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CONSISTENT LOADING FOR THIN PLATES

ISAAC HARARI, IGOR SOKOLOV AND SLAVA KRYLOV

Structural models are well-established for the governing operators in solid mechanics, yet the reduction
of loads (data) is often performed in an ad hoc manner, which may be inadequate for the complex
load distributions that often arise in modern applications. In the present work we consistently convert
three-dimensional data to the form required by Kirchhoff thin-plate theory, in a variational framework.
We provide formulas for all types of resultant structural loads and boundary conditions in terms of
the original three-dimensional data, including proper specification of corner forces, in forms that are
readily incorporated into computational tools. In particular, we find that in-plane components of three-
dimensional loads engender distributed couples, contributing to an effective distributed transverse force
and boundary shear force, the latter generalizing the notion of the celebrated Kirchhoff equivalent force.
However, in virtual work we advocate a representation of the twisting moment in a form that involves
neither the Kirchhoff equivalent force nor corner forces. An interpretation of the structural deflections as
through-the-thickness averages of the continuum displacements, rather than their values on the midplane,
yields explicit formulas for the thin-plate essential boundary data. The formulation facilitates the solution
of problems that would otherwise pose formidable challenges. Numerical results confirm that appropriate
use of the thin-plate model economizes computation and provides insight into the mechanical behavior,
while preserving a level of accuracy comparable with the full three-dimensional solution.

1. Introduction

In solid mechanics the common approach to the analysis of bodies with distinctive geometric characteris-
tics is to perform a dimensional reduction to an appropriate structural model. The analytical solution for
these bodies is difficult for general geometries and loadings while the computation is often costly. A clas-
sical example is a plate-like body which is commonly described by a thin-plate model.1 The dimensional
reduction of the differential operator describing the original elasticity problem is often performed by
variational procedures combined with certain kinematic and constitutive assumptions [Alessandrini et al.
1999; Hu 1984; Soedel 1981; Vidoli and Batra 2000]. This technique can be considered as a restriction of
an approach applied to shells [DiCarlo et al. 2001]. Alternatively, hierarchies of reduced-order models of
elastic bodies with high aspect ratio are built using asymptotic methods [Ciarlet 1990; Dauge and Gruais
1996; Dauge and Gruais 1998].

Since the thin-plate theory (Kirchhoff theory) has been developed [Kirchhoff 1850; Poisson 1829]
based on fundamental contributions by Siméon-Denis Poisson (1811) and Gustav Robert Kirchhoff
(1850) (see also [Timoshenko 1983; Todhunter and Pearson 1960] for historical treatises) a large variety

Keywords: Kirchhoff thin-plate theory, structural reduction, Kirchhoff equivalent force, distributed couples, corner forces.
1We distinguish between a plate, which is a flat structure that has thickness much smaller than the other dimensions, and

a plate model or theory, which is the collection of assumptions that is used to dimensionally reduce the three-dimensional
formulation and approximate its solution.
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of models were built starting from simple plates theories [Reissner 1969; Sayir and Mitropoulos 1980]
and up to nonlinear [Antman 1995; Ciarlet 1997; Libai and Simmonds 1998; Rubin 2000] and composite
[Bisegna and Sacco 1997; Calcote 1969; Vasil’ev and Lur’e 1992] plates and shells. Extensive research
was performed also in connection with numerical methods [Actis et al. 1999; Engel et al. 2002; Hughes
and Hinton 1986; O’Leary and Harari 1985; Vogelius and Babuška 1981]. See also the reviews [Podio-
Guidugli 2000; Sayir and Mitropoulos 1980].

In the construction of different structural theories, the procedures of reduction of elastic continua by
the appropriate structural models are conventionally based on the body geometry determining the order
of the small parameter used in the reduction. However, while such procedures are well-established for
the differential operators governing problems of solid mechanics in general and plate-like problems in
particular, the reduction of the data of the problem — body forces and boundary conditions — is often
performed in an ad hoc manner. The form of the loading for problems that are governed by reduced
structural theories is quite different from that of the original three-dimensional formulation. As a result,
the ad hoc approach based on engineering intuition can be inadequate for the analysis of bodies subject
to complex three-dimensional loading, and more rigorous procedures are required.

As an example of problems where complex three-dimensional loading is abundant one can mention
coupled problems distinguished by the distribution of loading arising as a result of interaction. In the
intrinsically multiphysics problems arising in micro and nanoelectromechanical systems (MEMS and
NEMS) based applications the interaction forces are obtained in terms of electric or magnetic fields. The
distribution of electrostatic or magnetic forces could produce very complex three-dimensional patterns
which may include, for example, distributed couples (see [Liu and Chang 2005; Moon and Holmes
1979] and references therein). High aspect ratios of microstructures incorporated in MEMS make the
use of structural descriptions attractive. However, due to intricate character of the three-dimensional
interface forces, ad hoc procedures for their reduction are no longer sufficient. Other applications where
the structural representation could be effective but ad hoc formulation of the reduced loading is not
sufficient include aeroelastic and hydroelastic applications where the loading conditions are formulated
in terms of interface velocities or contact pressures [Morand and Ohayon 1995]. High aspect ratios of
aero/hydroelastic structures make the use of computationally efficient models based on the structural
descriptions attractive, especially when incorporated in optimization or control procedures. For example,
entire airplane wings or helicopter blades are routinely modeled as one-dimensional (beams) and two-
dimensional structural elements (plates) of variable cross-section. On the other hand, the high gradients
and intricacy of interface forces arising in these applications may require three-dimensional representa-
tion of the data. One can also mention problems involving complex spatially distributed surface forces
originating in contact. This kind of force arises, for example, during forming processes of thin (i.e., high
aspect ratio) metal sheet. In these processes surface tractions distributed in the direction tangent to the
surface originate mainly from friction between the surfaces of the forming tool and the metal sheet.

The implementation of rigorous reduction procedures which use a variational framework and allow
systematic reduction of the three-dimensional loading data to their structural counterparts for beam-like
solids was analyzed in [Krylov et al. 2006]. In this work, we extend the implementation of these reduction
procedures to the thin (Kirchhoff-Love) plate model. Despite its limitations, Kirchhoff-Love theory of
thin-plate bending is one of the most widely used by engineers, mainly due to its simplicity. Nowadays,
descriptions of thin bending theory can be found in most textbooks on structural mechanics (e.g., see
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[Nádai 1925; Sokolnikoff 1983; Timoshenko and Goodier 1951; Timoshenko and Woinowsky-Krieger
1959; Ugural 1981]).

In the present work special attention is paid to the rigorous reduction, by means of a variational pro-
cedure, of the original problem data to the form required by the structural representation. The structural
counterparts of the loads are expressed in terms of the data of the original three-dimensional problem.
Note that in most cases, in considering bending of plates in the framework of the classical thin-plate
theory only transverse loads, namely, loads acting in the direction perpendicular to the plate’s plane in a
three-dimensional domain, are accounted for. We show that consistent consideration of three-dimensional
applied in-plane body forces and surface tractions in the classical thin-plate formulation engenders dis-
tributed couples, modifying the Kirchhoff equivalent shear force and the transverse distributed force
[DiCarlo et al. 2001; Niordson 1985]. In addition, we present a consistent treatment of essential (kine-
matic) boundary conditions. Structural counterparts of the essential boundary conditions considered
here as through-the-thickness averages [Cowper 1966; Prescott 1942] are obtained in terms of three-
dimensional displacements (which generally speaking would not conform the structural assumptions)
prescribed on an appropriate part of the surface. It should be noted that certain aspects of thin-plate
theory, for example, corner forces arising at the points of discontinuity of the plate’s outer boundary, are
treated differently in the literature by various sources. Using the systematic variational approach, we
confirm that corner forces are actually a part of the natural boundary conditions.

The goal of the work is twofold. First, the results of the work provide better insight into the contribution
of different components of data into the structural model. In addition, the structural form of the weak
formulation derived systematically from the original three-dimensional elasticity expressions along with
essential boundary conditions expressed in terms of the original three-dimensional data are useful as a
basis for numerical procedures.

In Section 2 the differential equations and the natural boundary conditions for plate-like bodies are
derived from the variational principle. We begin with the formulation of the three-dimensional elastic
problem, substitute the kinematic and constitutive assumptions into the variational equation and derive
the classical Kirchhoff-Love thin-plate equations and boundary conditions. The validation of the models
is performed in Section 3 by comparison to analytical solutions of torsionless axisymmetric elasticity
problems. The estimation of the structural efficiency from the computational point of view is performed
in Section 4, by comparison to a three-dimensional elasticity problem solved by the finite element method.

2. Structural reduction of elastostatics by the thin-plate model

The dimensional reduction of the elasticity operator in thin flat bodies by various plate models, as outlined
above, is a well-established procedure. The reduced structural models are expressed in terms of unknown
deflections. When these deflections are found, recovery procedures are available to approximate the three-
dimensional displacement field.

The goal of the present work is to derive a systematic conversion of general three-dimensional loads
to their structural counterparts, in forms that are readily incorporated into computational tools.

2A. Assumptions of Kirchhoff plate theory. The domain is a three-dimensional thin flat body (Figure 1)
defined by

�= {(x1, x2, x3) ∈ R3
| (x1, x2) ∈ A, −t/2< x3 < t/2}. (2-1)
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Figure 1. Geometry of a thin flat body.

Here t is the plate thickness, which may vary with x1 and x2, and A ⊂ R2 is the midplane of the plate.
The kinematic assumptions of the classical Kirchhoff plate theory approximate the displacements ui

by structural counterparts

us
α(x1, x2, x3)= wα(x1, x2)− x3w3,α(x1, x2), (2-2)

us
3(x1, x2, x3)= w3(x1, x2). (2-3)

The structural displacements are defined in terms of in-plane (stretching) wα and transverse (bending) w3

deflections. In the following, the deflections are considered as through-the-thickness averages (although
commonly associated with the midplane). Throughout, Latin indices i, j, k, l take on values 1, 2, 3, Greek
indices α, β, γ, δ take on values 1, 2. The summation convention over repeated indices is applied. In
addition, ( · ),α = ∂( · )/∂xα is used for the partial derivative. From expressions (2-2) and (2-3) the
approximate three-dimensional displacements us

i can be recovered after determining wi .
Strains in the x3-direction are not computed from the displacements but via the constitutive assumption

of plane stress

σ s
33 = 0. (2-4)

In the homogeneous isotropic case, considered here for simplicity, the strains are

εs
αβ = us

(α,β) = w(α,β)− x3w3,αβ, εs
α3 = us

(α,3) = 0, εs
33 =

−ν

1− ν
εs
αα. (2-5)

Here, w(α,β) are the in-plane strains and w3,αβ are the curvatures. Parentheses in the subscripts denote
the symmetric part of a tensor: t(αβ) = 1

2(tαβ + tβα). The resulting two-dimensional constitutive relations
are

σ s
αβ =

E
1+ν

(
ν

1−ν
δαβε

s
γ γ + ε

s
αβ

)
. (2-6)

Here, E and ν are Young’s modulus and Poisson’s ratio respectively. Following convention in Kirchhoff
plate theory, σ s

α3 are evaluated from equilibrium rather than from the constitutive relations.
The structural reduction is performed in a variational framework, following the description in [Hughes

2000]. Special attention is paid to the reduction of distributed boundary data and body forces to their
structural equivalents.

2B. Virtual work. Consider the standard linear elastostatics boundary-value problem in the bounded
domain �⊂ R3, with boundary 0. The boundary of the domain consists of the top and bottom surfaces
(x3=±t/2) and the lateral boundary, assumed to be a cylindrical surface. The boundary 0 has subregions
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0g and 0h such that 0 = 0g ∪ 0h and 0g ∩ 0h = ∅. The data (loads) are prescribed displacements
gi :0g→R (essential boundary conditions), tractions hi :0h→R (natural boundary conditions) and body
forces fi :�→R. In general, the boundary may admit different decompositions for different components.
The procedure is formulated in terms of 0g and 0h for simplicity of presentation. Extensions to more
general cases are straightforward and considered subsequently.

The plate equations, including expressions for structural loads expressed in terms of the original three-
dimensional data, are obtained from the standard variational formulation for the elasticity theory. This
is the principle of virtual work: find ui that satisfies ui = gi on 0g such that∫

�

ū(i, j)σi j d�=
∫
�

ūi fi d�+
∫
0h

ūi hi d0. (2-7)

Here, ūi is the weighting function, or variation, satisfying the homogenous counterpart of the essential
boundary conditions ūi = 0 on 0g. The stress σi j is defined in terms of the displacement ui via strain in
the usual way.

To fix ideas, consider applied displacements and tractions on corresponding parts of the lateral bound-
ary, whereas only tractions are specified on the top and bottom surfaces (x3 =±t/2). (This configuration
is common in practice.) The lateral boundary has a unit outward normal vector n = nαeα and a unit
tangent vector s = sαeα , such that n× s = e3 (Figure 1). Here, the ei are the Euclidean basis unit vectors.
On part of the lateral boundary (0g) we consider essential boundary conditions specified by the transverse
displacement g3 and the normal and tangential in-plane displacements gn = gαnα and gs = gαsα. On
the remaining part of the lateral boundary we consider natural boundary conditions specified by the
transverse traction h3 and the normal and tangential in-plane tractions hn = hαnα and hs = hαsα.

The boundary of the midplane A, denoted S, is subdivided into two non-overlapping regions Sg (such
that Sg × [−t/2, t/2] = 0g) and Sh = S \ Sg. If S is not smooth, the corners, where the normal vector
n suffers a discontinuity, are denoted ∂S = {xc}

ncorn
c=1 , where xc ∈ S is a corner location and ncorn is the

number of corners.
The boundary 0h is partitioned in such a way that∫

0h

. . . d0 =
∫

A
〈. . .〉 d A+

∫
Sh

∫ t/2

−t/2
. . . dx3 d S. (2-8)

Here, d S is the arc length along S, and the 〈. . . 〉 operator is defined by

〈 f (x1, x2, x3)〉 = f (x1, x2,−t/2)+ f (x1, x2, t/2).

Replacing the displacements ui and stresses σi j in (2-7) by their structural counterparts us
i and σ s

αβ

(since σ s
33 = 0 by the constitutive assumption (2-4) and us

(α,3) = 0 by the kinematic assumptions (2-2)
and (2-3)) yields∫
�

ūs
(α,β)σ

s
αβ d�=

∫
�

(ūs
α fα + ūs

3 f3) d�+
∫

A
(〈ūs

αhα〉+ 〈ūs
3h3〉) d A

+

∫
Sh

∫ t/2

−t/2
(ūs

nhn + ūs
shs + ūs

3h3) dx3d S. (2-9)
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Here, ūs
i are variations of the structural displacements. The explicit dependence of the structural quanti-

ties on x3 (from the kinematic assumptions) simplifies the domain integration∫
�

. . . d�=
∫

A

∫ t/2

−t/2
. . . dx3 d A. (2-10)

This leads to the principle of virtual work for the thin plate. Data for the plate essential boundary
conditions, prescribed boundary deflections Wi and rotation 2 defined in Table 1, are obtained by the
procedure outlined in Section 2C. The statement of thin-plate virtual work is: find wi that satisfies
wi =Wi and w3,n =2 on Sg such that∫

A
(wα,βnαβ −w3,αβmαβ) d A =

∫
A
(wαFα −w3,αCα +w3 F3) d A

+

∫
Sh

(wn Nn +ws Ns −w3,n Mn −w3,s Ms +w3 Q) d S. (2-11)

Here, wi is the weighting function, or variation, satisfying the homogenous counterpart of the thin-plate
essential boundary conditions wi = 0 and w3,n = 0 on Sg.

The applied structural loads, distributed forces and couples Fi and Cα, along with boundary forces
and moments Nn , Ns , Q, Mn and Ms , defined in terms of the underlying three-dimensional data in
Table 1, result from integration through the thickness. The thin-plate constitutive relations are obtained
by substituting the relations (2-5) and (2-6) into the definitions for the in-plane force tensor nαβ and the
bending moment tensor mαβ (Table 1). For constant plate thickness we have

nαβ =
Et

1+ν

(
ν

1−ν
δαβwγ,γ +w(α,β)

)
, (2-12)

mαβ =−D
[
νδαβw3,γ γ + (1− ν)w3,αβ

]
. (2-13)

Here, D = Et3

12(1−ν2)
is the isotropic bending stiffness.

Remarks. (1) The principle of virtual work for thin plates, (2-11), incorporates applied distributed
couples Cα , engendered by in-plane components of three-dimensional loads. This is rarely done in
the context of a Kirchhoff plate model. There are three-dimensional load configurations for which
distributed couples constitute a significant portion of the resultant structural load. In such cases,
omitting these terms in the structural model will disregard a substantial part of the response.

(2) The virtual work equation (2-11) represents two uncoupled two-dimensional problems, an in-plane
problem weighted by wα and a plate bending problem weighted by w3.

(3) Assuming sufficient regularity of the prescribed boundary twisting moment Ms along smooth parts
of Sh , the term representing the external work it exerts within the virtual work equation (2-11) may
be integrated by parts, yielding for the bending terms∫

Sh

(−w3,n Mn −w3,s Ms +w3 Q) d S=
∫

Sh

(
−w3,n Mn +w3(Ms,s + Q)

)
d S−(w3[[Ms]])|∂S∩Sh . (2-14)

Here, [[Ms]] = limε→0 Ms(xc + εs)− Ms(xc − εs) represents a corner force. On the right-hand
side of (2-14) are the conventional terms that appear regularly as part of the thin-plate virtual work
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Quantity Description

nαβ =
∫ t/2
−t/2 σ

s
αβdx3 in-plane force tensor

mαβ =
∫ t/2
−t/2 σ

s
αβx3 dx3 bending moment tensor

Fα =
∫ t/2
−t/2 fα dx3+〈hα〉 applied in-plane force

F̂3 = F3+Cα,α effective applied transverse force

F3 =
∫ t/2
−t/2 f3 dx3+〈h3〉 applied transverse force

Cα =
∫ t/2
−t/2 fαx3 dx3+〈hαx3〉 applied couple

Wn =
1
t

∫ t/2
−t/2 gn dx3 prescribed normal boundary deflection

Ws =
1
t

∫ t/2
−t/2 gs dx3 prescribed tangential boundary deflection

W3 =
1
t

∫ t/2
−t/2 g3 dx3 prescribed transverse boundary deflection

2=− 12
t3

∫ t/2
−t/2 gnx3 dx3 prescribed tangential boundary rotation

Nn =
∫ t/2
−t/2 hn dx3 prescribed normal boundary in-plane force

Ns =
∫ t/2
−t/2 hs dx3 prescribed tangential boundary in-plane force

Mn =
∫ t/2
−t/2 hnx3 dx3 prescribed boundary bending moment

Q̂ = Q+Ms,s −C−n effective prescribed boundary shear force

Q =
∫ t/2
−t/2 h3 dx3 prescribed boundary shear force

Ms =
∫ t/2
−t/2 hs x3 dx3 prescribed boundary twisting moment

C−n (x)= limξ→x Cn(ξ), x ∈ Sh the edge trace of applied couple

R = [[Ms]] prescribed boundary shear force at corner xc

Table 1. Structural nomenclature. We have set [[Ms]] = Ms(x+c ) − Ms(x−c ), where
Ms(x±c )= limε→0 Ms(xc±εs); fn = fαnα , fs = fαsα; and xc ∈ S, for c= 1, 2, . . . , ncorn,
is a corner location.

equation in the literature [Bauchau and Craig 2009; Šolín 2006], though both forms are mentioned in
[Zienkiewicz and Taylor 2000]. The right-hand side indicates the source of the Kirchhoff equivalent
(modified shear) force and the corner forces. Indeed, this form appears in the Euler–Lagrange equa-
tions (2-15) below and is essential for the strong form of the boundary-value problem. However, the
two forms are equivalent statements of virtual work, subject to the higher regularity requirement on
the prescribed boundary twisting moment. We prefer the formulation (2-11) as it is simpler and less
constrained, compatible with the variational statement of higher-order plate theories, and obviates
the use of the Kirchhoff equivalent force and corner forces (thereby allowing lower regularity of
the data and facilitating implementation) in methods based on virtual work such as finite element
analysis.
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(4) All of the loading terms on the right-hand side of the virtual work equation (2-11) may be incorpo-
rated by users into commercial finite element computations without re-programming of the software
by using the usual definitions of consistent nodal loads.

Integration by parts yields the Euler–Lagrange equations for the thin plate:

0=
∫

A
wα(−nαβ,β−Fα)d A+

∫
A
w3(−mαβ,αβ−F3−Cα,α)d A+

∫
Sh

wn(nnn−Nn)d S+
∫

Sh

ws(nns−Ns)d S

+

∫
Sh

w3(mαβ,βnα + (mns),s +C−n − Q−Ms,s)d S+ (w3[[−mns +Ms]])|∂S∩Sh

+

∫
Sh

w3,n(−mnn +Mn)d S. (2-15)

Here, ( · )nn = ( · )αβnαnβ and ( · )ns = ( · )αβnαsβ denote the normal and tangential components of the
stress resultants. Similarly, ( · ),n = ( · ),αnα and ( · ),s = ( · ),αsα are used for normal and tangential
derivatives, respectively.

The three-dimensional boundary value problem of linear elasticity is reduced to a set of two uncoupled
two-dimensional boundary-value problems: an in-plane problem and a plate bending problem. Thin plate
equilibrium equations are obtained from the area integrals of (2-15) and the thin-plate natural boundary
conditions are obtained from the line integrals of (2-15), along with the discrete corner conditions.

2C. Essential boundary conditions. Structural essential boundary conditions are imposed on the quan-
tities associated with a variation in the boundary integrals of (2-15). The data are specified by a through-
the-thickness averaging procedure [Cowper 1966; Prescott 1942] suggested by the definition of the force
resultants. The kinematic assumptions (2-2) and (2-3) yield

wi (x1, x2)=
1
t

∫ t/2

−t/2
us

i (x1, x2, x3) dx3, (2-16)

w3,n(x1, x2)=−
12
t3

∫ t/2

−t/2
us

n(x1, x2, x3)x3 dx3. (2-17)

Averaging the prescribed three-dimensional displacements on 0g yields the thin-plate essential boundary
conditions

wi =Wi , w3,n =2 on Sg, (2-18)

in terms of the prescribed boundary deflections Wi and rotation 2 (Table 1).

Remark. The common view of deflections as displacements of the midplane

wi (x1, x2)= us
i (x1, x2, 0) (2-19)

may also be used to specify the plate essential boundary conditions (except for the boundary rotation). If
the prescribed displacements gi conform to the kinematic assumptions, the two approaches are equivalent
for the boundary deflections. In general, we prefer to interpret deflections as displacements averaged
through the thickness.
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2D. Strong form of Kirchhoff plate problems. As noted, the three-dimensional linear elasticity bound-
ary value problem is reduced to two uncoupled two-dimensional problems:

(1) An in-plane problem for wα(x1, x2);

(2) A plate bending problem for w3(x1, x2).

The differential equations and natural boundary conditions are Euler–Lagrange equations emanating from
(2-15). Essential boundary conditions are obtained by the through-the-thickness averaging procedure.

The features of the in-plane problem are conventional, and included here for completeness. The in-
plane boundary-value problem is

−nαβ,β = Fα in A,

wn =Wn, ws =Ws on Sg,

nnn = Nn, nns = Ns on Sh .

(2-20)

The structural data are expressed in terms of the original three-dimensional data (Table 1). Boundary
conditions are designated in terms that refer to the homogeneous case. For example, a “fixed” boundary
condition means that all kinematic quantities are specified (but not necessarily zero). In these terms,
(2-20) represents a body fixed on one portion of the boundary and free on the rest. Other possible
combinations of normal and tangential boundary conditions are shown in Table 2.

Our formulation of the plate bending problem contains several noteworthy features. The plate bending
boundary-value problem is

−mαβ,αβ = F̂3 in A,

w3 =W3 w3,n =2 on Sg,

mnn = Mn, mαβ,βnα + (mns),s = Q̂ on Sh,

[[mns]] = R on ∂S ∩ Sh .

(2-21)

For constant plate thickness, the equilibrium equation reduces to the well-known equilibrium equation
of Kirchhoff-Love plate theory in terms of the transverse deflection

D∇4w3 = F̂3 in A. (2-22)

Again, the structural data are expressed in terms of the original three-dimensional data (Table 1). The

fixed (or clamped) wn =Wn ws =Ws

free nnn = Nn nns = Ns

symmetric wn =Wn nns = Ns

skew symmetric ws =Ws nnn = Nn

Table 2. In-plane problem: common boundary conditions. The designations refer to
homogeneous boundary conditions.
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distributed loading on the plate is an effective transverse force

F̂3 = F3+Cα,α. (2-23)

The standard term is modified by the in-plane divergence of applied couples Cα , engendered by in-plane
components of three-dimensional body forces and tangential tractions on the top and bottom surfaces.

Similarly, the shear load is an effective boundary shear force

Q̂ = Q+Ms,s −C−n . (2-24)

The celebrated Kirchhoff equivalent force Q+Ms,s [Kirchhoff 1850] is modified by the edge trace of
applied couples. It would be difficult to derive these terms intuitively. Such terms are rarely accounted for
in the literature [Niordson 1985], and presented in an ad hoc basis [Madureira 2004; Sutyrin and Hodges
1996]. Their origins from in-plane components of three-dimensional loads have not been reported in
the literature, to our knowledge. When the boundary is not smooth, shear boundary conditions include
discrete corner forces R defined in terms of the prescribed boundary twisting moment, emanating from
tangential tractions applied on the lateral boundary (Table 1).

Remarks. (1) The treatment of corner forces in the literature is not uniform. In many instances they
are defined as boundary conditions accompanying shear boundary conditions at discrete points, part
of the problem statement, as described in (2-21) [Bauchau and Craig 2009; Wells and Nguyen
2007; Grossi and Lebedev 2001; Nayfeh and Pai 2004; Reismann 1988; Tsiatas 2009]. However,
corner forces also appear only as reaction forces that are part of the solution [Szilard 2004]. In
some descriptions there is no mention of corner forces whatsoever. As outlined above, consistent
variational derivation of the plate problem formulation gives rise to the corner forces in the Euler–
Lagrange equations, and therefore they should appear explicitly as natural boundary conditions in
the problem statement.

(2) Both corner forces and the Kirchhoff equivalent force can be derived from a constrained continuum
of grade two material [Forte and Vianello 1988].

In terms that refer to homogeneous boundary conditions, (2-21) represents a body fixed on one portion
of the boundary and free on the rest. In general, there should be two boundary conditions at each point:
either transverse deflection or shear force, and either tangential rotation or bending moment (Table 3).

Possible combinations of three-dimensional data specified at a lateral boundary point with the corre-
sponding type of structural boundary conditions are listed in Table 4. Due to the presence of the Kirchhoff

fixed (or clamped) w3 =W3 w3,n =2

free mnn = Mn (mnα),α + (mns),s = Q̂ [[mns]] = R

simply supported w3 =W3 mnn = Mn

symmetric w3,n =2 (mnα),α + (mns),s = Q̂ [[mns]] = R

Table 3. Plate bending problem: common boundary conditions. The designations refer
to homogeneous boundary conditions (“simply supported” = “skew symmetric”).
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Three-dimensional In-plane Bending

gn gs g3 Fixed Fixed
gn gs h3 Fixed —
gn hs g3 Symmetric Fixed
hn gs g3 Skew symmetric Simply supported
gn hs h3 Symmetric Symmetric
hn gs h3 Skew symmetric —
hn hs g3 Free Simply supported
hn hs h3 Free Free

Table 4. Possible combinations of data on the lateral boundary. The designations refer
to homogeneous boundary conditions.

equivalent force in thin-plate bending, tangential tractions hs must always accompany transverse trac-
tions h3 on the lateral boundary. The thin-plate flexure does not distinguish between the specification
of tangential displacements gs and tractions hs along with transverse displacements g3 on the lateral
boundary (for fixed and simply supported boundary conditions).

3. Analytical model validation

The use of structural theories for analysis of bodies subject to intricate loading brings up questions about
the validity of reduced models. The validity of different plate theories is usually justified by geometric
considerations in terms of relative thickness. Nevertheless the validity of a plate model is affected also by
the loading conditions. In this context, we reiterate the importance of the rigorous reduction procedure
of the loads on one hand and the importance of the model validity examination on the other hand.

In the following sections we demonstrate the implementation of the structural reduction procedure
using examples of torsionless axisymmetric elasticity problems with analytical solutions. In order to
focus on the more interesting bending problem, we consider such loading for the elastic body that results
in structural, thin-plate, load resultants for which the in-plane problem has a trivial solution. Validation of
reduced structural solutions is performed through comparison with the solutions of the elasticity problem.
Before proceeding with the comparisons, we discuss different approaches to error evaluation.

3A. Error of the model. The natural error norm for elasticity is the energy norm

‖u‖2E =
∫
�

σi j (u)εi j (u) d�. (3-1)

The thin-plate energy norm is

‖w‖2S =

∫
A
(nαβwα,β −mαβw3,αβ) d A, (3-2)

where wi is the structural deflection.
The elasticity norm (3-1) is inappropriate for measuring the errors of the plate model considered, due

to the constitutive assumption, (2-4). A tight bound on the error in stress for Kirchhoff theory is available
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[Simmonds 1971]. However, for the purpose of validating the reduction procedure proposed for the loads,
we use a simpler error measure, namely, the relative error in the energy(

‖u‖2E −‖w‖
2
S

)1/2

‖u‖E
. (3-3)

In the case of isotropic torsionless axisymmetric elasticity, the elastic strain energy norm (3-1) is
expressed in terms of the radial and transverse displacements (ur and uz , respectively) as follows:

‖u‖2E = π
∫ t/2

−t/2

∫ a

0

E
(1+ν)

{
2ν

(1−2ν)

(
ur, r +

ur
r
+ uz, z

)2

+ 2
[
(ur, r )

2
+

(ur
r

)2
+ (uz, z)

2
]
+ (ur ,z + uz ,r )

2
}

r dr dz. (3-4)

The energy norm for the circular thin-plate ‖w‖S is the sum of a membrane part associated with the
in-plane forces and of a bending part associated with the transverse forces

‖w‖2S = 2π
∫ a

0

Et
1−ν2

[
(wr,r )

2
+

(
wr
r

)2
+ 2νwr,rwr

r

]
r dr︸ ︷︷ ︸

in-plane

+ 2π
∫ a

0
D
[(
wz,rr +

1
r
wz,r

)2
− 2(1− ν)wz,rwz,rr

r

]
r dr︸ ︷︷ ︸

transverse

.

(3-5)

3B. Simply supported circular thin plate under uniform normal load.

3B.1. Elasticity solution. Consider a solid of revolution which is free of body forces and is loaded
axisymmetrically by uniform normal tractions hz = q applied at the surface z = −t/2, 0 < r < a as
shown in Figure 2a. The essential and natural boundary conditions corresponding to simple support on
the lateral boundary r = a, −t/2< z < t/2 are as follows:

gz =−
qt

160E

{
80(1+ 2ν+ ν2)

z4

t4 +

[
120ν(1− ν)

a2

t2 − 24(5+ 2ν+ ν2)
] z2

t2

+ 80
z
t
− 10ν(1− ν)

a2

t2 + 9+ 2ν+ ν2
}
, (3-6)

hn =−q (2+ ν)
z
t

(
3
20
−

z2

t2

)
.

In addition, axial symmetry conditions are enforced at the center r = 0, −t/2< z < t/2:

gn = 0, hz = 0. (3-7)

Note that in all examples considered hereafter the prescribed body force and boundary loads are consistent
with the desired analytical solution obtained by the semi-inverse method.
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Figure 2. (a) Torsionless axisymmetric thin flat elastic solid under uniform normal trac-
tions. (b) Simply supported circular thin plate under effective uniform transverse force.

The analytical solution, in terms of stress, of the torsionless axisymmetric elasticity problem obtained
using Love’s stress function is

σrr = q
z
t

[
3 (3+ ν)

4
a2

t2

(
1−

r2

a2

)
+ (2+ ν)

(
z2

t2 −
3
20

)]
,

σθθ = q
z
t

{
3 (3+ ν)

4
a2

t2

[
1−

(1+ ν) r2

(3+ ν) a2

]
+ (2+ ν)

(
z2

t2 −
3
20

)}
,

σzz =
q
2

(
−4

z3

t3 + 3
z
t
− 1

)
, σr z =

3q
4

r
t

(
4

z2

t2 − 1
)
.

(3-8)

3B.2. Thin-plate solution. Using the definitions in Table 1 (with x3 replaced by z) we obtain the axisym-
metric thin-plate load resultants and boundary conditions (thin-plate data) derived from the boundary
loads and displacements of the original three-dimensional problem:

F̂z = Fz = q (0< r < a),

Wz = 0, Mn = 0 (r = a),

2= 0, Q̂ = 0 (r = 0).

(3-9)

Equation (3-9) suggests that the problem corresponds to a thin plate which is simple supported at r = a
as shown in Figure 2b. The normal tractions h3 on the surface z =−t/2, 0< r < a of the elastic body
contribute to the effective applied transverse force F̂z .

The in-plane reduced problem has a trivial solution. Solving the transverse reduced problem with the
data (3-9), we obtain the transverse deflection of the plate

wz =
3qa4

(
1− ν2

)
16Et3

(
1−

r2

a2

)(
5+ ν
1+ ν

−
r2

a2

)
. (3-10)

The approximate displacement field us is obtained from w using the kinematic assumptions (2-2) and
(2-3). Full displacement fields are given in the Appendix. The components of the corresponding thin-
plate stress field are as follows — compare (3-8):

σ s
rr = q

z
t

3 (3+ ν)
4

a2

t2

(
1−

r2

a2

)
and σ s

θθ = q
z
t

3 (3+ ν)
4

a2

t2

[
1−

(1+ ν)
(3+ ν)

r2

a2

]
. (3-11)
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Figure 3. Simply supported circular plate (t/a = 0.5, ν = 0.3) under uniform normal
load: transverse displacements, z = 0.

3B.3. Error evaluation.

Relative error of displacement. Figure 3 represents the normalized midplane transverse displacements
uz/uz(0, 0) (solid line) and us

z/uz(0, 0) (dashed line) for t/a = 0.5 and Poisson’s ratio ν = 0.3. Even for
this relatively large thickness the error in the structural displacement is relatively small. Recalling that
0≤ z ≤ t , (z/a)≤ (t/a) and 0≤ r ≤ a one observes that the relative error of the transverse displacement
for the circular thin plate in this case tends to zero as t/a→ 0 (see also (3-8) and (3-11) for stresses σrr

and σθθ where the first term in the parentheses is dominant for a/t � 1).

Relative error in energy. The Taylor series expansion of relative error in the energy with respect to the
relative thickness t/a up to order five yields(
‖u‖2E −‖w‖

2
S

)1/2

‖u‖E

=
2
5

√
30

(7+ν)
t
a
+

1652+ 2596ν+ 15ν2
− 6ν3

− ν4

2100 (1− ν) (7+ ν)

√
30

(7+ν)
t3

a3 +O

(
t5

a5

)
. (3-12)

One observes that the expression of the relative error in the energy for the simply supported circular thin
plate under uniform normal load, (3-12), tends to zero as the ratio of the thickness to the radius of the
plate tends to zero (Figure 4).

3C. Simply supported circular thin plate under linearly varying tangential load. We now consider a
different elasticity problem that reduces to the same thin-plate problem as in Section 3B.

3C.1. Elasticity solution. A solid of revolution is loaded now by linearly varying tangential tractions
hr =±

q
2t

r (where q is a constant) applied at the surfaces z =±t/2, 0< r < a, as shown in Figure 5a.
The essential and natural boundary conditions corresponding to simple support on the lateral boundary



CONSISTENT LOADING FOR THIN PLATES 779

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ν

ν

=0.4

=0.1
re

la
ti
v
e
 e

rr
o
r 

in
 t

h
e
 e

n
e
rg

y

t/a

Figure 4. Simply supported circular plate under uniform normal load: relative error in
the energy.

(r = a, −t/2< z < t/2) are

gz =−
qt

160E

{
80(1+ 2ν+ ν2)

z4

t4 +

[
120ν(1− ν)

a2

t2 − 8(5+ 6ν+ 3ν2)
] z2

t2

− 10ν(1− ν)a
2

t2 +
7
3
+ 2ν+ ν2

}
, (3-13)

hn =−q (2+ ν)
z
t

(
3
20
−

z2

t2

)
,

while the axial symmetry conditions are satisfied at r = 0, −t/2< z < t/2:

gn = 0, hz = 0. (3-14)

Note that while here hn is identical to that given in (3-6), gz is different.
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Figure 5. (a) Torsionless axisymmetric thin flat elastic solid under linearly varying
tangential tractions. (b) Simply supported circular thin plate under effective uniform
transverse force.
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The solution of the elasticity problem is as follows:

σrr = q
z
t

[
3 (3+ ν)

4
a2

t2

(
1−

r2

a2

)
+ (2+ ν)

(
z2

t2 −
3

20

)]
,

σθθ = q
z
t

{
3 (3+ ν)

4
a2

t2

[
1−

(1+ ν)
(3+ ν)

r2

a2

]
+ (2+ ν)

(
z2

t2 −
3
20

)}
,

σzz =
q
2

(
−4

z3

t3 +
z
t

)
, σr z =

3q
4

r
t

(
4

z2

t2 −
1
3

)
. (3-15)

3C.2. Thin-plate solution. The thin-plate data are

F̂z =
1
r
∂

∂r
(r Cr )= q (0< r < a),

Wz = 0, Mn = 0 (r = a),

2= 0, Q̂ = 0 (r = 0).

(3-16)

The definitions of Fz , Wz , 2, Mn and Q̂ are given in Table 1 (with x3 replaced by z). Equation (3-16)
suggests that the problem corresponds to a thin plate simply supported at r = a, as shown in Figure 5b.
Only the applied couple Cr that originates in the tractions hr on the top and bottom surfaces of the elastic
body contribute to the effective applied transverse force F̂z .

One observes that the linearly varying tangential tractions are reduced to the same load resultants
as for the circular thin plate under uniform normal load derived in Section 3B.2. Thus the transverse
deflection of the simply supported circular thin plate is identical to that given by (3-10). The thin-plate
stress field is given in (3-11).

3C.3. Error evaluation.

Relative error of displacement. Figure 6 represents the normalized midplane transverse displacements
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Figure 6. Simply supported circular plate (t/a = 0.5, ν = 0.3) under linearly varying
tangential load: transverse displacements at z = 0.
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Figure 7. Simply supported circular plate under linearly varying tangential load: rela-
tive error in the energy.

uz/uz(0, 0) (solid line) and us
z/uz(0, 0) (dashed line) for t/a = 0.5 and Poisson’s ratio ν = 0.3. Full

displacement fields are given in the Appendix. Once again one observes that the relative error of the
transverse displacement for the circular thin plate in this case tends to zero as t/a→ 0 (see also (3-15)
and (3-11) for stresses).

Relative error in energy. The Taylor series expansion of relative error in the energy with respect to the
relative thickness t/a up to order five yields(
‖u‖2E −‖w‖

2
S

)1/2

‖u‖E

=
2
5

√
5

(7+ν)
t
a
+

56+ 368ν+ 45ν2
− 18ν3

− 3ν4

1050 (1− ν) (7+ ν)

√
5

(7+ν)
t3

a3 +O

(
t5

a5

)
. (3-17)

We can see that the expression of the relative error in the energy for the simply supported circular thin
plate under linearly varying tangential load, (3-17), tends to zero as the ratio of the thickness to the
radius of the plate tends to zero (Figure 7). Although the structural reduced problem is identical to the
one considered in Section 3B.2, both the relative error in displacements and the relative error in energy
are consistently smaller in the case of a plate loaded by a linearly varying tangential tractions (Figures 6
and 7). The reason is the difference in the data of the underlying three-dimensional elasticity problems.

3D. Central point supported circular thin plate under linearly varying tangential load. We now con-
sider an elasticity problem with the same linearly varying tangential tractions on the top and bottom
surfaces of the plate as in Section 3C but different boundary conditions at the center and on the lateral
boundary, giving rise to an effective boundary shear force of the thin-plate problem.

3D.1. Elasticity solution. The loading applied at the top and bottom surfaces is identical to that consid-
ered in Section 3C.1, as shown in Figure 8a. The natural boundary conditions on the lateral boundary
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(r = a, −t/2< z < t/2) are

hn =−q (2+ ν)
z
t

(
3

20
−

z2

t2

)
, hz =

qa
4t

(
12

z2

t2 − 1
)
. (3-18)

The essential boundary conditions at the center (r = 0, −t/2< z < t/2) are

gn = 0,

gz =
qt

160E

{
− 80(1+ 2ν+ ν2)

z4

t4 +

[
−120ν(3+ ν)

a2

t2 +
(
120+ 144ν+ 72ν2)] z2

t2

+ 10ν(3+ ν)a
2

t2 −
7
3
− 2ν− ν2

}
. (3-19)

The stress distribution for this elasticity problem is the same as that of the previous problem, (3-15).

3D.2. Thin-plate solution. Considering the thin-plate data

F̂z =
1
r
∂

∂r
(r Cr )= q (0< r < a),

Wz = 0, 2= 0 (r = 0),

Q̂ =−C−r =−
1
2qa, Mn = 0 (r = a),

(3-20)

one observes that the transverse load F̂z is identical to the one considered in Section 3C.2 whereas an
effective shear force Q̂ is applied now at the boundary r = a. Equation (3-20) suggests that the problem
corresponds to a thin plate which is free at r = a and fixed (central point supported) at r = 0, as shown in
Figure 8b. Only the applied couple Cr that originates in the tractions hr on the top and bottom surfaces of
the elastic body contributes to the effective applied transverse force F̂z and effective prescribed boundary
shear force Q̂ on the edge of the plate.

The transverse deflection of the central point supported circular thin plate is

wz =−
3qa4

(
1− ν2

)
16Et3

r2

a2

(
2

3+ ν
1+ ν

−
r2

a2

)
. (3-21)
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Figure 8. (a) Center-supported torsionless axisymmetric plate-like elastic solid under
linearly varying tangential tractions. (b) Central point supported circular thin plate under
effective uniform transverse and boundary shear forces.
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Figure 9. Central point supported circular plate (t/a = 0.5, ν = 0.3) under linearly
varying tangential load: transverse displacements at z = 0.

The approximate three-dimensional structural displacement field us is obtained from the kinematic as-
sumptions (2-2) and (2-3). Full displacement fields are given in the Appendix. Note that the thin-plate
stress field for the last load case is identical for both previous ones and is given in (3-11). The reason is
that the problem considered here is self-equilibrated and the resultant of the distributed transverse load
F̂ is equal to the resultant of the effective shear force Q̂ applied at the boundary r = a. As a result, the
reaction at the center r = 0 of the plate is zero (see Figure 5b) making the stress field of two problems
to be identical.

3D.3. Error evaluation.

Relative error of displacement. Figure 9 represents the normalized midplane transverse displacements
uz/uz(a, 0) (solid line) and us

z/uz(a, 0) (dashed line) for t/a = 0.5 and Poisson’s ratio ν = 0.3. In
accordance with Figure 9, the midplane displacement at the center of the plate-like solid (solid line) is
not zero whereas the thin plate deflection (the structural problem solution, dashed line) is zero at this
point. The reason is in the definition of the structural deflections as displacements averaged through the
thickness of the plate-like body rather than the displacements of the midplane (see remark on page 772).
The difference between the two solutions corresponds to the rigid body translation and rotation of the
plate and does not affect the stress field.

Relative error in energy. Since constants in the relative error in energy corresponding to an axial rigid-
body translation may be discarded, the relative error in energy of the central point supported plate is
identical to that of the simple supported plate considered in Section 3C.3.

4. Numerical efficiency

Finite element computations illustrate the implementation, as well as the accuracy and efficiency, of
the plate formulation proposed for general loading configurations. A comparison of the problem size
required to attain a certain level of accuracy by solid elements and thin-plate elements subject to the
resultant loads proposed demonstrates the efficiency of the structural model. The load configuration
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that is considered would pose a formidable challenge to many conventional approaches to plate loading.
Trilinear hexahedral elements with incompatible modes [Taylor et al. 1976] are used for the elasticity
solution. Bicubic Hermite Bogner–Fox–Schmit rectangular elements [Bogner et al. 1966; Zienkiewicz
and Taylor 2000] are used for the thin-plate problem. This element is restricted to rectangular shapes,
limiting the numerical tests to rectangular geometries. It bears emphasis that our structural procedures
are subject to no such restriction.

Consider an a×a plate of aspect ratio t/a = 0.025 centered at the origin, undergoing constant rotation
ω around the normal axis (Figure 10). The isotropic elastic material has a Poisson ratio ν = 0.3. The
density varies linearly through the thickness

ρ = ρ0

(
1+

x3

2t

)
. (4-1)

The three-dimensional loading due to the rotation is represented by an applied body force in the radial
direction of magnitude ρω2r . The transverse structural loading in this problem results solely from dis-
tributed couples that arise from the variation of the radial body force. In order to focus on the bending
response, we consider only the variable part of the distribution:

fα =
ρ0ω

2

2t
xαx3. (4-2)

The resultant structural loads are applied couples, computed from the definition in Table 1:

Cα =
ρ0ω

2t2

24
xα. (4-3)

Clearly, thin-plate formulations that don’t account for applied couples are incapable of representing this
type of load configuration.

By symmetry, only one quarter of the body is considered in the computation (see Figure 10). We
impose free boundary conditions on the outer edges x1 = a/2 and x2 = a/2, and symmetry boundary
conditions on the edges x1 = 0 and x2 = 0, and fix the axis of rotation. For the plate problem, consistent
nodal loads are computed from the applied couples Cα as indicated by the principle of virtual work (2-11).

.
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Figure 10. Rotating square plate with varying density: problem statement, the depicted
solid mesh is 2 × 2 × 1 (due to symmetry, only one quarter is discretized).
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Figure 11. Rotating square plate with varying density: Deformed shape and von Mises
stress distribution; 32 × 32 × 16 solid mesh.

Thus, no effective boundary shear force or corner forces are required. Accounting for applied couples is
essential for the thin-plate modeling of this problem. Figure 11 shows representative results for the 32
× 32 × 16 solid mesh.

Remark. The applied couples appear explicitly in the variational statement of this problem. In contrast,
the loading in the strong form would be expressed in terms of an effective distributed transverse force
and effective boundary shear force, both emanating from the applied couples, as well as homogeneous
corner force boundary conditions.

A comparison of the number of degrees of freedom in the numerical models of the continuum and
structural problems required to attain a certain level of accuracy provides an estimate of the computa-
tional efficiency of the structural representation. Let uh and wh be the three-dimensional and thin-plate
finite element solutions, respectively. The accuracy of both is measured relative to uref, a converged
three-dimensional finite element reference solution obtained on a highly refined mesh (64 × 64 × 32),
accounting for the combination of modeling and discretization errors in the thin-plate computations.
Since the elastic energy norm (3-1) is inappropriate for measuring errors of the plate models due to the
modification of the constitutive law, we use the relative errors in the energy(

‖uref
‖

2
E −‖u

h
‖

2
E

)1/2

‖uref‖E
,

(
‖uref
‖

2
E −‖w

h
‖

2
S

)1/2

‖uref‖E

Results of the comparison are presented in Table 5 and Figure 12. The coarsest plate mesh, 2× 2 with
24 degrees of freedom, attains a level of accuracy that is comparable with the 16× 16× 8 solid model
with incompatible modes, that contains 7344 degrees of freedom. The 0.7% error of the converged plate
computation is the modeling error of the plate theory for this high aspect ratio (t/a = 0.025), leading to
the high efficiency of the structural representation.

5. Conclusions

The present work describes a systematic conversion of general loads of the classical problem of three-
dimensional elastostatics to their thin-plate counterparts. We provide formulas for all types of resultant
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Elasticity Thin plate

mesh 2×2×1 4×4×2 8×8×4 16×16×8 32×32×16 2×2 4×4 8×8 16×16
degrees of freedom 36 180 1080 7344 53856 24 80 288 1088
relative error [%] 25.7 14.8 7.6 3.8 1.8 3.2 2.3 0.7 0.7

Table 5. Rotating square plate with varying density: relative error in the energy of the
finite element solutions, 3D elasticity with incompatible modes versus thin plate.
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Figure 12. Rotating square plate with varying density: relative error in the energy of
the finite element solutions, three-dimensional elasticity with incompatible modes ver-
sus thin plate. Reference solution is converged elasticity solution in both cases. The
converged plate computation still exhibits a modeling error.

structural loads and boundary conditions in terms of the original three-dimensional data, in forms that are
readily incorporated into computational tools, without entailing re-programming of existing software.

The kinematic and constitutive assumptions of Kirchhoff plate theory are substituted into the prin-
ciple of virtual work for linear elastostatics, leading to a statement of virtual work for the thin plate.
This formulation incorporates applied distributed couples engendered by in-plane components of three-
dimensional loads, which are rarely accounted for in the context of a thin plate. Disregarding this type
of loading may neglect a significant portion of the overall structural response in some cases.

We advocate the treatment of the twisting moment in virtual work in a form that seldom appears in the
literature. This simpler form is compatible with the variational statement of higher-order plate theories,
and obviates the use of the Kirchhoff equivalent force and corner forces in methods based on virtual work
such as finite element analysis, thereby allowing lower regularity of the prescribed boundary twisting
moment and facilitating implementation.

Structural essential boundary conditions are imposed on the quantities associated with a variation
in the boundary integrals of the Euler–Lagrange equations. The data are specified by a through-the-
thickness averaging procedure suggested by the definition of the force resultants. This interpretation of
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the structural deflections as through-the-thickness averages of the continuum displacements, rather than
their values on the midplane (the more conventional notion), yields explicit formulas for the thin-plate
essential boundary data.

In-plane components of three-dimensional body forces and tangential tractions on the top and bottom
surfaces engender applied distributed couples, modifying the transverse loading of the plate bending
problem. The distributed loading in the equilibrium equation is an effective transverse force. The standard
term is modified by the in-plane divergence of the applied couples.

Similarly, the shear loading is an effective boundary shear force. The celebrated Kirchhoff equivalent
force is modified by the edge trace of the applied couples. These terms, which are rarely accounted for
in the literature, would be difficult to derive intuitively.

When the boundary is not smooth, shear boundary conditions include discrete corner forces defined
as jumps of the prescribed boundary twisting moment emanating from tangential tractions applied on the
lateral boundary. Corner forces appear in the literature only as reaction forces that are part of the solution
in some cases, and in other descriptions there is no mention of corner forces whatsoever. Consistent vari-
ational derivation of the plate problem formulation gives rise to the corner forces in the Euler–Lagrange
equations, and therefore they should appear explicitly as natural boundary conditions in the problem
statement.

Overall, the formulation presented in this work facilitates the solution of problems that would other-
wise pose formidable challenges. Numerical results confirm that appropriate use of the thin-plate model
economizes computation and provides insight into the mechanical behavior, while preserving a level of
accuracy comparable with the full three-dimensional solution.

Appendix: Displacement fields of analytical problems

A. Simply supported circular thin plate under uniform normal load.

Elasticity solution.

ur =
qr

20Et3

{
20(2+ν−ν2)z3

+
[
−15(1−ν2)r2

+15(3−2ν−ν2)a2
−(6+27ν−3ν2)t2 ]z+10ν t3

}
(A.1)

uz=
q

480Et3

{
−240(1+2ν+ν2) z4

+
[
720ν(1+ν) r2

−360ν(3+ν) a2
+(360+144ν+72ν2) t2] z2

− 240 z t3
+ 90(1− ν2) r4

−
[
180(3− 2ν− ν2)a2

+ (288+ 36ν+ 36ν2) t2] r2

+ 90(5− 4ν− ν2) a4
+ 6(48+ 11ν+ ν2) a2 t2

− (27+ 6ν+ 3ν2) t4
}

(A.2)

Thin-plate solution.

us
r =−

3qrz
4Et3

[
(1− ν2) r2

− (3− 2ν− ν2) a2] (A.3)

us
z =

3q
16Et3

[
(1− ν2) r4

− 2(3− 2ν− ν2) r2 a2
+ (5− 4ν− ν2) a4] (A.4)

B. Simply supported circular thin plate under linearly varying tangential load.



788 ISAAC HARARI, IGOR SOKOLOV AND SLAVA KRYLOV

Elasticity solution.

ur =
qr

20Et3

{
20(2+ ν− ν2)z3

+
[
− 15(1− ν2)r2

+ 15(3− 2ν− ν2)a2
− (6+ 7ν− 3ν2)t2]z

}
(B.1)

uz=
q

480Et3

{
−240(1+2ν+ν2)z4

+
[
720ν(1+ν)r2

−360ν(3+ν)a2
+(120+144ν+72ν2)t2]z2

+ 90(1− ν2)r4
−
[
180(3− 2ν− ν2)a2

+ (48+ 36ν+ 36ν2)t2]r2

+ 90(5− 4ν− ν2)a4
+ 6(8+ 11ν+ ν2)a2t2

− (7+ 6ν+ 3ν2)t4
}

(B.2)

Thin-plate solution. See (A.3) and (A.4).

C. Central point supported circular thin plate under linearly varying tangential load.

Elasticity solution.

ur =
qr

20Et3

{
20(2+ ν− ν2)z3

+
[
− 15(1− ν2)r2

+ 15(3− 2ν− ν2)a2
− (6+ 7ν− 3ν2)t2]z

}
(C.1)

uz=
q

480Et3

{
−240(1+2ν+ν2)z4

+
[
720ν(1+ν)r2

−360ν(ν+3)a2
+(120+144ν+72ν2)t2]z2

+ 90(1− ν2)r4
−
[
180(3− 2ν− ν2)a2

+ (48+ 36ν+ 36ν2)t2]r2

+ 30ν(3+ ν)a2t2
− (7+ 6ν+ 3ν2)t4

}
(C.2)

Thin-plate solution.

us
r =−

3qrz
4Et3

[
(1− ν2)r2

− (3− 2ν− ν2)a2
]
, us

z =
3q

16Et3

[
(1− ν2)r4

− 2(3− 2ν− ν2)r2a2
]

(C.3)
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