to desist from seeking a consistent
settlement of the drilling rotation and to focus again on more classical approaches to shell mechanics.
A recent work by the authors in three-dimensional finite elasticity has motivated a renewed interest in
formulations based on an explicit full three-parametric rotation field, which can be addressed now with
greater chance of success. Our present contribution to this research field is characterized by, and can
be said to be original in, two respects: on the one hand, a total adhesion to a consistent mechanical
formulation based on the micropolar description; on the other, the broad usage of an integral kinematic
field.

According to the micropolar description, the particle rotations are retained as primary unknowns,
even in the case of nonpolar materials. In three-dimensional solid mechanics, variational formulations
assuming independent rotation fields were pioneered in [Reissner 1965] and developed in [Fraeijs de

Keywords: nonlinear shell theory, micropolar shell variational mechanics, helicoidal modeling, geometric invariance, shell
constitutive equations, finite rotations and rototranslations, dual tensor algebra.
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Veubeke 1972; Atluri 1984; Reissner 1984; Bufler 1985; 1995; Atluri and Cazzani 1995]. Then, finite
elements were formulated starting, mostly, from the regularized principles proposed in [Hughes and
Brezzi 1989] and extended to finite elasticity in [Simo et al. 1992]; see also [Ibrahimbegović and Frey
1995; Sansour et al. 1996]. In such formulations, the rotation is introduced using the polar decomposition
theorem of the deformation gradient mostly like an appended constraint equation. Application of these
concepts to shell mechanics was pursued by several authors, mainly with the explicit motivation of
accommodating the drilling rotation; those principles were applied to either the two-dimensional domain
of the shell surface [Gruttmann et al. 1992; Wriggers and Gruttmann 1993; Ibrahimbegović 1994; Zhu
and Zacharia 1996], or the three-dimensional domain across the shell thickness [Li and Zhan 2000]. A
number of remarkable works were delivered, such as [Chróścielewski et al. 1992; Sansour and Bufler
1992; Sansour and Bednarczyk 1995; Wisniewski 1998]; these works also include important references
to the early approaches to finite rotations in shell mechanics. In [Wisniewski and Turska 2000; 2001;
2002] a formulation was proposed with a linear drilling rotation across the thickness to account for in-
plane twist. It should be noted that almost all the aforementioned works rely on strain measures of the
Biot type instead of the Green type and exploit a full three-parametric rotation tensor, different than the
two-parametric one used in the constrained rotation approach [Simo and Fox 1989]. Significant papers on
the parameterization of the rotation tensor are [Betsch et al. 1998; Ibrahimbegović et al. 2001; Wang and
Thierauf 2001]. Interestingly, in an early paper Badur and Pietraszkiewicz [1986] developed a nonlinear
Kirchhoff–Love shell theory from micropolar continuum variational mechanics, which is in spirit similar
to our approach, as described next.

Meanwhile, Merlini [1997] proposed a variational formulation for three-dimensional solid mechanics
based on a different approach. Starting from micropolar mechanics and invoking a constitutive postulate,
three equations governing the mechanics of nonpolar materials, that is, linear balance, angular balance,
and internal kinematical constraint, are consistently deduced. Correspondingly, two more variables —
the particle rotation and the workless axial vector of the Biot stress tensor, hereafter called the Biot-
axial — become clearly identified and join the displacement as primary unknown fields. Displacement,
rotation, and the Biot-axial are the mixed — and balanced — unknowns of an irreducible variational prin-
ciple referred to as the internally constrained principle of virtual work of the nonpolar medium. In the
continuum-based shell theory proposed in this paper, we adhere to this approach both for the reduction
from three-dimensional mechanics and for the subsequent two-dimensional mechanics of the material
surface. The local Biot-axial within the shell thickness is retained as a primary unknown, to be solved
as a function of an unknown field on the shell surface; then, this Biot-axial parameter surface field is
retained as a primary unknown of the material surface mechanics. The drilling DOF, as well as a drilling
twist, are implicitly accounted for by this extension to the shell surface of a mechanical formulation
consistently based on the micropolar description.

The second important feature that characterizes this work is related to the helicoidal modeling of the
continuum. Customarily, the micropolar description relies on two independent and uncoupled fields: the
displacements and the rotations. Alternatively, displacements and rotations may be coupled together into
a unique comprehensive kinematic field, referred to as the integral field of the rototranslations. This alter-
native representation of motion is already used nowadays in computational multibody dynamics [Borri
et al. 2000], and descends seemingly from the modeling of sections along space-curved beams [Borri and
Bottasso 1994]; in either case, however, the rototranslation field is defined over a one-coordinate domain,
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the time or a curvilinear abscissa as the case may be. The difficulties inherent in the representation of
the rototranslation field over a multicoordinate domain, as in the case of three-dimensional solids, were
overcome in [Merlini and Morandini 2004a], who proposed the helicoidal modeling of the continuum as
an alternative to the classical Euclidean modeling and provided the relevant variational mechanics. Their
work was completed with an original objective interpolation scheme [Merlini and Morandini 2004b] and
the formulation of a successful finite element [Merlini and Morandini 2005].

The present shell theory and its numerical implementation resort extensively to helicoidal modeling.
First, the three-dimensional solid across the thickness is modeled helicoidally. Though we rely on the sim-
plest scheme, with a constant generalized curvature through the thickness, the resulting low-order solid
shell model proves to be quite flexible: the proposed integral kinematic field gives the material particles
twelve coupled DOFs, six more than the underlying particle belonging to the shell surface, and this free-
dom proves advantageous in modeling saddles and buckles. Secondly, the two-dimensional material sur-
face is modeled helicoidally as well — an approach that proves a natural asset with curved shells. Thirdly,
the surface elements are interpolated helicoidally, so helping curved and curving low-order elements.

An outline of the proposed formulation follows. In this outline, we sometimes use the words “vector”
and “tensor” loosely, to capture the essence of certain objects whose precise nature will become clear
when they are introduced rigorously in the body of the paper.

• Material surface kinematics. Each material particle of the shell reference surface is identified by
an orientation-position tensor A (a total of 6 independent parameters). Deformation of the material
surface is described by a kinematical strain field ω (12 parameters).

• Solid shell kinematics. Each material particle of the shell body is identified via a constant-curvature
rototranslation along the transverse coordinate from the orientation-position of the parent particle
on the material surface. The curvature is related to a 6-parameter vector θ (referred to as the shell
dual director) in such a way that the shell kinematics does not depend on the gradient of θ on
the reference surface; so, the director can be assumed to belong to a piecewise constant field of
the material surface. Deformation of the solid shell yields a local kinematical strain depending
on the material surface strain field ω and on the field of the current dual director θ ′ (a total of 18
parameters).

• Solid shell mechanics. From the internally constrained principle of virtual work [Merlini and Moran-
dini 2005], the term of the internal work is considered; this term, for a hyperelastic nonpolar material,
is a function of the local strain and of the local Biot-axial stress. The latter is assumed to be linear
across the shell thickness, with the vector τ̂ as the constant part and the vector µ̂ controlling the
linear part. So, the internal work virtual functional is finally a function of ω, θ ′, τ̂ , and µ̂ (a total of
24 parameters on the reference surface domain), and of the relevant virtual variation variables. Lin-
earization of the virtual functional yields the virtual tangent functional, a function of the incremental
variation variables, too.

• Reduction to shell surface mechanics. The integral, over the shell thickness, of the volume density
of the internal work functionals gives the relevant surface densities. In such expressions, some quan-
tities work-conjugate to ω are found, as well as some quantities work-conjugate to θ ′, τ̂ , and µ̂; also,
the tangent operators mapping the incremental variation variables on the incremental work-conjugate
fields are found. All such integral quantities are nonlinear functions of the unknown surface fields,
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and are meant to be computed dynamically by numerical quadrature during the whole shell problem
solution.

• Shell constitutive equations. The shell director θ ′ and the Biot-axial parameter µ̂ are recognized
to be local surface variables. From the incremental form of the internal work virtual functional,
the equations to solve the local incremental variations for the remaining incremental variations can
be written. The main surface problem is statically condensed to a form where only the variation
variables relevant to ω and τ̂ appear (a total of 15 parameters). In this form, we may recognize the
true stress resultants work-conjugate to the component vectors of the material surface strain ω and
the integrated form of the polar decomposition theorem work-conjugate to the Biot-axial parameter
τ̂ , as well as the relevant tangent operators. It will be shown that the former integrals represent
the shell constitutive equations and the kinematical constraint of the material surface, and the latter
integrals the associated tangent map.

• Shell finite element. The internally constrained principle of virtual work is finally stated for the
material surface in its incremental form, using as internal work contributions the functionals dis-
cussed above. Then, this principle is approximated by the finite element method and a four-node
quadrilateral shell element is formulated in a similar way to the eight-node hexahedral solid element
in [Merlini and Morandini 2005]. The kinematic field is modeled by the helicoidal interpolation
between the six-DOF nodes and the Biot-axial parameter is assumed uniform over the element
domain.

The whole formulation is computation oriented. A sound variational formulation is applied to the solid
shell body and the weak form of the nonlinear governing equations is written in the incremental form from
the beginning. The approximation of the solid mechanics is of the finite element type, but is performed
in two separate steps: first, a helicoidal model is used through the thickness and a numerical integration
reduces the problem to a two-dimensional one; then, a helicoidal nonlinear interpolation is used on the
element surface to bring the problem to a discrete form. The numerical integration across the thickness
is performed at the quadrature points of the surface element. The surface problem is statically condensed
and the local variables θ ′ and µ̂ are allocated and updated at the quadrature points themselves. The
governing equations of the material surface mechanics are not explicitly written in strong form nor are
they necessary to the solution of the shell problem; the stress resultants as well as their derivatives with
respect to the material surface strains are computed dynamically during the nonlinear solution process.
A vectorial parameterization of the rototranslation and its consistent differentiation allows us to track
rotations unrestricted in size.

In the form presented above, however, the solid shell kinematics suffers a serious drawback doomed to
impair most shell analyses. The proposed constant-curvature rototranslation model allows for a transverse
normal strain that is uniform across the thickness, and is thus inconsistent with the alternate strain induced
by the Poisson effect in shell bending; in such circumstances, the so-called Poisson thickness locking
manifests, unless the local constitutive law is adjusted for plane-stress; see, for example, [Bischoff and
Ramm 2000] for an accurate discussion. In order to allow for unmodified three-dimensional constitutive
laws, the method of the enhanced assumed strains has been widely used to build effective solid shell ele-
ments based on kinematics of the Reissner–Mindlin kind (see, for example, [Büchter et al. 1994; Sansour
and Kollmann 2000; Klinkel et al. 2006], among others). Instead, a different approach is followed here,
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which also allows for unmodified three-dimensional nonlinear constitutive laws: the transverse normal
strain, say ε33, is regarded as a local, independent variable, disjoint from its kinematical counterpart;
from the incremental form of the constitutive equation the increment of ε33 is solved for the other strain
increments and the constitutive equation is condensed locally; ε33 is allocated at each quadrature point
across the thickness and updated at each iteration. A similar technique was suggested in [de Borst 1991],
whereas in [Klinkel and Govindjee 2002] it was proposed to start a separate iterative process to force
plane stress at each quadrature point; see also the implementation in [Campello et al. 2003].

The paper is organized as follows. The present article (Part I) begins with an introduction to helicoidal
modeling in three-dimensional solids (Section 2). Then, the material surface kinematics are formulated
in Section 3, and used in Section 4 to build the solid shell kinematical model. The solid shell mechanics
in the incremental form follow in Section 5, which includes the adaptation of the local constitutive law.
In Section 6, the integration across the thickness leads to the shell surface mechanics, and the shell
constitutive equations are formulated in incremental form. The companion article (Part II) contains the
shell element formulation and a broad selection of nonlinear test cases. Index-free notation is favored
throughout, but when necessary, Latin indexes are used for components spanning the range 1 to 3, and
Greek indexes for the surface components in the range 1 to 2. The Einsteinian rule of implicit summation
over repeated indexes is understood.

2. Overview of three-dimensional modeling

A quick introduction to helicoidal modeling is given in this section; for a more comprehensive discussion
refer to [Merlini and Morandini 2004a]. According to the polar description in continuum mechanics, a
solid body is regarded as a continuum set of infinitesimal yet three-dimensional material particles. We
limit ourselves to a special case of polar description, referred to as micropolar description, where the
directors embedded within each particle are not allowed to stretch and rotate relative to each other (see,
for example, [Kafadar and Eringen 1971; Eringen and Kafadar 1976] and references therein). In that
case, the material particles behave as infinitesimal rigid bodies.

2.1. Motion of a particle. The configuration of a material particle at point P in space is identified by
its position and by its orientation. Let’s embed a triad of vectors α j ( j = 1, 2, 3) within the particle.
With reference to an absolute frame made of an orthonormal triad of dimensionless unit vectors i j ≡ i j

and to the associated Cartesian axes x j departing from the origin O , the particle configuration can be
measured by the pair (x,α) of the position vector x = x j i j and the orientation tensor of the embedded
triad, α = α j ⊗ i j . Throughout this work, vectors α j are assumed to be mutually orthogonal unit vectors,
so α is an orthogonal tensor itself, namely a rotation from the identity I = i j ⊗ i j . This assumption is
not actually necessary, but it greatly simplifies things without losing generality.

Besides this commonly used way of describing the particle configuration, an alternative exists which
relies on the coupled pair (α, x×α), where x×α is the moment of the triad α with respect to the origin
O , chosen as the pole. That the pole is brought to coincide with the absolute origin is just a matter
of convenience. The dual algebra helps managing this kind of geometric pairs of vectors and tensors
(see, for example, [Angeles 1998] and references therein, or the recent survey [Pennestrì and Stefanelli
2007]). In fact, the pair (α, x × α) is conveniently represented by the dual tensor A = α + E x × α,
where E is the dual unity, a number such that E 6= 0 and E2

= E3
= · · · = 0. A dual tensor, like a dual
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Figure 1. Rototranslation of a particle between the orientopositions in two different configurations.

number, is composed of a primal part plus a dual part multiplied by E. Note that the dual part is always
dimensionally greater than the primal part by a length: within a kinematic context, such parts will be
often referred to as the angular part and the linear part, respectively. The opposite will occur in the
cokinematic vector space, where, for example, an applied force-and-couple ( f , c) shall be represented
by a dual vector f + E(c+ x× f ), whose primal part is the linear part (a force) and whose dual part is
the angular part (a moment).

The dual tensor
A= Xα = (I + E x×)α (1)

will be called hereafter the orientoposition tensor of the material particle. (Here and throughout the paper,
the notation v× denotes a skew-symmetric tensor having v as axial vector. It transforms a vector w into
the vector v×w.) In the factorization (1) of A, the tensor X is called the dual position tensor and is
easily seen to be orthogonal: X−1

= I − E x× = XT. Therefore, A is orthogonal too: A = A−T. (Of
course, the alternative form A= αX◦ = α(I + E x◦×) also holds, with x◦ = αTx.)

When the body moves to a new configuration, the particle’s orientoposition changes to, say, A′ = X ′α′;
see Figure 1. The particle rotates by Φ = α′αT and undergoes a rototranslation

H = A′AT
= X ′ΦXT. (2)

H is an orthogonal dual tensor too and can be factorized into two orthogonal tensors in sequence, specif-
ically the rotation Φ followed by a translation dual tensor T ,

H = TΦ = (I + E t×)Φ. (3)

Here, t = x′ − Φx is called the translation vector. This vector is different from the displacement
u= x′− x = t+ (Φ− I)x, when the particle rotates; the choice of the term translation for t is motivated
in [Borri et al. 2000; Merlini and Morandini 2004a].
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As orthogonal tensors, both the rotation and the rototranslation can be represented as exponential maps
of skew-symmetric tensors:

Φ = exp(ϕ×)=
∞∑

k=0

ϕ×k

k!
, (4)

H = exp(η×)=
∞∑

k=0

η×k

k!
, (5)

where ϕ is the rotation vector, and η=ϕ+Eρ is called the helix of the rototranslation. Also, T = exp(E t×).
It is worth noting that the rototranslation inherits all the properties of the rotation. As the latter

belongs to the special orthogonal Lie group SO(3), so the former can be shown to belong to a six-
dimensional extension of such Lie group [Borri et al. 2000]. In particular, an important issue concerning
rotations and rototranslations is their differentiation. It is well known that a differential rotation vector
ϕd characterizes the differentiation of a rotation tensor, that is, dΦΦT

= ϕd×. Analogously, a differential
helix ηd = ϕd+ Eρd characterizes the differentiation of the rototranslation tensor, dH HT

= ηd×. These
differential vectors are connected to the differentiations dϕ and dη by means of the differential maps
associated to the relevant exponential maps (see [Borri et al. 2000]):

ϕd = Γ dϕ, Γ = dexp(ϕ×)=
∞∑

k=0

ϕ×k

(k+ 1)!
, (6)

ηd =Λdη, Λ= dexp(η×)=
∞∑

k=0

η×k

(k+ 1)!
. (7)

Incidentally, the differential mapping tensor Γ provides a link between the linear part of the helix and
the translation vector, t = Γρ [Merlini and Morandini 2004b].

Now, let’s bring the rototranslation to the infinitesimal limit. The differential of the orientation is
described by means of a differential rotation vector, that is, dα = ϕd×α; analogously, the differential
of the orientoposition is described by means of a differential helix, dA= ηd× A. Recalling the factor-
ized form in (1) and resorting to the property Bc× = (Bc)× B, which holds true for any orthogonal
tensor B, it is easily seen that the angular part of ηd is just ϕd whereas the linear part is given by
ρd = dx+ x×ϕd = αd(αTx). This is a remarkable issue, that clearly points out that the tangent space
of this rototranslatory motion is controlled by a vectorial pair (ϕd, ρd) far different from the pair (dx,ϕd)

usually considered in classical mechanics. The differential helix ηd couples intimately the infinitesimal
rotations and displacements, with a significant effect in a helicoidally modeled variational context [Mer-
lini and Morandini 2004a], where forces and moments will work for ρδ and ϕδ , respectively. Conversely,
this coupling feature can also be understood by observing that dx = ρd− x×ϕd, so both the linear and the
angular parts of ηd contribute to the differential of the position. In Figure 2, a finite motion of a particle
is shown on two different paths, both with a constant tangent space: on path (a), where displacement
is uncoupled from rotation, dx and ϕd are constant, whereas on the seemingly more natural helicoidal
path (b), ϕd and ρd are constant. These aspects of the helicoidal parameterization of motion become
quite important in computational mechanics, where the choice of an effective discretization of motion
may be crucial.
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Figure 2. Motion of a particle on two different paths: (a) classical (displacement and
rotation are uncoupled); (b) helicoidal.

2.2. Helicoidal modeling. Helicoidal modeling is the attempt to translate the helicoidal parameteriza-
tion of motion into the parameterization of the geometry itself of a deformable body at any instant of
motion; as a matter of fact, the orientopositions of any two material particles within a body “differ” by
a rototranslation. To understand this rewriting, we ought to convert the concept of differentation into
the concept of gradient on a three-dimensional field. We shall see that at the limit of an infinitesimal
region, the position gradient itself is influenced by the mutual orientations of the neighbor particles. So,
the tangent space of the local micropolar geometry can be far different from the classical tangent space
proper of a Euclidean modeling.

With reference to a system of convective curvilinear coordinates ξ j ( j = 1, 2, 3) traced within the
body, consider the partial derivative A, j = ∂A/∂ξ j of the orientoposition field along one coordinate.
According to the differentiation formula of orthogonal tensors, AT A, j = (ATk j )×, the derivative A, j

is characterized by a dual vector k j that can be referred to as the (generalized) curvature along that
coordinate. The dyadic composition with the metric contravariant base vectors g j yields the tensorial
relation

AT A/⊗ = (ATk)×, (8)

where ( )/⊗ = ( ), j ⊗g j denotes the gradient, ( )× = ( ) j ×⊗g j denotes the tensor-cross operator, and
k= k j⊗ g j is the curvature dual tensor. Equation (8) states that the gradient of the orientoposition field, a
third-order dual tensor, is characterized by a second-order dual tensor field, the curvature k. The tensor-
cross operator produces a third-order tensor of skew-symmetric nature; see [Merlini and Morandini
2004a]. Note that, in (8), ATk j are the axial vectors of tensors AT A, j , formally ATk j = ax (AT A, j ),
and analogously ATk is called the axial tensor of third-order tensor AT A/⊗, formally ATk= ax (AT A/⊗).

Using (1) in (8), the dual explicit form of the curvature is easily obtained:

k = ka+ Ekl = α ax (αTα/⊗)+ Eα(αTx)/⊗. (9)

The angular part, referred to as the angular curvature, characterizes the gradient of the orientation,
αTα/⊗ = (α

Tka)
×, analogously to (8). The linear part is the corotational gradient of the position vector,

also given by kl = x/⊗+ x× ka. Equation (9) is very important and represents the core of the helicoidal
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modeling; it allows us to see that k, which controls the tangent space of the orientoposition field A,
couples intimately the spatial derivatives of the orientation with those of the position.

The curvature k is a pole-based dual vector. Changing the pole from O to the point P itself, by means
of the arm operator X = I + E x×, yields the self-based version of the curvature,

XTk = ka+ E(kl− x× ka)= α ax (αTα/⊗)+ E x/⊗. (10)

Here, the spatial derivatives of orientation and position are disjoint from each other: ka controls the
tangent space of the orientation field whereas x/⊗ represents the tangent space of the classical Euclidean
position vector field. It can be seen from (10) that the position vector tangent space is controlled by
either part of k; in other words, following the concept of a rototranslation-based micropolar description,
the orientation field strongly affects the evaluation of neighboring positions.

3. Material surface kinematics

What we mean by material surface is a single layer of continuous material particles (infinitesimal yet
three-dimensional) lying on a generally curved smooth geometric surface: no particle is allowed to stay
out of the surface. Each particle is identified on a two-coordinates domain, spanned by two families
of material curvilinear coordinates ξα (α = 1, 2) traced on the surface. There is no way to define a
transversal material coordinate to the surface, nor a material director. The status of the material surface
is defined by the two-dimensional field of the positions and orientations of its particles. The particles
of a deformable material surface may change their relative distances and orientations, yet they keep on
lying on a deformed geometric surface, proper of the current configuration. Since the orientations can
change independently from the positions, the mechanism of transverse shear strains is implicitly allowed
for. Such an infinitely thin body, also referred to as a Cosserat surface (in [Sansour and Bednarczyk
1995], for example), is the image of a shell-like material solid devoid of thickness.

In this section, we establish the geometry and kinematics of the material surface, using a micropolar
description approach in the context of helicoidal modeling (details are found in [Merlini 2008]). In the
next section, we will start from the kinematics of the material surface to build the solid shell model, and
in Part II we will address the mechanics of the material surface in view of a finite element approximation
of the shell.

3.1. Reference configuration. The reference configuration is identified by the orientoposition dual ten-
sor field A(ξα), as defined in (1). Two curvature dual vectors kα characterize the derivatives of A with
respect to the surface coordinates,

AT A,α = (ATkα)× . (11)

Their explicit dual forms are kα = kaα + Eklα = kaα + E(x,α +x× kaα), where vectors kaβ characterize
the derivatives of the orientation, αTα,β = (α

Tkaβ)×. The relevant self-based versions are XTkα =
kaα + E(klα − x× kaα)= kaα + E x,α.

Two covariant base vectors are obtained as the dual parts of the self-based curvature vectors,

gα = x,α = dual (XTkα). (12)

We like to think of the coordinates ξα as dimensionless measures, so the gα take physical dimensions
of length here. Since we want a solid local triad of base vectors, we conveniently borrow the geometric
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unit normal n= g1× g2/|g1× g2| to arbitrarily build a third base vector

g3 = hn, (13)

where h is an arbitrary length, referred to as the characteristic length of the material surface. The dyadic
composition of vectors g j ( j = 1, 2, 3) with the absolute unit vectors gives the invertible base frame
G = g j ⊗ i j . The reciprocal frame G−T

= g j
⊗ i j is made of the contravariant base vectors gα tangent

to the surface and of the normal vector g3
= h−1n. Keep in mind, however, that g3 and g3 have nothing

to do with material base vectors; they are purely geometric supplementary vectors.
By dyadic composition of (11) with the contravariant base vectors, the definition of the surface cur-

vature dual tensor k = kα ⊗ gα is obtained:

AT A/⊗ = (ATk)×, (14)

where now ( )/⊗ = ( ),α ⊗gα and ( )× = ( )α ×⊗gα are the surface gradient and tensor-cross operators.
In the explicit dual form of the surface curvature,

k = α ax (αTα/⊗)+ Eα(αTx)/⊗ = ka+ Ekl = ka+ E(x/⊗+ x× ka),

it is seen that the angular part is the angular curvature as defined by αTα/⊗ = (α
Tka)

×, whereas in the
linear part there appear the derivatives of both the position and the orientation. Note that, in the self-
based version XTk = ka+ E x/⊗, the linear part is the surface position gradient x/⊗ = gα ⊗ gα, which
coincides with the projector on the tangent plane, −n× n×= I − n⊗ n.

3.2. Current configuration. During the deformation process, the current configuration shall be described
in exactly the same way as the reference configuration: the variables pertaining to the current configura-
tion will be denoted by the same symbols as above, followed by an appended prime, ( )′.

So, A′= X ′α′= (I+E x′×)α′ denotes the current orientoposition; see Figure 3. The derivative relation

A′T A′/⊗ = (A
′Tk′)× (15)

defines the current surface curvature dual tensor k′ = k′α ⊗ gα = k′a + Ek′l = k′a + E(x′/⊗ + x′ × k′a).
Vectors g′α = x′,α = dual (X ′Tk′α) are the first two current covariant base vectors and g′3 = hn′ (with
h the material surface characteristic length) is assumed to be the third one. Vectors g′j ( j = 1, 2, 3)
form the current base frame G′ = g′j ⊗ i j . In the self-based version of the current curvature, that is,
X ′Tk′ = k′a+ E x′/⊗, the linear part is the current surface position gradient x′/⊗ = g′α ⊗ gα. Tensor x′/⊗
differs from the three-dimensional deformation gradient F= g′j⊗ g j (the invertible tensor that transforms
G to G′ = FG); in fact, F = x′/⊗+ n′⊗ n.

The rototranslation field H(ξα) from the reference configuration represents a meaningful alternative
choice of the unknowns that define the current configuration,

A′ = H A. (16)

Expressions for the tensor H are found in (2) and (3).
It is known that when a body moves rigidly, all its particles undergo the same rototranslation H

[Borri et al. 2000]: this unique rototranslation characterizes the rigid body motion. So, let’s examine
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Figure 3. Material surface in the reference configuration and in the current configuration.

the derivatives ∂H/∂ξα within a moving surface. As for the curvatures, two surface strain dual vec-
tors ωα characterize such derivatives, HT H,α = (HTωα)×. A dyadic composition with the reference
contravariant base vectors gives the tensorial relation

HT H/⊗ = (HTω)×, (17)

which actually defines the surface strain dual tensor ω = ωα ⊗ gα . The explicit dual form of the surface
strain is

ω =Φ ax (ΦTΦ/⊗)+ EΦ(ΦT t)/⊗ = ωa+ Eωl = ωa+ E(t/⊗+ t ×ωa),

where t = x′−Φx is the translation vector, see (3). The angular part characterizes the surface gradient of
the rotation,ΦTΦ/⊗=(Φ

Tωa)
×. The self-based version of the surface strain is X ′Tω=ωa+E(x′/⊗−Φx/⊗).

By taking the gradient of (16) and recalling (15), (17), and (14), a relation between the curvatures
in the reference and in the current configuration, involving the surface strain tensor, is easily obtained:
k′ = ω+ Hk. When solved for ω, this equation leads to a meaningful expression for the surface strain
tensor,

ω = k′− Hk, (18)

as the difference between the current curvature and the reference curvature rototranslated forward by H .
In fact, when the motion is rigid, the curvature field k also undergoes the same unique rototranslation
and becomes k′ = Hk. Therefore, the difference in (18) is a good strain measure and ω will be referred
to as the kinematical strain measure of the material surface. Equation (18) also provides a profitable
means to compute ω in a numerical context, once A, k and A′, k′ become available, for instance after an
interpolation process.

The angular and linear parts of the self-based version of ω represent the surface angular strain tensor
ωa = ωaα⊗ gα = k′a−Φka and the surface linear strain tensor χ = χα⊗ gα = x′/⊗−Φx/⊗, respectively.
It is interesting to note that the latter is different from the three-dimensional linear strain tensor F−Φ I
of the Biot kind; in fact, it can be seen that χ = F −Φ I − (n′ −Φn)⊗ n. Moreover, the expression
χ = x′/⊗ −Φx/⊗ can be used to prove that the present description of the material surface allows for
transverse shear strains. For example, consider a change of configuration where a flat surface keeps flat,
but the material particles rotate around an in-plane direction; in such a case, x′/⊗ = x/⊗ = gα ⊗ gα , but a
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Figure 4. The helicoidal shell model.

nonnull linear strain tensor χ = (gα −Φgα)⊗ gα arises, endowed with out-of-plane component vectors
χα =−(Φ − I)gα.

4. Shell kinematical model

A solid shell is a three-dimensional body, lying on a smooth curved surface and thin in the direction
locally normal to the surface. For numerical purposes, a solid shell is approximated by a shell model;
here by shell model we mean a substitute body made of the layers generated by the particles of a material
surface that sweep along a transverse curvilinear coordinate ξ 3, from ξ 3− to ξ 3+. For further details on
the shell kinematical model discussed below, refer to [Merlini and Morandini 2008].

4.1. The helicoidal shell model. The proposed solid shell model is based on the most simple and natural
rototranslation of the particles of a reference layer located at ξ 3 = 0. This reference layer is understood
to coincide with the parent material surface. The above rototranslation is characterized by a curvature
dual vector k3 constant along ξ 3 — actually, this is a helicoidal motion, whence the name helicoidal shell
model. Moreover, a particular dual vector field k3(ξ

α) is assumed, so that also the curvature dual vectors
kα of each layer hold constant along ξ 3.

The orientoposition A∗(ξα, ξ 3) of a material particle of the solid shell model can always be described
by a rototranslation H̃(ξα, ξ 3) from the orientoposition A(ξα) of the parent particle on the reference
material surface (Figure 4),

A∗ = H̃ A. (19)

Equation (19) establishes a multiplicative decomposition of the local orientoposition A∗ = X∗α∗ =
(I + E x∗×)α∗. The relative rototranslation can also be expressed as H̃ = X∗Φ̃XT, see (2), where
Φ̃(ξα, ξ 3) is the rotation tensor from the orientation α to the orientation α∗ = Φ̃α. Note that we must
have H̃(ξα, 0)= I and Φ̃(ξα, 0)= I , in order to have A∗(ξα, 0)≡ A(ξα) and α∗(ξα, 0)≡ α(ξα).

The helicoidal shell model is characterized as follows. First, H̃ = exp(η̃×) is specified as a constant-
curvature rototranslation across the shell; to this end, the function η̃(ξα, ξ 3) is assumed to have the
factorized form

η̃ = ξ 3k3, (20)
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with k3(ξ
α) a dual vector independent of ξ 3. This assumption provides a constant curvature along ξ 3,

as shown below. Next, the dual vector field k3(ξ
α) is specified by connecting it to the material surface

orientoposition field A(ξα). Formally, it is assumed that

k3 = Aθ , (21)

with θ a unique dual vector independent of ξα. We refer to θ as the dual director of the helicoidal shell
model. The helicoidal shell model, as described by (19)–(21), is based on the orthogonal dual tensor
field A(ξα) and on the unique dual parameter θ . The transverse curvature k3 is restricted to rototranslate
on the material surface as the orientoposition A, hence it is anchored to each material surface particle. It
can be claimed that the last assumption, (21), is too strong; indeed, this assumption can be safely relaxed,
as it will be shown later on.

Let’s examine the curvatures within the helicoidal shell model, both along the layer’s coordinates ξα

and along the transverse coordinate ξ 3. Altogether, the three curvature dual vectors k∗j ( j = 1, 2, 3) are
defined by A∗T A∗, j = (A∗Tk∗j )×. Within this formula, (19)–(21) are exploited in order to derive explicit
expressions for k∗j . First it is recognized that H̃T H̃, j = (H̃TΛ̃η̃, j )×, recall (7); then the derivatives of
the transverse curvature are expanded as k3,α = A,α θ = kα × Aθ = kα × k3, whence η̃,α = −η̃× kα;
finally the identity H̃ = I + Λ̃η̃× is recalled, see (5) and (7). Using the property Λ̃η̃ = η̃ (whence
Λ̃k3 = k3), it is found that k∗3 = k3 and k∗α = kα, or

k∗j = k j . (22)

Since kα and k3 are independent of ξ 3, it follows that all three curvature dual vectors k∗j are constant
across the shell model thickness.

The explicit dual forms k∗j = k∗a j + Ek∗l j = k∗a j + E(x∗, j +x∗ × k∗a j ), and their self-based version
X∗Tk∗j = k∗a j + E x∗, j , allow us to derive the metric of the shell model. The covariant base vectors are
obtained from (22) as

g∗j = x∗, j = dual (X∗Tk j ).

They form the base frame G∗ = g∗j ⊗ i j . Inversion of tensor G∗ yields the reciprocal frame G∗−T
=

g∗ j
⊗ i j of the contravariant base vectors such that g∗ j

· g∗k = δ
j
k , the Kronecker symbol. It is worth

comparing the values assumed by g∗j (ξ
α, ξ 3) at the reference layer with the material surface g j (ξ

α),
(12) and (13): the base vectors tangent to the layers do reduce to the material surface base vectors,
g∗β(ξ

α, 0) ≡ gβ(ξα), whereas the transverse one becomes g∗3(ξ
α, 0) = dual (Aθ) and may differ from

g3(ξ
α)= hn, which was introduced by a purely geometric construction. Note that, in the proposed solid

shell model, g∗3 is relieved from being normal to the layers and, as a consequence, the contravariant base
vectors g∗α are no more tangent to the layers. Instead, g∗3 keeps normal to the layers.

The model base frame G∗(ξα, ξ 3) can be related to the material surface base frame G(ξα) by means
of a sort of modeling gradient F̃(ξα, ξ 3),

G∗ = F̃G.

An interesting interpretation of the so-called shifter tensor F̃ = g∗j ⊗ g j as a deformation gradient and
its implication in classical shell theories can be found in [Schlebusch and Zastrau 2005]. Note that in the
proposed model, it may be G∗(ξα, 0) 6= G(ξα), whence F̃(ξα, 0) 6= I . The base vectors allow writing
tensors in dyadic form with reference to the model base frame. Moreover, they provide useful expressions
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for the model gradient operator, ( )/⊗∗ = ( ), j ⊗g∗ j , and for its trace, the model divergence operator,
( )/•∗ = ( ), j ·g∗ j . Then, the modeling gradient F̃ allows us to relate dyads in the model base with dyads
in the material surface base.

The dyadic composition of the curvature dual vectors with the contravariant base vectors leads to the
definition of the model curvature dual tensor k∗ = k∗j ⊗ g∗ j ,

A∗T A∗/⊗∗ = (A
∗Tk∗)×, (23)

where in this context ( )× = ( ) j ×⊗g∗ j . Note that the curvature tensor may be not constant across the
shell thickness, yet it is made of three constant curvature vectors, k∗ = k j ⊗ g∗ j , see (22). We may find
it convenient to include the transverse curvature k3 in the dyadic definition of the surface curvature dual
tensor k = kα ⊗ gα, and bring the latter to the three-dimensional form k = k j ⊗ g j . So, it can be easily
seen that

k∗ = kF̃−1, (24)

and, again, it may be k∗(ξα, 0) 6= k(ξα).
It is worth pointing out that the rototranslation that generates the solid shell model from a material

surface is by no means a rigid motion. In fact, H̃ is a function of the coordinates ξα and is not unique
for the whole surface; also, each layer has its own curvature dual tensor, which is different from the
curvature dual tensor of the parent material surface rototranslated by H̃ . Rather, this is like an inflating
motion that brings the reference curved layer into a new, and in a sense parallel, curved layer. It is also
worth noting that, whereas the tangent coordinate lines ξα generated by the shell model reflect those
chosen on the parent material surface, the transverse coordinate lines ξ 3 are by construction helices with
constant curvature.

4.2. Relaxation of a kinematical hypothesis. The shell dual director is a kinematical variable of the
solid shell model and is extraneous to the material surface kinematics, so it should be advantageous to
leave it out of the problem of the material surface mechanics. This observation indicates the opportunity
to solve θ locally. Therefore, we now propose to relax the hypothesis of a unique director for the material
surface and adopt instead a piecewise constant director field; in other words, we assume that θ is a locally
constant function of ξα.

This new assumption does not affect the characteristics of the proposed kinematical model: from
(21), we still have k3,α = kα × k3, so the curvature dual vectors are still constant across the thickness.
However, θ is now allowed to vary from point to point on the material surface and, as a consequence, the
transverse curvature k3 becomes unfastened from the orientation of the surface particle. Thus, θ becomes
a true variable field, but its gradient is left out of the variational formulation; the assumption is that a
spatial variation of the dual director does not affect the shell mechanical behavior. In the finite element
approximation of the material surface mechanics, the dual director shall be understood as an “internal”,
local variable; typically it shall be confined within the neighborhood of each quadrature point.

4.3. Shell model in the current configuration. Let the helicoidal shell model so far described refer to
the undeformed, or reference, configuration. The current configuration will be described the same way,
with an appended prime to distinguish the variables pertaining to the deformed model. The current
orientoposition A′∗ = X ′∗α′∗ = (I + E x′∗×)α′∗ of a material particle is decomposed multiplicatively into
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the orientoposition A′ of the parent material particle followed by a rototranslation,

A′∗ = H̃ ′A′, (25)

with
H̃ ′ = exp(η̃′×)= exp(ξ 3k′3×)= exp

(
ξ 3(A′θ ′)×

)
(26)

and θ ′ a piecewise constant dual vector field on the material surface.
With a total-Lagrangian description in mind, the current tensors are based on the reference config-

uration, that is, their dyadic forms are written with the reference base vectors. So, the current model
curvature dual tensor k′∗ = k′∗j ⊗ g∗ j is defined by

A′∗T A′∗/⊗∗ = (A
′∗Tk′∗)×. (27)

Across the shell thickness, k′∗ will not be constant, though its dual component vectors k′∗ · g∗j will. In
fact, as in (22), k′∗j = k′j . Thus, we can also write k′∗ = k′j ⊗ g∗ j , and relate k′∗ to the current surface
curvature three-dimensional dual tensor k′ = k′j ⊗ g j by

k′∗ = k′ F̃−1. (28)

The current covariant base vectors are given by g′∗j = x′∗, j = dual (X ′∗Tk′j ), and form the current
base frame G′∗ = g′∗j ⊗ i j . The model deformation gradient F∗ = x′∗/⊗∗ = g′∗j ⊗ g∗ j

= G′∗G∗−1 can
be obtained as F∗ = dual (X ′∗Tk′∗) = dual (X ′∗Tk′ F̃−1). The modeling gradient F̃ and the model
deformation gradient F∗ allow us to recover the current model base frame from the reference material
surface base frame, G′∗ = F∗ F̃G.

4.4. Model deformation. Let’s address now the model rototranslation that brings the reference oriento-
position to the current orientoposition,

A′∗ = H∗A∗. (29)

Useful expressions for H∗ are obtained from (2) and (3):

H∗ = A′∗A∗T = X ′∗Φ∗X∗T =
(
I + E(x′∗−Φ∗x∗)×

)
Φ∗, (30)

where Φ∗ is the rotation from the reference to the current orientation, α′∗ =Φ∗α∗.
The gradient of the rototranslation H∗ allows us to define the model strain dual tensor ω∗ = ω∗j ⊗ g∗ j ,

H∗T H∗/⊗∗ = (H
∗Tω∗)×. (31)

Taking the gradient of (29) and using (27), (31), and (23), a relation between the reference and current
model curvatures, involving the model strain, is obtained: k′∗ = ω∗+H∗k∗. Solving this equation for ω∗,

ω∗ = k′∗− H∗k∗, (32)

gives a meaningful expression for the model strain, as the difference between the current curvature and
the reference curvature rototranslated forward by H∗. We shall refer to ω∗ as the kinematical strain
measure of the helicoidal shell model. It can be seen that the angular and linear parts of the self-based
version of ω∗ represent the model angular-strain tensor ω∗a = k′∗a −Φ∗k∗a and the model linear-strain
tensor χ∗ = F∗−Φ∗ I , respectively.
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Last, let’s investigate the relationship between the model rototranslation and strain tensors, H∗ and
ω∗ respectively, and the corresponding surface rototranslation and strain tensors, H and ω. Using (19)
and (25), the model rototranslation H∗(ξα, ξ 3) from (30) can be related to the surface rototranslation
H(ξα) of (16), by

H∗ = H̃ ′H H̃T. (33)

Note that, as expected, H∗(ξα, 0) ≡ H(ξα), whereas, in general, H∗ differs from H when ξ 3
6= 0.

However, a special case occurs when k′3 = Hk3 (that is, when the dual director stays unchanged, θ ′ =
θ). In this case H̃ ′ = H H̃ HT and from (33) it follows that H∗ = H independently from ξ 3: the
rototranslation is unique for the whole material line lying along ξ 3, that is, that material line rototranslates
rigidly.

Therefore, the difference k′3 − Hk3 = A′(θ ′ − θ), which is independent of ξ 3, represents a unique
strain measure across the thickness. We refer to such strain measure as the through-the-thickness strain,

ω3 = k′3− Hk3. (34)

We may also find it convenient to include ω3(ξ
α) in the dyadic definition of the surface strain dual tensor

ω = ωα ⊗ gα , and bring the latter to the three-dimensional form ω = ω j ⊗ g j . Thus, (18) is expanded to
the form ω = k′− Hk, where k′, k and ω are now full three-dimensional dual tensors on the surface.

Using (28) and (24), the model strain tensor in (32) can be related to the surface strain tensor,

ω∗ = (k′− H∗k)F̃−1
= ω F̃−1

− (H∗− H)kF̃−1,

where ω is now the full three-dimensional dual tensor. This expression highlights the separate contribu-
tions to the local strain, coming from the material surface strains ωα and from the through-the-thickness
strain ω3 (in fact, when ω3 is null, H∗− H is also null).

4.5. Geometric invariance. The shell model so far described is endowed with a distinctive property that
is becoming very important in modern computational mechanics: it is geometrically invariant, in the
sense pointed out in [Bottasso et al. 2002]. A shell kinematical model can be seen as a mathematical
scheme to reduce three-dimensional kinematics to those pertaining to a two-coordinate material surface;
being independent of the choice of the reference material surface is a characteristic of the proposed
kinematical model. To be more precise, the physical value of the kinematical variables (orientopositions,
curvatures, and strains) is not affected by the placement of the reference material surface with respect
to the shell thickness. It is only required that the reference surface be identifiable as a layer of the shell
model, but which layer is chosen is arbitrary.

The geometric invariance of the proposed shell model is inherent in helicoidal modeling itself across
the thickness. To prove the geometric invariance, consider a given solid shell and set up a first kinematical
model (A) as follows. Choose the mid surface as the reference surface and trace the coordinate lines
ξα on it; the orientopositions AA and the curvatures kA are known; assume a dual director θA and build
the transverse coordinate lines ξ 3 with a linear scale from ξ 3−

= −1 to ξ 3+
= +1. Next, set up a

second kinematical model (B) of the same solid shell as follows. Choose the lower surface of model
(A) as the reference surface for model (B); hold the coordinate lines ξα traced on it, and keep the same
coordinate lines ξ 3 across the thickness as model (A), with a linear scale, however, ranging from ξ 3−

= 0
to ξ 3+

=+1; the orientopositions AB, the curvatures kB, and the dual director θB are determined from
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AA, kA, and θA. Note that θA and θB = 2θA are parallel, however they are scaled due to the different
measures of ξ 3 from ξ 3− to ξ 3+. So far you have built two different helicoidal models for the same shell
body. As an exercise, compute the model orientoposition A∗ and curvature k∗ at a generic placement:
you will find values coincident for either model. Now consider a deformed configuration of both models:
again, A′∗ and k′∗ will coincide for either model. So both the rototranslation H∗ and the strain ω∗

coincide for either model. This proves the geometric invariance of the helicoidal shell model.

5. Shell model mechanics

The starting point for the present formulation in shell mechanics is the principle of virtual work; this
can be stated in the form Πintδ +Πextδ +Πbcδ = 0, where the contributions to the virtual functional Πδ

from the stresses, the external loads and the boundary constraints are kept separate. The terms Πextδ and
Πbcδ will be discussed in Part II, when dealing with the material surface mechanics. The internal work
contribution, written as

Πintδ =

∫
S
πintδ dS, (35)

is the integral, over the shell surface S in the reference configuration, of a surface density of the internal
work virtual functional of the shell model. The present section concerns the evaluation of πintδ; refer to
[Merlini and Morandini 2008] for deeper discussion.

5.1. Internal work virtual functional. The expression of πintδ is taken from the internally constrained
form of the principle of virtual work [Merlini and Morandini 2005],

πintδ =

∫ ξ3+

ξ3−
δ
(
w∗+〈τ̂ ∗, dual 2 ax (Φ∗T X ′ ∗Tω∗)〉

)
f̃ h dξ 3, (36)

by considering that dV ∗ = g∗dξ 1dξ 2dξ 3 and dS = h−1gdξ 1dξ 2, with g = det G, f̃ = det F̃ and g∗ =
det G∗ = f̃ g. Equation (36) is formulated in a micropolar description context and refers to a hyperelastic
nonpolar medium: w∗(ε∗S) is the shell model strain-energy density per unit initial volume, a function
of the symmetric strain parameter ε∗S, and τ̂ ∗ is the axial vector of the Biot stress tensor. The angle
brackets 〈 , 〉 denote the scalar product between two vectors (or tensors), one of which belongs to the
kinematic vector space and the other to the cokinematic vector space.

The constitutive characterization of the nonpolar medium, see [Merlini and Morandini 2005], passes
through the identification of the back rotated kinematical linear-strain tensor

Φ∗T dual (X ′ ∗Tω∗)=Φ∗Tχ∗ =Φ∗T F∗− I

as a strain measure; tensor Φ∗T F∗ is usually referred to as the Cosserat deformation tensor in micropolar
elasticity [Ramezani and Naghdabadi 2007]. For a nonpolar medium, the strain energy is restricted to be
a function of a symmetric strain parameter ε∗S, which is connected to the symmetric part of the above
strain measure by the strain-displacement relation

ε∗S = dual (Φ∗T X ′ ∗Tω∗)S. (37)
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The superscript ( )S denotes the symmetric part of a tensor. Correspondingly, the skew-symmetric part
of the above strain measure must vanish, whence the kinematical constraint equation

ax dual (Φ∗T X ′ ∗Tω∗)= 0, (38)

which represents a statement of the polar decomposition theorem of the deformation gradient.
The stress parameter work-conjugate to the strain parameter is defined by the constitutive equation

T̂∗S = w∗
/ε∗S

, (39)

and is itself a function, in general nonlinear, of the strain parameter, that is, T̂∗S(ε∗S). Linearization of
(39) gives the incremental stress-strain elastic law

∂ T̂∗S = Ê∗SS
: ∂ε∗S, (40)

where
Ê∗SS
= T̂∗S

/ε∗S
= w∗

/ε∗Sε∗S
(41)

is the fourth-order elastic tensor mapping strain-parameter variations onto stress-parameter variations.
Of course, the elastic tensor is itself a function of the strain parameter for nonlinear constitutive models.

The internal balance requires the stress parameter to coincide with the symmetric part of the Biot
stress tensor T̂∗, defined as

T̂∗ =Φ∗TT́∗, (42)

with T́∗ the first Piola–Kirchhoff stress tensor. Then it clearly appears, from the Euclidean decomposition
T̂∗ = T̂∗S+ τ̂ ∗×, that a workless stress field, the Biot-axial τ̂ ∗, must exist as an independent unknown
field. Thus, the mechanics of the nonpolar continuum, when formulated via a micropolar description,
rely on the displacement, the rotation and the Biot-axial as the three primary unknown fields; the relevant
governing equations are the linear and angular balances (where (42) and (39) are understood and (37)
is assumed as fulfilled) and the kinematical constraint (38); in weak form, the irreducible variational
principle is the internally constrained principle of virtual work, with the internal work virtual functional
as in (36), where the kinematical constraint equation and the role of the Biot-axial as a Lagrange multiplier
are evident.

Our approach to the three-dimensional finite elasticity belongs to a line of variational formulations
developed in the nineties and best represented by [Simo et al. 1992; Bufler 1995]. These works either
introduce the polar decomposition of the deformation gradient like an appended constraint requiring a
Lagrange multiplier or try to give a constitutive characterization for the full Biot stress tensor to circum-
vent the introduction of Lagrange multipliers. Our approach, however, distinguishes itself as descending
from a sound constitutive characterization of the hyperelastic nonpolar medium as proposed in [Merlini
1997] and later explained in [Merlini and Morandini 2005]. It is based on a strain energy function of
a symmetric strain (6 parameters) and leads naturally to a variational principle that holds the definition
of the rotation field and allows for a workless stress vector field, which identifies with the axial of the
skew-symmetric part of the Biot stress tensor. Note that in all the formulations of this kind the angular
balance is forced in a weak sense, hence the symmetry of the second Piola–Kirchhoff stress tensor is
relaxed; consistently, in our opinion, the polar decomposition of the deformation gradient (that actually
defines the rotation within a nonpolar medium) must be forced in a weak sense as well. That means that



COMPUTATIONAL SHELL MECHANICS BY HELICOIDAL MODELING, I 677

even in the case of isotropic media, for which a symmetrical Biot-stress is expected [Bufler 1985], the
symmetry of the Biot stress tensor ought to be relaxed.

5.2. The Biot-axial model. The approximation of the Biot-axial primary unknown field across the thick-
ness is part of the proposed shell model. On the strength of experience gained with the three-dimensional
helicoidal finite elements [Merlini and Morandini 2005], we assume that the Biot-axial covariant com-
ponents τ̂ ∗ · g∗j are linear functions of the transverse coordinate ξ 3. The six coefficients are in turn
understood as the covariant components, on the material surface base, of two parameter vectors, τ̂ and
µ̂, which are functions only of the coordinates ξα. The general expression of the proposed Biot-axial
model can then be cast as follows:

τ̂ ∗ = h−1(τ̂ + ξ 3h−1µ̂) · F̃−1, (43)

where h is the shell characteristic length. Vectors τ̂ (ξα) and µ̂(ξα) have physical dimensions of force
per unit length and couple per unit length, respectively; they can also be thought of as the linear and
angular parts, respectively, of a dual Biot-axial parameter σ̂ = τ̂ + Eµ̂.

5.3. Linearization of the internal work virtual functional. The variational principle ought to be lin-
earized in view of its use in a numerical context. Linearization of the internal work virtual functional
means a truncated Taylor expansion of πintδ and yields the incremental form πintδ+∂πintδ . The first term is
simply called the virtual functional, the second term the virtual tangent functional: in a Newton–Raphson
solution process, they will generate respectively the residual column and the tangent matrix.

The following notes can help developing (36) and its increment ∂πintδ.

(1) In scalar-valued dot products, symmetric and skew-symmetric tensors are uncoupled. This property
also holds in a scalar product: 〈AS

+ a×, BS
+ b×〉 = 〈AS, BS

〉+ 〈a×, b×〉 = 〈AS, BS
〉+ 2〈a, b〉.

(2) Assuming (37) and (39) as fulfilled, the virtual variation of the strain-energy function w∗(ε∗S) in
(36) can be written δw∗ = 〈δε∗S, w∗

/ε∗S
〉 = 〈δ dual (Φ∗T X ′ ∗Tω∗)S, T̂∗S〉. Then, recalling (40), the

linearized virtual variation becomes

∂δw∗ = δ dual (Φ∗T X ′ ∗Tω∗)S : Ê∗SS
: ∂ dual (Φ∗T X ′ ∗Tω∗)S+〈∂δ dual (Φ∗T X ′ ∗Tω∗)S, T̂∗S〉.

(3) The mixed virtual-incremental variation variables are retained here in consideration of a possible
nonlinear dependence of the local variables on the ultimate problem unknowns.

(4) The transformations H∗X∗ and X ′∗Φ∗ are interchangeable, see (30). For convenience, a short
notation for such orthogonal transformations is introduced:

Ψ ∗ = H∗X∗ = X ′∗Φ∗. (44)

The terms of the incremental form of the internal work virtual functional are then obtained:

πintδ =

∫ ξ3+

ξ3−

(
dual δ(Ψ ∗Tω∗) : T̂∗+ δτ̂ ∗× : dual (Ψ ∗Tω∗)

)
f̃ h dξ 3,

∂πintδ =

∫ ξ3+

ξ3−

(
dual δ(Ψ ∗Tω∗) : Ê∗SS

: dual ∂(Ψ ∗Tω∗)+ dual δ(Ψ ∗Tω∗) : ∂ τ̂ ∗×

+ δτ̂ ∗× : dual ∂(Ψ ∗Tω∗)+ ∂δτ̂ ∗× : dual (Ψ ∗Tω∗)+ dual ∂δ(Ψ ∗Tω∗) : T̂∗
)

f̃ h dξ 3.

(45)
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Here the scalar products have been converted into dot products inside one vector space. The virtual
functionals πintδ and ∂πintδ are nonlinear functions of the kinematic and cokinematic variables of the
shell model and linear functions of the relevant variation variables, specifically the variations of the
linear-strain dual (Ψ ∗Tω∗) and of the Biot-axial τ̂ ∗. Such variations are virtual variations (δ) for the
virtual functional πintδ and virtual (δ), incremental (∂) and mixed virtual-incremental (∂δ) variations for
the virtual tangent functional ∂πintδ. In (45)2, three distinct contributions to ∂πintδ can be observed: the
elastic contribution related to Ê∗SS, the kinematical constraint contribution made of three terms involving
the variations of τ̂ ∗, and the geometric contribution related to the stress state T̂∗.

5.4. Adaptation of the local constitutive law. It can be shown that evaluating the transverse strain com-
ponent ε∗33 = g∗3 · ε

∗S
· g∗3 according to (37) yields ε∗33 = g∗3 · α

∗ dual (θ ′− θ). With the most natural
choice for the initial value of k3 (that is, a pure dual vector of length h, normal to the surface), it would
be g∗3 = g3 and α∗ = α, whence ε∗33 = g3 ·α dual (θ ′− θ) would be always independent of the transverse
coordinate ξ 3. This proves that ε∗33 is likely to be anyway uniform across the shell thickness.

This kinematical behavior is inherent in the helicoidal shell model itself (just like a classical 6-parameter
model) and is, of course, inconsistent with the change of sign of the transverse normal strain across the
shell thickness due to Poisson’s effect in shell bending. The strong prevention of a variable transverse
strain across the shell thickness induces severe locking in bending problems — a well known phenomenon
in shell mechanics, usually referred to as Poisson thickness locking [Bischoff and Ramm 2000]. The
classical remedy is to adopt local constitutive laws specifically adjusted for the so-called plane stress
state; in nonlinear or complex constitutive models, however, such an adjustment may be quite difficult,
so formulations that allow the use of unmodified three-dimensional constitutive laws have been developed.
The most popular one is the method of enhanced assumed strains, originated in [Simo and Rifai 1990]
and widely exploited since then (for example, in [Brank 2008]): full three-dimensional constitutive laws
are allowed at the expense of some more strain variables across the thickness. Alternatively, a plane
stress state can be forced dynamically on the three-dimensional constitutive law at the place where the
latter is used, that is, at each quadrature point; see the techniques developed in [de Borst 1991; Klinkel
and Govindjee 2002].

The method proposed here belongs to the last class of remedies and features a formulation deeply
integrated with the incremental variational context. The transverse normal strain is disjoint from the
shell model kinematics and allocated at each quadrature point across the thickness as a local scalar
variable. The incremental form of the nonlinear constitutive law provides the way to solve locally the
increment of the local variable for the increments of the other kinematically related strain variables. The
nonlinear constitutive law can then be condensed and a reduced incremental form is obtained. Lastly,
the incremental constitutive law is expanded again by means of an artificial transverse stiffness that
provides an elastic restraint to the kinematically related transverse normal strain. A full three-dimensional
incremental constitutive law, in terms of the whole kinematically related strain of (37), is obtained; this
constitutive law is dynamically provided by the shell model routine during the iterative solution of the
elastic problem, and the whole process is completely transparent to the user.

First, let’s shorten the kinematical-strain notation: denote with κ∗S the symmetric tensor in the right-hand
side of (37). It is worth stressing that κ∗S must be just viewed as a short name for dual (Φ∗T X ′ ∗Tω∗)S.
Next, introduce the components in the local base frame, κ∗kl = g∗k ·κ

∗S
· g∗l = g∗k⊗ g∗l : κ

∗S, and analogously
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with ε∗kl , T̂ ∗i j , and Ê∗i jkl ; here, the underlined couples of indexes reflect the tensor symmetries, and
hence are interchangeable. Then, note that the internal compatibility condition (37) states that the strain
parameter ε∗S must equal the kinematically related strain κ∗S. The present formulation is based on the
principle of virtual work, and this implies that the internal compatibility is assumed as fulfilled and
ε∗S ought to coincide with κ∗S. In this adaptation of the local constitutive law, however, we relax this
assumption and disjoin some components of ε∗S from the corresponding components of κ∗S. Specifically,
we assume ε∗αβ ≡ κ

∗
αβ and ε∗α3 ≡ κ

∗
α3, but we keep the transverse normal component ε∗33 disjoint from κ∗33.

That leads us to reason as in a more general three-field context (displacement-stress-strain as unknowns)
just for this transverse normal variable; so, disjoining ε∗33 from κ∗33 is not, in a sense, an assumption,
rather the release of an assumption — the fulfillment of a compatibility condition.

The incremental form of the strain-energy virtual variation, written in terms of components, reads

δw∗+ ∂δw∗

=


δκ∗αβ

2δκ∗α3

δε∗33


T


T̂ ∗αβ

T̂ ∗α3

T̂ ∗33

+
Ê∗αβγ δ Ê∗αβγ 3 Ê∗αβ33

Ê∗α3γ δ Ê∗α3γ 3 Ê∗α333

Ê∗33γ δ Ê∗33γ 3 Ê∗3333



∂κ∗γ δ

2∂κ∗γ 3

∂ε∗33


+

{
∂δκ∗αβ

2∂δκ∗α3

}T {
T̂ ∗αβ

T̂ ∗α3

}
. (46)

Here, κ∗αβ and κ∗α3 have been substituted for ε∗αβ and ε∗α3, respectively, but ε∗33 has been retained; the
term with ∂δε∗33 is of course lacking, since ε∗33 is now understood as a local, independent variable.
Equation (46) contributes to the integrand of πintδ + ∂πintδ, however the term in δε∗33 keeps disjoint
from the overall principle and originates the local incremental equation

T̂ ∗33
+

[
Ê∗33γ δ Ê∗33γ 3

]{ ∂κ∗γ δ
2∂κ∗γ 3

}
+ Ê∗3333∂ε∗33 = 0. (47)

It is worth noting that (47) is the incremental form of the nonlinear equation T̂ ∗33
= ∂w∗/∂ε∗33= 0, stating

the independence of the strain-energy function from the transverse normal strain. Note that the condition
of transverse normal stress — T̂ ∗33 in the present Biot-type parameterization of the strain energy w∗—
identically zero is the classical assumption introduced to reduce the constitutive law to the so-called
plane-stress state in shell analyses; see, for example, [Bischoff et al. 2004] (though the popular notion
“plane-stress” is strictly speaking not correct when transverse shear stresses are allowed).

Equation (47) is now solved for ∂ε∗33 and the result is substituted within (46), yielding the condensed
form

δw∗+ ∂δw∗ =

{
δκ∗αβ

2δκ∗α3

}T ({
ˆT
∗αβ

ˆT
∗α3

}
+

[
ˆE
∗αβγ δ

ˆE
∗αβγ 3

ˆE
∗α3γ δ

ˆE
∗α3γ 3

]{
∂κ∗γ δ

2∂κ∗γ 3

})
+

{
∂δκ∗αβ

2∂δκ∗α3

}T {
T̂ ∗αβ

T̂ ∗α3

}
, (48)

where {
ˆT
∗αβ

ˆT
∗α3

}
=

{
T̂ ∗αβ

T̂ ∗α3

}
−

[
Ê∗αβ33

Ê∗α333

]
Ê∗3333−1T̂ ∗33,

[
ˆE
∗αβγ δ

ˆE
∗αβγ 3

ˆE
∗α3γ δ

ˆE
∗α3γ 3

]
=

[
Ê∗αβγ δ Ê∗αβγ 3

Ê∗α3γ δ Ê∗α3γ 3

]
−

[
Ê∗αβ33

Ê∗α333

]
Ê∗3333−1

[
Ê∗33γ δ Ê∗33γ 3

]
,

(49)
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collect the reduced components of the stress parameter and elastic tensor.
The incremental form (48) deserves further development. It is apparent that, in (48),

δw∗ = δκ∗αβ
ˆT
∗αβ
+ 2δκ∗α3

ˆT
∗α3
,

so

∂δw∗ = δκ∗αβ∂
ˆT
∗αβ
+ 2δκ∗α3∂

ˆT
∗α3
+ ∂δκ∗αβ

ˆT
∗αβ
+ 2∂δκ∗α3

ˆT
∗α3

is also identified as the remaining part of δw∗+ ∂δw∗. Therefore, using (49)1, it follows that{
δκ∗αβ

2δκ∗α3

}T {
∂ ˆT
∗αβ

∂ ˆT
∗α3

}
H=

{
δκ∗αβ

2δκ∗α3

}T [
ˆE
∗αβγ δ

ˆE
∗αβγ 3

ˆE
∗α3γ δ

ˆE
∗α3γ 3

]{
∂κ∗γ δ

2∂κ∗γ 3

}
+

{
∂δκ∗αβ

2∂δκ∗α3

}T [
Ê∗αβ33

Ê∗α333

]
Ê∗3333−1T̂ ∗33.

(50)

Now, in the context of a discrete approximation, ∂δκ∗S will be always reduced to a linear function of
the ultimate virtual variation unknowns (δ) and of the ultimate incremental variation unknowns (∂) of
the discrete problem [Merlini and Morandini 2005]; thus, the second term in the right-hand side of (50)
is always logically reducible to a form like the first term and thus will add to the first term. When
doing so, the matrix elements ˆE

∗
of the first term will be corrected by terms proportional to T̂ ∗33 and

dependent on the whole shell model. However, in the present adaptation of a local constitutive law, we
find it convenient to miss this correction of the reduced stress-strain tangent map and retain only that
part coming from the first term. Note that the term omitted is almost negligible, since T̂ ∗33 will vanish
at convergence, see (47). Moreover, the error is on the problem tangent matrix, but not on the residual,
so it will affect only the convergence rate, not the final result.

The foregoing discussion allows us to correct (48) and write the separate terms of the incremental
form of the strain-energy virtual variation as

δw∗ =

{
δκ∗αβ

2δκ∗α3

}T {
ˆT
∗αβ

ˆT
∗α3

}
,

∂δw∗ =

{
δκ∗αβ

2δκ∗α3

}T [
ˆE
∗αβγ δ

ˆE
∗αβγ 3

ˆE
∗α3γ δ

ˆE
∗α3γ 3

]{
∂κ∗γ δ

2∂κ∗γ 3

}
+

{
∂δκ∗αβ

2∂δκ∗α3

}T {
ˆT
∗αβ

ˆT
∗α3

}
,

(51)

where only the reduced components of the stress parameter and elastic tensor appear.
The strain-energy variations in (51) depend implicitly on any strain components κ∗αβ , κ∗α3, and ε∗33, and

explicitly on the variations of all the components of the kinematical strain κ∗S except κ∗33. It is seen that
the component κ∗33 is left elastically unrestrained. The release of the transverse normal strain from the
shell model kinematics may overcome the deficiencies of the kinematical model in representing correctly
the actual strain state, for example, in shell bending; however this expedient leaves an intrinsic transverse
lability. Since no more stiffness is guaranteed against transverse collapse — a deformation consistent with
a uniform transverse normal strain κ∗33 — the present constitutive adaptation infers a lability in membrane
stretching.

A convenient remedy for this lability is to modify again the constitutive model by introducing an
artificial transverse stiffness. This can be accomplished by enhancing the strain energy with a term
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quadratic in κ∗33, say

w∗33 =
1
2 Ê∗3333κ∗233 , (52)

where the elastic constant is conveniently borrowed from the proper component of the original elastic
tensor in (46). In order not to affect the mechanical response of the overall shell model, this contribution
must be independent of the other kinematically related strain components, so the current value of Ê∗3333

must hold constant in (52). Taking the derivatives of w∗33(κ
∗
33), the expressions of a transverse constitutive

equation and the relevant tangent map are obtained:

ˆT
∗33
= Ê∗3333κ∗33,

ˆE
∗3333
= Ê∗3333. (53)

The virtual variation and the linearized virtual variation of the energy term (52), δw∗33 = δκ
∗
33
ˆT
∗33

and
∂δw∗33 = δκ

∗
33
ˆE
∗3333

∂κ∗33+ ∂δκ
∗
33
ˆT
∗33

, are now added to (51). The latter can be finally written in tensor
form as

δw∗ = δκ∗S : ˆT
∗S
, ∂δw∗ = δκ∗S : ˆE

∗SS
: ∂κ∗S+ ∂δκ∗S : ˆT

∗S
, (54)

where
ˆT
∗S
=
ˆT
∗i j

g∗i ⊗ g∗j ,
ˆ
E
∗SS
=
ˆE
∗i jkl

g∗i ⊗ g∗j ⊗ g∗k ⊗ g∗l , (55)

are referred to as the full reduced stress parameter and the full reduced elastic tensor, respectively.
Equation (54) holds the elements of a full three-dimensional constitutive law, written in incremental
form, with ˆT∗S the stress parameter and ˆE

∗SS
the relevant elastic tensor. ˆT∗S should replace T̂∗S in the

computation of the Biot stress tensor, T̂∗ = ˆT∗S+ τ̂ ∗×, to be used within (45). In (45)2, ˆE
∗SS

should
replace Ê∗SS.

The three-dimensional incremental constitutive law is built dynamically during the solution process.
Every component in (55) is computed as in (49) and (53), using the current components of the stress
parameter and elastic tensor of the original three-dimensional constitutive law. These computations
are performed within the Newton–Raphson iterations themselves of the overall problem solution, as in
[de Borst 1991]. At the end of each iteration, once the increments ∂κ∗S are known from the overall
solution, ∂ε∗33 is computed locally from (47) and the locally stored transverse normal strain component
is updated additively, ε∗33← ε∗33+∂ε

∗
33. Of course, at that stage the coefficients in (47) must be consistent

with those in (49), so they must be saved in the quadrature point storage area.

5.5. Case of linear elasticity. The purpose of this section is to show how the adaptation discussed above
can accommodate the classical plane-stress state in linear elasticity. This section is included for the sake
of completeness, and not reading it does not impair understanding of the formulation.

The adaptation of the local constitutive law is somewhat simpler in linear elasticity, when

w∗(ε∗S)= 1
2 ε
∗S
: Ê∗SS

: ε∗S and T̂∗S(ε∗S)= Ê∗SS
: ε∗S,

with Ê∗SS a constant fourth-order tensor. In this case, study of the simple strain-energy virtual variation
δw∗ = δε∗S : T̂∗S = δε∗S : Ê∗SS

: ε∗S suffices, and study of the incremental form is not required. In
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component form, with κ∗αβ and κ∗α3 substituted for ε∗αβ and ε∗α3, δw∗ reads

δw∗ =


δκ∗αβ

2δκ∗α3

δε∗33


T

T̂ ∗αβ

T̂ ∗α3

T̂ ∗33

=

δκ∗αβ

2δκ∗α3

δε∗33


TÊ∗αβγ δ Ê∗αβγ 3 Ê∗αβ33

Ê∗α3γ δ Ê∗α3γ 3 Ê∗α333

Ê∗33γ δ Ê∗33γ 3 Ê∗3333



κ∗γ δ

2κ∗γ 3

ε∗33

 . (56)

The term in δε∗33 of this contribution to the overall principle yields now the local finite equation

T̂ ∗33
=

[
Ê∗33γ δ Ê∗33γ 3

]{ κ∗γ δ
2κ∗γ 3

}
+ Ê∗3333ε∗33 = 0, (57)

which again states the independence of the strain-energy function from the transverse normal strain.
Solving (57) for ε∗33 and substituting the result into (56) yields a condensed form where the reduced
components of the elastic tensor are those found in (49)2. Finally, a transverse stiffness is introduced as
for (52) and (53), and (56) takes the final tensor form

δw∗ = δκ∗S : ˆT
∗S
= δκ∗S : ˆE

∗SS
: κ∗S, (58)

with
ˆT
∗S
=
ˆ
E
∗SS
: κ∗S (59)

the full three-dimensional linear constitutive equation. The components of ˆE
∗SS

are found in (49)2 and
(53)2. Since such components are constant, they can be computed once and for all, and there is no need
to allocate the variable ε∗33 in linear elasticity.

6. Reduction to the shell surface mechanics

The next step is to integrate the internal work virtual functional across the shell model thickness and to
obtain the shell constitutive equations.

6.1. Integration across the thickness. The local variation variables in (45) must be solved for the rele-
vant surface variation variables before addressing the integration across the thickness. The kinematical
variation variables are quite complicated to develop; they are discussed in the Appendix and yield the
final result

δ(Ψ ∗Tω∗)=
(
Ψ ∗T · Hδ(HTωα)+ ξ

3Ψ ∗Tk′α × Λ̃
′
· A′δθ ′

)
⊗ g∗α +Ψ ∗T H̃ ′ · A′δθ ′⊗ g∗3,

∂(Ψ ∗Tω∗)=
(
Ψ ∗T · H∂(HTωα)+ ξ

3Ψ ∗Tk′α × Λ̃
′
· A′∂θ ′

)
⊗ g∗α +Ψ ∗T H̃ ′ · A′∂θ ′⊗ g∗3,

∂δ(Ψ ∗Tω∗)=
(
Ψ ∗T · H∂δ(HTωα)+ ξ

3Ψ ∗Tk′α × Λ̃
′
· A′∂δθ ′

− ξ 3Ψ ∗T I×Λ̃′ :
(
Hδ(HTωα)⊗ A′∂θ ′+ H∂(HTωα)⊗ A′δθ ′

)
+ (ξ 3)2Ψ ∗T ·

(
k′α × Λ̃′

123
III + (I

×k′α × Λ̃
′)T132Λ̃′

)S123
: A′δθ ′⊗ A′∂θ ′

)
⊗ g∗α

+Ψ ∗T H̃ ′ · A′∂δθ ′⊗ g∗3.

(60)

Obtaining the Biot-axial variation variables from (43), instead, is immediate:
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δτ̂ ∗ = h−1 F̃−T(δτ̂ + ξ 3h−1δµ̂), ∂ τ̂ ∗ = h−1 F̃−T(∂ τ̂ + ξ 3h−1∂µ̂),

∂δτ̂ ∗ = h−1 F̃−T(∂δτ̂ + ξ 3h−1∂δµ̂).
(61)

Substituting (60) and (61) into (45) yields

πintδ =


δ(HTωα)

δθ ′

δµ̂

δτ̂


T

·


HT Rαω
A′T Rθ

Rµ
Rτ

 ,

∂πintδ =


δ(HTωα)

δθ ′

δµ̂

δτ̂


T

·


HT Dαβ

ωωH HT Dα
ωθ A′ HT Dα

ωµ HT Dα
ωτ

A′T DβT
ωθ H A′T Dθθ A′ A′T Dθµ A′T Dθτ

DβT
ωµH DT

θµA′ 0 0
DβT
ωτ H DT

θτ A′ 0 0

 ·

∂(HTωβ)

∂θ ′

∂µ̂

∂ τ̂


+


∂δ(HTωα)

∂δθ ′

∂δµ̂

∂δτ̂


T

·


HT Rαω
A′T Rθ

Rµ
Rτ

 ,

(62)

where the sequence angular–linear is understood while writing dual vectors and tensors in matrix notation.
After some involved manipulations, detailed in [Merlini and Morandini 2008], the vectors R and tensors
D in (62) can be written as the integrals

{Rαω} =
∫ ξ3+

ξ3−

{
dual Ś∗α

primal Ś∗α

}
f̃ h dξ 3,

{Rθ } =
∫ ξ3+

ξ3−

{
dual (ξ 3Λ̃′T Ś∗γ × k′γ + H̃ ′T Ś∗3)

primal (ξ 3Λ̃′T Ś∗γ × k′γ + H̃ ′T Ś∗3)

}
f̃ h dξ 3,

Rµ =
∫ ξ3+

ξ3−
ξ 3h−2 F̃−1 dual 2 ax (Ψ ∗Tω∗) f̃ h dξ 3,

Rτ =
∫ ξ3+

ξ3−
h−1 F̃−1 dual 2 ax (Ψ ∗Tω∗) f̃ h dξ 3,

(63)

and

[Dαβ
ωω] =

∫ ξ3+

ξ3−

[
dualΨ ∗

primalΨ ∗

]
(g∗α ˆE

∗SS
g∗β)

[
dualΨ ∗T primalΨ ∗T

]
f̃ h dξ 3,

[Dα
ωθ ] =

∫ ξ3+

ξ3−

[
dualΨ ∗

primalΨ ∗

] [
g∗α ˆE

∗SS
g∗δ g∗α ˆE

∗SS
g∗3
]

·

[
dual (−ξ 3Λ̃′Tk′δ ×Ψ

∗)
T

primal (−ξ 3Λ̃′Tk′δ ×Ψ
∗)

T

dual (H̃ ′TΨ ∗)
T

primal (H̃ ′TΨ ∗)
T

]
f̃ h dξ 3

+

∫ ξ3+

ξ3−

[
dual (−ξ 3 Ś∗α × Λ̃′) primal (−ξ 3 Ś∗α × Λ̃′)

primal (−ξ 3 Ś∗α × Λ̃′) 0

]
f̃ h dξ 3,
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[Dα
ωµ] =

∫ ξ3+

ξ3−

[
dualΨ ∗

primalΨ ∗

]
(ξ 3h−2 F̃−1 g∗α×)T f̃ h dξ 3,

[Dα
ωτ ] =

∫ ξ3+

ξ3−

[
dualΨ ∗

primalΨ ∗

]
(h−1 F̃−1 g∗α×)T f̃ h dξ 3,

[D∗θθ ] =
∫ ξ3+

ξ3−

[
dual (−ξ 3Λ̃′Tk′γ ×Ψ ∗) dual (H̃ ′TΨ ∗)

primal (−ξ 3Λ̃′Tk′γ ×Ψ ∗) primal (H̃ ′TΨ ∗)

]g∗γ ˆE
∗SS

g∗δ g∗γ ˆE
∗SS

g∗3

g∗3 ˆE
∗SS

g∗δ g∗3 ˆE
∗SS

g∗3


·

[
dual (−ξ 3Λ̃′Tk′δ ×Ψ

∗)
T

primal (−ξ 3Λ̃′Tk′δ ×Ψ
∗)

T

dual (H̃ ′TΨ ∗)
T

primal (H̃ ′TΨ ∗)
T

]
f h dξ 3

+

∫ ξ3+

ξ3−

 dual
(
(ξ 3)2

(
Ś∗γ × k′γ · Λ̃′

123
III + Λ̃

′T(Ś∗γ × k′γ×)SΛ̃′
))

primal
(
(ξ 3)2

(
Ś∗γ × k′γ · Λ̃′

123
III + Λ̃

′T(Ś∗γ × k′γ×)SΛ̃′
))

primal
(
(ξ 3)2

(
Ś∗γ × k′γ · Λ̃′

123
III + Λ̃

′T(Ś∗γ × k′γ×)SΛ̃′
))

0

 f̃ h dξ 3,

[Dθµ] =

∫ ξ3+

ξ3−

[
dual (−ξ 3Λ̃′Tk′γ ×Ψ ∗) dual (H̃ ′TΨ ∗)

primal (−ξ 3Λ̃′Tk′γ ×Ψ ∗) primal (H̃ ′TΨ ∗)

][
(ξ 3h−2 F̃−1 g∗γ×)T

(ξ 3h−2 F̃−1 g∗3×)T

]
f̃ h dξ 3,

[Dθτ ] =

∫ ξ3+

ξ3−

[
dual (−ξ 3Λ̃′Tk′γ ×Ψ ∗) dual (H̃ ′TΨ ∗)

primal (−ξ 3Λ̃′Tk′γ ×Ψ ∗) primal (H̃ ′TΨ ∗)

][
(h−1 F̃−1 g∗γ×)T

(h−1 F̃−1 g∗3×)T

]
f̃ h dξ 3,

(64)

where Ś∗ must be understood as a short notation for X ′∗T́∗= T́∗+E x′∗× T́∗, the pole-based dual version
of the first Piola–Kirchhoff stress tensor.

Equation (63) collects the vectors work-conjugate to the material surface variation variables in the
virtual functional πintδ, whereas (64) gives the tensors of the relevant tangent map in ∂πintδ. Note that
the tangent map is symmetrical, see (62)2. Vectors and tensors in (63) and (64) are integrals along ξ 3 of
quantities depending ultimately on the current values of the kinematical variables and Biot-axial parame-
ters of the material surface. Thus, the internal-work incremental virtual functional πintδ + ∂πintδ becomes
two-dimensional: it depends linearly on the virtual, incremental, and mixed virtual-incremental variations
of the surface strain component vectors HTωα , the dual director θ ′, and the Biot-axial parameters τ̂ and
µ̂. Note that the back-rototranslated dual strains HTωα are the pole-based version of the back-rotated
self-based dual strains ΦT X ′Tωα.

6.2. Shell constitutive equations. As stated in Section 4.2, the dual director kinematic field is a gradi-
entless, piecewise constant field on the shell surface. In a finite element context, θ should be understood
as a local variable, and as such, it would be profitably considered for a local condensation process.
However, it can be observed that θ alone cannot be condensed. In fact, the rototranslation generating
the shell model, H̃ = exp(ξ 3(Aθ)×), is endowed ultimately with the contribution of three linear and
three angular components. When the shell deforms, the change of the linear part produces strains, which
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are withstood elastically; the change of the angular part, instead, is a rotation that must fulfill the kine-
matical constraint (38) and entails a workless Biot-axial field as a multiplier. So, θ alone is three times
indeterminate, and needs three further parameters to be condensed with: the Biot-axial parameter vector
µ̂, which controls that part of τ̂ ∗ variable across the shell thickness, appears a likely candidate to make
θ determinate. As a matter of fact, after a systematic series of numerical tests with several combinations
of the components of τ̂ and µ̂, it was confirmed that the set composed of θ ′ and the vector µ̂ could
be safely solved locally. This choice leaves ωα and τ̂ as the basic parameters governing the internal
work virtual functional of the material surface — a picture consistent with the case of three-dimensional
elasticity outlined in Section 5.1.

The condensation process traces the steps carried out in Section 5.4 for the local constitutive law (refer
to [Merlini and Morandini 2008] for further details). Starting from (62), the internal-work incremental
virtual functional πintδ + ∂πintδ is written; since θ ′ and µ̂ are local, independent variables, the terms with
∂δθ ′ and ∂δµ̂ are of course omitted, whereas the terms in δθ ′ and δµ̂ keep disjoint from the overall
principle and originate the local incremental equation{

A′T Rθ
Rµ

}
+

[
A′T DβT

ωθ H A′T Dθτ

DβT
ωµH 0

]
·

{
∂(HTωβ)

∂ τ̂

}
+

[
A′T Dθθ A′ A′T Dθµ

DT
θµA′ 0

]
·

{
∂θ ′

∂µ̂

}
=

{
0
0

}
. (65)

Solving (65) for ∂θ ′ and ∂µ̂ and substituting the result in the expression of πintδ + ∂πintδ yields the
condensed form

πintδ + ∂πintδ =

{
δ(HTωα)

δτ̂

}T

·

({
HT Rαω

Rτ

}
+

[
HT Dαβ

ωωH HT Dα
ωτ

DβT
ωτ H Dττ

]
·

{
∂(HTωβ)

∂ τ̂

})

+

{
∂δ(HTωα)

∂δτ̂

}T

·

{
HT Rαω

Rτ

}
,

where {
Rαω
Rτ

}
=

{
Rαω
Rτ

}
−

[
Dα
ωθ Dα

ωµ

DT
θτ 0

][
Dθθ Dθµ

DT
θµ 0

]−1 {
Rθ
Rµ

}
,

[
Dαβ
ωω Dα

ωτ

DβT
ωτ Dττ

]
=

[
Dαβ
ωω Dα

ωτ

DβT
ωτ 0

]
−

[
Dα
ωθ Dα

ωµ

DT
θτ 0

][
Dθθ Dθµ

DT
θµ 0

]−1 [
DβT
ωθ Dθτ

DβT
ωµ 0

]
,

(66)

are the reduced work-conjugate parameters and tangent map. Resorting to the same arguments as in
Section 5.4, the terms Rαω and Rτ in the expression of πintδ + ∂πintδ are corrected for Rαω and Rτ and the
internal work virtual functional and virtual tangent functional are finally written as

πintδ =

{
δ(HTωα)

δτ̂

}T

·

{
HT Rαω

Rτ

}
,

∂πintδ =

{
δ(HTωα)

δτ̂

}T

·

[
HT Dαβ

ωωH HT Dα
ωτ

DβT
ωτ H Dττ

]
·

{
∂(HTωβ)

∂ τ̂

}
+

{
∂δ(HTωα)

∂δτ̂

}T

·

{
HT Rαω

Rτ

}
.

(67)

In (67), the elements of the incremental form of a nonlinear constitutive law of the shell material
surface are recognized. HT Rαω are the (generalized) stress resultants work-conjugate to the dual strains
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HTωα, and Rτ is the integral kinematical constraint work-conjugate to the Biot-axial parameter τ̂ .
So, (66)1 represents the shell constitutive equations. Linearization of the shell constitutive equations
yields the tangent map

{
∂(HT Rαω)
∂Rτ

}
=

[
HT Dαβ

ωωH HT Dα
ωτ

DβT
ωτ H Dττ

]
·

{
∂(HTωβ)

∂ τ̂

}
, (68)

giving the appropriate increments of the resultant vectors from the relevant increments of the surface
parameters. The mapping tensors D, which represent the derivatives of the resultant vectors with respect
to the surface parameters, are given in (66)2: they comprise altogether every kind of contribution, specifi-
cally the elastic contribution, the kinematical constraint contribution, and the geometric contribution due
to the stress state.

It is worth comparing (67) with the parent (45), where the interrelation among the primary mechanical
variables in three-dimensional elasticity is clear. In order to highlight a particular difference, suppose that
τ̂ is a linear function of the free unknowns, so that the terms with ∂δτ̂ ∗ and ∂δτ̂ disappear. Equation (45)2

clearly shows that the virtual and the incremental variations of τ̂ ∗ are locally uncoupled and work directly
for the opposite variations of dual (Ψ ∗Tω∗) (that is, the incremental and the virtual variations, respec-
tively). In contrast, in (67)2 the variations of τ̂ are coupled together and with the variations of HTωα
through tensors Dττ and Dα

ωτ . Therefore, the term δτ̂ · Rτ in (67)1 cannot correspond to a scalar product
like 〈δτ̂×, dual (XT HTω)〉, as in (45)1, and the virtual functional πintδ can be hardly given a constrained
form as in (36). Rather, the incremental form of the nonlinear shell constitutive law in (67) couples
together the surface mechanical variables ωα and τ̂ , and their respective roles become confused. This
fact makes it hard to derive the two-dimensional equations governing the material surface mechanics —
should this be necessary — from the three-dimensional continuum, with distinct expressions for the bal-
ance conditions and for the kinematical constraint. However, though τ̂ cannot be identified as the axial
vector of a stress resultant, we keep on referring to τ̂ as the surface Biot-axial stress parameter.

The shell incremental constitutive law is built dynamically during the solution process of the whole
shell problem. Vectors and tensors R and D in (66) are computed from the integrals R and D in (63)
and (64); the latter are nonlinear functions of both the surface fields (ωα, τ̂ ) and the local variables
(θ ′, µ̂), and can be computed by a numerical integration across the shell thickness. At the end of each
Newton–Raphson iteration, once the increments ∂(HTωβ) and ∂ τ̂ are known from the overall solution,
the local increments ∂θ ′ and ∂µ̂ are recovered from (65), and the locally stored variables, which pertain
to a Euclidean vector space, are updated additively, θ ′ ← θ ′ + ∂θ ′ and µ̂← µ̂+ ∂µ̂. At this stage,
the coefficients in (65) must be consistent with those used early in (66), so they must be saved for the
subsequent recovery. In a finite-element context, the local condensation would be carried out at each
quadrature point of a shell element, where the shell director θ ′ and the angular Biot-axial parameter µ̂
can be stored as internal variables.

Though the proposed formulation may seem quite unusual in shell mechanics, some similarity with
[Wisniewski and Turska 2000] can be observed, however. These authors too aim to release the rotation
within the thickness from the reference surface rotation, in particular the drilling rotation, so to account
for the in-plane twist. They use the skew-symmetric part of the Biot stress to force the constraint that
defines such rotations, both within the thickness (in-plane twist) and on the reference surface (drilling
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rotation), and arrive at a two-dimensional formulation endowed with a surface Biot-axial stress parameter.
The main difference with our formulation lies in the modeling of the continuum: the classical, uncoupled
modeling adopted in [Wisniewski and Turska 2000] allows us to examine the physical meaning of every
variable component, but it also induces several simplifying hypotheses; instead, the coupled helicoidal
modeling used here is concise and stands on only few hypotheses.

7. Conclusion

Let’s summarize some noteworthy features of the proposed shell theory.

Micropolar mechanics of the shell material surface. The mechanics of the material surface are based
on a thorough micropolar description over a two-coordinate domain; the surface particles have full
three-dimensional freedom, including the drilling rotation. The material surface, however, is like a nonpo-
lar medium in its tangent plane, so the drilling rotation is actually a further DOF whose definition entails
an extra stress field. In the present formulation, the surface density of the internal work functional comes
as a function of the kinematical strain component vectors and a Biot-axial parameter vector. The role of
the latter is evident, and this stress parameter must be retained, in our opinion, as a primary unknown
field of the material surface mechanics, even in a displacement-based formulation. This strategy could
be the answer to the issue raised by [Yu and Hodges 2004] in the closure, and should finally shed full
light on the nature of drilling DOFs.

Hypotheses of the solid shell model. The solid shell model is based on the orientoposition of the parent
material surface (six DOFs, five of which correspond to those of the so-called 5-parameter shell theory,
while the last is the drilling DOF), on an orientoposition field across the thickness, and on a Biot-axial
field across the thickness. The inherent approximation of this shell model is related to the hypotheses on
which the last two fields are built. Only three hypotheses have been made. (1) The orientoposition field is
determined by a constant-curvature rototranslation across the thickness; the curvature is governed by the
shell director, a dual vector field on the surface (another six DOFs, out of which one corresponds to the
sixth DOF of the so-called 6-parameter shell theory, while the others are five additional freedoms of the
present theory). (2) The shell director is assumed to belong to a piecewise constant, gradientless field on
the surface. (3) The Biot-axial field is assumed to be linear across the thickness, and is governed by two
vector fields on the surface. No more assumptions are made. The helicoidal modeling and its consistent
linearization allow us to deal with finite displacements, rotations, and strains of any magnitude, in an
easy and natural way.

Computational approach to nonlinear shell mechanics. The proposed formulation is computation ori-
ented in several respects. The mechanics of the solid shell are formulated in weak form, the appropriate
variational principle is linearized from the beginning, and the relevant incremental form is made discrete
across the thickness by means of an approximation of the finite-element kind. The integrals in the trans-
verse direction are computed numerically at each point of interest on the reference surface. The ensuing
two-dimensional problem is stated in a weak incremental form that inherits and exploits the property of
geometric invariance of the helicoidal model. The extra parameters of the solid shell model (the shell
director and the second Biot-axial parameter) are regarded as local variables and condensed statically.
The surface strains and the first Biot-axial parameter are left as the vectorial entities work-conjugate to
the stress resultants and the surface kinematical constraint. The latter entities are coupled together in
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an incremental form, which represents the dynamically built nonlinear constitutive law of the shell. A
similar dynamical adaptation of the incremental form of the local constitutive law allows us to prevent
Poisson locking related to the low-order kinematical model.

In shell mechanics, a very attractive and often-pursued approach is the so-called direct approach whose
object body is the Cosserat surface. From the wide literature on this subject, we quote the early paper
[Zhilin 1976], which is still modern in concepts and notation on rotational kinematics; the successful
finite-element formulation [Sansour and Bednarczyk 1995]; and the comprehensive survey and deep
study [Valid 1995]. When addressing direct approaches, it is worth focusing on the point that, contrary
to beams, shells are hybrid structured solids: in fact, as remarked above, a shell can bend and torque
but behaves in an essentially nonpolar way in its tangent plane. This particular feature must be carefully
accounted for in the formulation of consistent material surface mechanics. Our line, in this respect, is as
follows. As in three-dimensional solid mechanics a micropolar rotation unknown is allowed for even in
nonpolar media by formulations based on strain and stress parameters of the Biot type and on the Biot-
axial as a workless stress unknown, so in the material surface mechanics a full three-parametric rotation
unknown can be allowed for by a consistent formulation that retains a surface Biot-axial parameter as a
primary unknown. However, though the extension of the direct approach to encompass a surface Biot-
axial unknown is feasible [Merlini 2008], its usefulness is questionable: in fact, the interpretation of
the surface Biot-axial vector and its relation with the Biot-axial field within the solid give rise to new
difficulties that add to the lack of constitutive laws, which is characteristic of direct approaches. In this
paper we showed that a sound variational approach to the solid shell leads to the appropriate ingredients
to set up the consistent nonlinear two-dimensional mechanics of the material surface. The methodology
proposed in this paper is, in our opinion, the right way to tie a reasonably approximate model across the
thickness with a full micropolar approach to the material surface mechanics in geometrically nonlinear
problems. So, the proposed formulation overcomes the seemingly inconsistent feature of shells of being
nonpolar in their tangent plane.

Appendix: Kinematical strain variations

In the development of the simple and mixed variations δ(Ψ ∗Tω∗) and ∂δ(Ψ ∗Tω∗) in (45), it is helpful
to focus on the corototranslational variations H∗δ(H∗Tω∗) and H∗∂δ(H∗Tω∗) of the model strain. In
fact, the former variations can be always recovered from the latter ones, since for (44) Ψ ∗δ(Ψ ∗Tω∗)=
H∗δ(H∗Tω∗) and Ψ ∗∂δ(Ψ ∗Tω∗) = H∗∂δ(H∗Tω∗). Using (32), (28), and (24), the following dyadic
forms are written:

H∗δ(H∗Tω∗)= H∗δ(H∗Tk′α)⊗ g∗α + H∗δ(H∗Tk′3)⊗ g∗3,

H∗∂δ(H∗Tω∗)= H∗∂δ(H∗Tk′α)⊗ g∗α + H∗∂δ(H∗Tk′3)⊗ g∗3.

Recalling (33) and (18), and exploiting the rototranslation differentiation formulae [Merlini and Moran-
dini 2004a]

δH HT
= ηδ×, ∂δH HT

= η∂δ ×+
1
2 (η∂ × ηδ ×+ηδ × η∂×),

and
δ H̃ ′ H̃ ′T = η̃′δ×, ∂δ H̃ ′ H̃ ′T = η̃′∂δ ×+

1
2 (η̃
′

∂ × η̃
′

δ ×+η̃
′

δ × η̃
′

∂×),
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the surface component vectors can be transformed to

H∗δ(H∗Tk′α)= Hδ(HTωα)− (η̃
′

δ + (H̃
′
− I)ηδ)× k′α,

H∗∂δ(H∗Tk′α)= H∂δ(HTωα)− (η̃
′

∂ + (H̃
′
− I)η∂)× Hδ(HTωα)− (η̃

′

δ + (H̃
′
− I)ηδ)× H∂(HTωα)

−

(
η̃′∂δ + (H̃

′
− I)η∂δ + 1

2

(
(η̃′∂ + (H̃

′
− I)η∂)× (H̃ ′+ I)ηδ + η∂ × (H̃ ′+ I)ηδ

+(η̃′δ + (H̃
′
− I)ηδ)× (H̃ ′+ I)η∂ + ηδ × (H̃ ′+ I)η∂

))
× k′α

+
1
2

(
(η̃′∂ + (H̃

′
− I)η∂)× (η̃′δ + (H̃

′
− I)ηδ)×+(η̃′δ + (H̃

′
− I)ηδ)× (η̃′∂ + (H̃

′
− I)η∂)×

)
k′α.

The differential maps of the rototranslation H̃ ′ through the thickness,

η̃′δ = Λ̃
′δη̃′, η̃′∂δ = Λ̃

′∂δη̃′+ Λ̃′
123
III : δη̃

′
⊗ ∂ η̃′,

are now used to solve the differential helices η̃′δ and η̃′∂δ for the variations of the helix η̃′. The expressions
of the mapping tensors Λ̃′(η̃′) and Λ̃′123

III (η̃
′) can be found in [Merlini and Morandini 2004b, Appendix B].

Using (26) and (34), the variations δη̃′ and ∂δη̃′ are in turn related to the differential helices ηδ and η∂δ
of the surface rototranslation H and to the corototranslational variations of the strain ω3,

δη̃′ = ξ 3 Hδ(HTω3)− η̃
′
× ηδ,

∂δη̃′= ξ 3 H∂δ(HTω3)− η̃
′
×η∂δ+ξ

3η∂×Hδ(HTω3)+ξ
3ηδ×H∂(HTω3)+

1
2 (η∂×ηδ×+ηδ×η∂×)η̃

′.

Putting all together and using the identity (Λ̃′
123
III η̃

′
×)T132

+ Λ̃′ I×− I×Λ̃′+ 1
2 (I
×Λ̃′η̃′×)T132Λ̃′ = 0,

where I× = g j ×⊗g j is the third-order Ricci tensor, after several algebraic manipulations detailed in
[Merlini and Morandini 2008], one obtains

η̃′δ + (H̃
′
− I)ηδ = ξ 3Λ̃′ · Hδ(HTω3),

η̃′∂δ + (H̃
′
− I)η∂δ = ξ 3Λ̃′ · H∂δ(HTω3)+ (ξ

3)2Λ̃′
123
III : Hδ(HTω3)⊗ H∂(HTω3)

−
1
2

(
(η̃′∂ + (H̃

′
− I)η∂)× (H̃ ′+ I)ηδ + η∂ × (H̃ ′+ I)ηδ

+ (η̃′δ + (H̃
′
− I)ηδ)× (H̃ ′+ I)η∂ + ηδ × (H̃ ′+ I)η∂

)
.

Therefore, the surface component vectors are finally brought to the form

H∗δ(H∗Tk′α)= Hδ(HTωα)+ ξ
3k′α × Λ̃

′
· Hδ(HTω3),

H∗∂δ(H∗Tk′α)= H∂δ(HTωα)+ ξ
3k′α × Λ̃

′
· H∂δ(HTω3)

− ξ 3 I×Λ̃′ :
(
Hδ(HTωα)⊗ H∂(HTω3)+ H∂(HTωα)⊗ Hδ(HTω3)

)
+ (ξ 3)2(k′α × Λ̃′

123
III + (I

×k′α × Λ̃
′)T132Λ̃′)S123

: Hδ(HTω3)⊗ H∂(HTω3).

The development of the transverse component vectors is straightforward:

H∗δ(H∗Tk′3)= H̃ ′ · Hδ(HTω3), H∗∂δ(H∗Tk′3)= H̃ ′ · H∂δ(HTω3).

At last, recalling (34), (16), and (26), it is seen that Hδ(HTω3)= A′δθ ′ and H∂δ(HTω3)= A′∂δθ ′, and
recalling again (44), (60) is obtained.
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COMPUTATIONAL SHELL MECHANICS BY HELICOIDAL MODELING
II: SHELL ELEMENT

TEODORO MERLINI AND MARCO MORANDINI

The virtual work of stresses developed in Part I for the helicoidal shell model and then reduced to the
material surface is taken as one term of a variational principle stated on a two-dimensional domain. The
other terms related to the external loads and to the boundary constraints are added here and include a
weak-form treatment of the constraints, which becomes necessary in the context of helicoidal modeling.
All terms are cast in incremental form and yield a linearized variational principle of the virtual work type
for two-dimensional continua, endowed with an internal constraint conjugate to an extra stress field that
is able to control the drilling degree of freedom.

The virtual functional and the virtual tangent functional are approximated by the finite element
method, using helicoidal interpolation for the kinematic field (which ensures objectivity and path in-
dependence) and a uniform representation for the extra stress field. A low-order four-node shell element
is obtained, with 6 degrees of freedom per node and a unique stress-vector discrete unknown per element.
Several test cases demonstrate the performance of the element and its outstanding locking-free behavior.

1. Introduction

This second part of the paper deals with the finite element approximation of the mechanics of the shell
material surface, whose kinematical description was introduced in Part I. The formulation, which is
briefly outlined here, follows a straightforward course. The intrinsic mechanics of the material surface
are stated directly from a variational approach. The virtual work of stresses was developed in Part I for the
helicoidal shell model and then reduced to the material surface; here, the external loads and the boundary
constraints are introduced, and the proposed variational principle is stated on a two-dimensional domain.
This principle is of the virtual work type for nonpolar continua and is endowed with an internal constraint
related to an extra stress field; it also includes a weak-form treatment of the boundary constraints. The
variational principle is given an incremental form from the beginning and exploits the shell linearized
constitutive law obtained in Part I; then, the virtual functional and the virtual tangent functional are
approximated by the finite element method.

Within the formulation outlined above, the two characteristic features of the present contribution,
already introduced in Part I, are still in evidence. As with the three-dimensional mechanics, the material
surface mechanics are based on a micropolar description. Since the shell is essentially nonpolar in its
tangent plane, this description entails a workless stress parameter whose role is to force the definition
of the drilling degree of freedom. Even if this workless stress parameter cannot be identified as the
axial vector of a stress tensor, nevertheless an extra stress exists and is rightly introduced as one of the

Keywords: nonlinear shell elements, helicoidal multiplicative interpolation, micropolar shell mechanics and drilling degrees of
freedom, constraints in weak form, finite rotations and rototranslations, dual tensor algebra.
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parameters that control the Biot-axial distribution within the shell model thickness. This vector parameter
is an irreducible primary unknown of the intrinsic shell mechanics: in the proposed finite element scheme
(4 nodes by 6 DOFs), a unique extra stress vector per element (3 stress components) is sufficient to control
the drilling rotation ensuing from a three-parametric representation of the nodal rotations.

The second characteristic feature is of great importance in Part II as well. As explained in Part I,
Section 3, an integral kinematic field that couples displacements and rotations is adopted for the material
surface. In this paper, helicoidal modeling is fully exploited to define the approximate kinematic field
within the shell element. The local orientoposition and curvatures are computed from the nodal oriento-
positions by means of a new kind of multiplicative interpolation proposed by [Merlini and Morandini
2004b]. This methodology is endowed with the important properties of objectivity and path indepen-
dence and allows us to build curved and curving elements based on nodal frames and capable of large
displacements and rotations. In such elements, the nodal orientations control both the orientation and
the position of the material surface at any internal point. This is clearly evident from Figure 1, where
the striking difference between two interpolation schemes — the classical and the helicoidal — is shown
on a quadrilateral element.

In the last two decades a considerable number of high-performing shell elements have been developed.
Some elements are built on mixed or full three-field variational formulations [Sansour and Bufler 1992;
Wagner and Gruttmann 2005; Klinkel et al. 2008]. Other elements (for example, [Chróścielewski et al.
1992; Arciniega and Reddy 2007]) rely on high-order interpolants in order to avoid, or mitigate, shear and
membrane locking. Others are based on particular techniques, such as reduced integration [Wriggers and
Gruttmann 1993; Hauptmann et al. 2000; Cardoso and Yoon 2005], discrete Kirchhoff–Love constraints
[Areias et al. 2005], or incompatible modes [Ibrahimbegović and Frey 1994]. Most of the elements
proposed in the literature, however, use the assumed natural strain or enhanced assumed strain concepts,
such as those developed by [Büchter et al. 1994; Bischoff and Ramm 1997; Sansour and Kollmann 2000;
Fontes Valente et al. 2003; Chróścielewski and Witkowski 2006; Brank 2008], to mention just a few. Few
are the successful low-order displacement-based elements free of any of the above techniques; see, for
example, [Campello et al. 2003; Pimenta et al. 2004]. The element proposed in the present paper is based
on an alternative modeling of the continuum and does not rely on any of the above-mentioned techniques.
Here, the intrinsic coupling between positions and orientations proves to be the key for the successful
development of a low-order four-node element that is essentially free from membrane and shear locking.

Figure 1. A curved helicoidal shell element over a classical flat element.
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In a sense, the present element can be thought of as a high-order element, because helicoidal modeling
allows us to describe curved and curving surfaces in a natural way despite low-order interpolants. The
locking-free behavior of the element has to be likely ascribed to a fair approximate representation of
the orientoposition field, faithful to the helicoidal modeling of the surface: the proposed coupling of
positions and orientations of the interpolated field strictly reflects the coupling inherent in helicoidal
modeling (Part I, Section 2.2).

This paper also has to tackle another problem that arises when the evolution of the discrete model along
the solution process (that is, the rototranslation of the nodal frames) is described through incremental
helicoidal motions. The problem is that of selective external constraints, that is, when nodes — or, in
general, structure boundaries — are constrained along some degrees while the remaining degrees keep
free. Selective constraints are hardly consistent with helicoidal motion: partial constraints on some
components of incremental helices are unlikely in common practice. In our past computations, we could
fulfill selective constraints by grounding appropriate incremental unknowns along a self-based solution
process [Merlini and Morandini 2005]. This expedient, however, cannot be used with every problem:
the hemispherical shell test case, for instance, when modeled as a quarter of the dome, requires selective
symmetry constraints that cannot be handled by simply grounding appropriate incremental unknowns.
Therefore, a nonlinear constraint element, capable of dealing with external constraints in weak form, has
been developed.

The paper is organized as follows. The formulation of the variational principle, including the treatment
of external loads and selective constraints, is discussed and linearized in Section 2. In Section 3, the
interpolations are introduced and the linearized variational principle is approximated by the finite element
method. In Section 4, several numerical examples are presented to demonstrate the performance of the
proposed element. Section 5 concludes the paper.

2. Material surface variational mechanics

As stated in Part I, the starting point for the present formulation in shell mechanics is the principle of
virtual work. It can be written in the form Πintδ +Πextδ +Πbcδ = 0, where the contributions to the
virtual functional from the stresses, the external loads and the boundary constraints are kept separate.
The term Πintδ was introduced in Part I, Equation (35) and developed and linearized therein assuming
the helicoidal shell model for the reduction from three dimensions. In this section, the terms Πextδ and
Πbcδ are discussed directly for the two-dimensional material surface, and are consistently linearized.

2.1. Virtual functionals. The contributions from the external loads and boundary constraints are taken
from the analogous terms written for the three-dimensional formulation based on helicoidal modeling
[Merlini and Morandini 2004a]. For the shell material surface, they can be cast in the form (see details
in [Merlini 2008b])

Πextδ =−

∫
S
〈ηδ, b〉dS−

∫
L f

〈ηδ, s〉dL f, Πbcδ =−

∫
Lc

δ〈ΛTsc, η− ηc〉dLc. (1)

Here, S is the shell surface in the reference configuration and L = L f ∪ Lc its boundary line, split into
free portion L f and constrained portion Lc. The dual vectors b= X ′( f + Ec)= f + E(c+ x′× f ) and
s = X ′(t + Em) = t + E(m+ x′× t) are the pole-based external load dual densities per unit reference
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surface and boundary line, respectively (X ′ = I + Ex′× is the current position dual tensor and x′ the
current position vector); the relevant self-based densities, X ′Tb = f + Ec and X ′Ts = t + Em, are
composed of the forces f and t and the couples c and m; all such load densities are valued in the current
configuration; the multiplier ηδ is a virtual helix. The boundary constraint equation to fulfill in weak
form is η = ηc, with η the helix of the unknown rototranslation H = A′AT and ηc a known dual vector;
sc = X ′(tc + Emc) = tc + E(mc + x′× tc) is the pole-based unknown reaction dual density on Lc, and
tc+ Emc is the relevant self-based version, with tc the traction and mc the couple.

Equation (1)2 shows that the constraint virtual functional Πbcδ is actually the virtual variation of a
finite functional. Recalling the differential map of the rototranslation, ηδ =Λδη (Part I, Equation (7)),
the constraint virtual functional can be developed as Πbcδ =−

∫
Lc
〈ηδ, sc〉dLc −

∫
Lc
〈δ(ΛTsc), η−ηc〉dLc.

The first term is the virtual work of the constraint reactions, and the second term represents the weak form
of the constraint condition. The account of the virtual multiplier in the second term was given in [Merlini
and Morandini 2004a] for three-dimensional elasticity, and rewritten for material surface mechanics in
[Merlini 2008b].

So far, the constraint condition of a boundary particle is cast in terms of rototranslation. However,
such kinds of constraints (say, helicoidal constraints) are hardly of interest in common practice, since the
single six components of a dual helix η=ϕ+Eρ, and in particular the components of its linear part ρ, lose
in general physical significance in real applications. In fact, it is difficult just to devise the assignment of a
nonnull constraint ηc. Furthermore, difficulties arise in the case of selective constraints, when a boundary
particle has some directions constrained and others free [Merlini and Morandini 2004a]. A convenient
way of tackling the issue of selective constraints is to write them with a variational formulation based
on classical Euclidean-rotational modeling, then to rephrase them in the context of helicoidal modeling.
A constraint variational formulation of this kind was developed, linearized, and applied to helicoidal
modeling by [Merlini 2008a], with reference to three-dimensional elasticity. The same formulation can
be rewritten for the material surface starting from the constraint virtual functional

Πbcδ =−

∫
Lc

δ(〈tc, u− uc〉+ 〈Γ
Tmc,ϕ−ϕc〉)dLc, (2)

where u are displacements and ϕ rotation vectors; Γ is the mapping tensor of the differential map of the
rotation Φ, such that ϕδ = Γ δϕ (Part I, Equation (6)). The uncoupled structure of the linear and angular
constraint conditions in (2) is straightforward. Using this expression of the constraint virtual functional
instead of (1)2 makes the treatment of selective constraints affordable.

A further improvement for the treatment of selective constraints is the introduction of local constraint
frames. A constraint frame is made of three orthonormal vectors n j ≡ n j that compose the orientation
tensor N = N−T

= n j ⊗ i j
= n j
⊗ i j ; this is a given tensor and is used to define the service vectors

ǔc = NTuc, ϕ̌c = NTϕc, (3)

and
ťc = NT tc, m̌c = NTmc. (4)

Vectors ǔc and ϕ̌c are the known constraint displacement and rotation vector back-rotated by NT, whereas
ťc and m̌c are the unknown constraint reaction and reaction couple back-rotated by NT. So, the absolute
components of such service vectors are just the components of the true vectors in the local constraint
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frame. This fact makes it easy to apply the constraints along a subset of the boundary particle degrees
of freedom, without depriving the formulation of its clean vectorial notation: in practice, it corresponds
to referring the constraint to a local reference frame. Using (3) and (4), (2) is rewritten as

Πbcδ =−

∫
Lc

δ(〈 ťc, NTu− ǔc〉+ 〈NTΓ T Nm̌c, NTϕ− ϕ̌c〉)dLc. (5)

2.2. Linearization. Linearization of functional Πextδ is accomplished under the hypothesis of only two
kinds of external loads: dead-loads fD+ EcD and tD+ EmD and follower-loads Φ( fF+ EcF) and Φ(tF+
EmF), with fD, cD, tD, mD and fF, cF, tF, mF assigned densities. So, the expressions of the pole-based
loads in (1)1 become

b= X ′
(
( fD+Φ fF)+ E(cD+ΦcF)

)
, s = X ′

(
(tD+Φ tF)+ E(mD+ΦmF)

)
.

After realizing that ∂(X ′Tηδ)= X ′Tη∂δ + 1
2 ϕ∂ ×ϕδ +

1
2 ϕ∂ × X ′Tηδ + 1

2 ϕδ × X ′Tη∂ , linearization of
(1)1 involves simple algebraic manipulations (see [Merlini 2008b]) and yields

Πextδ =−

∫
S
{ηδ}

T
· {RS

fη}dS−
∫

L f

{ηδ}
T
· {RL

fη}dL f,

∂Πextδ =−

∫
S
({ηδ}

T
· [DS

fηη] · {η∂}+{η∂δ}
T
· {RS

fη})dS−
∫

L f

({ηδ}
T
· [DL

fηη] · {η∂}+{η∂δ}
T
· {RL

fη})dL f,

(6)

where

{RS
fη} =

{
(cD+ΦcF)+ x′× ( fD+Φ fF)

fD+Φ fF

}
,

[DS
fηη] =

[ 1
2 (cD+ΦcF)×+

1
2

(
x′× ( fD+Φ fF)×+( fD+Φ fF)× x′×

) 1
2( fD+Φ fF)×

T

1
2( fD+Φ fF)× 0

]
−

[
(ΦcF)×+x′× (Φ fF)× 0

(Φ fF)× 0

]
,

and

{RL
fη} =

{
(mD+ΦmF)+ x′× (tD+Φ tF)

tD+Φ tF

}
,

[DL
fηη] =

[ 1
2 (mD+ΦmF)×+

1
2

(
x′× (tD+Φ tF)×+(tD+Φ tF)× x′×

) 1
2 (tD+Φ tF)×T

1
2 (tD+Φ tF)× 0

]
−

[
(ΦmF)×+x′× (Φ tF)× 0

(Φ tF)× 0

]
.

As assumed in Part I, here and in the following the sequence angular–linear is understood while writing
dual vectors and tensors in matrix notation. So, for example, in column {ηδ} vector ϕδ is the first element
and vector ρδ the second.

Linearization of the functional Πbcδ needs more skills about the successive differentiations of the
rotation tensor [Merlini 2002; 2003]. Here, it suffices to recall that ∂ϕδ = ϕ∂δ + 1

2 ϕ∂ ×ϕδ, ϕδ = Γ δϕ,
δΓ = Γ/ : δϕ ⊗ I , ∂Γ/ = Γ 1234

// : ∂ϕ ⊗ I ; the expressions for tensors Γ , Γ/ and Γ 1234
// can be found
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in [Merlini and Morandini 2004b, Appendix A]. After some algebraic manipulation [Merlini 2008b],
linearization of (5) yields

Πbcδ =−

∫
Lc

({
ϕδ
δu

}T

·

{
QIIcm̌c

N ťc

}
+

{
δm̌c

δ ťc

}T

·

{
QIc

QLc

})
dLc,

∂Πbcδ =−

∫
Lc

(
ϕδ ·

[
Γ −T(m̌c · QIIIc)Γ

−1
+

1
2(QIIcm̌c)×

]
·ϕ∂ +

{
ϕδ
δu

}T

·

[
QIIc 0
0 N

]
·

{
∂m̌c

∂ ťc

}

+

{
δm̌c

δ ťc

}T

·

[
QT

IIc 0
0 NT

]
·

{
ϕ∂
∂u

}
+

{
ϕ∂δ
∂δu

}T

·

{
QIIcm̌c

N ťc

}
+

{
∂δm̌c

∂δ ťc

}T

·

{
QIc

QLc

})
dLc,

(7)

where convenient tensors have been introduced as

QLc = NTu− ǔc,

QIc = NTΓ N(NTϕ− ϕ̌c),

QIIc = N +Γ −T(NTΓ/N(NTϕ− ϕ̌c)
)T
,

QIIIc = NTΓ/+ NT(Γ 1234
// − (Γ T132

/ Γ −1Γ T132
/ )T1342)N(NTϕ− ϕ̌c).

In order to use the constraint virtual functionals Πbcδ and ∂Πbcδ in the context of helicoidal modeling,
it remains to pass from Euclidean-rotational kinematics to helicoidal kinematics. The constraint reactions
are conveniently grouped into the dual reaction řc = ťc+ Em̌c and the kinematical variables into the dual
vector e= ϕ+ Eu. Consistently, the dual kinematical variation variables eδ = ϕδ + Eδu, e∂ = ϕ∂ + E∂u,
and e∂δ = ϕ∂δ + E∂δu are introduced. It can be shown that the dual vector e and the helix η are related
by e= Γ T X ′Tη, and the relevant variation variables by

eδ = X ′Tηδ, e∂ = X ′Tη∂ , e∂δ = X ′Tη∂δ + 1
2 (ϕ∂ × X ′Tηδ +ϕδ × X ′Tη∂),

see [Merlini 2008a]. Thus, (7) are finally brought to the form

Πbcδ =−

∫
Lc

{
ηδ
δ řc

}T

·

{
RL

cη

RL
cr

}
dLc,

∂Πbcδ =−

∫
Lc

({
ηδ
δ řc

}T

·

[
DL

cηη DL
cηr

DL T
cηr 0

]
·

{
η∂
∂ řc

}
+

{
η∂δ
∂δ řc

}T

·

{
RL

cη

RL
cr

})
dLc,

(8)

where

{RL
cη} =

{
QIIcm̌c+ x′× N ťc

N ťc

}
,

{RL
cr} =

{
QIc

QLc

}
,

[DL
cηη] =

[
Γ −T(m̌c · QIIIc)Γ

−1
+

1
2 (QIIcm̌c)×+

1
2

(
x′× (N ťc)×+(N ťc)× x′×

) 1
2 (N ťc)×T

1
2 (N ťc)× 0

]
,

[DL
cηr ] =

[
QIIc x′× N
0 N

]
.

(9)
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Note that the mixed virtual-incremental variation variables are retained in the tangent functionals
∂Πextδ and ∂Πbcδ, in consideration of a possible nonlinear dependence of the local variables on the
ultimate problem unknowns.

3. Finite elements

3.1. Linearized discrete variational principle. The virtual functionals discussed above are assembled
as a sum of contributions from the appropriate elements according to the finite element method. Three
kinds of element contributions are considered.

First, the material surface shell element itself: the integralsΠintδ=
∫

S πintδ dS and ∂Πintδ=
∫

S ∂πintδ dS,
relevant to the internal work as discussed in Part I, and part of the integrals Πextδ and ∂Πextδ from (6),
relevant to the external loads, pertain to this element. So, recalling Part I, Equation (67), the virtual
functional and the virtual tangent functional of the shell element, which spans over the surface Se, are
written

Π Se

δ =

∫
Se

({
δ(HTωα)

δτ̂

}T

·

{
HT Rαω

Rτ

}
−{ηδ}

T
· {RS

fη}

)
dSe,

∂Π Se

δ =

∫
Se

({
δ(HTωα)

δτ̂

}T

·

[
HT Dαβ

ωωH HT Dα
ωτ

DβT
ωτ H Dττ

]
·

{
∂(HTωβ)

∂ τ̂

}
−{ηδ}

T
· [DS

fηη] · {η∂}

+

{
∂δ(HTωα)

∂δτ̂

}T

·

{
HT Rαω

Rτ

}
−{η∂δ}

T
· {RS

fη}

)
dSe,

(10)

where tensors R and D are given in Part I, Equation (66).
Second, the border load element, to which the other terms in (6) relevant to the external loads pertain.

It lies on the line Le
f , and the relevant functionals are written

Π
Le

f
δ =−

∫
Le

f

{ηδ}
T
· {RL

fη}dLe
f , ∂Π

Le
f

δ =−

∫
Le

f

({ηδ}
T
· [DL

fηη] · {η∂}+ {η∂δ}
T
· {RL

fη})dLe
f . (11)

This element is a useful means to introduce external loads distributed along the shell boundary.
Third, an element to implement the boundary constraints as for (8). However, in the present version

of the finite element code, this element is not integrated over a line Le
c, but instead is attached to a single

node N e
c ; hence, it is referred to as the node constraint element. The relevant functionals are written

Π
N e

c
δ =−

{
ηδ J

δ řcJ

}T

·

{
RN

cη

RN
cr

}
,

∂Π
N e

c
δ =−

({
ηδ J

δ řcJ

}T

·

[
DN

cηη DN
cηr

DN T
cηr 0

]
·

{
η∂ J

∂ řcJ

}
+{η∂δ J }

T
· {RN

cη}

)
,

(12)

where ηJ and řcJ refer to the helix and the dual reaction at the constrained node J , and the dual vectors
RN

c and tensors DN
c are evaluated from (9) at that node. Note that the mixed virtual-incremental variation

∂δ řc has been discarded while passing from (8) to (12); in fact řcJ is now an ultimate free unknown of
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the discrete problem. This is not the case for η∂δ . The node constraint element is not specific to the shell
modeling and can be used in any finite element analysis.

The linearized variational principle is therefore cast in the form Πδ + ∂Πδ = 0, where the discrete
virtual functional and virtual tangent functional of the whole problem are built with the contribution from
all the elements:

Πδ =

∑
Se

Π Se

δ +

∑
Le

f

Π
Le

f
δ +

∑
N e

c

Π
N e

c
δ , ∂Πδ =

∑
Se

∂Π Se

δ +

∑
Le

f

∂Π
Le

f
δ +

∑
N e

c

∂Π
N e

c
δ .

Note that the external loads and possibly the reaction constraints will contribute to the tangent stiffness.

3.2. Element kinematic field. As discussed in Part I, Section 3, the formulation of the material surface
kinematics is based on the integral field of the rototranslations. Rototranslations are orthogonal dual
tensors, and as such they compose multiplicatively and do not commute. These distinctive properties of
the kinematic field should be preserved in the approximate, substitute field on which a surface element is
built. The helicoidal interpolation developed in [Merlini and Morandini 2004b] fulfills this requirement
and is adopted here for both the shell and the border load elements.

Given N nodal frames in space, with orientoposition tensors AJ (J = 1, 2, . . . , N ), the interpolated
orientoposition A is determined by the equation

N∑
J=1

WJ log(AAT
J )= 0, (13)

where WJ are N given weights that measure the influence of each frame J on the sought one. Solution
of (13) yields the weighted average orientoposition A, that is, an orientoposition with a null weighted
average of the logarithms of the relative rototranslations H̃J = AAT

J from the nodal frames, hence with a
null weighted average of the relative helices η̃J from AJ to A (see Figure 2). In the present application,
as in the solid elements [Merlini and Morandini 2005], Lagrange polynomial interpolants on rectangular
domains are assumed; so, the proposed corner-node elements (4-node shell element and 2-node border
load element) are built with standard multilinear weight functions WJ . It is worth noting, in Figure 2,
that the nodal orientations control the orientation as well as the position of the interpolated point.

Equation (13) is an implicit nonlinear equation. In general, it cannot give the interpolated oriento-
position A in closed form, however it can be solved numerically by a refined Newton–Raphson procedure
that proves very efficient. Then, the spatial derivatives of the weight functions WJ with respect to the
local curvilinear coordinates ξα allow us to compute the curvature dual vectors in closed form as

kα =−(Λ−II )
−1

N∑
J=1

WJ,αη̃J , (14)

where

Λ−II =

N∑
J=1

WJ Λ̃
−1
J , Λ̃J = dexp(η̃J×).

The helicoidal interpolation, (13) and (14), is first performed in the reference, undeformed configura-
tion (this operation also allows an accurate setting of elements with possibly curved geometry). Then,
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Figure 2. Helicoidal interpolation on a quadrilateral shell element.

the same interpolation scheme is applied to any current, deformed configuration; the comparison of
the interpolated quantities between the current and the reference configurations allows us to recover
(according to a total-Lagrangian approach) the local rototranslation H = A′AT and the kinematical dual
strains ωα = k′α−Hkα at the shell element quadrature points. It is worth stressing that this way of building
the local kinematics is manifestly far from the customary standpoint of interpolating the rototranslations
(or the rotations) of the nodal frames — a concept, in our opinion, devoid of consistency [Merlini and
Morandini 2004b]. Note that operating on the orientopositions instead of the rototranslations makes
this interpolation scheme path independent, as the local orientoposition and curvatures are computed
independently from the past history of the nodal orientopositions. The proposed interpolation scheme
is objective as well: the frame indifference and the invariance against rigid motions has been proved
in [Merlini and Morandini 2004b], and is strictly connected to the concept of averaging the relative
rototranslations from the nodal frames.

Evaluation of the integrals in (10) and (11) requires expressions for the virtual, incremental, and mixed
virtual-incremental local variation variables. These are the outcome of the linearization of the helicoidal
interpolation (13), a complicated process discussed in [Merlini and Morandini 2004b], that yields the
local variation variables as linear functions of the relevant nodal variation variables. In the following,
just the resulting interpolation formulae are written for the specific case of shell elements (see [Merlini
and Morandini 2008]):

{ηδ} =

N∑
J=1

[NAJ ] · {ηδ J },

{η∂} =

N∑
K=1

[NAK ] · {η∂K },

{η∂δ} =

N∑
J=1

[NAJ ] · {η∂δ J }+

N∑
J=1

N∑
K=1

{
{ηδ J } · [N

T213
AaJ K ] · {η∂K }

{ηδ J } · [N
T213
AlJ K ] · {η∂K }

}
,

(15)
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and

{Hδ(HTωα)} =

N∑
J=1

[NKJα] · {ηδ J },

{H∂(HTωβ)} =

N∑
K=1

[NKKβ] · {η∂K },

{H∂δ(HTωα)} =

N∑
J=1

[NKJα] · {η∂δ J }+

N∑
J=1

N∑
K=1

{
{ηδ J } · [N

T213
KaJ Kα] · {η∂K }

{ηδ J } · [N
T213
KlJ Kα] · {η∂K }

}
.

(16)

It is worth noting that the linearization of the helicoidal interpolation supplies interpolation formulae
capable of relating the mixed virtual-incremental local variation variables to the virtual, incremental, and
mixed virtual-incremental nodal variation variables. The tensor matrices in (15) and (16) are defined as

[NAJ ] =

[
primal VJ 0
dual VJ primal VJ

]
,

[NAaJ K ] =

[
primal VJ K 0

0 0

]
,

[NAlJ K ] =

[
dual VJ K primal VJ K

primal VJ K 0

]
,

and

[NKJα] =

[
primal W̆Jα 0
dual W̆Jα primal W̆Jα

]
,

[NKaJ Kα] =

[
primal W̆J Kα 0

0 0

]
,

[NKlJ Kα] =

[
dual W̆J Kα primal W̆J Kα

primal W̆J Kα 0

]
,

where

W̆Jα =WJα +
1
2 k′α × VJ ,

W̆J Kα =WJ Kα+
1
2 k′α ×VJ K+

1
2 (I
×WJα)

T132VK+
1
2 ((I

×WKα)
T132VJ )

T132
+((I ⊗ k′α)

S123VJ )
T132VK ,

and tensors VJ , VJ K , WJα, and WJ Kα are defined in [Merlini and Morandini 2004b].

3.3. Element Biot-axial field. The so-called surface Biot-axial stress parameter τ̂ , which pertains to the
Euclidean vector space, is approximated in a much simpler way: it is assumed uniform over the shell
element domain, say

τ̂ = τ̂E ,

with τ̂E a discrete variable of the global problem, unique for the each single element. Linearization of
τ̂ is straightforward, δτ̂ = δτ̂E and ∂ τ̂ = ∂ τ̂E , whereas of course ∂δτ̂ = 0, since τ̂E is an ultimate free
unknown of the discrete problem.
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The choice of a uniform Biot-axial parameter is consistent with the interpolation of τ̂ discussed in
[Merlini and Morandini 2005] for the solid element, see the particular case of planar elements. Other
interpolation schemes have been investigated [Merlini and Morandini 2008] and tested, however with
less success.

3.4. Element matrices. Using the variation variables obtained in Sections 3.2 and 3.3 within (10)–(12),
the element contributions to the virtual functional and virtual tangent functional are brought to the fol-
lowing form (details in [Merlini and Morandini 2008]).

• Shell element:

Π Se

δ =

4∑
J=1

{ηδ J }
T
· {FS

ηJ }+ δτ̂E · FS
τ E ,

∂Π Se

δ =

4∑
J=1

4∑
K=1

{ηδ J }
T
· [K S

ηηJ K ] · {η∂K }+

4∑
J=1

{ηδ J }
T
· [K S

ητ J E ] · ∂ τ̂E

+δτ̂E ·

4∑
K=1

[K S
ητK E ]

T
· {η∂K }+ δτ̂E · K S

ττ E E · ∂ τ̂E +

4∑
J=1

{η∂δ J }
T
· {FS

ηJ }.

(17)

• Border load element:

Π
Le

f
δ =

2∑
J=1

{ηδ J }
T
· {FL

ηJ },

∂Π
Le

f
δ =

2∑
J=1

2∑
K=1

{ηδ J }
T
· [K L

ηηJ K ] · {η∂K }+

2∑
J=1

{η∂δ J }
T
· {FL

ηJ }.

(18)

• Node constraint element:

Π
N e

c
δ = {ηδ J }

T
· {FN

ηJ }+ {δ řcJ }
T
· {FN

r J },

∂Π
N e

c
δ = {ηδ J }

T
· [K N

ηηJ J ] · {η∂ J }+ {ηδ J }
T
· [K N

ηr J J ] · {∂ řcJ }

+{δ řcJ }
T
· [K N

ηr J J ]
T
· {η∂ J }+ {η∂δ J }

T
· {FN

ηJ }.

(19)

Equations (17)–(19) can be directly assembled within the global variational functionals of the whole
discrete problem. The element contributions to the problem residual and tangent matrix are as follows.

• Shell element:

{FS
ηJ } =

∫
Se
({Rαω}

T
· [NKJα] − {RS

fη}
T
· [NAJ ])dSe,

FS
τ E =

∫
Se

Rτ dSe,

[K S
ηηJ K ] =

∫
Se
([NKJα]

T
· [Dαβ

ωω] · [NKKβ] + [dual Rαω ·NKaJ Kα] + [primal Rαω ·NKlJ Kα]

−[NAJ ]
T
· [DS

fηη] · [NAK ] − [dual RS
fη ·NAaJ K ] − [primal RS

fη ·NAlJ K ])dSe,
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[K S
ητ J E ] =

∫
Se
[NKJα]

T
· [Dα

ωτ ]dSe,

K S
ττ E E =

∫
Se

Dττ dSe.

• Border load element:

{FL
ηJ } =

∫
Le

f

(−{RL
fη}

T
· [NAJ ])dLe

f ,

[K L
ηηJ K ] =

∫
Le

f

(−[NAJ ]
T
· [DL

fηη] · [NAK ] − [dual RL
fη ·NAaJ K ] − [primal RL

fη ·NAlJ K ])dLe
f .

• Node constraint element:

{FN
ηJ } = −{R

N
cη}, {F

N
r J } = −{R

N
cr}, [K

N
ηηJ J ] = −[D

N
cηη], [K

N
ηr J J ] = −[D

N
cηr ].

3.5. Nodal mixed variation variables. It is noted that (17)2, (18)2, and (19)2 contain terms in the mixed
virtual-incremental variation variables η∂δ J relevant to the nodal helices. Before assembling the problem
matrix, these mixed variation variables must be solved for the simple variation variables ηδ J and η∂ J . The
resolution of η∂δ J is now possible at the nodes, since there the nodal helices are actually free variables.
As explained in [Merlini and Morandini 2004b; 2005], using the differential map of the rototranslation
and discarding, of course, the term ∂δηJ , the resolution formula is easily obtained:

η∂δ J =ΛJΛ
−123
IIIJ : ηδ J ⊗ η∂ J . (20)

Here, ΛJ and Λ−123
IIIJ are the first and second differential mapping tensors associated with the exponential

map of the nodal rototranslation HJ ; they are built with the current value of the nodal helix ηJ .
Using (20), terms of the type {η∂δ J }

T
· {FJ } in (17)–(19) are transformed to {ηδ J }

T
· [K J J ] · {η∂ J },

where

[K J J ]

=

[
dual FJ · primal(ΛJΛ

−123
IIIJ )+ primal FJ · dual(ΛJΛ

−123
IIIJ ) primal FJ · primal(ΛJΛ

−123
IIIJ )

primal FJ · primal(ΛJΛ
−123
IIIJ ) 0

]
. (21)

4. Numerical tests

The elements so far described have been implemented in the authors’ own finite-element code, already
used in the past computations with solid elements. The code, written in C++ language, is object-oriented
and is equipped with an original geometrical library to help in manipulating high-order tensors. The
surface elements exploit the Gauss quadrature rule with three integration points per local coordinate.
At each surface quadrature point, the shell model is integrated across the thickness by the Gauss rule
with two integration points along ξ 3 over the domain [−1, +1]. This choice of the through-the-thickness
domain implies that in the present element version, the material surface lies on the mid shell surface. The
characteristic length h is chosen as half the shell thickness, so the third base vector g3 (Part I, Equation
(13)) is the normal segment from the mid surface to the outer surface at ξ 3

= +1 in the reference
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configuration. The reference director is chosen as a pure dual vector θ = EhαTn, so that k3 = Ehn and
g∗3 = g3

= hn is constant across the thickness. The target loads on the shell element and on the border
load element are assigned by the user as density properties pertaining to each surface quadrature point.

Most test cases concern linear elastic isotropic materials. Since in the present variational formulation
the strain-energy density w∗ is by assumption a function of the Biot strain ε∗S instead of the classical
Green strain (see Part I, Section 5.1), the linear constitutive law analogous to the Saint Venant–Kirchhoff
law descends from the hyperelastic strain-energy function

w∗(ε∗S)= 1
2 λ̂(tr ε

∗S)2+ µ̂ tr(ε∗S)2,

where λ̂ and µ̂ are Lamé moduli proper of the Biot-type parameterization. Using such a linear constitutive
law instead of adapting the original Saint Venant–Kirchhoff law induces an error that is negligible as long
as the strains remain small. This is the case of all the linear-material examples presented below; in the
examples, the material data are given as an elastic modulus E and a Poisson ratio ν, from which the
Lamé moduli are computed as usual as λ̂= Eν/(1+ ν)(1− 2ν) and µ̂= E/2(1+ ν). Besides the linear
constitutive law, a classical neo-Hookean constitutive law is available; it descends, for the Biot-type
parameterization, from the strain-energy function [Merlini and Morandini 2005]

w∗(U∗)= 1
2 λ(ln det U∗)2−µ ln det U∗+ 1

2µ tr(U∗2− I), (22)

with U∗ = I + ε∗S the Cosserat deformation tensor.
The standard nonlinear solution is achieved by subsequent load steps. At each step, an iterative pro-

cedure of the Newton–Raphson kind is started. At each iteration, the nodal orientopositions are updated
multiplicatively, A′J ← exp(η∂ J×)A′J , whereas the Biot-axial and reaction unknowns are updated ad-
ditively. At the time of solving the linearized equations, the kinematical unknowns are transformed to
become self-based, as described in [Merlini and Morandini 2005]. The solution of snapping and buckling
problems is achieved by an arc-length procedure based on a modified Riks algorithm of the spherical
type; implementation details and relevant references are given in [Merlini and Morandini 2008]. Both
the monotone procedure and the arc-length procedure are equipped with an automatic step control, which
makes the load-step size (respectively, the arc-step size) shrink or stretch dynamically.

Different convergence criteria are applied to the different subsets of the residual, work-conjugate
respectively to the angular and linear parts of the kinematical variables, the constraint reactions, and the
Biot-axial parameters. For each subset relevant to a single kind of kinematical variable, the maximum
absolute value is first normalized with respect to the average of all the absolute contributions to that
subset in the assembling process, then is requested to lower below 5× 10−3. For the other subsets, the
maximum absolute value must vanish with a tolerance of 10−5. Finally, the Euclidean norm of the whole
computed solution must be less that 10−3.

In the following examples, the helicoidal shell element is referred to as the HSE. It is worth emphasiz-
ing that in the pictures of the finite element models, the element geometry is built from the corner oriento-
positions by the helicoidal interpolation itself. This means that in the problem analysis, the quadrature
points are located exactly where they can be actually imagined to stay, in local curvilinear coordinates,
on the images (for example, observe Figure 3). No units are explicitly used in the examples, so it is
understood that all measures in each test are associated with a coherent system of units, for example, SI.
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Figure 3. Slit annular plate: meshes of 2× 6 and 10× 70 at the final load (force/length= 1).

4.1. Slit annular plate. The slit annular plate was introduced in [Başar et al. 1992] as a benchmark
problem for finite rotation formulations in geometrically nonlinear shell problems. Since then, most in-
vestigators have used this example to test the performance of shell elements, in [Wriggers and Gruttmann
1993; Ibrahimbegović and Frey 1994; Sansour and Kollmann 2000; Sze et al. 2002; Fontes Valente et al.
2003; Campello et al. 2003; Cardoso and Yoon 2005; Areias et al. 2005; Arciniega and Reddy 2007],
among others. One edge of a slit ring plate is clamped, while the other edge is subjected to a transverse
line load, which induces strong distortions in the originally plane elements. The problem data and the
notable deformation of a coarse mesh of twelve HSE curved elements are shown in Figure 3. The
distributed force is applied by a string of border load elements.

The free edge displacements with increasing load are plotted in Figure 4 for three different meshes
and compared with the best results reported by [Sze et al. 2004]. The results from [Li and Zhan 2000],
obtained with a shell element endowed with the drilling degree of freedom and based on Biot strain, are
included in Figure 4. The convergence of the HSE and a very good agreement with the computations
found in the literature are observed. Displacements every 0.2 force/length are reported in Table 1. Using
such refined meshes, a high number of steps (130–140, with an average of 5–6 iterations per step) is
necessary to reach the final solution (force/length= 1) by the monotone loading procedure.

wA wB

Force/length 6× 30 8× 48 10× 70 6× 30 8× 48 10× 70

0.2 7.576 7.584 7.586 10.258 10.267 10.270
0.4 10.391 10.422 10.433 13.691 13.722 13.733
0.6 12.147 12.224 12.250 15.680 15.756 15.782
0.8 13.653 13.772 13.811 17.290 17.410 17.449
1.0 14.972 15.128 15.175 18.663 18.820 18.867

Table 1. Slit annular plate: displacements of points A and B with three different meshes.
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Figure 4. Slit annular plate: load-displacement curves.

4.2. Twisted beam. The example of a straight twisted strip, clamped at one end and loaded at the other
end by a transverse force, was studied in the nonlinear regime by [Sansour and Kollmann 2000; Chróś-
cielewski and Witkowski 2006]. The problem data are given in Figure 5. The analysis is performed on
two meshes: 2×24 and 4×48 warped HSEs. The load is assigned as a distributed force along the tip edge
in its own plane, by means of border load elements. The total load versus the tip deflections is plotted

Figure 5. Twisted beam: 2× 24 mesh in the reference configuration and at load of 0.007.
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Figure 6. Twisted beam: displacements of tip A.

in Figure 6 and compared with results in the literature. This problem is a good benchmark to test the
performance of elements with nonplanar geometry, and the behavior of the HSE seems satisfactory. Some
representative displacements are listed in Table 2. The computation is very demanding in this case: with
the 2× 24 mesh the final load of 0.04 is reached in 194 load steps with an average of 6 iterations per step.

This example is also used to report the computed values of the Biot-axial variables in a shell analysis.
The symmetric and skew-symmetric parts of the Biot stress within the three-dimensional domain across

2× 24 4× 48

Force × 102 In-plane Out-of-plane Force × 102 In-plane Out-of-plane

0.059 1.754 0.620 0.056 2.675 0.939
0.163 4.264 1.466 0.163 6.010 1.924
0.238 5.568 1.846 0.228 7.121 2.119
0.327 6.665 2.092 0.324 8.131 2.173
0.416 7.447 2.194 0.414 8.717 2.121
0.457 7.730 2.208 0.456 8.922 2.083
0.578 8.386 2.182 0.597 9.421 1.937
0.814 9.169 2.006 0.821 9.888 1.714
0.987 9.523 1.863 1.000 10.123 1.564
2.003 10.430 1.316 2.000 10.721 1.058
2.967 10.761 1.067 3.000 10.963 0.816
4.000 10.960 0.909 4.000 11.102 0.674

Table 2. Twisted beam: displacements of tip A up to load of 0.04 with two different meshes.
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Figure 7. Twisted beam: max(abs(eigenvalue(T̂∗S))) and ‖τ̂ ∗‖ as representative values
of the elastically defined and the workless parts of the Biot stress within the thickness
with a 2× 24 mesh at the final load of 0.04; plot of the highest values among the twelve
Gauss points at each beam abscissa.

the thickness can be compared on a logarithmic scale in Figure 7. The Biot-axial keeps lower than the
elastically defined stress by at least one order of magnitude, and features an alternate course as already
noticed in full three-dimensional analyses [Merlini and Morandini 2005]. Note that the perfect symmetry
of the Biot stress within an isotropic material (see [Bufler 1985]) is lost in the present approximate
analysis where the field equations are satisfied in a weak sense — a fact that confirms the computational
role of the Biot-axial in a discrete model. The material surface Biot-axial parameter τ̂ is modeled as a
vector field uniform over the shell element. In the present computation, it is almost normal to the element
surface and is distributed along the strip as the bar graph of Figure 8. The highest values of the Biot-axial
are observed near the clamped side.

Figure 8. Twisted beam: magnitude of the surface Biot-axial parameter on the elements
of a 2× 24 mesh at the final load of 0.04.



710 TEODORO MERLINI AND MARCO MORANDINI

Figure 9. Cylindrical shell under line load: 8× 4 mesh of a quarter cylinder and de-
formed model of case t = 2.0 and ν = 0.4 at load of 36000 (displacement of vertex
A= 17.388).

4.3. Cylindrical shell under line load. The cylindrical shell pinched by a line load along a generatrix
and simply supported at the opposite generatrix was studied in [Büchter et al. 1994] as a test case for
shell elements with nonlinear hyperelastic material. The same compressible neo-Hookean constitutive
law, derived from the strain-energy function (22), is used here. The cylinder geometry and properties are
given in Figure 9: a thin shell (t = 0.2) and a thick shell (t = 2.0), with both a compressible (ν = 0.4)
and a nearly incompressible (ν = 0.4878) material, are considered. Due to symmetry, one quarter of
the cylinder is modeled; three different meshes of increasing refinement along the circumference are
analyzed, 8×4, 12×4, and 16×4 curved HSEs; the line load is introduced by four border load elements.
A deformed model is also shown in Figure 9.

Portions of the load-displacement plots are shown in Figure 10. For the compressible material (Figures
10a and 10c), a comparison can be made with several shell elements based on 5, 6, and 7-parameter
models and exploiting incompatible modes and EAS concepts, as proposed in [Büchter et al. 1994;
Brank et al. 2002; Brank 2005] (in the last two of these papers, a slightly different constitutive law is
used). The formulation of the HSE does not involve incompatible modes nor assumed strains, and the
behavior of the HSE is apparently stiffer than the elements in the literature, in particular for the thick
shell. It can be noted that the adaptation of the local constitutive law for the helicoidal shell model,
as discussed in Part I, enables us to analyze nearly incompressible thin shells without resorting to any
numerical expedient such as reduced integration. The effectiveness of this feature, however, seems to
weaken as the shell thickness increases. For the nearly incompressible material (Figures 10b and 10d),
no tests with shell elements have been found in the literature and a comparison could only be made with
solid elements; published results with solid elements are not included in Figure 10 but can be found in
[Reese et al. 2000; Merlini and Morandini 2005] and, with a different constitutive law, in [Chavan et al.
2007]. The computational burden of this test case is much less demanding: 25–35 load steps with about
6 iterations per step for the thin models and 8–12 steps with 9–10 iterations per step for the thick models.
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Figure 10. Cylindrical shell under line load: total load versus displacement of point A
and some sparse values from literature.

4.4. Cylindrical shell pullout. The cylinder stretched by two opposite forces is a very popular bench-
mark test in the shell element literature, for example, in [Sansour and Bufler 1992; Sansour and Bed-
narczyk 1995; Sansour and Kollmann 2000; Sze et al. 2002; Campello et al. 2003; Fontes Valente et al.
2003; Pimenta et al. 2004; Areias et al. 2005; Brank 2008], among others. The specimen is a cylindrical
surface with open ends, pinched by two pulling forces along the mid diameter, see Figure 11. Due to
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Node 1 2 3 4 5 6 7 8 9
y 0.00000 0.10506 0.26265 0.49903 0.85361 1.38547 2.18327 3.37996 5.17500

Table 3. Cylindrical shell pullout: node coordinates along the cylinder axis from point
A (regular mesh).

symmetry, one octant of the cylinder is modeled using a mesh of 9×8 curved HSEs, with either a regular
(rectangular) or an irregular pattern. The regular mesh has 9 elements in the circumferential direction
and 8 elements in the axial direction. The coordinates of the first nine nodes from the load-point A in
both directions are set by a geometric progression of common ratio 1.5 (see Table 3); the aspect ratio of
the narrowest element is higher than 24. The irregular mesh is derived from the regular one by moving
randomly the nodes in both directions within the range of half an element size: the quadrilaterals become
very irregular, as evidenced in Figure 11.

Using the arc-length procedure, the target load of 40000 is exceeded in 23 steps with the regular
mesh (6 iterations per step on average), and in 20 steps with the irregular one. In agreement with
published results, a slight snap-through is observed at a load of about 20500. Plots of representative
radial displacements at increasing load are shown in Figure 12: the reasonably similar results obtained
with the two meshes are a clear evidence of the low sensitivity to irregular geometries of the proposed
shell element. In Figure 12, the results from the present coarse regular mesh are successfully compared

Figure 11. Cylindrical shell pullout: regular mesh in the reference configuration and at
the final load of 40000; detail of the undeformed irregular mesh.
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Figure 12. Cylindrical shell pullout: load-displacement curves.

with those obtained with a refined mesh in [Sze et al. 2004]. Loads and displacements at every history
step are listed in Table 4.

4.5. Pinched cylindrical shell with end diaphragms. The cylinder pinched by two opposite point loads
is another popular benchmark test; see for example, [Sansour and Bednarczyk 1995; Sansour and Koll-
mann 2000; Sze et al. 2002; Campello et al. 2003; Pimenta et al. 2004; Brank 2008]. The cylindrical
shell is mounted over rigid end diaphragms that lock the in-plane displacements. Thus, the shell folds

Force wA −uB −uC Force wA −uB −uC

625 0.561 0.551 0.556 10696 2.194 3.122 3.355
781 0.669 0.673 0.680 12806 2.268 3.260 3.490
952 0.776 0.800 0.808 16822 2.376 3.468 3.651

1140 0.881 0.931 0.941 18478 2.414 3.548 3.692
1460 1.036 1.136 1.150 20547 2.462 3.683 3.717
2055 1.262 1.461 1.485 21117 2.502 3.938 3.642
3345 1.583 1.985 2.039 21400 2.520 4.026 3.601
4018 1.696 2.189 2.263 22416 2.555 4.147 3.536
5341 1.861 2.498 2.621 25919 2.617 4.308 3.438
5974 1.921 2.612 2.759 34489 2.697 4.472 3.335
7129 2.011 2.782 2.966 42141 2.743 4.556 3.284
9524 2.144 3.031 3.257 40000 2.731 4.535 3.297

Table 4. Cylindrical shell pullout: radial displacements of points A, B, and C (regular mesh).
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Figure 13. Pinched cylindrical shell with end diaphragms: deformed configuration at
the final load of 12000.

notably under the two pushing forces directed as the mid diameter; see Figure 13. A refined, uniform
mesh is appropriate to solve this problem: exploiting the problem symmetries, one octant of the cylinder
is modeled by 32× 32 curved HSEs. The analysis up to the final load of 12000 is performed by the
arc-length procedure in 74 steps, with an average of 7 iterations per step. The load history exhibits
several slight snap-throughs, as evidenced by the load-displacement plots of Figure 14. However, a
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Figure 14. Pinched cylindrical shell with end diaphragms: load-displacement curves.
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Force −wA uB

1003 18.171 −1.349
2026 50.980 6.683
4174 68.041 20.399
6125 73.842 25.550
7963 77.841 29.570

10017 81.570 33.686
12000 83.102 34.673

Table 5. Pinched cylindrical shell with end diaphragms: radial displacements of points
A and B.

good agreement with the best results reported in [Sze et al. 2004] is observed. Some representative
load-displacement pairs are listed in Table 5.

4.6. Cylindrical roof under point load. The buckling problem of the shallow cylindrical panel hinged
along two generatrices and subjected to a central point load has been considered by several authors; refer
to [Simo et al. 1990; Chróścielewski et al. 1992; Gruttmann et al. 1992; Sansour and Bufler 1992], and
to most of the more recent works cited so far. The problem data and the undeformed configuration with
a 4× 4 mesh are shown in Figure 15 (owing to symmetry, one quarter of the panel is modeled). Two
different thicknesses are examined, with either a coarse mesh of 4× 4 curved HSEs or a refined one of
8× 8.

The snapping behavior is easily captured by the arc-length procedure. The load-displacement curves,
in Figure 16, at the central point A with the 4× 4 mesh are plotted and compared with the best results
reported in [Sze et al. 2004]; the results with the 8× 8 mesh are not included in Figure 16 as they are
indistinguishable from those of [Sze et al. 2004]. The thin panel curve (Figure 16a) is traced in 24 steps
up to exceed the final load of 3000, with an average of 6.3 iterations per step; the thick panel curve
(Figure 16b) is traced in 17 steps, with an average of 5.6 iterations per step. The deformed models

Figure 15. Cylindrical roof under point load: 4× 4 mesh in the reference configuration
and the applied load.
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Figure 16. Cylindrical roof under point load: load-displacement curves.

t = 6.35 t = 12.7
Force −wA Force −wA

188 2.24 750 2.07
375 5.56 1500 4.78
490 8.50 1960 7.22
562 11.02 2191 9.41
586 13.97 2177 12.13
401 16.13 1589 14.91
-65 16.73 566 18.36

-387 16.36 3674 29.97
270 27.15 3000 28.72

3164 38.52
3000 38.09

Table 6. Cylindrical roof under point load: displacement of point A with the 8× 8 mesh.

are not shown for this test case, as the maximum displacement, despite the strong effect of geometrical
nonlinearity, is small and of the order of the panel camber. In Table 6, all the load-displacement pairs
from the computations with the 8× 8 mesh are listed; during these computations, the arc-length step was
allowed to increase, whence the low number of total steps.

4.7. Cylindrical shell pinched by four radial forces. The buckling of a cylindrical shell pinched by four
radial forces was recently studied [Kuznetsov and Levyakov 2007] to successfully test an unconventional
and interesting formulation for a simple curved shell triangle. A short cylindrical shell with free ends
is simply supported at four points A on two right-angled diameters, at half the cylinder length. At the
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Figure 17. Cylindrical shell pinched by four radial forces: deformed configuration at
P/Pref = 19.6 (displacement of point A: w/R = 0.58).
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Figure 18. Cylindrical shell pinched by four radial forces: load-displacement curves at
points A; fundamental path (f) and branch (b) from the bifurcation point B2 (P/Pref =

10.2, w/R = 0.1172).

constraint points, the shell surface is free to move in the radial direction and to rotate; at the points A
themselves, the shell is under the load of four radial forces that push it inward. The problem data and a
deformed configuration are shown in Figure 17; the whole shell is modeled with 8× 64 curved HSEs.

The problem is solved by the arc-length procedure and yields the load-displacement curves plotted in
Figure 18. Along the fundamental path (traced in 17 steps to exceed the target load of P/Pref = 20) the
shell deforms with a doubly symmetric four-lobe configuration. As found in [Kuznetsov and Levyakov
2007], buckling occurs at point B1 on the load-displacement graph, however the deformation keeps the
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Fundamental path
P/Pref 5.705 7.581 10.716 11.301 11.921 13.102 17.941 21.611
w/R 0.0607 0.0893 0.1226 0.1303 0.1488 0.1935 0.3828 0.5422

Bifurcation from B2

P/Pref 10.200 11.000 12.000 13.000 13.899 16.045 17.951 20.257
w/R 0.1174 0.1367 0.1672 0.2024 0.2392 0.3463 0.4654 0.6263

Table 7. Cylindrical shell pinched by four radial forces: radial displacements of points A.

four-lobe doubly symmetric. At point B2, a branch departs from the fundamental path. Along this branch
(traced in 33 steps from B2 to exceed the target load of P/Pref = 20, with 5–6 iterations per step) the
shell deforms with a strongly warped configuration, see Figure 17. A fairly good agreement with the
published results is observed in Figure 18. Some representative load-displacement pairs are listed in
Table 7.

4.8. Channel-section cantilever. The buckling of the channel-section cantilever, with the data intro-
duced by [Chróścielewski et al. 1992], has been considered by several authors to test shell elements
in folded or intersecting structures, with either elastic or elastoplastic materials, for example, [Ibrahim-
begović and Frey 1994; Eberlein and Wriggers 1999; Fontes Valente et al. 2005; Chróścielewski and
Witkowski 2006; Klinkel et al. 2008]. In the present test, only the elastic case is considered; the problem
data and a postbuckling configuration of the model, made of a regular mesh of (4+ 12+ 4)× 36 HSEs,
are shown in Figure 19. Under the transverse force, which is eccentric with respect to the beam elastic
axis, the channel twists and at the limit load (116.77 for the present model) the upper flange buckles into
longitudinal waves.

Figure 19. Channel-section cantilever: beam model in the reference configuration and
in postbuckling at load of 100.97 (lateral displacement of point A= 4.4524).
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Figure 20. Channel-section cantilever: vertical displacement of point A.

The computation is driven by the monotone Newton–Raphson procedure until a load of 100, then
is switched to the arc-length procedure. It takes 36 steps and a total of 190 iterations for the vertical
displacement of point A to reach the value 1.5. In Figure 20, a portion of the load-displacement curve is
plotted and compared with other curves reported in the literature; the graph is restricted to the load range
80–120 to allow us to distinguish between the curves. Representative displacements are given in Table 8.

Force Longitudinal Lateral Vertical

50.00 0.0077 0.1543 0.0680
100.00 0.0170 0.4411 0.1880
110.78 0.0192 0.5442 0.2336
115.53 0.0201 0.6045 0.2600
116.73 0.0201 0.6427 0.2726
116.70 0.0198 0.6923 0.2847
116.23 0.0192 0.7438 0.2962
114.74 0.0173 0.8606 0.3221
110.18 0.0087 1.2085 0.4063
103.76 −0.0209 1.8799 0.6113
100.96 −0.0561 2.3943 0.8129

99.79 −0.0952 2.8289 1.0173
99.39 −0.1582 3.3735 1.3234
99.83 −0.2408 3.9265 1.6999

100.97 −0.3405 4.4524 2.1295

Table 8. Channel-section cantilever: displacements of point A.
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4.9. Hemispherical shell with a hole. The hemispherical shell with a polar hole, pinched by four alter-
nating radial forces at the sphere equator, is a very popular benchmark example to test finite element
models of doubly curved shells and is included in almost all the papers on nonlinear shell elements. The
problem data and a deformed configuration with a rather coarse mesh are shown in Figure 21. Due to
symmetry, one quarter of the dome is modeled; several meshes of increasing refinement, from 2× 2 to
128× 128 doubly curved HSEs, are analyzed.

Figure 21. Hemispherical shell with a hole: 8× 8 mesh at the final load of 400.
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Figure 22. Hemispherical shell with a hole: load-displacement curves.
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vA −uB

Force 8× 8 12× 12 16× 16 32× 32 8× 8 12× 12 16× 16 32× 32

40 1.447 1.483 1.492 1.498 1.766 1.804 1.816 1.825
80 2.223 2.291 2.308 2.319 3.104 3.190 3.213 3.231

120 2.679 2.776 2.799 2.815 4.098 4.239 4.273 4.299
160 2.980 3.104 3.133 3.154 4.867 5.068 5.116 5.150
200 3.195 3.341 3.377 3.402 5.481 5.746 5.809 5.853
240 3.356 3.522 3.565 3.594 5.983 6.311 6.391 6.445
280 3.481 3.664 3.713 3.747 6.400 6.790 6.888 6.954
320 3.582 3.778 3.834 3.872 6.754 7.199 7.318 7.396
360 3.665 3.873 3.934 3.976 7.057 7.554 7.693 7.784
400 3.735 3.951 4.019 4.065 7.320 7.863 8.023 8.128

Table 9. Hemispherical shell with a hole: radial displacements of points A and B with
four different meshes.

The response of the model is measured by the radial displacements of the load-points A and B. The
load-displacement curves for four meshes are plotted in Figure 22 and compared with the results pub-
lished in [Sze et al. 2004]: a good agreement with the reference results is observed. Displacements every
10% of the final force are listed in Table 9. The convergence of the HSE is evident from Figure 23, where
the computation with a refined mesh of 128× 128 S4R elements by the commercial code ABAQUS is
assumed as reference solution.
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Figure 23. Hemispherical shell with a hole: convergence study at load of 250 (reference
values at the dotted lines: vA = 3.6426, −uB = 6.5967).
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Mesh Steps Iterations

8× 8 52 325
12× 12 57 361
16× 16 52 343

Table 10. Hemispherical shell with a hole: number of steps and iterations up to the final load.

The problem is solved by the monotone Newton–Raphson procedure with the automatic step control
enabled. To trace the results, load steps of 5% are set by default. Moreover, some computations are
repeated by setting a single initial step of 100% to record the number of iterations actually needed to
reach the final load (see Table 10); an average of 6–7 iterations per step is observed.

The example of the hemispherical shell is also used to check the significance of the resolution of the
nodal mixed variation variables η∂δ J by (20) and the effectiveness of the contribution to the diagonal
term of the tangent matrix from (21). The computation with the 8× 8 mesh is repeated after disabling
the correction (21). The iterations performed during the loading history are plotted in Figure 24 and
compared with the ones of the original computation. When the geometrical nonlinearity becomes impor-
tant, a remarkable increase in iterations is observed, and a sharp growth is noted when approaching and
exceeding the load of 280. After restarting from 280 with the correction enabled again, the final load
is reached in a few more steps, yielding exactly the original final displacements, as expected. This test
proves the importance of the resolution formulated in (20) in order to provide the correct tangent matrix,
capable of following the nonlinear solution process.
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Figure 24. Hemispherical shell with a hole: loading history with 8×8 mesh; comparison
between (a) computations with the resolution of the nodal mixed variation variables η∂δ J

and (b) computations without such a resolution.
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Figure 25. Spherical shell under external pressure: model of case t = 0.5 at arc-abscissa 10.594.

4.10. Spherical shell under external pressure. The numerical study of the postbuckling behavior of
spherical shells under external pressure is one of the most despair-inducing problems in structural me-
chanics. With no claim made of solving this difficult problem, a sample investigation is presented in this
section. The problem data and a postbuckling deformation of the model are shown in Figure 25. The
geometric and material properties are taken from [Ricci Maccarini et al. 2001], which modeled only one
octant of the sphere, and hence could capture just a limited class of buckling modes. The mesh matches a
net of meridians and parallels 6 degrees apart, and consists of 60×30 doubly curved HSEs over the whole
sphere. At each pole, the last parallel degenerates into a single point and the relevant nodes to which
the quadrilaterals are connected share the same coordinates; the quadrilateral shell elements degenerate
into triangles. The pressure is applied as a follower normal-load uniform density at the shell element
quadrature points.

Despite the strong deviation of the element geometry from a regular quadrilateral at the poles, the
model behaves perfectly. A value of external pressure twice the approximate theoretical critical pressure
pref = 2E(t/R)2/

√
3(1− ν2), predicted by the shallow shell theory, can be reached with the monotone

Newton–Raphson procedure in a single step with 4 iterations. This almost linear computation yields a
final radial displacement, uniform over the whole shell surface, of 0.4237 with t = 0.5 and 0.8473 with
t = 1.0. To force the shell to buckle, a very small initial imperfection has been assigned by moving
randomly the nodes in the radial direction within the range ±0.001 (that is, ±10−5 R or ±(0.1–0.2)% t).

The imperfect spherical shell is analyzed by the arc-length procedure. The solution of case t = 0.5
follows the fundamental path till load fraction 1.082 (arc-abscissa = 3.693). Then a sudden buckling
occurs: the load decreases while a shallow buckle appears. In Figure 26a, the radial displacements of four
nodes at latitude 72° are plotted against the arc-abscissa. When the arc-abscissa exceeds 7, the pressure
stabilizes at a value of about 0.22–0.25 pref and the role of maximum-displacement holder begins to
move from node to node. At the arc-abscissa 10.594 (after 34 steps and 201 total iterations), the node
at longitude 126° reaches 3.6666, the deepest displacement of the whole analysis; the corresponding
buckle is depicted in Figure 25 and its bottom is very close to the observed node. In Figure 26b, the
load-displacement curves of the four nodes are plotted. The analysis was pursued further and another
peak of load fraction 1.082 was reached; then the load was found to decrease till negative values.
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Figure 26. Spherical shell under external pressure (case t = 0.5): (a) pressure and four
radial displacements against the loading history; (b) load-displacement curves.

With the algorithm of process control at hand, the achievement of a wholly buckled surface as obtained
in real experiments is hopeless. In several numerical tests, the occurrence of two or three buckles, either
close to each other or far away from each other, was observed. In any case, the buckles manifest a
pronounced tendency to migrate, in either a slow or fast manner. As an example, Figure 27 collects
five images of the case t = 1.0 recorded every 12 load steps: the two buckles keep close to each other
and move together on the sphere surface. Also, the repeatability of such computations is questionable:
for instance, it is interesting to notice that when assembling the elements concurrently by exploiting the
processor multithreading option, analyses starting from identical data never follow exactly the same path
when in the postbuckling regime.

5. Conclusion

This paper is focused on computational modeling for nonlinear shell mechanics and is restricted to the
simplest case of static boundary value problems involving elastic homogeneous media. Considerations
of dynamic problems and anelastic or composite materials are absent and are left as extensions for future
work. Nevertheless, the examples and comparisons discussed so far evidence a good performance of the
helicoidal shell element (HSE) in several respects. The HSE appears suitable to model in-plane curved
and warped shells, thin/thick simply or doubly curved shells with t/R ratios ranging from 2× 10−3 to
2× 10−1, and folded/intersecting shells. It allows a perfect representation of constant-curvature shells,
as in the case of the sphere. This quadrilateral shell element is practically insensitive to highly irregular
meshes and can easily degenerate into triangles. The HSE has been tested with nonlinear elastic and
nearly incompressible materials. In the postbuckling regime, this curving element performs well at the
occurrence of snap-through and snap-back conditions. A drawback of the present formulation, already
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Figure 27. Spherical shell under external pressure (case t = 1.0): sequence of five
postbuckling deformations.

pointed out with the solid element [Merlini and Morandini 2005], remains the low step size required
to solve certain problems, which is sometimes smaller than the values published in the literature. This
undesirable feature of the proposed formulation is of course worthy of further investigation.

It is stressed that the present version of the HSE is essentially a low-order element. For the reader’s
convenience, a short summary of the element formulation is given here. The integral kinematic field
across the thickness is assumed helicoidal and is controlled by the six-parameter dual director θ ; the local
Biot-axial vector field is assumed linear and is controlled by two stress vectors τ̂ and µ̂ (the constant and
linear parts, respectively). From through-the-thickness integration of the linearized internally constrained
virtual work functional, and after local condensation of the variables θ and µ̂, the shell constitutive
equations are obtained in incremental form. They are written as functions of twelve components of the
material surface dual strains ωα and three components of the Biot-axial parameter τ̂ . The integration
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across the thickness is performed numerically at each surface quadrature point of the shell element
domain. The integral kinematic field on the quadrilateral surface is interpolated helicoidally between the
orientopositions of four corner-nodes, whereas the Biot-axial parameter is assumed uniform. Integration
over the element domain gives the element contributions to the problem residual and tangent matrix.
The contributions from external loads and boundary constraints are added directly to the shell surface
linearized variational principle.

The numerical tests show that this low-order element is essentially free from locking. A clear de-
scription of commonly occurring locking phenomena, such as shear and membrane locking, is given,
for example, in [Belytschko et al. 2000], and a careful analysis can be found in [Koschnick et al. 2005].
According to [Bischoff et al. 2004] such phenomena originate from “the inability of a finite element
formulation to represent certain deformation modes without unwanted, parasitic strains and/or stresses”.
In such phenomena, the locking mechanism develops from an improper energy exchange between the in-
volved deformation modes that are badly represented by a poor kinematical approximation. The problem
becomes more pronounced when the ratio between the stiffnesses of the flexural deformation modes and
the parasitic ones (either transverse shear or membrane modes) decreases — that is, when the thickness
diminishes. It can be argued that with classical Euclidean modeling of the continuum, when positions and
orientations are uncoupled fields, such improper energy exchanges are more likely to happen than with
the proposed helicoidal modeling, where the kinematical representation is consistently built through a
unique integral field. It is also general belief that this improper energy exchange is more pronounced the
lower the order of the representation is. The helicoidal approximation, both on the through-the-thickness
domain with the proposed geometric-invariant model (Part I, Section 4.5) and on the element surface
domain with the adopted frame-invariant interpolation (Section 3.2), yields a discrete representation of
the kinematic field that proves natural and is able to withstand locking even with low-order interpolants.
This is clear from the outstanding representation attainable for thin curved elements with the proposed
material surface kinematics; see Figure 1. (Remember that linear interpolants on helicoidal modeling do
not mean linear displacement fields, due to the interaction with the nodal rotations.)
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EFFECTIVE PROPERTY ESTIMATES FOR HETEROGENEOUS MATERIALS
WITH COCONTINUOUS PHASES

PATRICK FRANCIOSI, RENALD BRENNER AND ABDERRAHIM EL OMRI

This work concerns heterogeneous multiphase materials which may exhibit omnidirectional full or par-
tial cocontinuity of several or all phases. The estimate of their effective (mechanical or physical) proper-
ties is not yet well handled as compared to those for well-defined aggregate or reinforced-matrix struc-
tures, especially in the context of homogenization methods. We propose in this framework a modeling
scheme which aims at accounting for such phase cocontinuity features. In the mechanical application
field, the modeling validity restricts to elastic properties of unloaded materials or in load situations as
far as bending and torsion effects of possibly strut-like phase parts are not essential. For other physical
properties (dielectric, magnetic, etc.), the modeling applications concern those for which homogeniza-
tion approaches are relevant. The modeling is based on a material’s morphology description in terms
of a generalization of so-called “fiber systems” that were introduced in early literature reports. Using
parameters that describe the clustering characteristics of the individual phases and of their assemblage,
we have considered these fiber systems both within a layer-based approach of the material structure and
within an aggregate-like one. By these two routes, we have obtained two estimate forms that differ only
slightly in definition. The presentation uses the elasticity formalism, in simple cases of isotropic mixtures
of two-phase materials with isotropic phase behavior but the modeling extends to n-phase anisotropic
materials as established separately. Our estimates are compared with basic variational bounds and ho-
mogenization estimates, with some literature data and with homogenization results obtained with the fast
Fourier transform approach on numerical structures. All data are matched with different parameter sets
corresponding to different types of phase organization. The two estimates remain nearly equal for all
of the examined structures regardless of phase contrast and with only slight differences consistent with
their definition difference.

1. Introduction

The continuity of a phase in a material here means the existence of an infinite (or sample spanning) cluster
of that phase in the material with regard to one, several or all directions of space. Although this phase
continuity is sometimes called phase percolation, this latter term is the most often related to the transition
threshold between discontinuity and continuity. In that respect, phase cocontinuity is to be understood as
the coexistence of multidirectional sample spanning clusters from different phases. Multiphase materials
with cocontinuous phases, to be called cocontinuous materials for short, are of many different structure
types: sponge-like structures, bones, blends, foams, braided composites, etc. These structures, named
from porous examples, can also characterize assemblages of several solid phases. They can be made of
ceramics, polymers, metals, biomaterials and composites of these. A wide variety of interesting physical
and mechanical properties make the experimental investigations of their effective properties increasing

Keywords: phase cocontinuity, effective properties, heterogeneous materials, clustering.
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fast [Nieh et al. 1998; Veenstra et al. 2000; La Vecchia et al. 2003; Morgan et al. 2003; Agrawal et al.
2003; Kinney et al. 2005; Marur 2005]. Yet it is not easy to find data sets that allow the relation of their
overall properties with the specific features of their phase arrangements.

On the theoretical ground, insights into aggregates and particle- (or fiber-) reinforced composites have
been considerable during the last decades, themselves based on a set of pioneering works [Hill 1952; Hill
1965; Kerner 1956; Boucher 1974; Walpole 1978; 1981; Christensen 1979a; 1979b; Hashin 1979; 1983],
in the context of homogenization theory especially. Well defined frameworks have been provided for
composite materials that exhibit phase cocontinuity with regard to only one direction (parallel fibers) or
two directions (laminate structures) in space and omnidirectional cocontinuity has been explored using
some ideal structures such as the overlapping sphere models; see for example [Berryman 1985]. Yet,
estimates of effective elastic, electric or other properties for (isotropic or not) materials with multidi-
rectionally cocontinuous phases have not been the matter of many examinations in this homogenization
context.

In counterpart, many models derived for cocontinuous materials, are based on rheological descriptions
combining series and parallel arrangements of the phases [Ravichandran 1994; Fan 1995; Leßle et al.
1999; Dalmaz et al. 2000]. Also, a lot of works make use of finite element methods or other computational
techniques based on meshing or space-partitioning procedures [Feng et al. 2003; Chen et al. 2008].
Numerical homogenization techniques provide as well relevant estimates applicable to various effective
properties [Roberts and Garboczi 2002; Delannay et al. 2006; Pavese et al. 2007].

Specific models have been developed for the particular mechanical properties exhibited by some of
these cocontinuous materials as the cellular materials or some open cell foams, in order to account for
bending and torsion characteristics, due to strut-like elements [Gent and Thomas 1959; Ko 1965; Menges
and Knipschild 1975; Warren and Kraynik 1987; 1997]. These effects are partly handled in numerical
modeling, they are not in rheological ones and they would not be at all in a homogenization approach.
Widely used specific models as the Kelvin cell model [Gong et al. 2005] or also some systematic statistical
approaches are also dedicated to these particular mechanical characteristics [Berk 1987; Roberts and
Garboczi 2002].

But materials with cocontinuous phases are of very many different types and their mechanical behavior
does not necessarily exhibit such particular mechanical characteristics. Furthermore, materials in their
unloaded state have intrinsic elastic properties worth to be known if accessible. Experimental information
for the unloaded state can be obtained for example from laser ultrasonic probing or from the extrapolation
at zero strain of elastic data from the unloading stage of mechanical tests [Lefebvre et al. 2006].

In spite of this quite large variety of proposed models, in proportion to the variety of structures, it is
frequently stated in the concerned literature that the obtained fit with measurements remains limited with
regard to either mechanical or physical overall properties.

From these considerations, the goal of the present work is to formulate, in the context of homoge-
nization methods, a modeling scheme to estimate the effective properties of multiphase materials which
allows to account for a wide diversity of phase cocontinuity situations, partial or total, symmetrically
for the concerned phases or not, etc. The proposed modeling is compared with available data and with
direct estimates on numerically built structure by using the recent technique of fast Fourier transforms
[Moulinec and Suquet 1998; Michel et al. 2001; Lebensohn et al. 2008] which provides an efficient
tool for computing the properties of arbitrarily complex periodic structures. Our proposed modeling
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scheme is built such as to remain consistent with the possible coexistence of one omnidirectional infinite
(sample spanning) cluster of each phase present in the material. It is based on a description of the material
structure from a generalization of the fiber systems introduced in [Christensen and Waals 1972] as typical
examples of cocontinuous phase arrangements with regard to all directions in space. The generalized
fiber systems that can be defined from a set of phases (taking, in turn, each phase as a fiber-reinforced
matrix) are in a second step combined within either a layer-based approach or within an aggregate-like
one of the material structure, by using parameters which describe the phase clustering characteristics for
each phase individually and for their assemblage.

Regarding the employed terminology in this two-scale modeling scheme, we refer to layer-based
approaches for the homogenization methods that involve models for laminate structures and to aggregate-
like approaches for the methods that make use of a self-consistent modeling. The choice of considering
first fiber systems in combination with a layer-based approach has been motivated by the fact that such
linear and planar cuts of materials are key elements for the 3D reconstruction methods in tomography anal-
yses [Natterer 1986] as well as for the calculation of the main lower-order “microstructural descriptors”1

[Torquato 2002]. Secondly, aggregate-like organizations of the same representative domains have also
been considered for comparison purposes with the self-consistent property estimates and also because
aggregates likely have a concentration range of phase cocontinuity when the phases are in limited number
and in comparable concentrations. These two modeling routes that we have explored, without loss of
generality, for two-phase materials of isotropic structure and properties and which is presented in the case
of the elasticity formalism although they are both holding for many other properties, yield quite similar
estimate forms and definitions. They are shown to provide very close moduli estimates in situations of
significant phase cocontinuity, while for vanishing cocontinuity a slight estimate difference results from
the slight difference in their definitions. It is at last worth to stress that the isotropic platelet and fiber
systems here considered for two-phase isotropic materials extend (as aggregate structures) to n-phase
materials with possibly anisotropic phase properties and spatial arrangements. Some of their remarkable
characteristics here stressed and used extend accordingly, what is presented in [Franciosi and El Omri
2011].

Section 2 introduces the considered structures and the phase continuity characteristics to be accounted
for. Section 3 summarizes the fundamentals of the layer-based and aggregate-like approaches of het-
erogeneous materials properties and presents the estimate forms that we have worked with. Section 4
presents in the fully isotropic case the phase cocontinuity description and the morphology-based phase
continuity parameters which have been introduced in the estimate formulation. Section 5 reports the
result comparisons with variational bounds and homogenization estimates, with some literature data and
with calculations by fast Fourier transform (FFT) numerical scheme on 3D structures with various phase
cocontinuity situations.

2. Typical cocontinuous two-phase structures and phase continuity characteristics

Examples of concerned structures by the proposed modeling are collected in Figure 1. The most typical
ones are the two-phase blend or sponge-like structure, Figure 1a (aluminum from [Nieh et al. 1998])

1N-points and surface correlation functions, lineal path function, chord-length density function, particle pair correlation
function, etc. Note that the two-point correlation function also contains the two-point cluster function.
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Figure 1. Examples of cocontinuous structures of concern: (a) sponge-like metallic
oxide, (b) trabecular bone tissue, (c) cellular foam.

and the structure of trabecular bones, Figure 1b [Mow and Huiskes 2004], where the void volume in the
exemplified materials, which can be replaced by a second solid material phase (alumina in aluminum,
[La Vecchia et al. 2003], or marrow in bones), is also a continuous phase. The previously pointed
importance of bending and torsion effects due to strut elements in open foam structures such as illustrated
in Figure 1c [Gong et al. 2005] restricts for these materials the mechanical field of application of the
proposed modeling to estimating the elastic properties either in the unloaded state of the material or in
the loading situations on it when these effects are not essential.

Now, for these structures the phase cocontinuity is omnidirectional, say multidirectional in a con-
tinuous manner, either isotropically or possibly obeying some other global symmetry. There are also
cocontinuous materials for which the phase cocontinuity is multidirectional but only concerns a discrete
set of directions, as tubular systems and woven or weaved composites. In these architectures the mechan-
ical features as flexibility, bending, torsion, etc can also be important. If they are not of concern here,
it is worth to mention that particular arrangements of discrete direction sets for phase cocontinuity can
ensure isotropic effective properties, a point to be of use in the discussions to come.

With regard to phase concentrations, many materials as polymer blends or aggregates with a limited
phase number are very likely phase cocontinuous in the intermediate phase concentration range, but a
dilute phase “naturally” adopts the embedded condition in general2. While many composites have no
concentration range of phase cocontinuity (as typically glass inclusions in a polymer matrix), real n-
phase structures that remain cocontinuous over the whole phase concentration range are quite scarce, if
any, even for only two phases. Indeed, this would require for each of the assembled phases the existence
of a continuous reinforcement down to an infinitesimal concentration of this phase. It is an advantage
of numerical structures to possibly mix two phases in bicontinuous arrangements down to a nearly zero
concentration, with the only limit being the chosen voxel density in a unit cell.

2Two-phase metals are also multiphase in terms of grain orientation distributions or crystallographic textures [Bretheau et al.
1988; Kocks et al. 1991; Lebensohn et al. 2008].
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Now, the structures that would be cocontinuous over the whole phase concentration range or only
over a part of it can exhibit a variety of phase cocontinuity characteristics that are specific for each
material phase and likely vary with their relative phase concentrations. We have restricted attention to
the materials which can be taken as isotropic and statistically homogeneous at the different length scales
that we may have to successively consider. The main phase continuity characteristics to which attention
is paid are (i) the amount of phase continuity, from null to total, exhibited by each material phase and (ii)
the asymmetry of the cocontinuity between the material phases. For structures whose phase concentration
can be varied, attention is also paid to the possible concentration dependency of these characteristics.

(1) An isotropic, cocontinuous, two-phase material contains by definition, for each phase and in an
intricate manner, one multidirectionally infinite (sample-spanning) cluster possibly having “dead
branches” and possibly coexisting with finite clusters that do not contribute to the phase continuity.
In that respect the continuity of a phase can be said to be total when no dead branches and no finite
clusters remain, and it can be said to be partial otherwise. So it is as well for phase cocontinu-
ity: it can be said total (resp. partial) when all the cocontinuous phases are totally (resp. partially)
continuous.

(2) The asymmetry of continuity between the phases can match any intermediate between perfect sym-
metry and the extreme situations of null cocontinuity when one of the phases totally embeds the
other one(s). These latter cases correspond to the widely met and examined reinforced-matrix struc-
tures [DeBartolo and Hillberry 1998; Estevez et al. 1999; Martin et al. 2003; Ricotti et al. 2006].
Conversely, perfect phase cocontinuity symmetry even for only two phases is only realizable in a
very limited set of manners which are not isotropic [Burt and Korren 1996]. The general status of
any partially bicontinuous two-phase structure is consequently an asymmetric bicontinuity.

(3) Both the phase continuity amount and the phase cocontinuity asymmetry are expected to be concen-
tration-dependent for many materials, and this dependency is expected to obey many different law
forms. In real materials, changes of phase concentration can be accompanied with changes in phase
composition in addition to changes in phase arrangements, such that the phase properties do not
remain fixed. In multiscale homogenization schemes, effective properties at inner levels can also
change, which also corresponds to changes of the properties of assembled phases at the macroscopic
level.

3. Layer-based approach of heterogeneous materials versus the aggregate-like description

Planar and linear cuts are, respectively, at the base of material reconstruction from 2D planar sections
of the representative volume element (RVE) and from 1D-rays or lines traversing the RVE [Ramm and
Katsevich 1996; Singh et al. 2008]. With regard to each direction ω in space, any material either is a
laminate structure whose layers are its planar heterogeneous sections normal to ω or is a ω-directional
fiber structure with the fibers being the material rays or lines in that ω direction. While linear cuts
necessarily alternate homogeneous subdomains of each phase, in planar sections (Figure 2) one phase
can be multidirectionally macrocontinuous while all other ones are not. Sections consequently look
like a patchwork of 2D subdomains within which one phase (at the most) is embedding all others in
turn. Thus, 2D planar subdomains can be characterized by a continuous phase arranged into one infinite
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Figure 2. Typical planar sections of general two-phase materials.

cluster possibly having dead branches and being accompanied with finite clusters embedded in the other
phase(s).

In planar sections of a two-phase material (p, q), the two phases p and q can only be locally arranged
either as p ⊂ q or as q ⊂ p (also denoted as p|q and q|p, respectively, in the following). For the sake
of simplicity, we have ignored intermediate situations that can be resolved as smaller patchworks of
these two same subdomains, and we have also disregarded the details of multiple inclusion levels such
as p ⊂ (q ⊂ p( · · · )), etc. This allows the description of any such macrohomogeneous material, with
regard to any direction ω and at the scale of a representative volume element, as a piling of parallel
planes of p|q and q|p structures along z(ω), say as ω-oriented two-phase laminate structures. These
planes of identical zero (or infinitesimal) thickness can be arranged into infinitely other sequences than
the strictly alternated lamination. Assuming statistical homogeneity, the material phase concentrations
are identically f p and fq = 1− f p in each layer separately, for all directions ω. This is not saying
that the material is an aggregate of laminate domains but that each material domain can be viewed from
any direction ω as a laminate structure, provided an appropriate description of the constitutive layers.
One first property of importance for the following is that any ω-oriented laminate structure made of n
different types of multiphase layers ensures the cocontinuity normally to ω for all of the phases that are
continuous in one layer type. When in a two-phase material (p, q) the ω-oriented layers have either a
phase p or a phase q which is continuous, both phases p and q are cocontinuous normally to the direction
ω. With regard to all other directions not normal to that ω, the continuity of each phase will depend on
its through-section continuity, a crucial point to be closely examined latter on.

3.1. Effective elasticity properties of laminate structures in terms of platelet Green operators. In order
to conveniently treat later on, for each ω direction in R3, the two-phase material as such a laminate
structure made of two types of sections p|q and q|p, useful characteristics of laminate structures and of
laminate layers (platelets) deserve to first be recalled.
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Effective elasticity of laminates. There are various formulations to represent the effective properties of
laminate structures, early calculated for example in [Postma 1955]. One is the hybrid procedure used
in [El Omri et al. 2000] for modeling, in a plasticity context, polycrystalline structures as aggregates
of laminate domains. Such a procedure is not to be used here, but this aggregate structure type will
reappear in the following. The formulation more of concern here is the one which comes from the
general homogenization framework for inclusion-reinforced matrices at the limit of infinitely flat and
congruent spheroidal inclusions [Hill 1952; Zeller and Dederichs 1973; Walpole 1981]. Take a matrix
of phase b, of moduli Cb, reinforced with all congruent (shape V ) ellipsoidal inclusions of phase ai ,
of moduli Cai , with concentrations cai , i ∈ (1, n−1) and, according to a spatial distribution symmetry,
homothetic to the shape V of all inclusions. The effective moduli read

C∗V(a1,...,an−1)⊂b = Cb−

(( n−1∑
i=1

cai
(
(Cb−Cai )

−1
− tV

Cb

)−1
)−1

+ tV
Cb

)−1

(1)

Specializing to the case of platelets with ω-oriented normal (V = P(ω)) amounts to substituting, in (1),
the operator tV

Cb
with the operator t P(ω)

Cb
that are respectively the modified strain Green operator integrals

(strain Green operators or “GOε” for short) for the inclusion V and for the platelet P(ω), in an infinite
matrix of moduli Cb. It is a key property of laminate structures that any one of the n layer types can
be selected as the “matrix” without changing the result. For a two-phase material (a, b) of the laminate
type, setting 1Cb|a = Cb−Ca =−1Ca|b, the following equation results:

C∗P(ω)
a⊂b = Cb− ca

(
(1Cb|a)

−1
− cb t P(ω)

Cb

)−1
= C∗P(ω)

b⊂a = Ca − cb
(
(1Ca|b)

−1
− ca t P(ω)

Ca

)−1 (2)

and the proof of the equality C∗P(ω)
a⊂b = C∗P(ω)

b⊂a = C∗P(ω)
a,b (which only holds for platelet-like inclusions) is

recalled in Appendix A. For ω-oriented fibers F(ω), also a specific case of interest later on, one obtains

C∗F(ω)
a⊂b = Cb− ca

(
(1Cb|a)

−1
− cb t F(ω)

Cb

)−1
6= C∗F(ω)

b⊂a = Ca − cb
(
(1Ca|b)

−1
− ca t F(ω)

Ca

)−1 (3)

In (3), the operator t F(ω)
Cb

is the GOε for the fiber F(ω) in an infinite matrix of moduli Cb. When tV
Cb

is
used instead of t F(ω)

Cb
(resp. Ca), (3) gives the two specializations of (1) for a two-phase material which

are the HS (Hashin–Shtrikman) bounds [1963] for all the spatial distributions of the phases a and b
characterized by the shape V .

Equations (2)–(3), which hold for moduli tensors C, have corresponding forms for the related com-
pliance tensors S = C−1, when the appropriate modified stress Green operator integral (stress Green
operators or GOσ for short) t ′VSb

is substituted with tV
Cb

.
Table 1 collects the nonzero terms of these strain Green operators tV

Cb
and stress Green operators t ′VSb

for the sphere, the x3-oriented platelet and the x3-oriented fiber. They depend on the two constants

B = 1
µ

and A = −B
2(1−ν)

for the isotropic elasticity of a matrix phase of shear modulus µ and Poisson coefficient ν.
For isotropic properties that are represented by rank-two tensors, as dielectric ones [Helsing 1993; Fan

1995; Kanaun 2003], there is no term A and the term B acts as the inverse of the dielectric constant. The
relationships between these operators, for any ellipsoidal inclusion type V [Zeller and Dederichs 1973]
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ti i i i t1122 ti i33 t3333 ti3i3 t1212

sphere 3A+5B
15

A
15

A
15

3A+5B
15

2A+5B
30

2A+5B
30

x3-platelet 0 0 0 A+ B = 1
λ+2µ

B
4
=

1
4µ

0

x3-cylinder 3A+4B
8

A
8

0 0 B
8

A+2B
8

t ′i i i i t ′1122 t ′i i33 t ′3333 t ′i3i3 t ′1212

sphere −
32A
15B2 −

2(12A+5B)
15B2 −

2(12A+5B)
15B2 −

32A
15B2

5B−4A
15B2

5B−4A
15B2

x3-platelet −4A
B2 =

2µ
1−ν

−
2(2A+B)

B2 0 0 0 1
B
= µ

x3-cylinder −
3A
2B2 −

A
2B2 −

A
B2 −

4A
B2

1
2B

−
A

2B2

Table 1. Strain Green operators t (top table) and stress Green operators t ′ (bottom table)
for a sphere, an x3-platelet and an x3-cylinder in isotropic media (i = 1, 2).

with Cb = (Sb)
−1, are described by

t ′VSb
= Cb−Cb : tV

Cb
: Cb and tV

Cb
= Sb− Sb : t ′VSb

: Sb (4)

A well known property of platelet operators that are related to a same normal direction ω is their direct
relation to the stress and strain jumps on both sides of a phase interface with normal ω [Walpole 1978;
1981]. Less known is that any GOε (resp. GOσ ) operator related to an ellipsoidal shape of inclusion
or distribution can be decomposed into a weighted average of GOε (resp. GOσ ) platelet operators over
all directions ω in space, according to its polar or spectral decomposition given by the Radon inversion
formula [Gel’fand et al. 1966; Ramm and Katsevich 1996], that is,

tV
C =

∫
�

ψV (ω)t P(ω)
C dω ; t ′VS =

∫
�

ψV (ω)t ′P(ω)S dω (5)

In the isotropic (spherical) case, the weight function of this decomposition (ψV (ω)≥ 0,
∫
�
ψV (ω) dω= 1)

uniformly equals ψSph(ω)= (4π)−1, while for a platelet of ω0 normal it reduces to a Dirac function if
ψ P(ω0)(ω)= δ(ω−ω0). For ω0 -oriented cylindrical fibers, the weight function ψ F(ω0)(ω) equals (2π)−1

for all directions normal to the fiber axis ω0 and is zero otherwise. These Radon forms of Green operators
have been discussed in [Franciosi and Lormand 2004; Franciosi 2005; 2010] for inclusions of various
shapes and inclusion patterns of various spatial arrangements.

Further properties of platelet Green operators. Simple mathematical manipulations allow the demon-
stration (Appendix A) that for two-phase laminates in relative phase proportions ca, cb, the effective
moduli take the symmetric form that appears in [Cherkaev 2000] in a less explicit manner:

C∗P(ω)
a,b = 〈C〉− cacb1Cb|a : t

P(ω)
{C} :1Cb|a (6)
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with 〈C〉 = ca Ca + cbCb and {C} = cbCa + ca Cb being respectively the Voigt (V ) moduli tensor for
the material [a, b] and the one for its “complementary material” ]a, b[ defined by an interchange of the
phase proportions, say ca of phase b and cb of phase a. The dual expressions to (2) and (3) for the
effective compliances S∗Va,b = (C

∗V
a,b)
−1 read as follows (Appendix B), with 1Sa|b = Sa − Sb and with the

appropriate GOσ operator t ′VSb = t ′P(ω)Sb for laminates and t ′VSb = t ′F(ω)Sb for fibers:

S∗Va⊂b = Sb− ca
(
(1Sb|a)

−1
− cb t ′Vsb

)−1 (7)

Equation (7) also uses the equations (4), which connect (1Sb|a)
−1 to (1Cb|a)

−1 as they connect t ′VSb to
tV
Cb, say

(1Sb|a)
−1
= Cb−Cb : (1Cb|a)

−1
: Cb, (1Cb|a)

−1
= Sb− Sb : (1Sb|a)

−1
: Sb (8)

The particular symmetric form reported in (6) for (2) which gives the effective moduli tensor of a two-
phase laminate structure has its equivalent form for the dual effective compliance tensor. Noticing that
〈S〉 6= 〈C〉−1 and {S} = cb Sa + ca Sb 6= {C}−1, it reads

S∗P(ω)
a,b = 〈S〉− cacb1Sb|a : t ′

P(ω)
{S} :1Sb|a (9)

with the “stress” Green operator referring to the Reuss (R) compliance tensor {S} of the complementary
composite ]a, b[, while 〈S〉 = ca Sa + cb Sb is the one of the material [a, b]. From the many relations
between 〈C〉, 〈S〉, {C} and {S}3, one has in particular the equivalences

1Cb|a =
{C}−Ca

ca
=−
{C}−Cb

cb
; 1Sb|a =

{S}− Sa

ca
=−
{S}− Sb

cb
(10)

Using (10) in (6) and (9) yields these remarkable estimate forms for two-phase laminates:

C∗P(ω)
a,b = 〈C〉+ ({C}−Ca) : t

P(ω)
{C} : ({C}−Cb), (11a)

S∗P(ω)
a,b = 〈S〉+ ({S}− Sa) : t ′

P(ω)
{S} : ({S}− Sb). (11b)

Not only do Equations (6), (9) and (11a), (11b) incidentally provide new relations between the Green
operators of ω-oriented platelets associated with a pair of complementary materials ([a, b], ]a, b[), but
they also essentially reveal the role, to be examined later on, of the two-phase complementary composite
]a, b[ as a reference medium. The moduli estimates for n types of layers are obtained by recurrence,
adding the n-th layer type to the (n− 1)-laminate previously assembled by adding the (n−1)-st layer
type to the (n− 2) previously assembled ones, and so on. A symmetric form is obtained by averaging
over all possible choices for the order or the layered phases. This symmetric form generalizing (11) to
n phases is to be presented in a separate work.

3.2. Isotropic platelet systems (IPS) for bicontinuous two-phase materials. One of the first proposed
effective moduli estimates for bicontinuous two-phase materials refers to laminate structures. It is the
one which comes from the isotropic platelet system (IPS) introduced in [Christensen 1979a; 1979b].
The IPS estimate is defined as the isotropic averaging of the effective moduli tensor for the ω-oriented

3Such as 〈C〉 :1Sb|a =1Ca|b : {S} or 〈C〉 : 〈S〉 = {C} : {S} = I − fa fb1Cb|a :1Sb|a .
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i i i i(0, 0) 3333(0, 0) 1122(0, 0) i i33(0, 0) 1212(0, 0) i3i3(0, 0)

j j j j (θ, φ) 8
15

3
15 0 4

15 0 8
15

j jkk(θ, φ) 1
15

1
15

5
15

8
15 0 −

4
15

jk jk(θ, φ) 1
15

1
15 0 −

2
15

5
15

6
15

Table 2. Coefficients giving the isotropic average of axially symmetric operators (i =
1, 2; j, k = 1, 2, 3).

laminate systems, from (2), (6) or (11a):

C∗IPS
a,b = (4π)

−1
∫∫

θ,φ

C∗P(θ,φ)
a,b (θ, φ) sin θ dθ dφ (12)

where one has, by rotation of matrix [W ], the relations (C∗P(θ,φ)
a,b )i jkl = Wi pW jq Wkr Wls(C

∗P(0,0)
a,b )pqrs .

The IPS, as introduced, was said by the author as “implying intersecting platelets of some kind” and
“suggestive of morphology known as interpenetrating networks” of (two) phases. This IPS results from
performing a geometric averaging process previously applied to isotropic fiber systems (IFSs) in [Chris-
tensen and Waals 1972], fiber systems which will be examined later on. With considering layers of the
two constitutive phases (p, q) of the material, this IPS estimate is expected to ensure some isotropic
phase cocontinuity; because, as underlined previously, for each ω direction the layered structure ensures
the phase cocontinuity normally to ω and because ω is taken to span the whole space. However, no
material strictly having that type of phase organization is realizable: if it happens that normally to one
direction ω the two phases (p, q) exhibit a laminate-like organization, there is no direction ω′ 6= ±ω
possibly exhibiting the same organization simultaneously. Aware of this, Christensen imaged the ar-
rangement of this IPS structure as an isotropic aggregate of ω-oriented laminate domains, but this does
not satisfactorily depict an interpenetrating network of two phases, and the effective properties of such
an aggregate of laminate domains are not properly estimated by (12). An aggregate of laminate domains
is more convenient to describe planar slip in grains of polycrystals, as used by [El Omri et al. 2000] for
plasticity modeling.4 Conversely, this slip description illustrates what kind of trans-granular continuity
one can expect between the layers of a same phase which are randomly oriented from grain to grain: it is
no more than the possible slip continuity between neighboring grains. A better estimate for the elasticity
moduli of an aggregate of laminate domains is the one obtained from the SC approximation

C∗ = C∗−
((

1
4π

∫
�

(
(C∗−C Pω)−1

− tSph
C∗
)−1dω

)−1

+ tSph
C∗

)−1

, (13)

where the tensors C Pω are the moduli tensors for the ω-oriented laminated grains, given in (6) and
(11a). The IPS estimate from (12) is definitely different from the one of (13), to be denoted ISCP in
further comparisons. As is easily checked for the shear modulus in the case of two incompressible phases
(combine (6) and (13) with using Table 2), when the phase contrast becomes infinite (taking one phase
as void-like), this ISCP estimate goes to zero as the Reuss (R) and the HS(−) lower bounds, although in

4See also [Franciosi and Berbenni 2007; 2008] for laminate modeling of plastic slip in polycrystals.
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a much slower manner. An interpretation is that even if large and intricate clusters of both phases exist,
due to trans-granular chord connections between layers of a same phase, the probability of finding an
infinite homogeneous path from grain to grain goes to zero with increasing the grain number to cross,
and infinite clusters of each phase therefore have vanishingly small contributions. However, the quite
high stiffness of the ISCP estimate from (13) makes it probably convenient for intricate mixtures of long
tortuous fibers, as in cotton-like tangled or muddled assemblages of two fiber types, for example.

It is clear from all what precedes that the morphology types represented by (12) have to be seen as
having the properties of an IPS more in a statistical way than effectively, owing to the impossible IPS
topology as strictly defined. It is noteworthy at this stage that (12) has a likely interpretation in terms of
a Radon inversion formula, as (5) has for the stress and strain Green operators: (12) can be understood
as some spectral decomposition over a set of elementary effective moduli tensors, each representative of
a typical planar connectivity property for layers of the materials of concern.

This interpretation would result from particular assumptions on the effective properties at the level
of the material sections as exemplified in [Errabii et al. 2007]. Consistently with this view-point, the
Christensen interpretation becomes acceptable provided the essential modification we here use that the
involved representative “phases” a and b for the layer types are not the constitutive phases (p, q) of
the material but are the homogeneous materials “equivalent” to the two types of its p|q and q|p het-
erogeneous sections, in a way which has to be appropriately defined, as examined in the following.The
isotropic arithmetic average from (12) of an operator C∗0 that corresponds to a structure with an x3-
oriented symmetry yields an isotropic tensor with eigenvalues which can be simply explicated using the
relations

C∗iso
i j i j =

1
15(C

∗0
3333+C∗0i i i i − 2C∗0i i33)+

1
15(6C∗0i3i3+ 5C∗01212),

C∗iso
i i i i + 2C∗iso

i i j j =
5

15(C
∗0
3333+ 2C∗0i i i i + 4C∗0i i33+ 2C∗01122).

(14)

In (14) the coefficients are the isotropy coefficients of Table 2, obtained by solving simple trigonometric
integrals. The IPS estimate from (12) results from using, as C∗0 in (14), the laminate effective moduli
given by (2) with the GOε of the x3-oriented platelet given in Table 1, top. Now, a theoretical form of
interest for the effective IPS properties can be obtained from (11a) as

C∗IPS
a,b =

∫
�

C∗
P
(ω)

4π
dω = 〈C〉− cacb1Cb|a :

(∫
�

t P
{C}(ω)

4π
dω
)
:1Cb|a

= 〈C〉− cacb1Cb|a : t
Sph
{C} :1Cb|a = 〈C〉+ ({C}−Ca) : t

Sph
{C} : ({C}−Cb).

(15)

The important result expressed by (15) is the symmetric dependence of the IPS on a single operator.
This point will be of use in the sequel. In (15), the operator tSph

{C} is the GOε for a spherical inclusion
embedded in a matrix of moduli {C}, given by its polar (Radon) decomposition in (5), where a and b
are the effective properties of the representative planar sections which will be estimated in the following.
In terms of compliances, although S∗P(ω)

a,b = (C∗P(ω)
a,b )−1, one has, in general,

S∗IPS
a,b = (4π)

−1
∫
�

S∗
P
(ω) dω 6= (C∗IPS

a,b )
−1.

This dual average (to be examined in a separate paper) corresponds to dual stress conditions that are not
expected to be fulfilled by the phases of cocontinuous structures.
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3.3. Link and differences between the IPS and the isotropic self-consistent (ISC) estimates.

Compared IPS and ISC estimates in terms of reference medium. The self-consistent (SC) approximation
for aggregates of congruent grains is considered to account well for a phase continuity inversion in
two-phase materials when the dense/dilute concentrations are inverted and for an intermediate domain
of bicontinuity. When the grains are as flat as layers of a laminate structure, the SC approximation is
also given by (3) because the HS(+/−) bounds coincide in this case. The calculation of the SC ap-
proximation is recalled in Appendix B. As the IPS estimates, various isotropic SC (ISC) approximations
can be obtained with considering the various sets of reference phases (a, b, . . . ) that result from some
preliminary homogenization level(s) on the constitutive phases (p, q, . . . ). Remarkably, it is shown in
the Appendix C that for two-phase materials and in the isotropic case, the ISC estimate can be also
written under a form similar to the IPS estimate in (15), say

C∗ISC
a,b = 〈C〉+ (C

∗ISC
a,b −Ca) : t

Sph
C∗ISC

a,b
: (C∗ISC

a,b −Cb)= (S∗ISC
a,b )−1 (16)

Equation (16), as a particular form of the ISC approximation for two-phase material not found in the
literature to the authors knowledge, provides when comparing with the IPS estimate in (15) new insights
of interest with regard to phase cocontinuity representations. For any phase number n− 1, the generally
implicit ISC estimate is fast calculated iteratively from an explicit one such as (1), using an arbitrary initial
admissible matrix as the n-th phase. For two phases, one verifies that it can be also fast iterated from
the IPS explicit estimate of (15) that converges to the form of (16)5. The new insight from comparing
(15) and (16) can be put as follows: the SC approximation treats the two-phase material as a three-
phase structure where a matrix of infinitesimal volume fraction (the reference medium) embeds the two
types of grains. While in the ISC approximation the reference medium (the infinitesimal matrix) is the
homogeneous equivalent material itself, in the IPS estimate, (15) identifies the third phase reference
matrix to be a Voigt-type (V ) structure of the complementary composite ]a, b[. A comparison of (15)
with (16) conversely provides for the IPS estimate the form which enters the general expression reported
in (1) as

C∗IPS
(a,b) = {C}−

((
ca
(
({C}−Ca)

−1
− tSph
{C}
)−1
+ cb

(
({C}−Cb)

−1
− tSph
{C}
)−1
)−1
+tSph
{C}

)−1
(15)

The similarity established here allows a sound understanding of why the IPS estimate has a strong
legitimacy to represent structures having (no matter how) a total cocontinuity of the two phases over the
whole range of phase concentration: the reference structure of the IPS is shown to be an aggregate of two
phases embedded in an infinitesimal third phase layer of the complementary composite ]a, b[ arranged
into a parallel-like (Voigt-like) mixture of the two phases, where the dilute phase of the bulk is dominant.
The consequence is that, considering a highly dilute phase a (resp. b) in the bulk, isolated grains of phase
a infinitely far from each other remain connected by the infinitely extended interfacial links in the layer
where phase a (resp. b) highly dominates. Conversely, highly concentrated grains of phase b (resp. a)
only need a little quantity of phase b (resp. a) in the matrix layer for helping being interconnected.

5The same holds for n > 2 using the appropriate forms for the IPS- and the ISC-related estimates that we have obtained and
are not discussed here
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Compared IPS and ISC estimates in terms of phase cocontinuity requests. One second important request
for an IPS to be consistent with the cocontinuity of the constitutive phases is for the through-section
continuity to be at least partially fulfilled by both phases. For example, planar sections of pure phase p
or q are inconsistent with through-section cocontinuity. Planar sections where the phases p and q are ar-
ranged in Reuss-type (R) or in HS-type manners are also incompatible with through-section bicontinuity,
and so on.

In comparison, making use of an ISC approximation to describe a bicontinuous two-phase medium
(p, q) as an aggregate made of grains a and b, requires these grains to be, at least partially, bicontinuous
for a possible phase bicontinuity in all proportions though the grain boundaries. Grains of pure phase
(a = p, b = q) are consistent with bicontinuity only at comparable proportions of phases (a, b). Grains
of Reuss-type effective properties are not relevant at all concentrations because they yield no continuity
when the Reuss-type grains dominate. Grain mixtures of HS(+/−) types are consistent with only partial
bicontinuity because of the embedded phase part, etc.

In consequence, in order to make the phase cocontinuity possible through material layers in a laminate
description or through grain boundaries in an aggregate description, at any phase concentration, we have
referred to fiber systems to describe the effective properties of representative layers and grains.

4. The description of the phase cocontinuity from fiber systems

We consider two-phase isotropic materials (p, q) of the reinforced-matrix type, with a part of the p
(resp. q) isotropically oriented inclusions being taken as infinite fibers. The presence of such infinite
fibers in these “reference reinforced matrices” ensures a cocontinuity of the two (matrix and fiber) phases.
Continuous orientation sets of infinite fibers are called fiber systems in general, as illustrated on each
side of Figure 3, and isotropic fiber systems (IFSs) in the particular isotropic situations. Assembling

 

Section of P   fiber system  in Q  

S ection of Q  fiber system  in P  

 

Figure 3. Typical planar sections of isotropic fiber systems.
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aggregates of grains of types a and b made of such phase cocontinuous materials (q ⊂ p for a and p ⊂ q
for b), also ensure long range cocontinuity of the two phases p and q. Now, planar sections of such
IFSs are, as drawn in the middle of Figure 3, assemblages of elliptical domains possibly exhibiting all
sizes, aspect ratios and orientations. In reconstructed laminations from piling the two types a(q ⊂ p)
and b(p ⊂ q) of such sections, both phases p and q are possibly continuous between neighboring layers
similarly described. Thanks to contacts between surfaces of a same phase p (resp. q), these phase
connections across layers a and b allow realizations of continuous arrangements of the phases p and q
a priori along all through-layer directions. Consequently, taking sections of IFSs as reference layers in
a layer-based homogenization approach of the IPS type or taking grains of IFSs as reference grains in
an aggregate approach of ISC type are two descriptions consistent with the possible cocontinuity of the
phases throughout the material volume. The so-obtained two estimates from this two-scale procedure
will be denoted IPS-IFS and ISC-IFS, respectively.

From their distinct definition or construction, a slight difference distinguishes these two structures and
consequently their related estimates. This difference, as made precise later, concerns the limit situations
when going either towards null or total phase cocontinuity. Towards null cocontinuity, the difference
rests in the amount of residual phase cocontinuity, vanishing to zero in both descriptions but not being
rigorously prohibited by construction. A larger residue probably is likely for the layer-based approach.
Conversely, towards the total cocontinuity, reintroducing dead branches in the sample spanning clusters
of each phase is not rigorously impossible by the structure constructions, either when piling layers of
when assembling grains.

Isotropic fiber systems in real materials with two homogeneous phases are realizable in a concentration
range that depends on the considered number of fiber directions to realize isotropy. Dendievel et al. [2002]
have shown the realizability of fiber arrangements having dodecahedral symmetry (Figure 4a) and it has
been established in [Franciosi 2005] how and why finite sets of directions belonging to the dodecahedral-
icosahedral symmetry class yield isotropic mean Green operators and consequently isotropic effective
properties. Such patterns can be taken as representative of elementary volumes in real fiber systems,
as with those exemplified in the middle and right portions of Figure 4. Unavoidable fiber waviness
(tortuousness) to reach high fiber concentrations does not much affect the topology of planar sections. The
comparison of Figure 3 with Figure 2 shows that the main missing topological properties in our idealized
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Figure 4. Left: isotropic fiber system built by Dendievel et al. [2002]. Middle and right:
real dual 3D isotropic fiber structures.
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section description (in addition to the disregarded p ⊂ (q ⊂ p( · · · )) multiply embedded patterns) are
this nonzero tortuousness of the fibers and the nonconvexity of the 2D bounded domains in the planar
sections of real materials. However, we consider that neither one is essential in defining which of the
two phases is macrocontinuous in sections. Still, for the sake of simplicity, aside from the infinite cluster
of each phase represented by the infinite fibers as assembled, the possibility of finite clusters and of dead
branches has been globally accounted for by a volume fraction of spherical (thus embedded) domains,
owing to the overall isotropy assumption6.

4.1. Effective moduli for generalized IFSs.

Isotropic fiber systems. The effective moduli for such IFS structures are obtained, following [Christensen
1979a], by “averaging an assigned strain state” over all the positions in space of a directional fiber system,
as done for the effective moduli of IPS structures from a laminate. The average over the stresses that
results from imposing the same strain in all possible directions with regard to a directional fiber system
ω is taken as equivalent to the stresses obtained when imposing the strain on a material reinforced with
an isotropic orientation of fibers. Using (3) with (a, b) = (p, q) and ca = f p, cb = fq as the nominal
phase concentrations, the resulting effective moduli for the IFSs upon averaging on ω = (θ, φ) over R3

read

C∗IFS
p⊂q =

∫
�

C∗F
p⊂q(ω)

4π
dω, C∗IFS

q⊂p =

∫
�

C∗F
q⊂p(ω)

4π
dω. (17)

The explicit forms of these IFS moduli result from using the coefficients of Table 2 with the effective
moduli of the x3-oriented fiber systems from (3), for which the GOε of the x3-cylinder given in Table 1,
top, is introduced. The IFSs are the isotropic superposition of directional ω-oriented fiber systems whose
effective moduli C∗F(ω)

p⊂q and C∗F(ω)
q⊂p are the HS bounds for transversally isotropic material of the ω

symmetry axis. As in the platelet case, the average over all ω directions does not fulfill the inversion
property, say

S∗IFS
p⊂q =

∫
�

S ∗F
p⊂q (ω)

4π
dω 6=

(
C∗IFS

p⊂q
)−1
,

although S∗F(ω)
p⊂q =

(
C∗F(ω)

p⊂q
)−1 (and likewise with q ⊂ p) and the compliance averaging from the request

of stress compatibility between the fibers and the entire RVE does not correspond to a characteristic of
cocontinuous structures.

Generalized isotropic fiber systems. The generalization of the IFS that is introduced allows the construc-
tion of partially (total to null) cocontinuous phase arrangements. We introduce the fraction φp of the phase
p consisting of infinite fibers included in the reference reinforced matrix q , and conversely φq for fibers q
in matrix p. If phase p is included with a nominal concentration f p, then the fraction of infinite fibers p
is φp f p and it represents the fraction of phase p that belongs to an infinite (sample spanning) cluster; this
is the fraction of phase p that carries the applied “loads” and transfers the properties. The complementary
fraction of finite (embedded) clusters or dead branches of phase p is (1− φp) f p. These two parts are
related to the fraction of clustering and nonclustering (blocking) events, respectively [Torquato 2002].
We call φp and 1−φp the infinite and finite cluster fractions of phase p, and likewise for phase q; the
fractions φp and φq are independent and generally different.

6The isotropic analysis can be transposed to overall ellipsoidal symmetry for the material.
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(i) When all fibers are infinite (total continuity of both phases), one has φp = φq = 1 and we denote
C∗IFS

p|q and C∗IFS
q|p as the effective elastic moduli of these maximal IFSs, where the involved two

homogeneous phases have moduli C p and Cq . Taking these “IFS” effective moduli estimates as
the effective moduli of the p|q and q|p planar sections of the two-phase material normally to any
direction ω will ensure the through-layers continuity of the p and q phases together with their
ensured continuity normal to each ω by the laminate structure. Any ω-oriented laminate system

made of layers of these two phases, say (a, b) =
(

IFS IFS
q|p p|q

)
, has effective moduli given by (2)

or by (6) or (11a). The proportion of “phase a” (corresponding to matrix p having a continuous
reinforcement of phase q) is ca = 1− cb (resp. b for matrix q continuously reinforced with p). An
aggregate made of these two types of grains will also ensure the phase cocontinuity in the whole
medium.

(ii) When one of the two phases, p or q, is in the totally embedded situation in the other phase, one
has φp = 0 or φq = 0, respectively, since no infinite fibers exist. The effective properties of the
corresponding layers (a) are the isotropic HS (IHS) bounds for the p matrix reinforced with the
spherical inclusions taken to globally represent finite isotropic embedded clusters of phase q (resp. b

for p in q). The calculation proceeds as in case (i), while taking (a, b) =
(

IHS IHS
q|p p|q

)
and the

appropriate sphere GOε operator in (3). Effective moduli for laminates made of these two layer types
are still given by (2), (6) or (11a). Note that piling sections which have isotropic effective moduli
given by C∗IHS

p|q and C∗IHS
q|p is supposed to account for the limit of no through-section cocontinuity

of the phases. However, it does not totally exclude this cocontinuity since in a layer of type (a)
considered as embedding isotropic domains, connections with the matrix of phase q in adjacent
layers of type (b) can be limit possible situations where single inclusions could link adjacent layers
as shown with the small arrows in Figure 5, left. This makes a slight difference between the IPS and
the ISC estimates, as defined, since assembling grains with these same C∗IHS

p|q and C∗IHS
q|p moduli more

definitely excludes the cocontinuity of the phases p and q when one of the two phases is in dilute
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Figure 5. Situations of residual phase cocontinuity in the IPS layered construction (left)
and the ISC aggregate construction (right).
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concentration: when direct connections between grains of same phase are not enough, cocontinuity
through grains of different types a and b would only happen if there exist, as in Figure 5, right,
chains of domains q embedded in phase p which are at contact inside grains of type (a) such
as to connect, along paths indicated by the arrows, with the matrix q of neighboring grains (b),
which has a low probability of happening. This is a similar reasoning which yields to expect more
reintroduction of dead branches in piling layers than in assembling grains at the opposite limit of
total phase cocontinuity.

(iii) Partial phase cocontinuity possibilities correspond with 0< φp, φq < 1. We use a two-step homog-
enization procedure for successively “embedding” first the finite (spherical) domains that stand for
all the finite clusters plus the dead branches and second the infinite fibers. For phase p in q the
fraction κp = (1−φp) f p 6= 1− κq of spheres and the subsequent amount

c̆p =
f p − κp

1− κp
6= 1− c̆q

of infinite ω-fibers7 in the modified matrix q̆ of moduli C̆q (resp. for phase q in p), one has

C̆∗F(ω)
p⊂q = C̆q − c̆p

(
(C̆q −Cp)

−1
− (1− c̆p)t

F(ω)
C̆q

)−1
, (18a)

C̆q = Cq − κp
(
(1Cq|p)

−1
− (1− κp)t

Sph
Cq

)−1
. (18b)

The general IFS(φ) moduli estimate is then given by

C̆ IFS(φp)
p⊂q =

∫
�

C̆∗F(ω)
p⊂q

4π
dω,

as in (17), which corresponds with κp = κq = 0, say c̆p = f p = 1− c̆q = 1− f p in (18). The
case of null cocontinuity corresponds with κp = f p = 1− κq = 1− fq , say c̆p = c̆q = 0. The
infinite cluster fractions φi ( fi ) of each phase (p, q) are similar to the continuous volume fractions
of [Lee and Gurland 1978] (see [Ravichandran 1994; Fan 1995]) but are not the same: even when
the continuous fractions reach unity, which corresponds with a single (necessarily sample spanning)
cluster of each phase, the infinite cluster fraction φi ( fi ) may remain smaller than unity because of
the possibility of dead branches. But this is a detail.

The parameter ca = c0<φq<1
a≡q⊂p is the volume fraction of a phase cocontinuous material where the phase

q is more alike a partially continuous reinforcement inside the matrix p than the opposite case (resp. for
cb = c0<φp<1

b≡p⊂q = 1− ca when interchanging p and q). It clearly characterizes the cocontinuity asymmetry
for the two phases (p, q) and we here call it the “clustering symmetry factor.” In the limit case of no
cocontinuity, φi ( fi )= 0, it plays the same role of phase continuity inversion (or percolation transition)
as the “matricity” parameter introduced by [Leßle et al. 1999], although not defined similarly. From now
on, one will mainly examine the IPS-IFS and ISC-IFS estimates with

(a, b)=
(

IFSφq IFSφp

q|p p|q

)
,

7The second dilution of a volume fraction c̆p of phase p after a first dilution of volume fraction κp must match the total
value f p , accounting for the lost part c̆pκp due to overlapping inclusions (resp. q).
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which read, from (15) and (16),

C∗IPSIFS
(a,b,ca)

( f p)= C IPSIFS
a,b = 〈C〉+ ({C}−Ca) : t

Sph
{C} : ({C}−Cb), (19a)

C∗ISCIFS
(a,b,ca)

( f p)= C ISCIFS
a,b = 〈C〉+ (C ISCIFS

a,b −Ca) : t
Sph
C ISCIFS

a,b
: (C ISCIFS

a,b −Cb). (19b)

The infinite cluster fractions 0≤ φp, φq ≤ 1 and the clustering symmetry factor 0< ca = 1− cb < 1
may depend on the phase concentrations. The laws ca( f p), cb( fq) and φi ( fi ), i = p, q are expectedly
monotonous increasing functions of the phase concentrations, but it is not impossible, as will be seen,
to realize structures corresponding with decreasing evolution laws for ca( f p), cb( fq). The introduced
phase continuity parameters are clearly related to phase clustering properties. Their definition is enough
to allow measuring them, perhaps with the help of some tools from mathematical morphology and 3D
image analysis. The precise relations of these parameters to the microstructural descriptors of systematic
theory [Serra 1982; Torquato 2002] call for mathematical developments out of the present scope.

4.2. Phase concentration dependency assumptions for the phase continuity parameters. Considering
phase concentration dependency makes sense in the cases when well-controlled structures can be realized
at different phase concentrations without affecting any other property or characteristic. We use empirical
forms to identify some general trends from comparisons with various data sets.

(i) For the independent infinite cluster fractions φp( f p), φq( fq), we have used

φi ( fi )=

φi0(φi1−φik)
( 1− fi

1− fik

)Pi
+φi1(φik−φi0)

( fi
fik

)Pi

(φi1−φik)
( 1− fi

1− fik

)Pi
+(φik−φi0)

( fi
fik

)Pi
i = p, q (20a)

with, in general, Pi > 0 and 0 ≤ φi0 ≤ φik ≤ φi1 ≤ 1. For all Pi 6= 0, the inflexion points have
coordinates ( fik, φik) with 0 ≤ f pk , fqk ≤ 1. When Pi = 0, the partial continuity of the phase is
constant at φik . The φi ( fi ) functions are involved as a factor of ( fi ). These two parameters should
not be phase contrast dependent, which is a characteristic allowing to check the relevancy of their
definition.

(ii) For the clustering symmetry factor ca( f p)= 1− cb( fq), we have used the similar form

ca( f p)=
cac( f p/ f pc)

M

cac( f p/ f pc)M + cbc( fq/ fqc)M = 1− cb( fq), f pc+ fqc = 1, cac+ cbc = 1 (20b)

For all M 6= 0, the inflexion point has coordinates f pc= 1− fqc, cac= 1−cbc. When M = 0, the value
of cac fixes the estimate position between the limits IFS(φ), for all f pc. When M > 0, the transition
is from the lower limit to the upper one, and the opposite occurs for M < 0. The larger is the value
of |M |, the sharper the inversion of the cocontinuity symmetry at that point. The variation of this
clustering symmetry factor form can be expected to be dependent of the phase contrast because in
our two-scale homogenization scheme, it interconnects intermediate IFS(φ) phases (Ca,Cb) which
are not of constant microstructures (as they are made from mixing the constitutive ones (p, q) with
concentration-dependent φp( f p) and φq( fq) continuity characteristics).
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5. Result comparisons with numerical and experimental data

The so-defined generalized IFS(φ) estimates are taken for the effective properties of the two representative
layers in IPS descriptions for two-phase materials from (19a). They are taken as well for the effective
properties of the two representative spherical domains in isotropic self-consistent (ISC) descriptions of
the same materials from (19b). Note that planar sections of such two-phase aggregates are 2D patchworks
of the same two types of domains as those directly introduced in the layer-based approach. The IFS
aggregate is expected to be phase cocontinuous at all concentrations provided φp, φq 6= 0, as both grain
types are phase cocontinuous in that case. The IPS that reassembles sections of IFS aggregates is also
expected to be phase cocontinuous at all concentrations when φp, φq 6= 0 but possibly with some residual
bicontinuity when φp = φq = 0 in the layers, as described in Figure 5, and similarly some dead branches
are reintroduced when φp = φq → 1. It will be shown, indeed, that the two obtained IPS-IFS and ISC-
IFS estimates are identical for the various examined structures when phase bicontinuity in the IFSs is
significant and high (no apparent difference towards total bicontinuity), while in situations of vanishing
bicontinuity in the IFSs, the ISC estimate involving IHS grains is slightly sharper than the IPS estimate
using IHS layers.

Table 3 presents the genealogy of the calculated and compared estimates that are linked in columns
from the phase pairs (a, b), the pair Voigt–Reuss(a, b), the pair IHS(+/-)(a, b) and the pair IFS(+/-)(a, b).
The estimate from (13) for the aggregate of laminates denoted “ISCP” has been placed in a remaining
free cell of the table. The total number of examined estimates is 15, including some cases that have
been pointed out as inconsistent with the possible cocontinuity of the phases (namely, the IPS estimates
combining either V and R layers or IHS(+/−) layers, and the ISC estimates combining either V and R
grains or IHS(+/−) grains). The analytic expressions for the effective shear modulus in the incompress-
ible case (for the two phases a, b) are summarized in Appendix C for the IFS, IPS, IHS and ISC estimates,
plus, as a sixteenth estimate, the dual IPS one from the compliance approach of (11b). Typical curves
for all of the IPS and ISC estimate types that have been considered are plotted in the left and middle

a/b VR(a, b) isotropic fiber
HS(a, b) HS(a, b)

ISC[Pω(a, b)] isotropic
FS[FHS(a, b)]

laminate laminate laminate laminate
[a/b] [VR(a, b)] [IHS(a, b)] [IFS(FHS(a, b))]

isotropic isotropic isotropic isotropic
PS[L(a, b)] PS[L(VR(a, b))] PS[L(IHS(a, b))] PS[L(IFS(FHS(a, b)))]

isotropic isotropic isotropic isotropic
SC[a, b] SC[VR(a, b)] SC[IHS(a, b)] SC[IFS(FHS(a, b))]

Table 3. Genealogy of the 15 estimates performed. and notations. VR = Voigt–Reuss;
HS = Hashin–Shtrikman; FHS = fiber HS = HS bounds for (a,b) 1D-fiber structures;
FS = fiber systems; L = laminate structure; PS = platelet Systems; SC = self-consistent
estimate; IHS, IFS, IPS, ISC = isotropic HS, FS, PS, SC.
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Figure 6. Comparison of moduli estimates for porous materials. Left: estimates not
involving (20). Middle: IFS limits and related IPS-IFS and ISC-IFS estimates for M = 0,
M = 2, and M = 5. Right: Matching the FFT estimate for a point structure with the
IPS-IFS and ISC-IFS estimates.

portions of Figure 6 for an incompressible two-phase material with a void phase, say (νp = νq = 0.5),
(µq/µp = 0). To save space, the rightmost part of Figure 6 reports with some anticipation the match
of the IPS-IFS and ISC-IFS estimates with an FFT calculation on a simple point structure in the case of
nearly zero contrast: µq/µp = 5× 10−5 (see Figure 7, left, on page 749, for an illustration).

Figure 6, left, shows plots of the 9 estimates obtained from the pure phases (p, q), namely, the V/R
bounds and the two IHS bounds, the IPS, the ISC and the ISCP estimates and the two IFS limits at
φp = φq = 1. The upper IFS estimate, µIFS(+) = (1+ 1

5 fq) f pµp/(1+ fq), is closely below the upper
IHS bound µIHS(+) = 3 f pµp/(3+ 2 fq). The nonzero lower IFS estimate, µIFS(−) =

1
5 f pµp, is far above

the IHS lower bound that is zero when f p 6= 1. The IPS estimate, µIPS =
3
5 f pµp, is between the two

IFS limits in all of the phase concentration range, going from the upper IFS limit to the lower one. From
Appendix C, µIPS and µIFS(−) make a singular jump from respectively 3

5 and 1
5 to 1 at f p = 1. When the

phase q is a void phase, neither the ISC estimate (which is linear from 0 to µp between f p =
2
5 and 1)

nor the ISCP estimate (which goes to zero at all concentrations f p 6= 1) remain between the IFS limits
for all concentrations or for all contrasts.

The dual IPS estimate from the arithmetic mean over compliances, not plotted but given in Appendix C,
also remains close to the IHS lower bound and goes to zero in the void phase case. Figure 6, middle,
illustrates the flexibility of the two IPS-IFS and ISC-IFS estimates by reporting a typical case of no phase
concentration dependency (M = P1 = P2 = 0, cac = cbc = 0.5, φpk = φqk = 1) and examples of phase
concentration dependency for M = 2 and M = 5. They correspond to the cases denoted by 000 and
MPP in Table 4 (page 751), which summarizes all of the parameter values for the performed calculations
presented next. The same graph also shows the close proximity of these two estimates arising from
two different routes in a few representative cases. The simultaneous match, in Figure 6, right, of the
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Figure 7. Numerical structures of random points (left), overlapping spheres (middle),
and Voronoi cells (right).

IPS-IFS and ISC-IFS estimates with the FFT calculation for the point structure, has needed the use of
nonconstant φ functions (Pi = 4); this is because, as expected, point structures are only bicontinuous in
the range of comparable concentrations of the two phases, with the continuity of each phase increasing
with its concentration. The already-marked stiffness of the ISCP estimate at this still high contrast,
compared to the still nearly zero IHS lower bound, is noteworthy. Figures 7, 8 and 9 illustrate the
various numerical or real structures for which available moduli calculations or measurements have been
compared to the proposed IPS-IFS and ISC-IFS estimates and to some of the other ones. Figures 10–13
report the performed estimate comparisons of the (shear or Young) effective moduli.

5.1. Structure types investigated. The three parts of Figure 7 show numerical structures obtained by
random point processes. The elementary cube has 1283 voxels. In the point structure of Figure 7, left,
the point number is directly the second phase volume part. In the middle figure, they are the centers of
overlapping spheres having all the same radius. In the rightmost figure they are cell centers from which
Voronoi structures with different wall thicknesses are built. The overlapping sphere arrangement is
known to have a quite large and asymmetric domain of cocontinuity (from 0.30 to 0.95, approximately).
The phase contrast inversion matters in this case. This sphere structure is varied in concentration by
modifying the sphere radius. The Voronoi cell structure is expected to have, at all phase concentrations,
a continuous wall phase separating polyhedral inclusions, without any bicontinuity. The phase concen-
tration is varied by changing the wall thickness and the grain number. If holes happen in walls that are
too thin, such Voronoi structures can turn into bicontinuous ones. Piercing or removing walls is a way
to create bicontinuous structures.

The parts of Figure 8 present the different phase arrangements obtained from a Poisson–Voronoi
tessellation process. Figure 8, left, is obtained by removing the cell faces in a Voronoi structure, just
keeping the edges and vertices that remain connected into a continuous second phase reinforcement.
This is typically a bicontinuous structure that is expected to be totally bicontinuous (TBi). When the
walls are too thin (middle figure), edges can be broken when removing the faces, which yields partial
bicontinuity (dead branches in the continuous reinforcement) and possibly a phase continuity inversion
with a connected matrix including discontinuous reinforcements (PBi/I). When conversely the walls are
too thick (right figure), edges and vertices dominate and there are not enough face points left to connect
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Figure 8. Bicontinuous structures. Left: removing wall faces of Voronoi cells. Middle:
partial or inverted phase continuity if thin wall edges have been broken. Right: Voronoi
type if walls are too thick.

 

 

  

 

10 µm 

      

 

10 µm 

  
 

Figure 9. Left: numerical bicontinuous structure of [Chen et al. 2008]. Middle, right:
PS and PP bicontinuous polymer blends prepared and examined by Veenstra et al. [2000].

the cell phase by piercing the walls. The structure remains of the Voronoi cell structure type, with only
some finite clusters of connected cells and no bicontinuity. Estimates for Voronoi cell structures are not
reported.

Figure 9 illustrates some examined structures taken from the literature. The diagram on the left, from
[Chen et al. 2008], is a numerical structure of the nonparticulate type created from a random point
process that results in an intermediate range of phase bicontinuity. FEM calculations of the effective
Young modulus have been reported for moduli values given to the phases that are typically those of an
epoxy-glass mixture (µp = 1, 26 GPa, νp = 0.35), (µq = 30 GPa, νq = 0.22). The other two parts of
Figure 9 are views of two types of polymer blends prepared and investigated by Veenstra et al. [2000].
The two materials (PS and PP for, respectively, blends of polyethylene with poly(ether-ester) and blends
of polypropylene with styrene (ethylene-butylene)) exhibit a phase cocontinuity domain of variable extent
where their structures are typically sponge-like, as exemplified in the figure. For comparisons with the
two PS blends (denoted PSi and PSs), we used EPS

p = 2800 MPa, EPS
q = 48 MPa, and for the two PP
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blends (PPi and PPs), we used EPP
p = 1000 MPa, EPP

q = 3 MPa. Since the phase Poisson ratios were not
given, we used an arbitrary homogeneous value, which does not matter because the Young’s and shear
moduli are proportional then. However, the assumption of the same Poisson ratio for both phases makes
these comparisons more uncertain. The estimates for these structures are reported versus the hard (PS or
PP) phase concentration.

5.2. Main results and discussion.

Estimated effective moduli and comparisons. According to the case, either the estimated effective shear
modulus or the effective Young’s modulus (normalized in the case of Chen data) has been reported for
the various mentioned models. Most of the calculated moduli estimates for the structures of Figure 7
and 8 assume the same incompressible phases νp = νq = 0.5 with a contrast (µq/µp = 4× 10−3) for the
shear moduli. Some calculations with a weaker or a higher contrast for the phase shear moduli (between
0.1 and 0) were also performed for further discussion. For comparisons, the shear effective modulus was
calculated by using the FFT method as detailed in [Brenner et al. 2009] for its implementation. For the
IPS-IFS and ISC-IFS estimates, we collect in Table 4 the phase continuity parameters involved in (20)
that have provided a good match with the compared data sets. No numerical algorithm of fitting parameter
identification has been called for because our discussion purpose does not need a perfect matching.

Figures M fac cac P φmin φmax φk fpk fqk

REF 000 6 middle 0 0.5 0 0 1 0.5
REF MPP 6 middle 2 and 5 0.5 0.5 4 0 1 0.5 0.5 0.5
FFT PTS 7 left 6 right 3 0.45 0.5 4 0 1 0.5 0.45 0.45
Match ISC 10 left 2 0.5 0.5 9 0 1 0.5 0.5 0.5
Match IPS 10 middle −0.33 0.5 0.8 0 1 1 1 0.5 0.5
Match ISCP 10 right −0.25 0.5 0.5 1 1 0 0.5 0.5 0.5
FFT h SPH 7 middle 11 right 1.5 0.65 0.5 1.5 0 1 0.5 0.65 0.65
FFT s SPH 7 middle 11 middle 1.5 0.35 0.5 1.5 0 1 0.5 0.35 0.35
FFT vo SPH 7 middle 11 left 2.1 0.35 0.5 1.5 0 1 0.5 0.35 0.35
FEM CHen 9 left 12 left 1.5 0.6 0.7 5 0 1 0.5 0 0
FFT TBi 8 middle 12 middle 0.5 0.7 0.7 1.5 0.25 0.75 0.5 0.5 0.5
FFT PBi/I 8 right 12 right 2 0.5 0.5 3 0.25 0.75 0.5 0.5 0.5
Exp VE PSi 9 middle 13 top left 5 0.45 0.5 3 0 1 0.5 1 1
Exp VE PSs 9 middle 13 top right 4 0.3 0.5 3 0 1 0.5 0.7 0.9
Exp VE PPi 9 right 13 bottom left 0.4 0.97 0.7 10 0 1 0.5 0.5 0.6
Exp VE PPs 9 right 13 bottom right 0.3 0.97 0.7 15 0 1 0.5 0.45 0.55

Table 4. Coefficients for the IPS-IFS and ISC-IFS moduli estimates to match with com-
pared data and notation (the columns P , φmin, φmax, φk refer to both phases). For REF
000 and REF MPP, see page 748. ISCP = ISC estimate on PS systems from (13).
TBi/PBi = totally/partially bicontinuous (see page 749). PTS = point structure. EXP
VE PS(i/s)/PP(i/s) = experimental data on polymer blends from [Veenstra et al. 2000].
FEM CHen = numerical data from [Chen et al. 2008]. (h/s/vo) SPH = hard/soft/void-
like spherical inclusions.
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Figure 10. Matching the ISC, ISCP and IPS estimates with the IPS-IFS and ISC-IFS ones.

Figure 10 compares the ISC, IPS and ISCP analytical estimates with the IPS-IFS and ISC-IFS ones
adjusted with an appropriate set of parameters. These comparisons provide preliminary information
about the ranges of parameter values to be explored according to the case. In particular: the ISC estimate
is of the types of reference MPP reported in Figure 6, middle, and it is not much different from the point
structure (Figure 6, right) considering statistical fluctuations; the IPS estimate that goes from the upper
IFS limit to the lower one is matched by using a negative value for the power M and by keeping the φi

functions constant and equal to unity (total constant cocontinuity); the ISCP estimate is also matched
with using a negative M value while furthermore making the φi functions to decrease from unity to zero,
as if corresponding to the dilute phase gaining total continuity when vanishing while the dense one has
vanishing continuity when approaching unity. This can be understood as going towards a zero phase
concentration under the form of a vanishing but still sample spanning and total cluster.

Figure 11 shows a comparison with the FFT computations on the sphere structures of Figure 7, middle,
considering two different phase contrasts for the soft sphere case in a hard matrix (left and middle) and
the dual structures with soft and hard spheres (middle and right). Figure 12, left, reports the estimates that
match the FEM calculations of [Chen et al. 2008] for the numerical (point-like) structure of Figure 9, left,
(normalized Young’s moduli), a case of moderate phase contrast (Eq/E p ≈ 0.045). The remaining two
parts of Figure 12 report the estimate for the structures of the corresponding parts of Figure 8, compared
with the FFT calculations. The four parts of Figure 13 match the estimates with the measured values
for the PSi, PSs, PPi, and PPs blends from [Veenstra et al. 2000], corresponding to the last two parts
of Figure 9. The contrasts, respectively, are Eq/E p ≈ 0.015 and Eq/E p ≈ 0.003. The concentration
ranges of cocontinuity experimentally estimated are respectively 0.5–0.6, 0.3–0.6, 0.5–0.6 and 0.4–0.8,
say: larger for the (s) samples than for the (i) ones.

Figure 11 and 12 (parts a and c) show estimates of the reference MPP type, corresponding to a
bicontinuity domain between two domains where the dilute phase is expected to be embedded in the
concentrate one. Note that the two dual sphere structures (last two parts of Figure 11) are nicely fitted
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Figure 11. Matching FFT calculations with the IPS-IFS and ISC-IFS estimates for the
sphere structure. From left to right: void-like, soft, and hard spheres.
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Figure 12. Left: matching the numerical FEM calculations of [Chen et al. 2008,
Figure 3] with the IPS-IFS and ISC-IFS estimates. Middle and right: matching the
FFT calculations for totally and partially bicontinuous Voronoi-based structures with
the IPS-IFS and ISC-IFS estimates.

by the same parameter set, only inverting the value of the critical concentrations (0.35 / 0.65) in (20a)
and (20b). The case of Figure 12, middle, although of the same structure type, corresponds to a smaller
M value and some other distinct parameter values. In all of these cases, the IFS(φ) domain that limits
the data set is regular thanks to a low value of P in (20b), as collected in Table 4.
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Figure 13. Matching the blend data of [Veenstra et al. 2000, Figure 3] with the IPS-IFS
and ISC-IFS estimates. Top row: lower and upper data of Figure 3, left. Bottom row:
lower and upper data of Figure 3, right.

The PS and PP polymer blends exhibit two radically different situations compared to the previous
ones. For the PS case, the match of the data again corresponds to a typical MPP curve, although with a
higher M value (of 5 and 4, respectively, for cases PSi and PSs), in order to give an S shape to the curve
corresponding to M = 5, as in Figure 6, middle. The PP blends show the particularity of a modulus
“jump” when approaching a zero weak-phase concentration, while the PS blends do not. For this PP
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case, the “best match” of the data we have obtained with (20), which is not as good as in the other cases,
corresponds with a very different set of parameters. In particular, the S shape that has been given to
the φ curves of (20b) has used high P values and low M values, with inflexion points very far from
symmetrical. Although the compared experimental data for PP blends are more uncertain than the other
data (at dilute concentrations of the hard phase, some points are not even between the V/R bounds),
such a jump to 1 of φp( f p) when f p approaches 100% is in agreement with still partial continuity (dead
branches) of the hard phase when dense and persisting up to the total vanishing of the soft phase. It is
interestingly a case for which the Christensen’s IPS estimate appears quite convenient for a dominant
volume fraction of the hard phase what means a still significantly continuous soft phase when dilute,
especially for the PPs case that exhibits the largest concentration range of phase of bicontinuity. This
IPS estimate is thus proved possibly relevant for this type of materials with cocontinuous phases. It is
also noteworthy that for these parameter sets in the PP cases, a quite marked difference appears between
the IPS-IFS and ISC-IFS estimates in the domain of dilute hard phase, where the estimates remain more
of the IPS-IHS and ISC-IHS type (φp, φq ≈ 0), with nearly no cocontinuity in the representative layers
or grains (as described by the high values given to P and to f pc). Accordingly with the difference in
their definitions, the IPS-IFS estimate appears smoother than the ISC-IFS, likely in relation to some
maintained phase bicontinuity. At the other end, when assuming total continuity by φp = φq = 1, one
could expect for the same reason of construction difference some more dead branches being reintroduced
in piling layers than in assembling grains, but one does not observe a significant difference between the
IPS-IFS and the ISC-IFS estimates then. This yields to considering the IPS-IFS estimate as a smoothed
version of the ISC-IFS one, especially when the infinite cluster fractions φp, φq approach either 0 or 1.

Phase contrast dependency. We end with these comparisons by checking whether the parameters in (20)
depend on the phase contrast or not. As far as they represent morphological characteristics, they should
be insensitive to the phase contrast in all the cases where the phase composition do not change with the
phase concentration and arrangement. In that respect, the phase concentration dependency of the infinite
cluster fractions φp( f p) and φq( fq) from (20a) that characterizes the morphology of the individual phases
is not expected sensitive to phase contrast, oppositely with the variation of the clustering symmetry factor
from (20b).

Using the set of parameters given in Table 4, the ISC, IPS and ISCP analytical curves and the FFT
results for the soft sphere structure have been matched with the IPS-IFS and the ISC-IFS estimates for
different phase contrasts ranging between 0.1 and 0.00005. The net result is that the match remained of
similar accuracy, by only modifying the M exponent in (20b) as shown in Figure 14, where the loga-
rithmic plot looks linear, and all other parameters that concern (20a) remaining unchanged8. Reporting
the miscellaneous data for M corresponding to other calculations with a single available contrast case
confirms that the Chen et al. data, the PBi/I data and the ISC plot are similar to the point-structure data
type. Going towards an increase of bicontinuity, as the sphere structures and the totally bicontinuous
(TBi) structures, seems to correspond with a lower but still positive M value. Negative M values for the
IPS and ISCP estimates may also correspond to realizable bicontinuous structures, as with aggregates
of laminate domains. In terms of M value, the PP blends are on the side of the bicontinuous structures,
while the PS ones are quite far above all estimates.

8Also the inflexion point ( f pc, cac) can need a slight adjustment when the phase contrast becomes weak.
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Figure 14. The variation of the M parameter with phase contrast for the different estimates.

The PP and PS blend cases warn that one cannot only compare the M parameter in order to classifying
the structure types but this comparison nevertheless provides interesting information on the different
possible types of phase cocontinuous structures.

Without going more deeply into the details here, it appears from these elements that some typical
trends of phase cocontinuity show up for the different microstructures that have been examined through
the presented two not much different modeling schemes. The parameter sets that provide a good match
with the available data are related to cluster characteristics and percolation features of the phases, here
called the infinite cluster fractions and the clustering symmetry factor. They are measurable quantities
but remain to be connected appropriately to the microstructural descriptors. The fact that one nearly
obtains by two routes using the same representative domains of IFS estimates, the same estimate for
the considered bicontinuous structures can be taken in favor of the relevancy of the given description
to the representative, layers or grains, domains. While the ISC-IFS estimate is implicit owing to the
SC approximation level in it, the layer-based IPS-IFS estimate remains explicit. Towards null phase
bicontinuity, the layer-based approach yields a slightly smoother estimate than the aggregate one, likely
related to a residual phase cocontinuity not totally excluded in the layer approach. Conversely, total
phase cocontinuity in layers does not either totally exclude the reintroduction of dead branches when
assembling the layers, but there is no noticeable difference between the two estimates in that case. These
modeling schemes, which have been presented in details in the elasticity formalism in specifying which
application restrictions should be kept in mind in the mechanical field, also hold to estimating physical
effective properties in all situations for which the homogenization framework holds. The calculation
of the IFS estimates is possible for any phase number, and so are the IPS-IFS and ISC-IFS estimates
when following the same procedure as for two phases. As will be soon presented elsewhere, (19) can
be directly applied to arrangements of isotropic phases in ellipsoidal overall symmetry while using the
appropriate operator for the characteristic ellipsoidal shape. They also likely apply as written in the cases
of anisotropic structures involving anisotropic phases, as the morphological background to account for
phase continuity features remains unchanged.
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6. Conclusion

We have proposed, within the homogenization framework, a modeling scheme which aims at estimat-
ing the effective properties of heterogeneous materials which exhibit a diversity of phase cocontinuity
features for several of their constitutive phases. For mechanical properties, our approach is restricted to
the study of elasticity properties in the unloaded limit and to materials whose structural behavior under
load is not essentially governed by bending or torsion features. The modeling results from the use of a
generalization of the so-called fiber systems combined within either a layer-based or an aggregate-like
approach to describe the material structure and on the introduction of phase clustering characteristics as
phase continuity and cocontinuity parameters. As shown for two-phase materials in the isotropic elastic
formalism, the two obtained estimates are very close to each other for all examined microstructures
over the whole phase concentration range where they present significant phase bicontinuity and regard-
less of the phase contrast. In situations when the phase cocontinuity is weak or null, the layer-based
estimate appears to be slightly smoother than the aggregate-based one because of some residual phase
cocontinuity not totally excluded by the estimate construction. The various performed comparisons with
the experimental and numerical data from the literature and with the FFT calculations performed on
different numerical microstructures have shown the high flexibility of the modeling and its ability to
consider phase cocontinuity characteristics of a large variety of situations. Since, as stressed from the
introduction, platelet (or laminate), aggregate and fiber systems can be defined for multiphase materials
whose phases are of general property anisotropy and are assembled according to an ellipsoidal overall
symmetry, as being presented in a separate work, the application domain of the two proposed estimate
types can be extended accordingly.

Appendix A. Platelet Green operators and moduli and compliance tensors for laminates

The fundamental property of the platelet strain Green operator. From [Walpole 1981], one has(
I − t P

(p)(ω) : (C
p
−Cq)

)
:
(
I − t P

(q)(ω) : (C
q
−C p)

)
= I (A.1)

for any two phases p, q and any direction ω in space. This property also corresponds to

I =
(
t P
(p)(ω) : (C

p
−Cq)

)−1
+
(
t P
(q)(ω) : (C

q
−C p)

)−1 (A.2)

Thus allows one to write, for all fq = 1− f p, the equality C∗Pω
q⊂p = C∗Pω

p⊂q for a two-phase laminate as

C p
− fq

(
(C p
−Cq)−1

− f pt P
(p)(ω)

)−1
= Cq

− f p
(
(Cq
−C p)−1

− fq t P
(q)(ω)

)−1 (A.3)

One backward demonstration results from multiplying (A.3) by (C p
−Cq)−1 to obtain

I = fq
(
I − f pt P

(p)(ω) : (C
p
−Cq)

)−1
+ f p

(
I − fq t P

(q)(ω) : (C
q
−C p)

)−1

= fq(I − X p)
−1
+ f p(I − Xq)

−1,

which yields fq
(
I − (Xq)

−1
)
+ f p

(
I − (X p)

−1
)
= 0 and (A.2).
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The symmetric form of the effective properties of two-phase laminates. The tensor C∗Pω
q⊂p reads

C p
− fq

(
(C p
−Cq)−1

− f p t P
(C p)(ω)

)−1
= C p

− fq(C p
−Cq) :

(
I − f p t P

(C p)(ω) : (C
p
−Cq)

)−1
.

Using the homogeneity of rank −1 of tV
(C p) with respect to the moduli f p t P

(C p)(ω) = t P
(C p/ f p)

(ω) and
setting C p

−Cq
= C ′p −C∗q with C ′p = C p/ f p, C∗q = {C}/ f p, yields(

I − f p t P
(C p)(ω) : (C

p
−Cq)

)−1
=
(
I − t P

(C ′p)(ω) : (C
′p
−C∗q)

)−1
= I − t P

(C∗q )(ω) : (C
∗q
−C ′p).

The last form results from the platelet property. Using t P
(C∗q )(ω)= f p t P

{C}(ω), we arrive at

C p
− fq(C p

−Cq) :
(
I− f p t P

(C p)(ω) : (C
p
−Cq)

)−1
= C p

− fq(C p
−Cq) :

(
I− f p t P

{C}(ω) : (C
q
−C p)

)
and to (6), (11a) as well as to (9), (11b) for S∗P(ω)= (C∗P(ω))−1. Note that {S} 6= {C}−1.

Appendix B. Properties of the Hashin–Shtrikman (HS) and self-consistent (SC) estimates

The HS estimates. The general form is given in (2) and (3). In the two-phase case, the proof that
Ceff HS

p⊂q = Cq
− f p

(
(1Cq|p)−1

− fq tV
(q)

)−1
= (Seff HS

p⊂q )
−1 is straightforward:

f p
(
Cq
−Ceff HS

p⊂q
)−1
=
(
1Cq|p)−1

− fq tV
(q) = Sq

− Sq
:
(
1Sq|p)−1

: Sq
− fq

(
Sq
− Sq

: t ′V(q) : S
q)

= f p Sq
− f p Sq

:
(
Sq
− Seff HS

p⊂q
)−1
: Sq

= f p Sq
− Sq

:
(
(1Sq|p)−1

− fq t ′V(q)
)
: Sq .

(B.1)
Equation (B.1) gives

f p
(
Sq
− Seff HS

p⊂q
)−1
= (1Sq|p)−1

− fq t ′V(q). (B.2)

The SC estimate. For all congruent grains of two constitutive phases, on can write

f p
(
(Ceff

SC−C p)−1
− tV

Ceff

)−1
+ fq

(
(Ceff

SC−Cq)−1
− tV

Ceff

)−1
= 0, (B.3a)

fq
(
(Ceff

SC−C p)−1
− tV

Ceff

)
+ f p

(
(Ceff

SC−Cq)−1
− tV

Ceff

)
= 0. (B.3b)

Equation (B.3b) yields tV
Ceff = fq

(
(Ceff

SC− C p)−1
)
+ f p

(
(Ceff

SC− Cq)−1
)
. Further simple manipulations

yield the SC approximation form of (16) for general (a, b) phases. A similar form is obtained in terms
of the corresponding compliances, using the stress Green operators t ′. One verifies that Seff

SC = (C
eff
SC)
−1

simply using the platelet decompositions of both operators, which in that case refer to the same reference
material, unlike the IPS estimate.

Appendix C. The IFS, IPS and ISC effective shear moduli in isotropic incompressible elasticity

For x3-oriented fibers, the two shear moduli of the HS bounds read from (3), with η= (1−2νb)/(2−2νb):

µ1212
∗F(ω)
a⊂b = µb− ca

(
1

µb−µa
−

cb

2µb
(1+ η)

)−1

, µi3i3
∗F(ω)
a⊂b = µb− ca

(
1

µb−µa
− cb

1
2µb

)−1

.
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The two IFS moduli can be calculated with the coefficients of Table 2 and the moduli of the x3-oriented
fiber system, or at least appropriate partial sums. For the IFS shear modulus, we need the two shear
moduli and

6 = 1
15(Ci i i i +C3333− 2Ci i33)

∗F(ω)
a⊂b .

In the incompressible case, η = 0, the two shear moduli are equal and

6 =
1
15

(
4µb− ca(µb−µa)

(5µb+ 3{µ})
(µb+{µ})

)
,

which gives, from (14),

µeff IFS
a⊂b =

11
15µ
∗F(ω)
a⊂b +6 =

µb

15

(
4+ 11

(
µa +〈µ〉

µa +{µ}

))
−

ca(µb−µa)

15
(5µb+ 3{µ})
(µb+{µ})

. (C.1)

For the IPS estimate in the incompressible case, one has, directly from (15),

µeff IPS
a,b = 〈µ〉+

4
(
{µ}−µa

)(
{µ}−µb

)
10{µ}

=
3
5
〈µ〉+

2
5
µaµb

{µ}
. (C.2)

For comparison, the IHS and the ISC shear moduli estimate read, still with incompressibility,

µeff IHS
a⊂b = µb− ca

(
1

µb−µa
−

2cb

5µb

)−1

= µb

(
2µa + 3〈µ〉
3µb+ 2{µ}

)
, (C.3)

µeff ISC
a,b = 〈µ〉+

4
(
µeff

S−C−µ
a
)(
µeff

S−C−µ
b
)

10µeff
S−C

=
1
6

(√
B2+ 24µaµb− B

)
, with B = 2{µ}− 3〈µ〉. (C.4)

For the IFS(φ) estimates (18), the first dilution of an embedded phase (a) fraction κa = (1−φa)ca in
phase (b) (resp. b in a) yields from (C.3) a modified phase b̆ of shear modulus µ̆b (resp. µ̆a for ă). The
concentration of phase (b) changes from cb = 1− ca to 1−κa 6= κb. The second dilution of infinite fibers
yields µeff IFS(φ)

a⊂b = µeff IFS
a⊂b from (C.1) with c̆a = (ca−κa)/(1−κa) (resp. c̆b for µeff IFS(φ)

b⊂a = µeff IFS
b⊂a ). The

matrix with c̆a fiber fraction has concentration 1− c̆a 6= c̆b. The dual IPS estimate from the compliance
integral in (11b) reads, when incompressible,

1
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=

〈 1
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〉
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}
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15B̃2
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〈 1
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+
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}
−

1
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) 3
5B̃

({ 1
µ

}
−

1
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)
,

with B̃ =
{ 1
µ

}
=
〈µ〉

µaµb
for the reference medium. Hence

µ
eff IPS(dual)
a,b =

〈µ〉

1+
2cacb(µa −µb)

2

5µaµb

This estimate is very close to the lower HS bound and out of the IFS sup limits.
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When phase (a) is void, all these estimates equal µb at cb = 1 and for cb ∈ [0, 1[ they become

µeff IFS
0⊂b =

(5+ ca)cbµb

5(1+ ca)
, µeff IFS

b⊂0 =
cbµb

5
, µeff IPS

0,b =
3cbµb

5
, µeff IHS

0⊂b =
3cbµb

3+ 2ca
,

µeff IHS
b⊂0 = 0, µ

eff IPS(dual)
0,b = 0, µeff ISC

0,b =

{ 0 for cb ∈
[
0, 2

5

]
,

5cb−2
3

µb for cb ∈
[ 2

5 , 1
]
,

µ
eff IFS(φ)
0⊂b =

(5+ c̆a)(1− c̆a)µ̆b

5(1+ c̆a)
=
(5+ c̆a)(1− c̆a)

5(1+ c̆a)

3(1− κa)µb

3+ 2κa
; µ

eff IFS(φ)
b⊂0 =

c̆bµb

5
.

(C.5)

In the second estimate of (C.5), the lower limit, the first dilution of phase (b) in void phase is lost. The
general IPF–IFS(φ) and ISC–IFS(φ) estimates when one material phase (p or q) is void have analytical
forms from using the moduli of (C.5) expressed for the phase pair (p, q) and concentrations f p, fq as the
moduli of the intermediate homogeneous equivalent media (a) and (b) in (C.2) and (C.4), respectively,
making use of (20a) and (20b) for ca and for the two φp, φq functions defining c̆p, κp and c̆q , κq in (C.5).
For the ISCP estimate when phase (a) is void µeff ISCP

0,b must satisfy

4µ∗

3
+

2µ∗(µ∗− fbµb)

3µ∗+ 2 fbµb
= 0,

the (not reported) resolution giving µeff ISCP
0,b = µ∗ = 0 for all fb.
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CONSISTENT LOADING FOR THIN PLATES

ISAAC HARARI, IGOR SOKOLOV AND SLAVA KRYLOV

Structural models are well-established for the governing operators in solid mechanics, yet the reduction
of loads (data) is often performed in an ad hoc manner, which may be inadequate for the complex
load distributions that often arise in modern applications. In the present work we consistently convert
three-dimensional data to the form required by Kirchhoff thin-plate theory, in a variational framework.
We provide formulas for all types of resultant structural loads and boundary conditions in terms of
the original three-dimensional data, including proper specification of corner forces, in forms that are
readily incorporated into computational tools. In particular, we find that in-plane components of three-
dimensional loads engender distributed couples, contributing to an effective distributed transverse force
and boundary shear force, the latter generalizing the notion of the celebrated Kirchhoff equivalent force.
However, in virtual work we advocate a representation of the twisting moment in a form that involves
neither the Kirchhoff equivalent force nor corner forces. An interpretation of the structural deflections as
through-the-thickness averages of the continuum displacements, rather than their values on the midplane,
yields explicit formulas for the thin-plate essential boundary data. The formulation facilitates the solution
of problems that would otherwise pose formidable challenges. Numerical results confirm that appropriate
use of the thin-plate model economizes computation and provides insight into the mechanical behavior,
while preserving a level of accuracy comparable with the full three-dimensional solution.

1. Introduction

In solid mechanics the common approach to the analysis of bodies with distinctive geometric characteris-
tics is to perform a dimensional reduction to an appropriate structural model. The analytical solution for
these bodies is difficult for general geometries and loadings while the computation is often costly. A clas-
sical example is a plate-like body which is commonly described by a thin-plate model.1 The dimensional
reduction of the differential operator describing the original elasticity problem is often performed by
variational procedures combined with certain kinematic and constitutive assumptions [Alessandrini et al.
1999; Hu 1984; Soedel 1981; Vidoli and Batra 2000]. This technique can be considered as a restriction of
an approach applied to shells [DiCarlo et al. 2001]. Alternatively, hierarchies of reduced-order models of
elastic bodies with high aspect ratio are built using asymptotic methods [Ciarlet 1990; Dauge and Gruais
1996; Dauge and Gruais 1998].

Since the thin-plate theory (Kirchhoff theory) has been developed [Kirchhoff 1850; Poisson 1829]
based on fundamental contributions by Siméon-Denis Poisson (1811) and Gustav Robert Kirchhoff
(1850) (see also [Timoshenko 1983; Todhunter and Pearson 1960] for historical treatises) a large variety

Keywords: Kirchhoff thin-plate theory, structural reduction, Kirchhoff equivalent force, distributed couples, corner forces.
1We distinguish between a plate, which is a flat structure that has thickness much smaller than the other dimensions, and

a plate model or theory, which is the collection of assumptions that is used to dimensionally reduce the three-dimensional
formulation and approximate its solution.
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of models were built starting from simple plates theories [Reissner 1969; Sayir and Mitropoulos 1980]
and up to nonlinear [Antman 1995; Ciarlet 1997; Libai and Simmonds 1998; Rubin 2000] and composite
[Bisegna and Sacco 1997; Calcote 1969; Vasil’ev and Lur’e 1992] plates and shells. Extensive research
was performed also in connection with numerical methods [Actis et al. 1999; Engel et al. 2002; Hughes
and Hinton 1986; O’Leary and Harari 1985; Vogelius and Babuška 1981]. See also the reviews [Podio-
Guidugli 2000; Sayir and Mitropoulos 1980].

In the construction of different structural theories, the procedures of reduction of elastic continua by
the appropriate structural models are conventionally based on the body geometry determining the order
of the small parameter used in the reduction. However, while such procedures are well-established for
the differential operators governing problems of solid mechanics in general and plate-like problems in
particular, the reduction of the data of the problem — body forces and boundary conditions — is often
performed in an ad hoc manner. The form of the loading for problems that are governed by reduced
structural theories is quite different from that of the original three-dimensional formulation. As a result,
the ad hoc approach based on engineering intuition can be inadequate for the analysis of bodies subject
to complex three-dimensional loading, and more rigorous procedures are required.

As an example of problems where complex three-dimensional loading is abundant one can mention
coupled problems distinguished by the distribution of loading arising as a result of interaction. In the
intrinsically multiphysics problems arising in micro and nanoelectromechanical systems (MEMS and
NEMS) based applications the interaction forces are obtained in terms of electric or magnetic fields. The
distribution of electrostatic or magnetic forces could produce very complex three-dimensional patterns
which may include, for example, distributed couples (see [Liu and Chang 2005; Moon and Holmes
1979] and references therein). High aspect ratios of microstructures incorporated in MEMS make the
use of structural descriptions attractive. However, due to intricate character of the three-dimensional
interface forces, ad hoc procedures for their reduction are no longer sufficient. Other applications where
the structural representation could be effective but ad hoc formulation of the reduced loading is not
sufficient include aeroelastic and hydroelastic applications where the loading conditions are formulated
in terms of interface velocities or contact pressures [Morand and Ohayon 1995]. High aspect ratios of
aero/hydroelastic structures make the use of computationally efficient models based on the structural
descriptions attractive, especially when incorporated in optimization or control procedures. For example,
entire airplane wings or helicopter blades are routinely modeled as one-dimensional (beams) and two-
dimensional structural elements (plates) of variable cross-section. On the other hand, the high gradients
and intricacy of interface forces arising in these applications may require three-dimensional representa-
tion of the data. One can also mention problems involving complex spatially distributed surface forces
originating in contact. This kind of force arises, for example, during forming processes of thin (i.e., high
aspect ratio) metal sheet. In these processes surface tractions distributed in the direction tangent to the
surface originate mainly from friction between the surfaces of the forming tool and the metal sheet.

The implementation of rigorous reduction procedures which use a variational framework and allow
systematic reduction of the three-dimensional loading data to their structural counterparts for beam-like
solids was analyzed in [Krylov et al. 2006]. In this work, we extend the implementation of these reduction
procedures to the thin (Kirchhoff-Love) plate model. Despite its limitations, Kirchhoff-Love theory of
thin-plate bending is one of the most widely used by engineers, mainly due to its simplicity. Nowadays,
descriptions of thin bending theory can be found in most textbooks on structural mechanics (e.g., see
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[Nádai 1925; Sokolnikoff 1983; Timoshenko and Goodier 1951; Timoshenko and Woinowsky-Krieger
1959; Ugural 1981]).

In the present work special attention is paid to the rigorous reduction, by means of a variational pro-
cedure, of the original problem data to the form required by the structural representation. The structural
counterparts of the loads are expressed in terms of the data of the original three-dimensional problem.
Note that in most cases, in considering bending of plates in the framework of the classical thin-plate
theory only transverse loads, namely, loads acting in the direction perpendicular to the plate’s plane in a
three-dimensional domain, are accounted for. We show that consistent consideration of three-dimensional
applied in-plane body forces and surface tractions in the classical thin-plate formulation engenders dis-
tributed couples, modifying the Kirchhoff equivalent shear force and the transverse distributed force
[DiCarlo et al. 2001; Niordson 1985]. In addition, we present a consistent treatment of essential (kine-
matic) boundary conditions. Structural counterparts of the essential boundary conditions considered
here as through-the-thickness averages [Cowper 1966; Prescott 1942] are obtained in terms of three-
dimensional displacements (which generally speaking would not conform the structural assumptions)
prescribed on an appropriate part of the surface. It should be noted that certain aspects of thin-plate
theory, for example, corner forces arising at the points of discontinuity of the plate’s outer boundary, are
treated differently in the literature by various sources. Using the systematic variational approach, we
confirm that corner forces are actually a part of the natural boundary conditions.

The goal of the work is twofold. First, the results of the work provide better insight into the contribution
of different components of data into the structural model. In addition, the structural form of the weak
formulation derived systematically from the original three-dimensional elasticity expressions along with
essential boundary conditions expressed in terms of the original three-dimensional data are useful as a
basis for numerical procedures.

In Section 2 the differential equations and the natural boundary conditions for plate-like bodies are
derived from the variational principle. We begin with the formulation of the three-dimensional elastic
problem, substitute the kinematic and constitutive assumptions into the variational equation and derive
the classical Kirchhoff-Love thin-plate equations and boundary conditions. The validation of the models
is performed in Section 3 by comparison to analytical solutions of torsionless axisymmetric elasticity
problems. The estimation of the structural efficiency from the computational point of view is performed
in Section 4, by comparison to a three-dimensional elasticity problem solved by the finite element method.

2. Structural reduction of elastostatics by the thin-plate model

The dimensional reduction of the elasticity operator in thin flat bodies by various plate models, as outlined
above, is a well-established procedure. The reduced structural models are expressed in terms of unknown
deflections. When these deflections are found, recovery procedures are available to approximate the three-
dimensional displacement field.

The goal of the present work is to derive a systematic conversion of general three-dimensional loads
to their structural counterparts, in forms that are readily incorporated into computational tools.

2A. Assumptions of Kirchhoff plate theory. The domain is a three-dimensional thin flat body (Figure 1)
defined by

�= {(x1, x2, x3) ∈ R3
| (x1, x2) ∈ A, −t/2< x3 < t/2}. (2-1)
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Figure 1. Geometry of a thin flat body.

Here t is the plate thickness, which may vary with x1 and x2, and A ⊂ R2 is the midplane of the plate.
The kinematic assumptions of the classical Kirchhoff plate theory approximate the displacements ui

by structural counterparts

us
α(x1, x2, x3)= wα(x1, x2)− x3w3,α(x1, x2), (2-2)

us
3(x1, x2, x3)= w3(x1, x2). (2-3)

The structural displacements are defined in terms of in-plane (stretching) wα and transverse (bending) w3

deflections. In the following, the deflections are considered as through-the-thickness averages (although
commonly associated with the midplane). Throughout, Latin indices i, j, k, l take on values 1, 2, 3, Greek
indices α, β, γ, δ take on values 1, 2. The summation convention over repeated indices is applied. In
addition, ( · ),α = ∂( · )/∂xα is used for the partial derivative. From expressions (2-2) and (2-3) the
approximate three-dimensional displacements us

i can be recovered after determining wi .
Strains in the x3-direction are not computed from the displacements but via the constitutive assumption

of plane stress

σ s
33 = 0. (2-4)

In the homogeneous isotropic case, considered here for simplicity, the strains are

εs
αβ = us

(α,β) = w(α,β)− x3w3,αβ, εs
α3 = us

(α,3) = 0, εs
33 =

−ν

1− ν
εs
αα. (2-5)

Here, w(α,β) are the in-plane strains and w3,αβ are the curvatures. Parentheses in the subscripts denote
the symmetric part of a tensor: t(αβ) = 1

2(tαβ + tβα). The resulting two-dimensional constitutive relations
are

σ s
αβ =

E
1+ν

(
ν

1−ν
δαβε

s
γ γ + ε

s
αβ

)
. (2-6)

Here, E and ν are Young’s modulus and Poisson’s ratio respectively. Following convention in Kirchhoff
plate theory, σ s

α3 are evaluated from equilibrium rather than from the constitutive relations.
The structural reduction is performed in a variational framework, following the description in [Hughes

2000]. Special attention is paid to the reduction of distributed boundary data and body forces to their
structural equivalents.

2B. Virtual work. Consider the standard linear elastostatics boundary-value problem in the bounded
domain �⊂ R3, with boundary 0. The boundary of the domain consists of the top and bottom surfaces
(x3=±t/2) and the lateral boundary, assumed to be a cylindrical surface. The boundary 0 has subregions
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0g and 0h such that 0 = 0g ∪ 0h and 0g ∩ 0h = ∅. The data (loads) are prescribed displacements
gi :0g→R (essential boundary conditions), tractions hi :0h→R (natural boundary conditions) and body
forces fi :�→R. In general, the boundary may admit different decompositions for different components.
The procedure is formulated in terms of 0g and 0h for simplicity of presentation. Extensions to more
general cases are straightforward and considered subsequently.

The plate equations, including expressions for structural loads expressed in terms of the original three-
dimensional data, are obtained from the standard variational formulation for the elasticity theory. This
is the principle of virtual work: find ui that satisfies ui = gi on 0g such that∫

�

ū(i, j)σi j d�=
∫
�

ūi fi d�+
∫
0h

ūi hi d0. (2-7)

Here, ūi is the weighting function, or variation, satisfying the homogenous counterpart of the essential
boundary conditions ūi = 0 on 0g. The stress σi j is defined in terms of the displacement ui via strain in
the usual way.

To fix ideas, consider applied displacements and tractions on corresponding parts of the lateral bound-
ary, whereas only tractions are specified on the top and bottom surfaces (x3 =±t/2). (This configuration
is common in practice.) The lateral boundary has a unit outward normal vector n = nαeα and a unit
tangent vector s = sαeα , such that n× s = e3 (Figure 1). Here, the ei are the Euclidean basis unit vectors.
On part of the lateral boundary (0g) we consider essential boundary conditions specified by the transverse
displacement g3 and the normal and tangential in-plane displacements gn = gαnα and gs = gαsα. On
the remaining part of the lateral boundary we consider natural boundary conditions specified by the
transverse traction h3 and the normal and tangential in-plane tractions hn = hαnα and hs = hαsα.

The boundary of the midplane A, denoted S, is subdivided into two non-overlapping regions Sg (such
that Sg × [−t/2, t/2] = 0g) and Sh = S \ Sg. If S is not smooth, the corners, where the normal vector
n suffers a discontinuity, are denoted ∂S = {xc}

ncorn
c=1 , where xc ∈ S is a corner location and ncorn is the

number of corners.
The boundary 0h is partitioned in such a way that∫

0h

. . . d0 =
∫

A
〈. . .〉 d A+

∫
Sh

∫ t/2

−t/2
. . . dx3 d S. (2-8)

Here, d S is the arc length along S, and the 〈. . . 〉 operator is defined by

〈 f (x1, x2, x3)〉 = f (x1, x2,−t/2)+ f (x1, x2, t/2).

Replacing the displacements ui and stresses σi j in (2-7) by their structural counterparts us
i and σ s

αβ

(since σ s
33 = 0 by the constitutive assumption (2-4) and us

(α,3) = 0 by the kinematic assumptions (2-2)
and (2-3)) yields∫
�

ūs
(α,β)σ

s
αβ d�=

∫
�

(ūs
α fα + ūs

3 f3) d�+
∫

A
(〈ūs

αhα〉+ 〈ūs
3h3〉) d A

+

∫
Sh

∫ t/2

−t/2
(ūs

nhn + ūs
shs + ūs

3h3) dx3d S. (2-9)
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Here, ūs
i are variations of the structural displacements. The explicit dependence of the structural quanti-

ties on x3 (from the kinematic assumptions) simplifies the domain integration∫
�

. . . d�=
∫

A

∫ t/2

−t/2
. . . dx3 d A. (2-10)

This leads to the principle of virtual work for the thin plate. Data for the plate essential boundary
conditions, prescribed boundary deflections Wi and rotation 2 defined in Table 1, are obtained by the
procedure outlined in Section 2C. The statement of thin-plate virtual work is: find wi that satisfies
wi =Wi and w3,n =2 on Sg such that∫

A
(wα,βnαβ −w3,αβmαβ) d A =

∫
A
(wαFα −w3,αCα +w3 F3) d A

+

∫
Sh

(wn Nn +ws Ns −w3,n Mn −w3,s Ms +w3 Q) d S. (2-11)

Here, wi is the weighting function, or variation, satisfying the homogenous counterpart of the thin-plate
essential boundary conditions wi = 0 and w3,n = 0 on Sg.

The applied structural loads, distributed forces and couples Fi and Cα, along with boundary forces
and moments Nn , Ns , Q, Mn and Ms , defined in terms of the underlying three-dimensional data in
Table 1, result from integration through the thickness. The thin-plate constitutive relations are obtained
by substituting the relations (2-5) and (2-6) into the definitions for the in-plane force tensor nαβ and the
bending moment tensor mαβ (Table 1). For constant plate thickness we have

nαβ =
Et

1+ν

(
ν

1−ν
δαβwγ,γ +w(α,β)

)
, (2-12)

mαβ =−D
[
νδαβw3,γ γ + (1− ν)w3,αβ

]
. (2-13)

Here, D = Et3

12(1−ν2)
is the isotropic bending stiffness.

Remarks. (1) The principle of virtual work for thin plates, (2-11), incorporates applied distributed
couples Cα , engendered by in-plane components of three-dimensional loads. This is rarely done in
the context of a Kirchhoff plate model. There are three-dimensional load configurations for which
distributed couples constitute a significant portion of the resultant structural load. In such cases,
omitting these terms in the structural model will disregard a substantial part of the response.

(2) The virtual work equation (2-11) represents two uncoupled two-dimensional problems, an in-plane
problem weighted by wα and a plate bending problem weighted by w3.

(3) Assuming sufficient regularity of the prescribed boundary twisting moment Ms along smooth parts
of Sh , the term representing the external work it exerts within the virtual work equation (2-11) may
be integrated by parts, yielding for the bending terms∫

Sh

(−w3,n Mn −w3,s Ms +w3 Q) d S=
∫

Sh

(
−w3,n Mn +w3(Ms,s + Q)

)
d S−(w3[[Ms]])|∂S∩Sh . (2-14)

Here, [[Ms]] = limε→0 Ms(xc + εs)− Ms(xc − εs) represents a corner force. On the right-hand
side of (2-14) are the conventional terms that appear regularly as part of the thin-plate virtual work
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Quantity Description

nαβ =
∫ t/2
−t/2 σ

s
αβdx3 in-plane force tensor

mαβ =
∫ t/2
−t/2 σ

s
αβx3 dx3 bending moment tensor

Fα =
∫ t/2
−t/2 fα dx3+〈hα〉 applied in-plane force

F̂3 = F3+Cα,α effective applied transverse force

F3 =
∫ t/2
−t/2 f3 dx3+〈h3〉 applied transverse force

Cα =
∫ t/2
−t/2 fαx3 dx3+〈hαx3〉 applied couple

Wn =
1
t

∫ t/2
−t/2 gn dx3 prescribed normal boundary deflection

Ws =
1
t

∫ t/2
−t/2 gs dx3 prescribed tangential boundary deflection

W3 =
1
t

∫ t/2
−t/2 g3 dx3 prescribed transverse boundary deflection

2=− 12
t3

∫ t/2
−t/2 gnx3 dx3 prescribed tangential boundary rotation

Nn =
∫ t/2
−t/2 hn dx3 prescribed normal boundary in-plane force

Ns =
∫ t/2
−t/2 hs dx3 prescribed tangential boundary in-plane force

Mn =
∫ t/2
−t/2 hnx3 dx3 prescribed boundary bending moment

Q̂ = Q+Ms,s −C−n effective prescribed boundary shear force

Q =
∫ t/2
−t/2 h3 dx3 prescribed boundary shear force

Ms =
∫ t/2
−t/2 hs x3 dx3 prescribed boundary twisting moment

C−n (x)= limξ→x Cn(ξ), x ∈ Sh the edge trace of applied couple

R = [[Ms]] prescribed boundary shear force at corner xc

Table 1. Structural nomenclature. We have set [[Ms]] = Ms(x+c ) − Ms(x−c ), where
Ms(x±c )= limε→0 Ms(xc±εs); fn = fαnα , fs = fαsα; and xc ∈ S, for c= 1, 2, . . . , ncorn,
is a corner location.

equation in the literature [Bauchau and Craig 2009; Šolín 2006], though both forms are mentioned in
[Zienkiewicz and Taylor 2000]. The right-hand side indicates the source of the Kirchhoff equivalent
(modified shear) force and the corner forces. Indeed, this form appears in the Euler–Lagrange equa-
tions (2-15) below and is essential for the strong form of the boundary-value problem. However, the
two forms are equivalent statements of virtual work, subject to the higher regularity requirement on
the prescribed boundary twisting moment. We prefer the formulation (2-11) as it is simpler and less
constrained, compatible with the variational statement of higher-order plate theories, and obviates
the use of the Kirchhoff equivalent force and corner forces (thereby allowing lower regularity of
the data and facilitating implementation) in methods based on virtual work such as finite element
analysis.
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(4) All of the loading terms on the right-hand side of the virtual work equation (2-11) may be incorpo-
rated by users into commercial finite element computations without re-programming of the software
by using the usual definitions of consistent nodal loads.

Integration by parts yields the Euler–Lagrange equations for the thin plate:

0=
∫

A
wα(−nαβ,β−Fα)d A+

∫
A
w3(−mαβ,αβ−F3−Cα,α)d A+

∫
Sh

wn(nnn−Nn)d S+
∫

Sh

ws(nns−Ns)d S

+

∫
Sh

w3(mαβ,βnα + (mns),s +C−n − Q−Ms,s)d S+ (w3[[−mns +Ms]])|∂S∩Sh

+

∫
Sh

w3,n(−mnn +Mn)d S. (2-15)

Here, ( · )nn = ( · )αβnαnβ and ( · )ns = ( · )αβnαsβ denote the normal and tangential components of the
stress resultants. Similarly, ( · ),n = ( · ),αnα and ( · ),s = ( · ),αsα are used for normal and tangential
derivatives, respectively.

The three-dimensional boundary value problem of linear elasticity is reduced to a set of two uncoupled
two-dimensional boundary-value problems: an in-plane problem and a plate bending problem. Thin plate
equilibrium equations are obtained from the area integrals of (2-15) and the thin-plate natural boundary
conditions are obtained from the line integrals of (2-15), along with the discrete corner conditions.

2C. Essential boundary conditions. Structural essential boundary conditions are imposed on the quan-
tities associated with a variation in the boundary integrals of (2-15). The data are specified by a through-
the-thickness averaging procedure [Cowper 1966; Prescott 1942] suggested by the definition of the force
resultants. The kinematic assumptions (2-2) and (2-3) yield

wi (x1, x2)=
1
t

∫ t/2

−t/2
us

i (x1, x2, x3) dx3, (2-16)

w3,n(x1, x2)=−
12
t3

∫ t/2

−t/2
us

n(x1, x2, x3)x3 dx3. (2-17)

Averaging the prescribed three-dimensional displacements on 0g yields the thin-plate essential boundary
conditions

wi =Wi , w3,n =2 on Sg, (2-18)

in terms of the prescribed boundary deflections Wi and rotation 2 (Table 1).

Remark. The common view of deflections as displacements of the midplane

wi (x1, x2)= us
i (x1, x2, 0) (2-19)

may also be used to specify the plate essential boundary conditions (except for the boundary rotation). If
the prescribed displacements gi conform to the kinematic assumptions, the two approaches are equivalent
for the boundary deflections. In general, we prefer to interpret deflections as displacements averaged
through the thickness.
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2D. Strong form of Kirchhoff plate problems. As noted, the three-dimensional linear elasticity bound-
ary value problem is reduced to two uncoupled two-dimensional problems:

(1) An in-plane problem for wα(x1, x2);

(2) A plate bending problem for w3(x1, x2).

The differential equations and natural boundary conditions are Euler–Lagrange equations emanating from
(2-15). Essential boundary conditions are obtained by the through-the-thickness averaging procedure.

The features of the in-plane problem are conventional, and included here for completeness. The in-
plane boundary-value problem is

−nαβ,β = Fα in A,

wn =Wn, ws =Ws on Sg,

nnn = Nn, nns = Ns on Sh .

(2-20)

The structural data are expressed in terms of the original three-dimensional data (Table 1). Boundary
conditions are designated in terms that refer to the homogeneous case. For example, a “fixed” boundary
condition means that all kinematic quantities are specified (but not necessarily zero). In these terms,
(2-20) represents a body fixed on one portion of the boundary and free on the rest. Other possible
combinations of normal and tangential boundary conditions are shown in Table 2.

Our formulation of the plate bending problem contains several noteworthy features. The plate bending
boundary-value problem is

−mαβ,αβ = F̂3 in A,

w3 =W3 w3,n =2 on Sg,

mnn = Mn, mαβ,βnα + (mns),s = Q̂ on Sh,

[[mns]] = R on ∂S ∩ Sh .

(2-21)

For constant plate thickness, the equilibrium equation reduces to the well-known equilibrium equation
of Kirchhoff-Love plate theory in terms of the transverse deflection

D∇4w3 = F̂3 in A. (2-22)

Again, the structural data are expressed in terms of the original three-dimensional data (Table 1). The

fixed (or clamped) wn =Wn ws =Ws

free nnn = Nn nns = Ns

symmetric wn =Wn nns = Ns

skew symmetric ws =Ws nnn = Nn

Table 2. In-plane problem: common boundary conditions. The designations refer to
homogeneous boundary conditions.
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distributed loading on the plate is an effective transverse force

F̂3 = F3+Cα,α. (2-23)

The standard term is modified by the in-plane divergence of applied couples Cα , engendered by in-plane
components of three-dimensional body forces and tangential tractions on the top and bottom surfaces.

Similarly, the shear load is an effective boundary shear force

Q̂ = Q+Ms,s −C−n . (2-24)

The celebrated Kirchhoff equivalent force Q+Ms,s [Kirchhoff 1850] is modified by the edge trace of
applied couples. It would be difficult to derive these terms intuitively. Such terms are rarely accounted for
in the literature [Niordson 1985], and presented in an ad hoc basis [Madureira 2004; Sutyrin and Hodges
1996]. Their origins from in-plane components of three-dimensional loads have not been reported in
the literature, to our knowledge. When the boundary is not smooth, shear boundary conditions include
discrete corner forces R defined in terms of the prescribed boundary twisting moment, emanating from
tangential tractions applied on the lateral boundary (Table 1).

Remarks. (1) The treatment of corner forces in the literature is not uniform. In many instances they
are defined as boundary conditions accompanying shear boundary conditions at discrete points, part
of the problem statement, as described in (2-21) [Bauchau and Craig 2009; Wells and Nguyen
2007; Grossi and Lebedev 2001; Nayfeh and Pai 2004; Reismann 1988; Tsiatas 2009]. However,
corner forces also appear only as reaction forces that are part of the solution [Szilard 2004]. In
some descriptions there is no mention of corner forces whatsoever. As outlined above, consistent
variational derivation of the plate problem formulation gives rise to the corner forces in the Euler–
Lagrange equations, and therefore they should appear explicitly as natural boundary conditions in
the problem statement.

(2) Both corner forces and the Kirchhoff equivalent force can be derived from a constrained continuum
of grade two material [Forte and Vianello 1988].

In terms that refer to homogeneous boundary conditions, (2-21) represents a body fixed on one portion
of the boundary and free on the rest. In general, there should be two boundary conditions at each point:
either transverse deflection or shear force, and either tangential rotation or bending moment (Table 3).

Possible combinations of three-dimensional data specified at a lateral boundary point with the corre-
sponding type of structural boundary conditions are listed in Table 4. Due to the presence of the Kirchhoff

fixed (or clamped) w3 =W3 w3,n =2

free mnn = Mn (mnα),α + (mns),s = Q̂ [[mns]] = R

simply supported w3 =W3 mnn = Mn

symmetric w3,n =2 (mnα),α + (mns),s = Q̂ [[mns]] = R

Table 3. Plate bending problem: common boundary conditions. The designations refer
to homogeneous boundary conditions (“simply supported” = “skew symmetric”).
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Three-dimensional In-plane Bending

gn gs g3 Fixed Fixed
gn gs h3 Fixed —
gn hs g3 Symmetric Fixed
hn gs g3 Skew symmetric Simply supported
gn hs h3 Symmetric Symmetric
hn gs h3 Skew symmetric —
hn hs g3 Free Simply supported
hn hs h3 Free Free

Table 4. Possible combinations of data on the lateral boundary. The designations refer
to homogeneous boundary conditions.

equivalent force in thin-plate bending, tangential tractions hs must always accompany transverse trac-
tions h3 on the lateral boundary. The thin-plate flexure does not distinguish between the specification
of tangential displacements gs and tractions hs along with transverse displacements g3 on the lateral
boundary (for fixed and simply supported boundary conditions).

3. Analytical model validation

The use of structural theories for analysis of bodies subject to intricate loading brings up questions about
the validity of reduced models. The validity of different plate theories is usually justified by geometric
considerations in terms of relative thickness. Nevertheless the validity of a plate model is affected also by
the loading conditions. In this context, we reiterate the importance of the rigorous reduction procedure
of the loads on one hand and the importance of the model validity examination on the other hand.

In the following sections we demonstrate the implementation of the structural reduction procedure
using examples of torsionless axisymmetric elasticity problems with analytical solutions. In order to
focus on the more interesting bending problem, we consider such loading for the elastic body that results
in structural, thin-plate, load resultants for which the in-plane problem has a trivial solution. Validation of
reduced structural solutions is performed through comparison with the solutions of the elasticity problem.
Before proceeding with the comparisons, we discuss different approaches to error evaluation.

3A. Error of the model. The natural error norm for elasticity is the energy norm

‖u‖2E =
∫
�

σi j (u)εi j (u) d�. (3-1)

The thin-plate energy norm is

‖w‖2S =

∫
A
(nαβwα,β −mαβw3,αβ) d A, (3-2)

where wi is the structural deflection.
The elasticity norm (3-1) is inappropriate for measuring the errors of the plate model considered, due

to the constitutive assumption, (2-4). A tight bound on the error in stress for Kirchhoff theory is available
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[Simmonds 1971]. However, for the purpose of validating the reduction procedure proposed for the loads,
we use a simpler error measure, namely, the relative error in the energy(

‖u‖2E −‖w‖
2
S

)1/2

‖u‖E
. (3-3)

In the case of isotropic torsionless axisymmetric elasticity, the elastic strain energy norm (3-1) is
expressed in terms of the radial and transverse displacements (ur and uz , respectively) as follows:

‖u‖2E = π
∫ t/2

−t/2

∫ a

0

E
(1+ν)

{
2ν

(1−2ν)

(
ur, r +

ur
r
+ uz, z

)2

+ 2
[
(ur, r )

2
+

(ur
r

)2
+ (uz, z)

2
]
+ (ur ,z + uz ,r )

2
}

r dr dz. (3-4)

The energy norm for the circular thin-plate ‖w‖S is the sum of a membrane part associated with the
in-plane forces and of a bending part associated with the transverse forces

‖w‖2S = 2π
∫ a

0

Et
1−ν2

[
(wr,r )

2
+

(
wr
r

)2
+ 2νwr,rwr

r

]
r dr︸ ︷︷ ︸

in-plane

+ 2π
∫ a

0
D
[(
wz,rr +

1
r
wz,r

)2
− 2(1− ν)wz,rwz,rr

r

]
r dr︸ ︷︷ ︸

transverse

.

(3-5)

3B. Simply supported circular thin plate under uniform normal load.

3B.1. Elasticity solution. Consider a solid of revolution which is free of body forces and is loaded
axisymmetrically by uniform normal tractions hz = q applied at the surface z = −t/2, 0 < r < a as
shown in Figure 2a. The essential and natural boundary conditions corresponding to simple support on
the lateral boundary r = a, −t/2< z < t/2 are as follows:

gz =−
qt

160E

{
80(1+ 2ν+ ν2)

z4

t4 +

[
120ν(1− ν)

a2

t2 − 24(5+ 2ν+ ν2)
] z2

t2

+ 80
z
t
− 10ν(1− ν)

a2

t2 + 9+ 2ν+ ν2
}
, (3-6)

hn =−q (2+ ν)
z
t

(
3
20
−

z2

t2

)
.

In addition, axial symmetry conditions are enforced at the center r = 0, −t/2< z < t/2:

gn = 0, hz = 0. (3-7)

Note that in all examples considered hereafter the prescribed body force and boundary loads are consistent
with the desired analytical solution obtained by the semi-inverse method.
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Figure 2. (a) Torsionless axisymmetric thin flat elastic solid under uniform normal trac-
tions. (b) Simply supported circular thin plate under effective uniform transverse force.

The analytical solution, in terms of stress, of the torsionless axisymmetric elasticity problem obtained
using Love’s stress function is

σrr = q
z
t

[
3 (3+ ν)

4
a2

t2

(
1−

r2

a2

)
+ (2+ ν)

(
z2

t2 −
3
20

)]
,

σθθ = q
z
t

{
3 (3+ ν)

4
a2

t2

[
1−

(1+ ν) r2

(3+ ν) a2

]
+ (2+ ν)

(
z2

t2 −
3
20

)}
,

σzz =
q
2

(
−4

z3

t3 + 3
z
t
− 1

)
, σr z =

3q
4

r
t

(
4

z2

t2 − 1
)
.

(3-8)

3B.2. Thin-plate solution. Using the definitions in Table 1 (with x3 replaced by z) we obtain the axisym-
metric thin-plate load resultants and boundary conditions (thin-plate data) derived from the boundary
loads and displacements of the original three-dimensional problem:

F̂z = Fz = q (0< r < a),

Wz = 0, Mn = 0 (r = a),

2= 0, Q̂ = 0 (r = 0).

(3-9)

Equation (3-9) suggests that the problem corresponds to a thin plate which is simple supported at r = a
as shown in Figure 2b. The normal tractions h3 on the surface z =−t/2, 0< r < a of the elastic body
contribute to the effective applied transverse force F̂z .

The in-plane reduced problem has a trivial solution. Solving the transverse reduced problem with the
data (3-9), we obtain the transverse deflection of the plate

wz =
3qa4

(
1− ν2

)
16Et3

(
1−

r2

a2

)(
5+ ν
1+ ν

−
r2

a2

)
. (3-10)

The approximate displacement field us is obtained from w using the kinematic assumptions (2-2) and
(2-3). Full displacement fields are given in the Appendix. The components of the corresponding thin-
plate stress field are as follows — compare (3-8):

σ s
rr = q

z
t

3 (3+ ν)
4

a2

t2

(
1−

r2

a2

)
and σ s

θθ = q
z
t

3 (3+ ν)
4

a2

t2

[
1−

(1+ ν)
(3+ ν)

r2

a2

]
. (3-11)
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Figure 3. Simply supported circular plate (t/a = 0.5, ν = 0.3) under uniform normal
load: transverse displacements, z = 0.

3B.3. Error evaluation.

Relative error of displacement. Figure 3 represents the normalized midplane transverse displacements
uz/uz(0, 0) (solid line) and us

z/uz(0, 0) (dashed line) for t/a = 0.5 and Poisson’s ratio ν = 0.3. Even for
this relatively large thickness the error in the structural displacement is relatively small. Recalling that
0≤ z ≤ t , (z/a)≤ (t/a) and 0≤ r ≤ a one observes that the relative error of the transverse displacement
for the circular thin plate in this case tends to zero as t/a→ 0 (see also (3-8) and (3-11) for stresses σrr

and σθθ where the first term in the parentheses is dominant for a/t � 1).

Relative error in energy. The Taylor series expansion of relative error in the energy with respect to the
relative thickness t/a up to order five yields(
‖u‖2E −‖w‖

2
S

)1/2

‖u‖E

=
2
5

√
30

(7+ν)
t
a
+

1652+ 2596ν+ 15ν2
− 6ν3

− ν4

2100 (1− ν) (7+ ν)

√
30

(7+ν)
t3

a3 +O

(
t5

a5

)
. (3-12)

One observes that the expression of the relative error in the energy for the simply supported circular thin
plate under uniform normal load, (3-12), tends to zero as the ratio of the thickness to the radius of the
plate tends to zero (Figure 4).

3C. Simply supported circular thin plate under linearly varying tangential load. We now consider a
different elasticity problem that reduces to the same thin-plate problem as in Section 3B.

3C.1. Elasticity solution. A solid of revolution is loaded now by linearly varying tangential tractions
hr =±

q
2t

r (where q is a constant) applied at the surfaces z =±t/2, 0< r < a, as shown in Figure 5a.
The essential and natural boundary conditions corresponding to simple support on the lateral boundary
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Figure 4. Simply supported circular plate under uniform normal load: relative error in
the energy.

(r = a, −t/2< z < t/2) are

gz =−
qt

160E

{
80(1+ 2ν+ ν2)

z4

t4 +

[
120ν(1− ν)

a2

t2 − 8(5+ 6ν+ 3ν2)
] z2

t2

− 10ν(1− ν)a
2

t2 +
7
3
+ 2ν+ ν2

}
, (3-13)

hn =−q (2+ ν)
z
t

(
3
20
−

z2

t2

)
,

while the axial symmetry conditions are satisfied at r = 0, −t/2< z < t/2:

gn = 0, hz = 0. (3-14)

Note that while here hn is identical to that given in (3-6), gz is different.
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Figure 5. (a) Torsionless axisymmetric thin flat elastic solid under linearly varying
tangential tractions. (b) Simply supported circular thin plate under effective uniform
transverse force.
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The solution of the elasticity problem is as follows:

σrr = q
z
t

[
3 (3+ ν)

4
a2

t2

(
1−

r2

a2

)
+ (2+ ν)

(
z2

t2 −
3

20

)]
,

σθθ = q
z
t

{
3 (3+ ν)

4
a2

t2

[
1−

(1+ ν)
(3+ ν)

r2

a2

]
+ (2+ ν)

(
z2

t2 −
3
20

)}
,

σzz =
q
2

(
−4

z3

t3 +
z
t

)
, σr z =

3q
4

r
t

(
4

z2

t2 −
1
3

)
. (3-15)

3C.2. Thin-plate solution. The thin-plate data are

F̂z =
1
r
∂

∂r
(r Cr )= q (0< r < a),

Wz = 0, Mn = 0 (r = a),

2= 0, Q̂ = 0 (r = 0).

(3-16)

The definitions of Fz , Wz , 2, Mn and Q̂ are given in Table 1 (with x3 replaced by z). Equation (3-16)
suggests that the problem corresponds to a thin plate simply supported at r = a, as shown in Figure 5b.
Only the applied couple Cr that originates in the tractions hr on the top and bottom surfaces of the elastic
body contribute to the effective applied transverse force F̂z .

One observes that the linearly varying tangential tractions are reduced to the same load resultants
as for the circular thin plate under uniform normal load derived in Section 3B.2. Thus the transverse
deflection of the simply supported circular thin plate is identical to that given by (3-10). The thin-plate
stress field is given in (3-11).

3C.3. Error evaluation.

Relative error of displacement. Figure 6 represents the normalized midplane transverse displacements
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Figure 6. Simply supported circular plate (t/a = 0.5, ν = 0.3) under linearly varying
tangential load: transverse displacements at z = 0.
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Figure 7. Simply supported circular plate under linearly varying tangential load: rela-
tive error in the energy.

uz/uz(0, 0) (solid line) and us
z/uz(0, 0) (dashed line) for t/a = 0.5 and Poisson’s ratio ν = 0.3. Full

displacement fields are given in the Appendix. Once again one observes that the relative error of the
transverse displacement for the circular thin plate in this case tends to zero as t/a→ 0 (see also (3-15)
and (3-11) for stresses).

Relative error in energy. The Taylor series expansion of relative error in the energy with respect to the
relative thickness t/a up to order five yields(
‖u‖2E −‖w‖

2
S

)1/2

‖u‖E

=
2
5

√
5

(7+ν)
t
a
+

56+ 368ν+ 45ν2
− 18ν3

− 3ν4

1050 (1− ν) (7+ ν)

√
5

(7+ν)
t3

a3 +O

(
t5

a5

)
. (3-17)

We can see that the expression of the relative error in the energy for the simply supported circular thin
plate under linearly varying tangential load, (3-17), tends to zero as the ratio of the thickness to the
radius of the plate tends to zero (Figure 7). Although the structural reduced problem is identical to the
one considered in Section 3B.2, both the relative error in displacements and the relative error in energy
are consistently smaller in the case of a plate loaded by a linearly varying tangential tractions (Figures 6
and 7). The reason is the difference in the data of the underlying three-dimensional elasticity problems.

3D. Central point supported circular thin plate under linearly varying tangential load. We now con-
sider an elasticity problem with the same linearly varying tangential tractions on the top and bottom
surfaces of the plate as in Section 3C but different boundary conditions at the center and on the lateral
boundary, giving rise to an effective boundary shear force of the thin-plate problem.

3D.1. Elasticity solution. The loading applied at the top and bottom surfaces is identical to that consid-
ered in Section 3C.1, as shown in Figure 8a. The natural boundary conditions on the lateral boundary
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(r = a, −t/2< z < t/2) are

hn =−q (2+ ν)
z
t

(
3

20
−

z2

t2

)
, hz =

qa
4t

(
12

z2

t2 − 1
)
. (3-18)

The essential boundary conditions at the center (r = 0, −t/2< z < t/2) are

gn = 0,

gz =
qt

160E

{
− 80(1+ 2ν+ ν2)

z4

t4 +

[
−120ν(3+ ν)

a2

t2 +
(
120+ 144ν+ 72ν2)] z2

t2

+ 10ν(3+ ν)a
2

t2 −
7
3
− 2ν− ν2

}
. (3-19)

The stress distribution for this elasticity problem is the same as that of the previous problem, (3-15).

3D.2. Thin-plate solution. Considering the thin-plate data

F̂z =
1
r
∂

∂r
(r Cr )= q (0< r < a),

Wz = 0, 2= 0 (r = 0),

Q̂ =−C−r =−
1
2qa, Mn = 0 (r = a),

(3-20)

one observes that the transverse load F̂z is identical to the one considered in Section 3C.2 whereas an
effective shear force Q̂ is applied now at the boundary r = a. Equation (3-20) suggests that the problem
corresponds to a thin plate which is free at r = a and fixed (central point supported) at r = 0, as shown in
Figure 8b. Only the applied couple Cr that originates in the tractions hr on the top and bottom surfaces of
the elastic body contributes to the effective applied transverse force F̂z and effective prescribed boundary
shear force Q̂ on the edge of the plate.

The transverse deflection of the central point supported circular thin plate is

wz =−
3qa4

(
1− ν2

)
16Et3

r2

a2

(
2

3+ ν
1+ ν

−
r2

a2

)
. (3-21)
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Figure 8. (a) Center-supported torsionless axisymmetric plate-like elastic solid under
linearly varying tangential tractions. (b) Central point supported circular thin plate under
effective uniform transverse and boundary shear forces.
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Figure 9. Central point supported circular plate (t/a = 0.5, ν = 0.3) under linearly
varying tangential load: transverse displacements at z = 0.

The approximate three-dimensional structural displacement field us is obtained from the kinematic as-
sumptions (2-2) and (2-3). Full displacement fields are given in the Appendix. Note that the thin-plate
stress field for the last load case is identical for both previous ones and is given in (3-11). The reason is
that the problem considered here is self-equilibrated and the resultant of the distributed transverse load
F̂ is equal to the resultant of the effective shear force Q̂ applied at the boundary r = a. As a result, the
reaction at the center r = 0 of the plate is zero (see Figure 5b) making the stress field of two problems
to be identical.

3D.3. Error evaluation.

Relative error of displacement. Figure 9 represents the normalized midplane transverse displacements
uz/uz(a, 0) (solid line) and us

z/uz(a, 0) (dashed line) for t/a = 0.5 and Poisson’s ratio ν = 0.3. In
accordance with Figure 9, the midplane displacement at the center of the plate-like solid (solid line) is
not zero whereas the thin plate deflection (the structural problem solution, dashed line) is zero at this
point. The reason is in the definition of the structural deflections as displacements averaged through the
thickness of the plate-like body rather than the displacements of the midplane (see remark on page 772).
The difference between the two solutions corresponds to the rigid body translation and rotation of the
plate and does not affect the stress field.

Relative error in energy. Since constants in the relative error in energy corresponding to an axial rigid-
body translation may be discarded, the relative error in energy of the central point supported plate is
identical to that of the simple supported plate considered in Section 3C.3.

4. Numerical efficiency

Finite element computations illustrate the implementation, as well as the accuracy and efficiency, of
the plate formulation proposed for general loading configurations. A comparison of the problem size
required to attain a certain level of accuracy by solid elements and thin-plate elements subject to the
resultant loads proposed demonstrates the efficiency of the structural model. The load configuration
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that is considered would pose a formidable challenge to many conventional approaches to plate loading.
Trilinear hexahedral elements with incompatible modes [Taylor et al. 1976] are used for the elasticity
solution. Bicubic Hermite Bogner–Fox–Schmit rectangular elements [Bogner et al. 1966; Zienkiewicz
and Taylor 2000] are used for the thin-plate problem. This element is restricted to rectangular shapes,
limiting the numerical tests to rectangular geometries. It bears emphasis that our structural procedures
are subject to no such restriction.

Consider an a×a plate of aspect ratio t/a = 0.025 centered at the origin, undergoing constant rotation
ω around the normal axis (Figure 10). The isotropic elastic material has a Poisson ratio ν = 0.3. The
density varies linearly through the thickness

ρ = ρ0

(
1+

x3

2t

)
. (4-1)

The three-dimensional loading due to the rotation is represented by an applied body force in the radial
direction of magnitude ρω2r . The transverse structural loading in this problem results solely from dis-
tributed couples that arise from the variation of the radial body force. In order to focus on the bending
response, we consider only the variable part of the distribution:

fα =
ρ0ω

2

2t
xαx3. (4-2)

The resultant structural loads are applied couples, computed from the definition in Table 1:

Cα =
ρ0ω

2t2

24
xα. (4-3)

Clearly, thin-plate formulations that don’t account for applied couples are incapable of representing this
type of load configuration.

By symmetry, only one quarter of the body is considered in the computation (see Figure 10). We
impose free boundary conditions on the outer edges x1 = a/2 and x2 = a/2, and symmetry boundary
conditions on the edges x1 = 0 and x2 = 0, and fix the axis of rotation. For the plate problem, consistent
nodal loads are computed from the applied couples Cα as indicated by the principle of virtual work (2-11).

.
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r! 
2

Figure 10. Rotating square plate with varying density: problem statement, the depicted
solid mesh is 2 × 2 × 1 (due to symmetry, only one quarter is discretized).
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Figure 11. Rotating square plate with varying density: Deformed shape and von Mises
stress distribution; 32 × 32 × 16 solid mesh.

Thus, no effective boundary shear force or corner forces are required. Accounting for applied couples is
essential for the thin-plate modeling of this problem. Figure 11 shows representative results for the 32
× 32 × 16 solid mesh.

Remark. The applied couples appear explicitly in the variational statement of this problem. In contrast,
the loading in the strong form would be expressed in terms of an effective distributed transverse force
and effective boundary shear force, both emanating from the applied couples, as well as homogeneous
corner force boundary conditions.

A comparison of the number of degrees of freedom in the numerical models of the continuum and
structural problems required to attain a certain level of accuracy provides an estimate of the computa-
tional efficiency of the structural representation. Let uh and wh be the three-dimensional and thin-plate
finite element solutions, respectively. The accuracy of both is measured relative to uref, a converged
three-dimensional finite element reference solution obtained on a highly refined mesh (64 × 64 × 32),
accounting for the combination of modeling and discretization errors in the thin-plate computations.
Since the elastic energy norm (3-1) is inappropriate for measuring errors of the plate models due to the
modification of the constitutive law, we use the relative errors in the energy(

‖uref
‖

2
E −‖u

h
‖

2
E

)1/2

‖uref‖E
,

(
‖uref
‖

2
E −‖w

h
‖

2
S

)1/2

‖uref‖E

Results of the comparison are presented in Table 5 and Figure 12. The coarsest plate mesh, 2× 2 with
24 degrees of freedom, attains a level of accuracy that is comparable with the 16× 16× 8 solid model
with incompatible modes, that contains 7344 degrees of freedom. The 0.7% error of the converged plate
computation is the modeling error of the plate theory for this high aspect ratio (t/a = 0.025), leading to
the high efficiency of the structural representation.

5. Conclusions

The present work describes a systematic conversion of general loads of the classical problem of three-
dimensional elastostatics to their thin-plate counterparts. We provide formulas for all types of resultant
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Elasticity Thin plate

mesh 2×2×1 4×4×2 8×8×4 16×16×8 32×32×16 2×2 4×4 8×8 16×16
degrees of freedom 36 180 1080 7344 53856 24 80 288 1088
relative error [%] 25.7 14.8 7.6 3.8 1.8 3.2 2.3 0.7 0.7

Table 5. Rotating square plate with varying density: relative error in the energy of the
finite element solutions, 3D elasticity with incompatible modes versus thin plate.
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Figure 12. Rotating square plate with varying density: relative error in the energy of
the finite element solutions, three-dimensional elasticity with incompatible modes ver-
sus thin plate. Reference solution is converged elasticity solution in both cases. The
converged plate computation still exhibits a modeling error.

structural loads and boundary conditions in terms of the original three-dimensional data, in forms that are
readily incorporated into computational tools, without entailing re-programming of existing software.

The kinematic and constitutive assumptions of Kirchhoff plate theory are substituted into the prin-
ciple of virtual work for linear elastostatics, leading to a statement of virtual work for the thin plate.
This formulation incorporates applied distributed couples engendered by in-plane components of three-
dimensional loads, which are rarely accounted for in the context of a thin plate. Disregarding this type
of loading may neglect a significant portion of the overall structural response in some cases.

We advocate the treatment of the twisting moment in virtual work in a form that seldom appears in the
literature. This simpler form is compatible with the variational statement of higher-order plate theories,
and obviates the use of the Kirchhoff equivalent force and corner forces in methods based on virtual work
such as finite element analysis, thereby allowing lower regularity of the prescribed boundary twisting
moment and facilitating implementation.

Structural essential boundary conditions are imposed on the quantities associated with a variation
in the boundary integrals of the Euler–Lagrange equations. The data are specified by a through-the-
thickness averaging procedure suggested by the definition of the force resultants. This interpretation of
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the structural deflections as through-the-thickness averages of the continuum displacements, rather than
their values on the midplane (the more conventional notion), yields explicit formulas for the thin-plate
essential boundary data.

In-plane components of three-dimensional body forces and tangential tractions on the top and bottom
surfaces engender applied distributed couples, modifying the transverse loading of the plate bending
problem. The distributed loading in the equilibrium equation is an effective transverse force. The standard
term is modified by the in-plane divergence of the applied couples.

Similarly, the shear loading is an effective boundary shear force. The celebrated Kirchhoff equivalent
force is modified by the edge trace of the applied couples. These terms, which are rarely accounted for
in the literature, would be difficult to derive intuitively.

When the boundary is not smooth, shear boundary conditions include discrete corner forces defined
as jumps of the prescribed boundary twisting moment emanating from tangential tractions applied on the
lateral boundary. Corner forces appear in the literature only as reaction forces that are part of the solution
in some cases, and in other descriptions there is no mention of corner forces whatsoever. Consistent vari-
ational derivation of the plate problem formulation gives rise to the corner forces in the Euler–Lagrange
equations, and therefore they should appear explicitly as natural boundary conditions in the problem
statement.

Overall, the formulation presented in this work facilitates the solution of problems that would other-
wise pose formidable challenges. Numerical results confirm that appropriate use of the thin-plate model
economizes computation and provides insight into the mechanical behavior, while preserving a level of
accuracy comparable with the full three-dimensional solution.

Appendix: Displacement fields of analytical problems

A. Simply supported circular thin plate under uniform normal load.

Elasticity solution.

ur =
qr

20Et3

{
20(2+ν−ν2)z3

+
[
−15(1−ν2)r2

+15(3−2ν−ν2)a2
−(6+27ν−3ν2)t2 ]z+10ν t3

}
(A.1)

uz=
q

480Et3

{
−240(1+2ν+ν2) z4

+
[
720ν(1+ν) r2

−360ν(3+ν) a2
+(360+144ν+72ν2) t2] z2

− 240 z t3
+ 90(1− ν2) r4

−
[
180(3− 2ν− ν2)a2

+ (288+ 36ν+ 36ν2) t2] r2

+ 90(5− 4ν− ν2) a4
+ 6(48+ 11ν+ ν2) a2 t2

− (27+ 6ν+ 3ν2) t4
}

(A.2)

Thin-plate solution.

us
r =−

3qrz
4Et3

[
(1− ν2) r2

− (3− 2ν− ν2) a2] (A.3)

us
z =

3q
16Et3

[
(1− ν2) r4

− 2(3− 2ν− ν2) r2 a2
+ (5− 4ν− ν2) a4] (A.4)

B. Simply supported circular thin plate under linearly varying tangential load.
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Elasticity solution.

ur =
qr

20Et3

{
20(2+ ν− ν2)z3

+
[
− 15(1− ν2)r2

+ 15(3− 2ν− ν2)a2
− (6+ 7ν− 3ν2)t2]z

}
(B.1)

uz=
q

480Et3

{
−240(1+2ν+ν2)z4

+
[
720ν(1+ν)r2

−360ν(3+ν)a2
+(120+144ν+72ν2)t2]z2

+ 90(1− ν2)r4
−
[
180(3− 2ν− ν2)a2

+ (48+ 36ν+ 36ν2)t2]r2

+ 90(5− 4ν− ν2)a4
+ 6(8+ 11ν+ ν2)a2t2

− (7+ 6ν+ 3ν2)t4
}

(B.2)

Thin-plate solution. See (A.3) and (A.4).

C. Central point supported circular thin plate under linearly varying tangential load.

Elasticity solution.

ur =
qr

20Et3

{
20(2+ ν− ν2)z3

+
[
− 15(1− ν2)r2

+ 15(3− 2ν− ν2)a2
− (6+ 7ν− 3ν2)t2]z

}
(C.1)

uz=
q

480Et3

{
−240(1+2ν+ν2)z4

+
[
720ν(1+ν)r2

−360ν(ν+3)a2
+(120+144ν+72ν2)t2]z2

+ 90(1− ν2)r4
−
[
180(3− 2ν− ν2)a2

+ (48+ 36ν+ 36ν2)t2]r2

+ 30ν(3+ ν)a2t2
− (7+ 6ν+ 3ν2)t4

}
(C.2)

Thin-plate solution.

us
r =−

3qrz
4Et3

[
(1− ν2)r2

− (3− 2ν− ν2)a2
]
, us

z =
3q

16Et3

[
(1− ν2)r4

− 2(3− 2ν− ν2)r2a2
]

(C.3)
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