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MODELLING OF ACOUSTODIFFUSIVE SURFACE WAVES IN
PIEZOELECTRIC-SEMICONDUCTOR COMPOSITE STRUCTURES

J. N. SHARMA, K. K. SHARMA AND ASHWANI KUMAR

We investigate the propagation of interfacial surface waves in a composite consisting of homogeneous
isotropic semiconductor halfspace coated with a thin layer of homogeneous, transversely isotropic, piezo-
electric material. The mathematical model of the problem consists of a coupled system of partial differen-
tial equations of motion, diffusion of electrons, and a Gauss equation along with the boundary conditions
to be satisfied at the interface and free surface of the composite structure.

The secular equation that governs the wave propagation at the interface has been obtained in compact
form after solving the mathematical model analytically. The secular equations in the case of stress-
free, isoconcentrated and stress-free, impermeable semiconductor halfspaces have also been deduced as
special cases. The complex secular equation has been solved using the functional iteration method along
with the irreducible Cardano’s method via MATLAB programming for CdSe-Si, CdSe-Ge, PZT-Si and
PZT-Ge composite structures.

The computer-simulated results have been presented graphically in terms of phase velocity, attenua-
tion coefficient, and specific loss factor of energy dissipation versus wave number and lifetime of charge
carrier field in the considered structures. The work may be useful for the construction and design of
surface acoustic wave devices.

1. Introduction

Surface acoustic waves bonded to piezoelectric surfaces have found significant use in various branches of
science and technology, especially in the case of interconnected physical fields. These waves were first
discovered by Rayleigh [1885], who explained their propagation and characteristics. In [White 1967],
the phenomena of surface elastic wave propagation, transduction, and amplification in a piezoelectric
semiconductor with special emphasis in relation to electronic devices were discussed. In [Bleustein
1968] the propagation of surface acoustic waves at the free surface of a piezoelectric halfspace was
predicted. Gulyaev [1969] explained that a pure transverse wave can propagate along the surface of
a homogeneous piezoelectric solid with polarization vector parallel to the surface of the substrate. In
[de Lorenzi and Tiersten 1975; Maugin and Daher 1986] nonlinear theories for deformable semiconduc-
tors were developed.

Maruszewski [1989] analyzed the effect of interactions between elastic, thermal, and charge carrier
fields on Rayleigh waves in addition to electron longitudinal waves in semiconductors. In [Sharma
and Thakur 2006] a detailed account of plane harmonic generalised elastothermodiffusive waves in
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semiconductor materials was given, suggesting that there are significant modifications in the phase ve-
locities and attenuation coefficients of these waves due to the interactions of mechanical, thermal, and
charge carrier fields. In [Sharma and Pathania 2006] the thermoelastic waves in coated homogeneous
anisotropic materials were studied to show that anisotropy has significant effect on the phase velocity and
attenuation profiles. In [Sharma et al. 2007] it was found that the age of carrier fields also effects wave
propagation in semiconductor materials. In [Sharma et al. 2009] it was observed that semiconductor
materials exhibit more internal friction with the age of the carrier fields than that of thermal relaxation
time. In [Sharma and Pal 2004] the Lamb wave propagation in a transversely isotropic piezothermoelas-
tic plate was investigated. In [Sharma et al. 2010] the propagation of surface waves in a piezoelectric
halfspace coated with a semiconductor layer was analyzed.

In [Kagan 1997] the surface wave propagation in a piezoelectric crystal underlying a conducting layer
was considered. It was predicted that the electric field excited by the wave in crystal would penetrate
into the conducting layer. In [Wang and Varadan 2002] the dispersion characteristics and mode shapes of
wave propagation in a piezoelectric layer bonded to the metal substrate were studied. In [Wang 2002] an
investigation was conducted into wave propagation in a semiinfinite metallic surface bonded to a layer of
piezoelectric material. It was found that the piezoelectric effects dominated the dispersive characteristics
at higher wave numbers.

Trolier-Mckinstry and Muralt [2004] explained that thin-film piezoelectric materials offer a number
of advantages in microelectromechanical systems and the resulting properties are dominantly dependant
on the characteristics of piezoelectric film. In [Du et al. 2007] the Love waves in a functionally graded
material layer bonded to a semiinfinite, homogeneous solid were investigated. It was observed that the
material properties enable Love waves to propagate along the surface of the layer and may be useful
in reducing the dimension of surface acoustic wave (SAW) devices. Jin et al. [2002] studied the Lamb
wave propagation in a metallic semiinfinite medium covered with a piezoelectric layer. It was found that
the dispersion curves are asymptotic to the transverse velocity of the piezoelectric layer with increasing
wave number. In [Melkumyan and Mai 2009] shear surface waves guided by a gap between dissimilar
piezoelectric halfspaces were studied. It was concluded that the gap waves were mainly concentrated
at the interface of the piezoelectric halfspaces and decayed exponentially away from it. In [Liu et al.
2004] the propagation of surface acoustic waves in a layered halfspace were analyzed, finding that the
maximum change in phase velocity occurs for large values of the product of wave number and film
thickness.

The design and micromachining of PZT/CdSe thin-layered composites for device applications requires
more research in future. Therefore, it is worth investigating the wave propagation parameters in these
materials. Keeping in view the wide range applications of composite structures and the above-referred
work, an attempt has been made here to study the propagation of surface waves at the interface of a
piezoelectric-semiconductor composite structure. The phase velocity, attenuation coefficient, and specific
loss factor of energy dissipation for different modes of wave propagation have been computed numerically
from the analytically developed model in four types of composite structures: CdSe-Si, PZT-Si, CdSe-Ge,
and PZT-Ge. The effect of carrier lifetime has also been taken into account.

The present study shows that PZT-Ge is a good combination for piezoelectric-semiconductor device
applications. According to [Muralt and Baborowski 2004] such composites can find applications in
ultrasonic transducers and acoustic sensors.
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2. Formulation of the problem

Consider a homogeneous isotropic semiconductor halfspace whose surface is coated with a thin layer
of homogeneous, transversely isotropic, piezoelectric material of thickness h as shown in Figure 1. The
origin of the coordinate system O − xyz is taken at any point on the interface plane and the z-axis points
vertically downward into the semiconductor halfspace. Thus, the semiconductor halfspace is represented
by z ≥ 0 and the piezoelectric layer occupies the region −h ≤ z ≤ 0 whose poling direction also aligns
along the z-axis. The x-axis is chosen along the direction of wave propagation in such a way that all
particles on the line parallel to the y-axis are equally displaced. Therefore, all the field quantities are
independent of the y-coordinate and hence we restrict our investigation to the plane strain problem only.

Further, the disturbance is assumed to be confined in the neighborhood of the interface (z = 0), and
hence vanishes as z →∞. The basic governing equations of motion, Gauss equation, and electron
diffusion for the composite structure under study, in the absence of body forces and electric sources, are
given below.

(i) Homogeneous isotropic n-type semiconductor halfspace [Maruszewski 1989; Sharma et al. 2007]:

µ∇2
Eus
+ (λ+µ)∇∇ · Eus

− λn
∇N = ρs

Ëus, (1)

ρs Dn
∇

2 N − ρs
(

1+ tn ∂

∂t

)
Ṅ − an

2 T0λ
T
∇ · Ėus

=−

(
1+ tn ∂

∂t

)(
ρs

t+n

)
N . (2)

(ii) Homogeneous transversely isotropic piezoelectric (6 mm class) layer [Sharma and Pal 2004]:

c11u p
,xx + c44u p

,zz + (c13+ c44)w
p
,xz + (e15+ e31)φ

p
,xz = ρ

pü p, (3)

(c13+ c44)u p
,xz + c44w

p
,xx + c33w

p
,zz + e15φ

p
,xx + e33φ

p
,zz = ρ

pẅ p, (4)

(e15+ e31)u p
,xz + e15w

p
,xx + e33w

p
,zz − ε11φ

p
,xx − ε33φ

p
,zz = 0, (5)

where the notation ∇2
= ∂2/∂x2

+∂2/∂z2, N = n−n0, an
2 =aQp/aQ , and λT

= (3λ+2µ)αT is used. Here
λ and µ are Lamè parameters, ρs is the density, λn are the elastodiffusive constants of electrons, Dn are
the diffusion coefficients of electrons, t+n and tn are the life and relaxation times of the carriers fields, n0

and n are the equilibrium and nonequilibrium values of electron concentration, and αT is the coefficient
of linear thermal expansion of the semiconductor material. The quantities aQp and aQ are flux-like
constants and T0 is the uniform temperature; Eus

= (us, 0, ws) and Eu p
= (u p, 0, w p) are the displacement

vectors for semiconductor and piezoelectric materials, respectively. The quantities φ p, ρ p, ci j , and ei j

are the electric potential, density, elastic parameters, and piezoelectric constants, respectively; ε11 and
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Figure 1. Geometry of the problem.
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ε33 are the electric permittivity perpendicular to and along the axis of symmetry of the piezoelectric
material, respectively.

In the above equations the superposed dots on various quantities denote time differentiation and comma
notation is used for spatial derivatives. Throughout this paper the superscripts p and s on the field
quantities and material parameters refer to piezoelectric and semiconductor materials, respectively.

The nonvanishing components of stresses, current density, and electric displacement in both the media
are

τ s
zz = (λ+ 2µ)∂w

s

∂z
+ λ

∂us

∂x
− λn N , τ s

xz = µ
(
∂us

∂z
+
∂ws

∂x

)
, J s

z =−eDn N,z, (6)

for the semiconductor medium and

τ p
zz = c13

∂u p

∂x
+ c33

∂w p

∂z
+ e33

∂φ p

∂z
,

τ p
xz =

c44
2

(
∂u p

∂z
+
∂w p

∂x

)
+ e15

∂φ p

∂x
,

D p
z = e31

∂u p

∂x
+ e33

∂w p

∂z
− ε33

∂φ p

∂z
,

(7)

in the case of the piezoelectric material. Here τ s
i j and τ p

i j are the stress tensors. The quantities J s
z and N,z

respectively denote the current density and carrier density gradient in the semiconductor material; D p
z is

the electric displacement vector of the piezoelectric material and e is the electronic charge.

2.1. Boundary conditions. The requirement of continuity of stresses, displacements, electric field, and
current density at the interface (z = 0) of the two media leads to the following interfacial boundary
conditions:

τ p
zz = τ

s
zz, τ p

xz = τ
s
xz, u p

= us, w p
= ws, φ p

= N , D p
z = J s

z . (8)

Also the surface (z =−h) of the piezoelectric material is assumed to be stress-free and charge-free,
which leads to the conditions

τ p
zz = 0, τ p

xz = 0, D p
z = 0. (9)

In order to simplify the above model, we define the following dimensionless quantities:

x ′ = ω
∗x
vl
, z′ = ω

∗z
vl
, t ′ = ω∗t, tn′

= ω∗tn,

t+
′

n = ω
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n0
, D p′

z =
ρsv2

l

λnn0e33
D p
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=
ρsω∗vl

λnn0
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ws′
=
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λnn0
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=
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=
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p′
i j =

τ
p

i j
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,

τ s′
i j =

τ s
i j
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, J s′
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J s

z
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, c1 =
c33
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, c2 =

c44
c11
,
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c13+c44

c11
, e1 =

e15+e31
e33

, v2
l =

λ+ 2µ
ρs , e2 =

e15
e33
,

ε̄ =
ε11
ε33
, η3 =

ε33c11

e2
33

, ω′ =
ω

ω∗
, c′ = c

vl
,
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vp =

√
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λnn0

λT T0
, δ2

1 =
v2

l

v2
p
,
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2λ

T 2
T0λ̄n

ρs(λ+ 2µ)n0
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v2
l
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=
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t

v2
l
, v2
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µ

ρs .

(10)

Here ω∗ is the characteristic frequency and vl and vt are, respectively, the longitudinal and shear wave
velocities.

On substituting quantities (10) in (1)–(7), we obtain

δ2
∇

2
Eus
+ (1− δ2)∇∇ · Eus

−∇N = Ëus, (11)

∇
2 N −

[
−

1
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)
∂
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2
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p
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p
,xz = δ

2
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,xz + c2w

p
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p
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p
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p
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2
1ẅ
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e1u p
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p
,xx +w

p
,zz − η3ε̄φ

p
,xx − η3φ

p
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τ s
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∂us

∂x
+
∂ws

∂z
− N , τ s

xz = δ
2
(
∂us

∂z
+
∂ws

∂x

)
, J s

z =−N,z (16)

τ p
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δ2
1

{
(c3− c2)

∂u p

∂x
+ c1

∂w p

∂z
+φ p

,z

}
, τ p

xz =
ρ̄

δ2
1

{c2
2

(
∂u p

∂z
+
∂w p

∂x

)
+ e2φ

p
,x

}
,

D p
z = (e1− e2)

∂u p

∂x
+
∂w p

∂z
− η3φ

p
,z.

(17)

The scalar and vector point potential functions φs and ψ s in the semiconductor medium through the
relations are introduced as

us
=
∂φs

∂x
+
∂ψ s

∂z
, ws

=
∂φs

∂z
−
∂ψ s

∂x
, (18)

to facilitate the solutions in semiconductor material.
Using relations (18) in (11) and (12), we obtain

∇
2φs
− N − φ̈s

= 0, (19)

∇
2ψ s
=
ψ̈ s

δ2 , (20)

∇
2 N −

[
−

1
t+n
+

(
1+

tn

t+n

)
∂

∂t
+ tn ∂

2

∂t2

]
N − εn∇

2φ̇s
= 0. (21)

Equation (20) corresponds to purely transverse waves in the semiconductor which get decoupled from
rest of the motion and are not affected by the charge carrier fields.
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3. Formal solution of the problem

We assume the harmonic wave solution of the form

(ψ s, φs, N , u p, w p, φ p)= (ψ̄ s, φ̄s, N̄ , ū p, w̄ p, φ̄ p) exp{ik(x − ct)}, (22)

where c=ω/k is the phase velocity and k and ω are the wave number and angular frequency, respectively.
Upon imposing solution (22) in (13)–(15) and (19)–(21), straightforward algebraic simplifications

lead to the following formal solution satisfying the radiation conditions in both the media:

(i) Semiconductor (n-type) halfspace (z ≥ 0):

(φs, N )=
2∑

i=1

(1, Si )As
i e−ni z exp{ik(x − ct)}, ψ s

= As
3 exp{−βz+ ik(x − ct)}. (23)

(ii) Piezoelectric (6 mm class) layer 0≤ z ≤−h:

u p
=

3∑
i=1

(Ap
i emi z

+ B p
i e−mi z) exp{ik(x − ct)},

(w p, φ p)=

3∑
i=1

(Mi , Pi )(A
p
i emi z

− B p
i e−mi z) exp{ik(x − ct)},

(24)

where

α2
= k2(1− c2), Si = n2

i −α
2, n2

i = k2(1− c2a2
i ), i = 1, 2,

β2
= k2

(
1−

c2

δ2

)
, ξ = (1− δ2

1c2),
(25)

A = (c1ε̄+ c2− δ
2
1c2)η3+ 2e2, B = (c2− δ

2
1c2)η3ε̄+ e2

2,

a2
1 + a2

2 = 1+ tn
+ iω−1

(
1+ εn −

tn

t+n

)
+

1
ω2t+n

, a2
1a2

2 = tn
+ iω−1

(
1−

tn

t+n

)
+

1
ω2t+n

,
(26)

m2
1m2

2+m2
2m2

3+m2
3m2

1 = k4 c2 B+ ξ A− c3(c2η3ε̄+ 2e1e2)+ e2
1(c2− δ

2
1c2)

c2(1+ η3c1)
,

m2
1+m2

2+m2
3 = k2 c2 A+ ξ(1+ η3c1)− c3(c3η3+ 2e1)+ c1e2

1

c2(1+ η3c1)
, m2

1m2
2m2

3 = k6 ξ B
c2(1+ η3c1)

,

(27)

Mi =
−ikmi {c3η3(m2

i − k2ε̄)+ e1(m2
i − k2e2)}

(c1m2
i − k2c2+ δ

2
1k2c2)(m2

i − k2ε̄)η3+ (m2
i − k2e2)2

, i = 1, 2, 3,

Pi =
ike1mi

η3(m2
i − k2ε̄)

+
(m2

i − k2e2)

η3(m2
i − k2ε̄)

Mi , i = 1, 2, 3.

(28)
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Substituting the solutions (23) in (16) and (18), we obtain the normal stress, shear stress, current
density, and displacements for the semiconductor material as

τ s
zz =

(
p

2∑
i=1

As
i e−ni z

+ q As
3e−βz

)
exp{ik(x − ct)}, (29)

τ s
xz =

(
−

2∑
i=1

fi As
i e−ni z

+ p As
3e−βz

)
exp{ik(x − ct)}, (30)

J s
z =

2∑
i=1

Si ni As
i exp{−ni z+ ik(x − ct)}, (31)

us
=

(
ik

2∑
i=1

As
i e−ni z

−βAs
3e−βz

)
exp{ik(x − ct)}, (32)

ws
=−

( 2∑
i=1

ni As
i e−ni z

+ ik As
3e−βz

)
exp{ik(x − ct)}, (33)

where

p = δ2(k2
+β2), q = 2ikδ2β, fi = 2ikδ2ni (i = 1, 2), As

i (i = 1, 2, 3)

are the unknowns to be determined. Similarly, we obtain expressions for normal stress, shear stress, and
electric displacement for the piezoelectric layer by using (24) in (17) as

(τ p
zz, D p

z )=

3∑
i=1

{
(yi , bi )(A

p
i emi z

+ B p
i e−mi z) exp{ik(x − ct)}

}
,

τ p
xz =

3∑
i=1

di (A
p
i emi z

− B p
i e−mi z) exp{ik(x − ct)},

(34)

where

yi =
ρ̄

δ2
1
{ik(c3− c2)+ c1mi Mi +mi Pi }, di =

ρ̄

δ2
1

{c2
2
(mi + ik Mi )+ ike2 Pi

}
,

bi = ik(e1− e2)+mi (Mi − η3 Pi ),

(35)

and Ap
i and B p

i (i = 1, 2, 3) are the unknowns to be determined.

4. Secular equation

Considering the formal solution for various field quantities obtained in the previous section and employ-
ing the boundary conditions (8) and (9), we obtain a system of nine coupled homogeneous algebraic
equations in nine unknowns As

i , Ap
i , and B p

i (i = 1, 2, 3). This system has a nontrivial solution if
the determinant of the coefficients of As

i , Ap
i , and B p

i (i = 1, 2, 3) vanishes. After lengthy algebraic
reductions and simplifications, the secular equation for the propagation of guided waves in the considered
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composite structure is obtained as

tanh(m1h)=
g12(g21g33− g31g23)− g13(g21g32− g31g22)

g11(g22g33− g32g23)
, (36)

where

g11 = b21b14−
b11b24

sinh(m1h)
, g1i =

b2i b14− b1i b24

cosh(m1h)
, i = 2, 3,

g2i = b3i b14− b1i b34, i = 1, 2, 3, g3i = b4i b14− b1i b44, i = 1, 2, 3.
(37)

Here bi j (i, j = 1, 2, 3, 4) are given by

b1i = a3i (a25a16− a15a26)− a2i (a35a16− a15a36), i = 1, 2,

b1 j = (a3 j a16− a1 j a36)(a25a16− a15a26)− (a2 j a16− a1 j a26)(a35a16− a15a36), j = 3, 4,

b21 = a41(a25a16− a15a26)−
a21(a45a16− a15a46)

sinh(m1h)
,

b22 = a42(a25a16− a15a26)− a22(a45a16− a15a46),

b2 j = (a4 j a16− a1 j a46)(a25a16− a15a26)− (a2 j a16− a1 j a26)(a45a16− a15a46), j = 3, 4,

b3i = a5i (a25a16− a15a26)− a2i (a55a16− a15a56), i = 1, 2,

b3 j = (a5 j a16− a1 j a56)(a25a16− a15a26)− (a2 j a16− a1 j a26)(a55a16− a15a56), j = 3, 4,

b4i = a6i (a25a16− a15a26)− a2i (a65a16− a15a66), i = 1, 2,

b4 j = (a6 j a16− a1 j a66)(a25a16− a15a26)− (a2 j a16− a1 j a26)(a65a16− a15a66), j = 3, 4.

(38)

The quantities ai j (i, j = 1, . . . , 6) are defined in the Appendix.

5. Solution of secular equation

In general, the wave number and hence the phase velocities of the waves are complex quantities, therefore
the waves will be attenuated in space. In order to solve the secular equation (36), we take

c−1
= V−1

+ iω−1 Q, (39)

where k = R + i Q, R = ω/V , and R and Q are real numbers. Here, it may be noted that V and Q
respectively represent the phase velocity and attenuation coefficient of the waves. Using representation
(39) in various relevant relations, the complex roots m2

i (i = 1, 2, 3) can be computed from (27) with the
help of Cardano’s method. The roots m2

i are further used to solve the secular equation (36) to obtain the
phase velocity and attenuation coefficient of the surface waves by using the functional iteration numerical
technique outlined below.

In general the secular equation (36) is of the form c = φ(c) which on using representation (39) leads
to a system of two real equations f (V, Q)= 0 and g(V, Q)= 0. In order to apply the functional iteration
method we write V = f ∗(V, Q) and Q = g∗(V, Q), where the functions f ∗ and g∗ are selected in such
a way that they satisfy the conditions∣∣∣∣∂ f ∗

∂V

∣∣∣∣+ ∣∣∣∣∂ f ∗

∂Q

∣∣∣∣< 1,
∣∣∣∣∂g∗

∂V

∣∣∣∣+ ∣∣∣∣∂g∗

∂Q

∣∣∣∣< 1, (40)
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for all V , Q in the neighborhood of the root. If (V0, Q0) is an initial approximation of the root, then we
can construct the successive approximations according to the formulae

V1 = f ∗(V0, Q0), Q1 = g∗(V1, Q0),

V2 = f ∗(V1, Q1), Q2 = g∗(V2, Q1),

...
...

Vn+1 = f ∗(Vn, Qn), Qn+1 = g∗(Vn+1, Qn).

(41)

The sequence (Vn, Qn) of approximations of the root will converge to the actual root provided (V0, Q0)

lies in the neighborhood of the actual root. For an initial value of c = c0 = (V0, Q0), the roots mi

(i = 1, 2, 3) are computed from (27) by using Cardano’s method for each value of the nondimensional
wave number (R) for the assigned frequency. The values of mi so obtained are then used in the secular
equation (36) to find the current values of V and Q each time, which are further used to generate the
sequence (41). The process is terminated as and when the condition |Vn+1−Vn|<ε, ε being an arbitrarily
small number to be selected at random in order to achieve the desired accuracy level, is satisfied. The
procedure is continuously repeated for different values of nondimensional wave number to obtain the
corresponding values of the phase velocity and attenuation coefficient. Thus, the real phase velocity and
attenuation coefficient during the propagation of Rayleigh-type waves in the composite structure under
study can be computed from the dispersion relation (36).

5.1. Specific loss. The specific loss is the direct method of defining the internal friction for a material.
According to [Kolsky 1963], in the case of a sinusoidal plane wave of small amplitude, the specific loss
1W/W equals 4π times the ratio of the absolute value of the imaginary part of k to the real part of k.
Here

1W
W
= 4π

∣∣∣∣ Im(k)Re(k)

∣∣∣∣= 4π
∣∣∣Q

R

∣∣∣= 4π
∣∣∣V Q
ω

∣∣∣. (42)

6. Special cases of wave solution

In the case where the piezoelectric layer is absent (h = 0), the composite structure reduces to a semi-
conductor halfspace subjected to stress-free, isoconcentrated or stress-free, impermeable boundary con-
ditions. The secular equation (36) in this case reduces to the following two equations:

(k2
+β2)2(n1+ n2)= 4k2β(n1n2+α

2), (43)

(k2
+β2)2(n2

1+ n1n2+ n2
2−α

2)= 4k2βn1n2(n1+ n2). (44)

Equation (43) corresponds to the secular equation which governs the surface wave motion in the case of
stress-free, isoconcentrated boundary conditions prevailing at the surface of the semiconductor halfspace
and (44) refers to the secular equation for the stress-free, impermeable surface of the semiconductor
halfspace.

Equations (43) and (44) have similar forms as that of the thermoelastic Rayleigh frequency equation
[Maruszewski 1989; Sharma et al. 2007] and hence electron concentration produces the same type of
surface effects as the heat flux conduction/heat transfer phenomenon. In the case where electron and
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elastic fields are uncoupled (εn = 0), from (26) we have

a2
1 = 1, a2

2 = tn
+ iω−1

(
1−

tn

t+n

)
+

1
t+n ω2

,

so that n2
1 = α

2. Consequently (43) and (44) collapse to

(k2
+β2)2 = 4k2αβ. (45)

This is the famous Rayleigh frequency equation [Graff 1975] in a stress-free elastic halfspace.

7. Numerical results and discussion

The analytical solutions for various field quantities obtained lead to the transcendental secular equation
(36) which contains complete information about the effect of different interacting fields and lifespan
of the charge carriers on the phase velocity, attenuation coefficient, and specific loss factor of energy
dissipation. In order to illustrate the theoretical results obtained above, we now present some numerical
results for four composite structures, namely, CdSe-Si, CdSe-Ge, PZT-Si, and PZT-Ge. The material
parameters and constants for the semiconductor halfspace and piezoelectric layer used in the numerical
computations are given in Tables 1 and 2, respectively.

The numerical computations were performed by employing the procedure outlined in Section 5 with
the help of MATLAB programming. The computations were performed for the first three modes of
wave propagation in the considered composite structures. In the following discussion, Rh denotes the
nondimensional wave number for surface waves travelling at the interface of the semiconductor halfspace
and piezoelectric layer while R represents the wave number for Rayleigh surface waves at the free surface
of the semiconductor halfspace.

Figures 2 and 3 present the variations of phase velocity of surface waves at the interface of the com-
posites CdSe-Ge and PZT-Ge, respectively, versus wave number Rh for the first three modes of wave
propagation. The waves are noticed to be dispersive in nature in both cases. There is a sharp decrease in
the phase velocity at long wavelengths. It is clear that the maximum fall in the phase velocity occurs for
0≤ Rh ≤ 2. At small wavelengths phase velocity almost attains a constant value for Rh ≥ 2. Initially the
higher modes of wave propagation have large phase velocity as compared to that of lower-order modes.
Moreover, the velocity profiles are observed to be similar for the considered composite structures with

Sample number Quantity Unit Si Ge

1 ρs Kgm−3 2.3× 103 5.3× 103

2 λ Nm−2 0.64× 1011 0.48× 1011

3 µ Nm−2 0.65× 1011 0.53× 1011

4 Dn m2s−1 0.35× 10−2 1× 10−2

5 n0 m−3 1020 1020

6 αT K−1 2.6× 10−6 5.8× 10−6

Table 1. Physical data for n-type Si and Ge semiconductors [Maruszewski 1989;
Sharma and Thakur 2006].
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Sample number Quantity Unit CdSe PZT-4

1 ρ p kg m−3 5.504× 103 7.5× 103

2 c11 Nm−2 7.41× 1010 13.2× 1010

3 c13 Nm−2 3.93× 1010 7.3× 1010

4 c33 Nm−2 8.36× 1010 11.5× 1010

5 c44 Nm−2 1.32× 1010 2.6× 1010

6 e31 Cm−2
−0.160 −4.1

7 e33 Cm−2 0.347 14.1
8 e15 Cm−2

−0.138 10.5
9 ε11 C2 N−1 m−2 8.26× 10−11 7.1× 10−9

10 ε33 C2 N−1 m−2 9.03× 10−11 5.8× 10−9

11 ε0 F/m 8.854× 10−12 8.854× 10−12

Table 2. Physical data for 6 mm class CdSe [Sharma and Pal 2004] and PZT-4 [Jin et al.
2002] piezoelectric materials.

the exception that phase velocity possesses large magnitude in the case of the PZT-Ge composite as
compared to that of the CdSe-Ge one. It is worth noting that all the modes of wave propagation start
with higher phase velocity at long wavelengths, showing the cutoff frequencies for their existence. The
penetration power of the long wavelength surface waves is higher than that of short wavelengths. Thus at
long wavelengths the medium gets disturbed to its maximum and the coupling between various interacting
fields become operative, thereby increasing the phase velocity and hence the speed of the surface waves.
This is in contrast to short-wavelength waves which just follow the surface without much disturbance to
the core material. This agrees with the conclusion drawn in [Lowrie 2007].
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Figure 2. Phase velocity versus Rh for CdSe-Ge composite.
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Figure 3. Phase velocity versus Rh for PZT-Ge composite.

Figure 4 shows the variation of the attenuation coefficient with wave number Rh for the CdSe-Ge
composite. Here the attenuation coefficient increases with Rh for all the modes. The lower-order modes
of wave propagation possess larger attenuation than the higher modes.

Figure 5 presents the variations of the attenuation coefficient with wave number Rh in the PZT-Ge
composite. In this case the attenuation coefficient first increases with Rh to attain maximum value and
decreases afterwards with Rh. The maxima for attenuation coefficients shift towards larger values of
Rh with increasing mode of wave propagation. Moreover, the PZT-Ge composite possesses a smaller
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Figure 4. Attenuation coefficient versus Rh for CdSe-Ge composite.
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Figure 5. Attenuation coefficient versus Rh for PZT-Ge composite.

attenuation coefficient than that of the CdSe-Si composite structure.
Figures 6 and 7 represent the variations of the specific loss factor of energy dissipation with wave

number Rh in the composites CdSe-Ge and PZT-Ge, respectively. The specific loss factor of waves in
these composites follows similar trends as those of their attenuation coefficients. The variations of phase
velocity with age of the charge carrier field for all the considered composites are shown in Figure 8.
The phase velocity profiles possess almost uniform behaviour with the lifetime except in the CdSe-Ge
composite where it has a slightly large value at 0.1 ps in comparison to the neighboring points, which may
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Figure 6. Specific loss versus Rh for CdSe-Ge composite.
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Figure 7. Specific loss versus Rh for PZT-Ge composite.

be attributed to numerical instability at that point. It is also evident from the phase velocity profiles that
the magnitude of phase velocity is highest for PZT-Ge and lowest in the case of the CdSe-Si composite.
Figure 9 shows the variations of the attenuation coefficient with the lifetime of the carrier field in the
considered composites. It is evident that for CdSe-Si and CdSe-Ge the magnitude of attenuation has a uni-
form value up to t+n = 0.1 ps and decreases afterwards. However, in the PZT-Ge and PZT-Si composites,
the variations of the attenuation coefficient remain almost constant with lifetime. This comparative study
reveals that the PZT-Ge composite has the lowest attenuation while the CdSe-Si exhibits the highest

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0.00001 0.0001 0.001 0.01 0.1 1

Life time

P
h

as
e 

v
el

o
ci

ty
  

  
.

CdSe-Si

CdSe-Ge

PZT-Ge

PZT-Si

Figure 8. Phase velocity versus lifetime (in ps) of carrier field.
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Figure 9. Attenuation coefficient versus lifetime (in ps) of carrier field.

attenuation among all the considered structures. The PZT-Ge composite is a combination of higher
density materials in comparison to CdSe-Si, which has low density, and therefore the phase velocity is
large in value in the former composite because acoustic waves travel faster in the denser medium than
in the rarer one.

Figures 10–14 show the variations of various wave characteristics in the silicon semiconductor half-
space. Figure 10 represents the variations of phase velocity with wave number R in the semiconductor
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Figure 10. Phase velocity versus R in semiconductor halfspace.
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Figure 11. Attenuation coefficient versus R in semiconductor halfspace.

halfspace under stress-free and isoconcentrated as well as stress-free and impermeable boundary con-
ditions. The waves are again attenuated and dispersive in character for the same reason as explained
for Figures 2 and 3. However, there is a sharp decay in the phase velocity of these waves in the range
0≤ R ≤ 2 which attains an almost constant value for R ≥ 2. It may be noticed that the phase velocities
have almost equal magnitudes in the case of both the boundary conditions prevailing at the surface
of the semiconductor halfspace. Figure 11 shows the variations of the attenuation coefficient with wave
number R for stress-free and isoconcentrated as well as stress-free and impermeable boundary conditions
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Figure 12. Specific loss versus R in semiconductor halfspace.
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Figure 13. Phase velocity versus lifetime (in ps) of carrier field in semiconductor halfspace.

at the surface of the halfspace. The attenuation coefficient increases in the range 0≤ R ≤ 2, decreases for
2≤ R ≤ 3 and again increases for 3≤ R ≤ 7 before it decreases with R for stress-free and isoconcentrated
boundary conditions. Similar trends of variations are also noticed in the case of stress-free and imper-
meable conditions with the exception that in this case the attenuation has a high magnitude. Figure 12
presents the variations of the specific loss factor of energy dissipation with wave number R. The specific
loss factor decreases for 0≤ R ≤ 3 and increases for 3≤ R ≤ 6, before it starts decreasing with R in the
case of stress-free and isoconcentrated boundary conditions at the surface of the halfspace. In the case of
stress-free and impermeable boundary conditions it also follows a similar trend. The specific loss factor
has a large magnitude in the case of impermeable conditions as compared to that for the isoconcentrated
one. The attenuation and specific loss profiles show some oscillatory behaviour at long wavelengths,
which is attributed to the fact that the acoustic waves penetrate significantly deep into the medium under
such situations forcing the various coupling parameters of the interacting fields to become operative.
Whereas at short wavelengths, both these quantities show smooth behaviour as the waves mainly travel
along the surface, causing the least disturbance to the medium. Figure 13 shows the variations of phase
velocity with lifetime of the charge carriers in the semiconductor halfspace. Phase velocity remains
almost constant up to t+n = 0.01 ps and then increases rapidly in the case of both boundary conditions. The
generation and recombination of the electrons become more frequent with decreasing lifetime. Moreover,
the wave field interaction with the newly generated electron imparts some energy to it, which results in
decreasing the phase velocity of the wave. The magnitude of the phase velocity is slightly higher for the
stress-free and isoconcentrated boundary conditions as compared to other conditions. The variations of
the attenuation coefficient with lifetime for the semiconductor halfspace are shown in Figure 14. The
attenuation coefficient decreases with decreasing lifetime for both boundary conditions. The attenuation
coefficient has a large magnitude in the case of stress-free and impermeable conditions as compared to
that for stress-free and isoconcentrated conditions for t+n ≥ 0.1 ps.
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Figure 14. Attenuation coefficient versus lifetime (in ps) in semiconductor halfspace.

Figures 15 and 16 show the plots of computer-simulated results in respect of phase velocities and
attenuation coefficients of first mode of wave propagation at t+n = 1 ps in all the considered structures.
Close inspection of the phase velocity and attenuation coefficient profiles in Figures 15 and 16 reveals
that for the same choice of patch/core material in the composite structure, these quantities follow similar
trends in their variations. It is clear that the phase velocity decreases from its initial high value at long
wavelengths to become steady at short wavelengths in all the composites. The phase velocity has a large
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Figure 16. Attenuation coefficient versus Rh for PZT-Ge, PZT-Si, CdSe-Ge, and
CdSe-Si composites.

magnitude in the composites with Ge cores as compared to those with Si. Moreover, the phase velocity
attains a higher magnitude for the PZT patch than for the CdSe patch with the same choice of core
material. The profiles of the attenuation coefficient follow similar trends in their variations for the same
patch materials. In the case of the PZT patch, the attenuation initially increases to attain its maximum
value and decreases afterwards with increasing wave number; it increases at all wave numbers for the
CdSe patch. The attenuation coefficient possesses large values for the CdSe patch in comparison to that
of the PZT patch for the same choice of core material. However, the attenuation is higher for the Si core
than the Ge one. This shows that the PZT-Ge composite has low attenuation and high phase velocity,
which indicates that the wave signal can travel longer distances in this structure. This is attributed to the
fact that the characteristics of the composites consisting of thin-layered structures are dominated by the
layer properties [Wang 2002; Trolier-Mckinstry and Muralt 2004]. Moreover, the generalised Rayleigh
surface waves usually follow the interface surface as their guiding surface by causing less disturbance
to the core material than in the patch. Thus the physical properties of the patch material play a more
vital role in their propagation than those of the core. Hence, it is worth mentioning that the piezoelectric
patch improves the functioning of surface wave devices (SAW) made up of semiconductor materials.

Conclusions

A functional iteration numerical technique along with Cardano’s method has been successfully used to
solve the complex secular equation in order to compute the phase velocities, attenuation coefficients,
and specific loss factors of energy dissipation in CdSe-Si, CdSe-Ge, PZT-Si, and PZT-Ge composite
structures. The phase velocity profiles show dispersive character in all the considered composites. Its
magnitude decreases sharply at long wavelengths and becomes steady and uniform at short wavelengths.
Higher-order modes of wave propagation have larger phase velocity compared to lower-order modes. In
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CdSe-Si and CdSe-Ge composites, the attenuation as well as the specific loss factor of energy dissipation
increase with increasing wave number, whereas both these quantities first increase and then decrease with
increasing wave number in PZT-Si and PZT-Ge composites. Higher-order modes possess less attenuation
and specific loss than lower-order ones. Phase velocity remains almost uniform in all the composites with
the lifetime of the charge carriers. The attenuation in CdSe-Si and CdSe-Ge composites remains almost
constant at short lifetimes and decreases with increasing lifetime. However, attenuation is noticed to
be nearly constant in PZT-Si and PZT-Ge structures. In the n-type silicon halfspace, the phase velocity
is noticed to be dispersive in nature. The attenuation profiles show oscillatory behaviour initially, then
decrease after attaining maximum value, and finally become steady at large wave numbers for both types
of considered boundary conditions. The specific loss factor also shows oscillatory behaviour at long
wavelengths but becomes uniform at short wavelengths. Phase velocity remains constant at short lifetimes
and increases at large values of the lifetime of the charge carrier field in the case where considered
conditions prevail at the surface of semiconductor halfspace. The attenuation decreases with decreasing
lifetime of the charge carriers for both types of boundary conditions. This study may be applicable to
the design of piezoelectric thin-film devices.

Appendix

The coefficients ai j used in (38) are given by

a13 =−P3βS2n2nR
− P3(βp+ ikq)pS,

a1i = (b j − b3)nR
+ (y j − y3)pS, i = 4, 5, j = i − 3,

a16 = βb3nR
+ (q +βy3)pS,

a2i = Mi P3− Pi M3, i = 1, 2,

a23 = {M3βS2− P3(k2
−βn2)}nR

− P3(βp+ ikq)pN ,

a2i = (y j − y3)pN , i = 4, 5, j = i − 3,

a26 =−iknR
+ (q +βy3)pN ,

a3i = di P3− Pi d3, i = 1, 2,

a33 = {d3βS2− P3(ikp−β f2)}nR
− P3(βp+ ikq)pF ,

a3i = (y j − y3)pF , i = 4, 5, j = i − 3,

a36 = pnR
+ (q +βy3)pF ,

a41 = P3 y1− P1 y3
sinh(m3h)
sinh(m1h)

,

a42 = P3 y2 sinh(m2h)− P2 y3 sinh(m3h),

a43 = βS2 y3 sinh(m3h)nR,

a4i = {yi cosh(mi h)− y3 cosh(m3h)}nR, i = 4, 5, j = i − 3,

a46 = βy3 cosh(m3h)nR,
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a5i = P3di cosh(mi h)− Pi d3 cosh(m3h), i = 1, 2,

a53 = βS2d3 cosh(m3h)nR,

a5i = {di sinh(mi h)− d3 sinh(m3h)}nR, i = 4, 5, j = i − 3,

a56 = βd3 sinh(m3h)nR,

a6i = P3bi sinh(mi h)− Pi b3 sinh(m3h), i = 1, 2,

a63 = βS2b3 sinh(m3h)nR,

a6i = {bi cosh(mi h)− b3 cosh(m3h)}nR, i = 4, 5, j = i − 3,

a66 = βb3 cosh(m3h)nR,

where
nR
= (n2

1− n2
2)(βp+ ikq),

pS
= βS2(S1n1− S2n2)−βS2n2(n2

1− n2
2),

pN
= βS2(n2− n1)− (n2

1− n2
2)(k

2
−βn2),

pF
= βS2( f2− f1)− (n2

1− n2
2)(ikp−β f2).
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