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WITH FREE EDGES

ANIRBAN MITRA, PRASANTA SAHOO AND KASHINATH SAHA

Large-amplitude free-vibration analysis of stiffened plates subjected to uniformly distributed transverse
loading with free flexural boundary conditions is presented. The free edge is taken with different com-
binations of clamped and simply supported end conditions for three types of stiffened plates classified
according to number and orientation of stiffeners. The computational domain is divided into an ade-
quate number of subdomains based on the number, orientation, and location of stiffeners to generate
the appropriate grid of computation points. Nonlinear strain displacement relations are considered in
the formulation but the effects of shear deformation have been neglected. The analysis involves two
steps. First the static displacement field of the system is solved for. The second step takes up the free-
vibration analysis on the basis of the known static displacement field. The mathematical formulation of
the static problem is based on the principle of minimum potential energy, whereas Hamilton’s principle
has been applied for the dynamic analysis. The results are validated with the published results of other
researchers. The dynamic behavior is presented in the form of backbone curves in a dimensionless
frequency-amplitude plane. Three-dimensional mode shape plots are also presented along with contour
plots in a few specific cases.

A list of symbols can be found on page 911.

1. Introduction

In marine construction and aerospace structures stiffened plates are extensively used due to their enhanced
stiffness and stability characteristics. They also have widespread application in many branches of modern
civil, mechanical, and structural engineering. Hence, investigation of the dynamic behavior of stiffened
plates has always been an area of immense interest to researchers. Research work on the dynamic
characteristics of stiffened plates has a long history as different researchers have employed different
methodologies to perform dynamic analysis of such structures. The comprehensive review [Mukherjee
and Mukhopadhyay 1986] documents different numerical and analytical tools used in earlier years to
study the dynamic behavior of stiffened plates.

Aksu and Ali [1976] developed a variational technique in conjunction with finite difference formula-
tion to obtain natural frequencies and mode shapes of eccentrically stiffened rectangular plates having a
single stiffener. Their formulation considered in-plane displacements and inertia in the direction of the
stiffener and the total energy of the system was minimized with respect to discretized displacement com-
ponents. This free-vibration analysis was later extended to cross-stiffened plates thus taking into account
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in-plane inertia effects for two directions in [Aksu 1982]. In [Prathap and Varadan 1978] large-amplitude,
free flexural vibrations of simply supported and clamped thin elastic orthotropic stiffened plates with
immovable and movable in-plane edges were studied. The governing dynamic equations were derived
in terms of nondimensional parameters and solved on the basis of a single-term vibration mode shape by
making use of Galerkin’s method. Varadan and Pandalai [1979] obtained modal equations for nonlinear
free vibration of eccentrically stiffened elastic rectangular plates through Lagrange’s equation and an ap-
proximate analytical solution based on one-term transverse displacement was determined. They analyzed
plates having clamped boundary conditions with movable in-plane edges and observed hardening-type
nonlinearity.

Mukherjee and Mukhopadhyay [1988] performed free-vibration analysis of eccentrically stiffened
plates using an isoparametric quadratic stiffened plate bending element. They included the effect of
shear deformation in the formulation and studied the effects of eccentricity, shape, and torsional stiffness
on the natural frequencies and mode shapes of the system. In [Koko and Olson 1992] free-vibration
analysis of rectangular plates with discrete stiffeners was carried out utilizing the superelements and
including the effects of bending and in-plane effects as well as beam torsion and lateral bending motion.
In [Rao et al. 1993b] a large-amplitude free flexural vibration study of eccentrically stiffened plates
incorporating in-plane and shear deformation effects was presented. Harik and Guo [1993] introduced a
compound finite element model based on small deflection and thin plate theory to examine eccentrically
stiffened plates in free vibration. Their formulation considered membrane forces for the plate and axial
forces in the stiffener. In [Chen et al. 1994] a spline compound strip method was proposed, where the
plate was discretized in only one direction, for analyzing the free-vibration problem of stiffened plates.
Bedair and Troitsky [1997] analyzed eccentrically and concentrically stiffened simply supported plates
on the basis of energy formulation and mathematical programming techniques and studied the effect of
variation in plate and stiffener geometric parameters on the fundamental frequency of the system.

Although substantial research has been carried out in the field of vibrations of stiffened plates, interest
in this field has not diminished. Vibration analysis of stiffened plates using hierarchical finite elements
with a set of local trigonometric interpolation functions was presented in [Barrette et al. 2000]. In [Zeng
and Bert 2001] a differential quadrature analysis of the free vibration of eccentrically stiffened plates
having simply supported or clamped boundaries at all edges was implemented. In [Peng et al. 2006]
free vibration and stability analysis of stiffened plates via the first-order shear deformable theory and
mesh-free Galerkin method was performed. Sapountzakis and Mokos [2008] developed an improved
model and obtained eigenfrequencies as a general solution for dynamic analysis of plates stiffened by
arbitrarily positioned parallel beams. In [Dozio and Ricciardi 2009] a computationally efficient combined
analytical-numerical method was presented for low-frequency free-vibration analysis of thin rectangular
plates stiffened by a small number of light stiffeners.

A general method taking into account the nonuniform torsional response of the stiffener for free
vibration of plates and shells stiffened by beams of arbitrary cross-section was introduced in [Vörös
2009]. In [Xu et al. 2010] an analytical method was put forward for the vibration analysis of plates
stiffened by any number of beams of arbitrary lengths and placement angles considering coupling at
an interface of plate and beam. In [Deb Nath et al. 2010] an analytical solution of elastic fields for a
stiffened plate subjected to axial tension and pure bending was obtained using an alternative displacement
potential approach.
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The majority of the dynamic studies are confined to stiffened plates with simply supported or clamped
boundaries; only in few cases are a combination of simply supported and clamped-end conditions con-
sidered. Works on stiffened plates having free boundaries are also limited. In [Bapu Rao et al. 1978]
an experimental study was carried out to determine the resonant frequencies and mode shapes of rib-
stiffened skew cantilever plates by holographic interferometry. In [Irie et al. 1982] a stiffened trapezoidal
cantilever plate with a clamped end and three free boundaries was analyzed and the natural frequencies
and mode shapes were numerically calculated. However, some works considering unstiffened plates
with free edges are available in literature. In [Rossi et al. 1998] small-amplitude transverse vibration of a
rectangular orthotropic plate with a free edge and a concentrated mass was considered. In [Shuyu 2001]
an analytical method was presented to predict the natural frequency of flexural vibration of rectangular
thin plates with free boundary conditions. In [Wang and Xu 2010] discrete singular convolution was
utilized to determine nondimensional frequency parameters for clamped (CCCC), clamped with one free
edge (CFCC), and free (FFFF) rectangular plates.

A review of the existing literature reveals that studies are primarily focused on free-vibration analysis
of stiffened plates with simply supported, clamped, and a combination of both boundary conditions,
whereas studies on stiffened plates with free edges are limited. It is also noted that the emphasis is
mainly on developing different methodologies to obtain the natural frequencies compared to studying
the variations in the dynamic behavior corresponding to changes in system geometry and boundary
conditions. Works on large-amplitude dynamic behavior, specifically the effect of loaded vibration
amplitude on the natural frequency of stiffened plates, are also rare. We investigate large-amplitude
dynamic behavior of stiffened plates for various boundary conditions including a single free edge. It also
looks into the effect of vibration amplitude on loaded natural frequency. The results for large-amplitude
behavior are presented in terms of backbone curves in the dimensionless amplitude-frequency plane.
These results have been documented for the first six vibration modes of stiffened plates under uniformly
distributed transverse loading. Vibration mode shapes are also provided corresponding to the minimum
and maximum amplitudes of vibration. Unlike in finite element analysis (FEA), where the physical
domain is discretized into smaller finite elements, the present semianalytical formulation is associated
with the whole domain, that is, the assumed displacement field is a function of the whole physical domain.
As a result, the number of algebraic equations to be solved is substantially reduced compared to FEA.

2. Mathematical formulation

A thin rectangular plate (a× b× tp) orthogonally stiffened by eccentric stiffeners parallel to the edges
of the plate is shown in Figure 1, which also depicts the significant dimensions of the system and the
coordinate system for the present analysis. It is assumed that the stiffeners are rigidly attached to the plate
such that no relative motion can take place and no field discontinuity can occur between the two. Although
the figure shows only one stiffener along each of the coordinate directions, the mathematical formulation
is carried out for multiple stiffeners having generalized location in both directions. The number of
stiffeners in the x and y-directions are represented by nsx and nsy , respectively, and the location of the
q-th stiffener along the y-direction and the p-th stiffener along the x-direction are denoted by xq

stf and
y p

stf. The eccentricity (ep
x , eq

y) of the stiffeners is quantified by the perpendicular distance between the
centroid (CG) of the stiffener cross-section and the midplane of the plate. Only rectangular stiffener
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Figure 1. Stiffened plate with significant dimensions and coordinate system.

cross-sections are considered: (bp
sx × t p

sx) for the p-th stiffener parallel to the x-axis and (bq
sy × tq

sy) for
the q-th stiffener along the y-axis. The mathematical formulation is further based on the assumptions that
the plate and stiffener materials are isotropic, homogeneous, and linearly elastic and the plate thickness
(tp) is small enough compared to its lateral dimensions (a and b) so that the effects of shear deformation
and rotary inertia can be ignored.

The physical domain in the x-y coordinate system as shown in Figure 1 is converted to the com-
putational domain by normalizing the midplane coordinates as ξ = x/a and η = y/b. In this ξ -η
computational plane, Gauss points are generated along the two orthogonal coordinate directions and
constant ξ and constant η lines are drawn through the generated Gauss points. Intersections of these
constant ξ and constant η lines provide a grid of reference points for computations. However, a stiffener
can be placed at any location inside the domain and as the locations of the Gauss points are fixed, there
may not be a sufficient number of computation points around a stiffener. Hence, depending on the
number, orientation, and location of the stiffeners the domain is decomposed into subdomains, which
have their own Gauss points spaced in the same ratio as the original domain. This technique helps to
have an adequate number of computation points around the location of stiffeners and boundaries of the
plate so that the displacement field can be captured accurately. Such decomposed domains with modified
grids corresponding to different types of plates having different stiffener orientations and positions are
shown in Figure 2.
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Figure 2. Decomposed computational domain along with schematic representations for
(a) uniaxially single stiffened (UASS), (b) uniaxially double stiffened (UADS), and (c) bi-
axially cross stiffened (BACS) plates.

In nonlinear vibration, frequency is a function of the vibration amplitude and the nature of the deflected
profile [Bikri et al. 2003; Das et al. 2009]; moreover, the amplitude of vibration at a point within a
vibrating continuous system depends on the location. In studying the effect of vibration amplitude on
the dynamic behavior of stiffened plates, the maximum amplitude of vibration is taken as representative
of the amplitude. The deflection profile of a system is dependent on the boundary conditions of the
system and the nature of loading to which it is subjected. Different boundary conditions may arise from
the different combinations of clamped, simply supported, and free end conditions of a plate. However,
the present paper only deals with combinations of simply supported and clamped boundary conditions
with a single free edge, under transverse uniformly distributed loading (UDL).

Large-amplitude free-vibration analysis of a nonlinear system is essentially the same as free-vibration
analysis of the system subjected to a static load producing such large-amplitude deflection [Crandall
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1956]. Here, the system is assumed to execute small-amplitude vibration about the statically deflected
equilibrium configuration as opposed to large-amplitude vibration about its undeformed equilibrium
position. Hence, the present large-amplitude free-vibration analysis of stiffened plates is performed in
two steps. First, large displacement is statically imposed by applying uniform transverse loading on the
stiffened plate and then the free-vibration analysis is performed as an eigenvalue problem to identify the
loaded natural frequency. The static analysis yields the initial deflection profile, which is used in the
subsequent free-vibration analysis. As the dynamic problem is solved on the basis of the solution of the
static displacement field, the effect of a statically imposed large amplitude of vibration is incorporated
into the dynamic system. The mathematical formulation for both the static and dynamic problems is based
on the variational form of the energy principle. Nonlinear strain displacement relations are considered
in order to incorporate geometric nonlinearity in the system.

2.1. Static analysis. The principle of minimum potential energy [Reddy 2002] can be mathematically
expressed as

δ(U + V )= 0. (1)

Here, V is the work function or potential of the external forces and U is the total strain energy stored
in the system. For a stiffened plate under an externally applied uniformly distributed load of intensity p,
the total potential energy is given by

V =−(ab)
∫ 1

0

∫ 1

0
(pw)dξdη. (2)

The total strain energy (U ) of the system consists of two components, namely the strain energy of the
plate (Up) and the total strain energy stored in all the stiffeners (Us). In the case of large-displacement
analysis of plates, both bending and stretching effects are taken into consideration. So, the strain energy
of the plate (Up) also consists of two parts: strain energy due to pure bending (Ub) and strain energy due
to stretching (Um) of its midplane. The expressions of Ub and Um are well-known for rectangular plates
[Saha et al. 2004] and are indicated here for ready reference:

Ub =
D
2
(ab)

∫ 1

0

∫ 1

0

[{
1
a2 (w,ξξ )+

1
b2 (w,ηη )

}2

+2(1−ν)
1

a2b2 {(w,ξη )
2
− (w,ξξ )(w,ηη )}

]
dξdη,

Um =
E ptp

2(1− ν2)
(ab)

∫ 1

0

∫ 1

0

[
1
a2 (u,ξ )

2
+

1
a3 (u,ξ )(w,ξ )

2
+

1
b2 (v,η )

2
+

1
b3 (v,η )(w,η )

2

+
1
4

{ 1
a2 (w,ξ )

2
+

1
b2 (w,η )

2
}2
+2ν

{ 1
ab
(u,ξ )(v,η )+

1
2a2b

(v,η )(w,ξ )
2
+

1
2ab2 (u,ξ )(w,η )

2
}

+
1−ν

2

{ 1
b2 (u,η)

2
+

2
ab
(u,η)(v,ξ )+

1
a2 (v,ξ )

2
+

2
ab2 (u,η)(w,ξ )(w,η)+

2
a2b

(v,ξ )(w,ξ )(w,η)
}]

dξdη,

(3)

where E p, ν, and D (= E pt3
p/12(1 − ν2)) are the elastic modulus, Poisson’s ratio, and the flexural

rigidity of the plate, respectively. The displacement fields of the plate along the x , y, and z-directions
are represented by u, v, and w, respectively. The expression for strain energy stored in the stiffeners (Us)
can be written as Us =

∑nsx
p=1 U p

sx +
∑nsy

q=1 U q
sy , where U p

sx and U q
sy are strain energies stored in the p-th

stiffener along the x-direction and the q-th stiffener along the y-direction, respectively. In order to derive
the expressions for strain energies of the individual stiffeners a compatible strain distribution at the line
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joining the plate and the stiffener is assumed. Hence, the axial strain of a stiffener along the x-direction is
derived from the expression ε p

sx = εpx |z=tp/2− (z− tp/2)w,xx −ysv,xx , where the plate strain at z = tp/2
is denoted by εpx |z=tp/2 and ys denotes the distance from the local minor axis. Substituting for the plate
strain, εpx |z=tp/2 = u,x +0.5(w,x )2 − (tp/2)w,xx , the expression for the total strain of an x-direction
stiffener is obtained as ε p

sx = u,x +0.5(w,x )2−zw,xx −ysv,xx . So, the axial strain of a stiffener along the
x-direction includes axial strain due to bending action about the major axis, stretching of the neutral axis,
and bending action about the minor axis. It should be pointed out that the effect of shear deformation due
to direct shear and torsion has not been taken into consideration while calculating the total axial strain.
Substituting the total strain in the generalized expression of strain energy, U p

sx = (Es/2)
∫

vol(ε
p
sx)

2 dV ,
the final expression of the strain energy stored in a x-direction stiffener is obtained. Similarly, the strain
energy expression of a y-direction stiffener can be obtained and the final expression of total stiffener
strain energy (Us) is given by

Us =

nsx∑
p=1

Esa
2

∫ 1

0

[
(I p

y + Ap
y ep

x
2
)

a4 (w,ξξ )
2
+
(I p

yz + Ap
y (bη

p
stf)

2)

a4 (v,ξξ )
2

− Q p
y

{
2
a3 (u,ξ )(w,ξξ )+

1
a4 (w,ξξ )(w,ξ )

2
}
+ Ap

y

{
1
a2 (u,ξ )

2
+

1
4a4 (w,ξ )

4
+

1
a3 (u,ξ )(w,ξ )

2
}]

dξ

+

nsy∑
q=1

Esb
2

∫ 1

0

[
(I q

x + Aq
x eq

y
2
)

b4 (w,ηη )
2
+
(I q

xz + Aq
x (aξ

q
stf)

2)

b4 (u,ηη )2− Qq
x

{
2
b3 (v,η )(w,ηη )

+
1
b4 (w,ηη )(w,η )

2
}
+ Aq

x

{
1
b2 (v,η )

2
+

1
4b4 (w,η )

4
+

1
b3
(v,η )(w,η )

2
}]

dη. (4)

Here, Es is the elastic modulus of the stiffener material. I q
x (= bq

sy tq
sy

3
/12), I p

y (= bp
sx t p

sx
3
/12) and I q

xz

(= bq
sy

3tq
sy/12), I p

yz (= bp
sx

3t p
sx/12) are moments of inertia about the major and minor axes of the stiffener

cross-section. Q p
y (= Aq

x eq
y ), Qq

x (= Ap
y ep

x ) are the first moment of area about the plate midplane and
Ap

y , Aq
x are the cross-sectional areas of the p-th x and q-th y-direction stiffeners, respectively. In the

expressions of the energy functionals ξ and η are the dimensionless forms of the midplane coordinates
which are associated with the computational domain.

2.1.1. Approximate displacement fields. The plate displacement fields (w, u, and v) can be approxi-
mately expressed as linear combinations of unknown coefficients di as:

w(ξ, η)=

nw∑
i=1

diφi (ξ, η), u(ξ, η)=
nw+nu∑

i=nw+1

diαi−nw(ξ, η), v(ξ, η)=

nw+nu+nv∑
i=nw+nu+1

diβi−nw−nu(ξ, η), (5)

where φ(ξ, η), α(ξ, η), and β(ξ, η) are sets of orthogonal functions for w, u, and v, respectively. The
functions φi (ξ, η) are associated with displacements due to bending, whereas αi (ξ, η) and βi (ξ, η) de-
scribe stretching of the midplane of the plate. Appropriate start functions for these orthogonal sets are
selected in such a way that they satisfy the flexural and membrane boundary conditions of the plate. The
two-dimensional (2D) start functions are generated from one-dimensional (1D) functions corresponding
to the two coordinate directions. The 1D starting functions for transverse displacement are taken to be the
beam deflection functions, derived from the static deflection shape of the beam under uniform loading,
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Figure 3. Plots of 1D beam functions.

corresponding to the boundary condition of the plate along the particular coordinate axis. A complete
set with 21 different boundary conditions may arise from the different combinations of clamped (C),
simply supported (S), and free (F) end conditions of a plate. But it is found that six basic beam functions,
represented as CC, CS, CF, SS, SF, and FF, are sufficient to generate 2D start functions corresponding to
all the classical boundary conditions possible for a plate. Both transcendental and polynomial functions
are used to describe these 1D beam functions [Blevins 1981] and they are graphed in Figure 3.

As per the requirements of the numerical scheme, all the functions are described numerically within the
computational domain at the selected Gauss points. The higher-order 1D functions are generated through
a numerical implementation of the Gram–Schmidt orthogonalization procedure. However, the necessary
rigid body modes for SF and FF beams are incorporated by inserting appropriate functions into the
corresponding sets of orthogonal functions. The 2D functions are obtained through ordered multiplication
of the 1D functions for two orthogonal directions and are specified for various boundary conditions
involving a single free edge in Table 1. The notation for the boundary conditions of the plate has been
specified through its edge conditions, starting from the edge x = 0 and proceeding counterclockwise.

Boundary condition Start function for w(φ1(ξ, η))

CCCF ξ 2(1− ξ)2
(
cosh(Aη)− cos(Aη)+ B{sinh(Aη)− sin(Aη)}

)
CCSF ξ 2(3− 5ξ + 2ξ 2)

(
cosh(Aη)− cos(Aη)+ B{sinh(Aη)− sin(Aη)}

)
CSCF ξ 2(1−ξ)2

(
cosh(C(1−η))− cos(C(1−η))+ D{sinh(C(1−η))− sin(C(1−η))}

)
CSSF ξ 2(3− 5ξ + 2ξ 2)

(
cosh(C(1− η))− cos(C(1− η))

+ D{sinh(C(1− η))− sin(C(1− η))}
)

SCSF sin(πξ)
(
cosh(Aη)− cos(Aη)+ B{sinh(Aη)− sin(Aη)}

)
SSSF sin(πξ)

(
cosh(C(1− η))− cos(C(1− η))+ D{sinh(C(1− η))− sin(C(1− η))}

)
Table 1. Start functions for assumed displacement fields w.
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The start functions for stretching displacement of the plate (u and v) come from in-plane or membrane
boundary conditions and zero displacement is assumed at the edges (u= 0 at ξ = 0, 1 and v= 0 at η= 0, 1)
to obtain the 1D starting polynomial functions. It should be pointed out that at the free end of the plate
the transverse displacements are unrestricted, but the in-plane boundary condition is immovable, that is,
displacements are restricted at all the ends including the free edge. Similar to the previous case, the 2D
base functions are generated by multiplying the 1D start functions for the two orthogonal directions; these
functions are given by α1(ξ, η)= {ξ(1−ξ)}.{η(1−η)} and β1(ξ, η)= {ξ(1−ξ)}.{η(1−η)}. However, in
this case the higher-order functions are generated from the start functions following a two-dimensional
implementation of the Gram–Schmidt orthogonalization scheme. The Gram–Schmidt orthogonalization
principle and its two-dimensional implementation have been discussed in detail in [Saha et al. 2004; Das
et al. 2009]. It should be noted that the generated functions are for the total domain and they need to
be broken down in terms of the subdomains. These sets of functions for the subdomains are derived by
carrying out interpolation operations on the total functions and are represented by φmn

i , αmn
i , βmn

i , where
m = 1, . . . , nsy + 1 and n = 1, . . . , nsx + 1.

2.1.2. Governing system of equations. Substituting the complete energy expressions and the approxi-
mate displacement fields into (1), the set of system governing equations in matrix form is obtained as

[K ({d})]{d} = { f }. (6)

Here, [K ], {d}, and { f } are stiffness matrix, vector of unknown coefficients, and load vector, respectively.
The total stiffness matrix [K ] of the system is given by [K ] = [Kb]+[Km]+

∑nsx
p=1[Ksx ]

p
+
∑nsy

q=1[Ksy]
q ,

where [Kb] and [Km] are contributions from the bending and stretching action of the plate, and [Ksx ]
p

and [Ksy]
q represent the stiffness matrices of the p-th stiffener along the x-direction and the q-th stiffener

along the y-direction, respectively. The details of the elements of the stiffness matrices and load vector
are furnished in the Appendix.

2.1.3. Solution methodology for static displacement field. As large displacement induced by geometric
nonlinearity is taken into consideration, the stiffness matrix [K ] includes elements that contain the un-
known coefficients {d}, to be determined subsequently. The stiffness matrices for the stiffeners also
include some terms containing the unknown coefficients. As a result the system of governing equations
presented in (6) becomes nonlinear in nature and cannot be solved directly. Hence, the solution method-
ology specially adopted to solve the set of nonlinear equations employs an iterative procedure utilizing a
direct substitution technique with a successive relaxation scheme [Cook et al. 1989]. At the start of the
solution procedure necessary parameters that cater to the iterative scheme, for example, the relaxation
parameter (λ), error limit (ε), etc., are chosen along with a starting load value. The linear component
of the stiffness matrix [Kb] is computed and an initial guess (generally taken as 0) for the unknown
coefficients is assumed. The total stiffness matrix [K ] is calculated on the basis of the assumed values
and a new set of unknown coefficients is determined from the expression {d}(n+1)

= [K ({d}(n))]−1
{ f },

where n denotes the iteration counter. A comparison between the calculated values and the corresponding
values in the previous iteration is carried out to determine the error. If the error comes out to be within
the predefined limit of tolerance, convergence is achieved. Otherwise, if the error is outside the specified
value the next iteration is performed with modified values of the unknown coefficients, computed by
the relation {d} = {d}old+ λ({d}− {d}old). Once convergence is achieved for a particular load step, an
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increment is provided to the load and the present solution is taken as the initial guess for the next load
step.

2.2. Dynamic analysis. The governing set of equations for the dynamic analysis is derived following
Hamilton’s principle, which is expressed as

δ

(∫ τ2

τ1

(T −U )dτ
)
= 0. (7)

According to Hamilton’s principle a dynamic system can be characterized by two energy functionals,
kinetic energy and potential energy. In the case of a free vibration analysis the potential energy is made
up of only the strain energy of the system, as the potential of the external forces is reduced to zero. So,
in the mathematical expression T and U represent the total kinetic energy of the system and the total
strain energy stored in the system. The variational operator and time coordinate are denoted by δ and τ ,
respectively. The total kinetic energy (T ) is a summation of the plate kinetic energy (Tp) and stiffener
kinetic energy (Ts), that is,

T = Tp + Ts, where Ts =

nsx∑
p=1

T p
sx +

nsy∑
q=1

T q
sy . (8)

T p
sx and T q

sy are kinetic energies of the p-th stiffener along the x-direction and the q-th stiffener along
the y-direction, respectively. The expressions for the kinetic energies of plate and individual stiffeners
are, in terms of dynamic displacement fields,

Tp =
1
2ρptp(ab)

∫ 1

0

∫ 1

0
(ẇ2
+ u̇2
+ v̇2)dξdη,

T p
sx =

1
2ρs t p

sx(abp
sx)

∫ 1

0
(ẇ2
+ u̇2
+ v̇2)dξ,

T q
sy =

1
2ρs tq

sy(bbq
sy)

∫ 1

0
(ẇ2
+ u̇2
+ v̇2)dη,

(9)

where ρp and ρs are the densities of the plate and stiffener materials. The expressions of strain energies
for the plate (Ub and Um) and stiffeners (Us) are identical to those given by (3) and (4). These energy func-
tionals are determined from the assumed transverse (w(ξ, η, τ )) and in-plane (u(ξ, η, τ ) and v(ξ, η, τ ))
dynamic displacement fields, which are associated with the midplane of the plate. The assumed dynamic
displacements are separable in space and time and can be approximately represented by finite linear
combinations of orthogonal admissible functions and a new set of unknown coefficients, denoted by {c}:

w(ξ, η, τ )=

nw∑
i=1

ciφi eiωτ ,

u(ξ, η, τ )=
nw+nu∑

i=nw+1

ciαi−nwe(i−nw)ωτ ,

v(ξ, η, τ )=

nw+nu+nv∑
i=nw+nu+1

ciβi−nw−nue(i−nw−nu)ωτ .

(10)



LARGE-AMPLITUDE DYNAMIC ANALYSIS OF STIFFENED PLATES WITH FREE EDGES 893

In these expressions ω is the natural frequency of the system and {c} denotes the eigenvectors in ma-
trix form which represent the contribution of the individual space functions in a particular vibration
frequency mode. The spatial functions φi (ξ, η), αi (ξ, η), and βi (ξ, η) are identical to those for the static
analysis in (5). Substitution of the kinetic (T ) and strain energy (U ) expressions along with the dynamic
displacement fields gives the governing equation of the dynamic system in the following form:

−ω2
[M]{c}+ [K ]{c} = 0, (11)

where [K ] is the stiffness matrix of the system at the deflected configuration. This implies that the un-
known parameters obtained from the converged static solution are used to compute the starting values for
solving the dynamic problem. In the above expression, [M] is the mass matrix that includes contributions
from the plate ([Mp]) and the x and y-direction stiffeners ([Msx ] and [Msy]). So, the final expression for
the total mass matrix is obtained as [M] = [Mp] + [Msx ] + [Msy]. The form of [M] is given by

[M] =

M11 0 0
0 M22 0
0 0 M33

 ,
where

[M11] = ρptp(ab)
nw∑
j=1

nw∑
i=0

∫ 1

0

∫ 1

0
φiφ j dξdη+

nsx∑
p=1

[
ρs t p

sx(abp
sx)

nw∑
j=1

nw∑
i=1

∫ 1

0
φiφ j dξ

]

+

nsy∑
q=1

[
ρs tq

sy(bbq
sy)

nw∑
j=1

nw∑
i=1

∫ 1

0
φiφ j dη

]
,

[M22] = ρptp(ab)
nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0

∫ 1

0
αi−nwα j−nw dξdη

+

nsx∑
p=1

[
ρs t p

sx(abp
sx)

nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0
αi−nwα j−nw dξ

]

+

nsy∑
q=1

[
ρs tq

sy(bbq
sy)

nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0
αi−nwα j−nw dη

]
,

[M33] = ρptp(ab)
nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

∫ 1

0
βi−nw−nuβ j−nw−nu dξdη

+

nsx∑
p=1

[
ρs t p

sx(abp
sx)

nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0
βi−nw−nuβ j−nw−nu dξ

]

+

nsy∑
q=1

[
ρs tq

sy(bbq
sy)

nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0
βi−nw−nuβ j−nw−nu dη

]
.

The governing equation of the dynamical system (11) can be alternatively written as

[[M]−1
[K ]]{c} = ω2

{c}.
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This is a standard eigenvalue problem which is solved numerically through IMSL routines. The square
roots of the computed eigenvalues give the free vibration frequencies at the statically deflected configura-
tion of the stiffened plate and are called the loaded natural frequencies. The amplitude of free vibration
is obtained from the transverse displacement fields associated with the eigenvalues. The plot of the
loaded natural frequencies against the corresponding amplitudes in a nondimensional plane represents
the backbone curve of the system. The eigenvectors corresponding to the eigenvalues are utilized to
determine the mode shapes of the vibrating system.

3. Results and discussion

Our analysis is carried out for three different types of stiffened plates — uniaxially single stiffened, uni-
axially double stiffened, and biaxially cross stiffened — under a uniformly distributed load. The classi-
fication is according to the number and orientation of the stiffeners, as shown schematically in Figure 2,
which also presents the decomposed computational domains that provide an improved grid corresponding
to the three different types of stiffened plates. As stated earlier, for each of the three types of plates, six
classical flexural boundary conditions are considered: CCCF, CCSF, CSCF, CSSF, SCSF, and SSSF, each
letter indicating an edge condition, moving counterclockwise beginning with the edge x = 0. Thus there
is a single free edge, always at y = b, and the other edges are variously clamped or simply supported.
These flexural boundary conditions dictate the choice of start functions for the definition of transverse
deflection (w). The base functions for the in-plane displacement (u and v) of the plate are derived from
the membrane boundary conditions, which are modeled as immovable edges in all cases.

The process of generation of start functions for both transverse and deformation displacement has
been discussed in Section 2.1.1, and Table 1 presents base functions for individual cases of flexural
end conditions. The Gram–Schmidt orthogonalization principle is utilized to generate a complete set of
higher-order functions and adequate measures are taken to insert rigid body modes wherever necessary.
The number of functions for each of the plate displacements (u, v, and w) is taken as 25 (5× 5), where
the numbers in the parentheses indicate the number of functions corresponding to the two orthogonal
directions. Due to the general nature of the formulation any other classical flexural boundary conditions
can be handled through this method. It should also be mentioned that the present methodology can be
applied for any other transverse loading pattern, mathematically expressible in terms of the coordinates.

The analysis is based on determining the static displacement field first and subsequently computing
the eigenvalues of the corresponding dynamic problem based on the known static displacement field.
The solution methodology of the static problem involves an iterative numerical scheme using successive
relaxation due to presence of nonlinearity in the stiffness matrix. The tolerance value of the error limit
(ε) for the numerical iterative scheme is fixed at 0.50% and the relaxation parameter (λ) is taken as 0.50.
The solution of the dynamic problem is obtained using IMSL routines.

To determine the number of Gauss points to be used for generation of results a convergence study
is carried out on a uniaxially single stiffened plate under uniformly distributed transverse loading. The
details of the plate and stiffener geometry, material properties, and boundary conditions are provided
in the figure’s legend. For a transverse load of 100 kPa intensity, the normalized maximum deflection
(wmax/tp) of the system is plotted against a number of Gauss points (ng) in Figure 4. A choice of 24 Gauss
points for the present work is made from the convergence study. The initial choice of number of Gauss
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Figure 4. Convergence study for selection of a number of Gauss points.

points dictates the grid density of the computational domain after applying the domain decomposition
technique. However, with increase in the stiffener number, the number of subdomains increases and as
each subdomain has a grid of ng× ng reference points, the computations become extensive.
3.1. Validation study. The formulation and solution methodology used in the present work are validated
through comparison with results available in the existing literature. The load-deflection curve obtained
from the static analysis incorporating geometric nonlinearity is compared with the results of [Koko and
Olson 1992; Rao et al. 1993a; Sheikh and Mukhopadhyay 2000]. A clamped (CCCC) stiffened plate,
whose geometry and dimensions (in mm) are provided in Figure 5, left, under uniformly distributed
transverse pressure is analyzed and the comparison plots at two different locations on the plate, A and B,
are presented in Figure 5, right. Fairly good agreement with the results of other researchers is observed.
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Figure 5. Left: detailed geometry and dimensions of clamped (CCCC) stiffened plate
used for validation purpose. Right: comparison of load deflection behavior of clamped
stiffened plate at selected points.
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Figure 6. Deflected profile of simply supported square stiffened plate under UDL.

A comparison of the deflected shape of a simply supported (SSSS) square plate with one stiffener
under UDL generated through the present method is carried out with results furnished by [Bedair 1997a].
The details of the plate geometry and the material properties are furnished in Figure 6, left, and the results
are generated for a uniformly distributed load of 1.0 psi. The comparative plot in Figure 6, right, shows
that deflected profiles have identical natures and agreement between the two sets of results is excellent.

The dynamic problem is validated by comparing the linear free vibration frequencies of different
modes for a system with reduced complexity. Table 2 shows the free vibration frequency parameters
ωa2√ρtp/D for the first six modes of an unstiffened square plate with various boundary conditions,

Boundary condition Mode= 1 2 3 4 5 6

CCCC
[Leissa 1973] 24.012 40.029 63.471 76.745 80.704 116.799

Present 23.939 40.029 63.280 78.031 80.668 118.035

CCSF
[Leissa 1973] 17.621 36.044 52.060 71.182 74.339 106.294

Present 17.546 36.045 51.851 71.167 75.668 106.324

CSCF
[Leissa 1973] 23.469 35.604 63.135 66.809 77.495 108.985

Present 23.401 35.606 62.964 67.303 77.496 109.981

CSSF
[Leissa 1973] 16.870 31.128 51.620 64.040 67.637 101.197

Present 16.806 31.138 51.465 64.563 67.656 102.248

SCSF
[Leissa 1973] 12.679 33.068 41.685 63.005 72.398 90.614

Present 12.687 33.079 41.715 63.079 73.756 91.115

SSSF
[Leissa 1973] 11.669 27.764 41.193 59.072 61.867 90.278

Present 11.687 27.772 41.235 59.162 62.391 90.886

Table 2. Comparison of linear dimensionless frequency parameter for an unstiffened plate.



LARGE-AMPLITUDE DYNAMIC ANALYSIS OF STIFFENED PLATES WITH FREE EDGES 897

 

Figure 7. Variation of dimensionless free vibration frequency parameter for the first
mode with change in plate-to-stiffener thickness ratio.

comparing them with the results of [Leissa 1973]. For this particular vibration study the stiffener dimen-
sions are taken as zero and good agreement is observed for all the cases. Figure 7 depicts the variation
of frequency parameter for the fundamental mode with change in stiffener-to-plate thickness ratio for
a square CCCF plate having a single centrally placed eccentric stiffener along the y-direction. The
material properties used in this case are as follows: E p = Es = 210 GPa, ρp = ρs = 7850 kg/m3, and
ν = 0.30. It is seen that the frequency parameter decreases with decrease in stiffener thickness and as
the thickness becomes negligibly small the parameter value converges towards that of an unstiffened
plate. The dimensionless frequency parameter of the unstiffened square plate with CCCF boundary is
obtained through the present method as 23.939 and, as shown in Table 2, it is in close agreement with
the value presented by [Leissa 1973]. The convergence of the frequency parameter towards the value
corresponding to an unstiffened plate with decreasing stiffener dimension provides an indirect validation
of the present method. Figure 7 also indicates that the dimensionless frequency parameter attains a
constant value beyond a particular thickness ratio. At this critical thickness ratio the stiffener divides the
plate into two panels of equal width that vibrate with the same natural frequency as the plate. In [Bedair
1997b] a similar trend is observed for simply supported stiffened plates.

3.2. Large-amplitude dynamic behavior. The present study is undertaken with an objective of inves-
tigating the effect of large displacement on the dynamic behavior of stiffened plates and to study the
influence of different flexural boundary conditions on the system behavior. The results are presented
for a rectangular stiffened plate with a = 0.60 m, b = 0.41 m, and tp = 0.00633 m, having stiffeners of
rectangular cross-section (0.0127 m× 0.02222 m). The following material properties are used to generate
the results: E p = Es = 211 GPa, ρp = ρs = 7830 kg/m3, and ν = 0.30. The nonlinear frequency ampli-
tude relationships of the three different types of stiffened plates (as shown in Figure 2) having typical
combinations of boundary conditions are shown graphically as backbone curves in Figures 8–10. These
backbone curves have been presented for the first six vibration modes in a nondimensional plane. The
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Figure 8. Backbone curves for uniaxially single stiffened rectangular plate under UDL
for different boundary conditions with one free edge: (a) CCCF, (b) CCSF, (c) CSCF,
(d) CSSF, (e) SCSF, and (f) SSSF.
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Boundary condition
Type of stiffened plate CCCF CCSF CSCF CSSF SCSF SSSF

Uniaxially single stiffened 148.682 127.015 101.197 72.486 114.094 52.549
Uniaxially double stiffened 154.653 139.136 99.929 84.069 129.423 58.083
Biaxially cross stiffened 199.061 160.732 190.063 144.228 138.142 103.736

Table 3. Fundamental linear frequency (ω1) in Hz for the three types of stiffened plates
with different boundary conditions.

ratio of the maximum transverse deflection to plate thickness is taken as the dimensionless amplitude
(wmax/tp) while the nonlinear frequency (ωnl) is normalized by the corresponding fundamental linear
frequency (ω1) to obtain the dimensionless frequency. The results are generated up to a maximum value
of dimensionless amplitude (wmax/tp), which is taken as 2.0. The backbone curves for uniaxially single
stiffened, uniaxially double stiffened, and biaxially cross stiffened rectangular plates under uniformly
distributed transverse load are shown for different boundary conditions, namely CCCF, CCSF, CSCF,
CSSF, SCSF, and SSSF, in Figures 8, 9, and 10, respectively. These figures indicate that for a given plate
and stiffener geometry the natural frequencies increase as the deflection of the stiffened plate increases for
all the cases. In other words, the system exhibits hardening-type nonlinearity. The increase in nonlinear
frequency is caused by stiffening of the plate with increasing deflection due to geometric nonlinearity.
It is also observed from Figures 8 and 9 that a decrease in rigidity of the boundary conditions, due to
introduction of simply supported ends in place of clamped ends, causes the backbone curves for different
modes to spread apart in the nondimensional plane. Thus it can be stated that systems with different
boundary conditions possess different degrees of nonlinearity.

Mode switching has been observed in a few boundary condition cases for the three types of stiffened
plates. Figure 8 shows that for uniaxially single stiffened plates with CCCF, CSCF, SCSF, and SSSF
boundary conditions switching occurs between the third (ω3) and fourth (ω4) modes. However, a closer
inspection reveals that there is also mode switching between the sixth (ω6) and seventh (ω7) backbone
curves for the cases mentioned above, evident from the slight change in direction of the sixth curve. The
absence of the seventh mode gives the sixth curve a broken appearance. In the case of uniaxially double
stiffened plates mode switching is absent for all the boundary conditions except SCSF boundaries as
shown by Figure 9. From Figure 9e it is clear that first a switch between the fifth (ω5) and sixth (ω6)
modes takes place and then the fourth (ω4) and fifth (ω5) backbone curves intersect each other indicating
a further switch. Finally, from the different sets of backbone curves of biaxially cross stiffened plates
shown in Figure 10 it is evident that mode switching occurs between fourth (ω4) and fifth (ω5) backbone
curves for CSCF and SSSF boundaries, whereas no mode switching is observed for the case of CCCF,
CCSF, and CSSF conditions. At first glance it seems that this phenomenon is absent in the case of the
SCSF boundary condition also. But the discontinuous appearance of the sixth mode indicates that there
is indeed a switch between the sixth and seventh backbone curves. The occurrence of mode switching
and the modes between which switching occurs depend on parameters such as plate aspect ratio, plate-to-
stiffener thickness ratio, stiffener position, stiffener orientation, type of loading, and boundary conditions.

For all the backbone curves, the fundamental linear frequency (ω1) is used as the normalizing param-
eter, so its values are provided separately for the three types of stiffened plates with different boundary
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       (a)       (b) 

  
      (c)                                 (d) 

  
      (e)                   (f) 

Figure 9. Backbone curves for uniaxially double stiffened rectangular plate under UDL
for different boundary conditions with one free edge: (a) CCCF, (b) CCSF, (c) CSCF,
(d) CSSF, (e) SCSF, and (f) SSSF.
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Figure 10. Backbone curves for biaxially cross stiffened rectangular plate under UDL
for different boundary conditions with one free edge: (a) CCCF, (b) CCSF, (c) CSCF,
(d) CSSF, (e) SCSF, and (f) SSSF.
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ωnl/ωl

Type of plate wmax/tp Mode= 1 2 3 4 5 6

0.0 1.000 1.943 3.092 3.329 3.584 5.548
UASS 1.0 1.126 2.176 3.355 3.474 3.867 5.862

2.0 1.460 2.776 3.958 4.032 4.550 6.581

0.0 1.000 1.859 3.522 4.230 4.992 5.015
UADS 1.0 1.101 2.020 3.764 4.385 5.098 5.158

2.0 1.443 2.515 4.396 4.804 5.494 5.691

0.0 1.000 1.708 2.725 3.588 4.045 4.430
BACS 1.0 1.684 1.954 2.951 3.658 4.141 4.621

2.0 1.293 2.489 3.379 4.011 4.323 5.037

Table 4. Normalized nonlinear frequency (ωnl/ωl) for the six modes at wmax/tp = 0.0,
1.0, and 2.0 points on the backbone curve of uniaxially single stiffened (UASS), uni-
axially double stiffened (UADS), and biaxially cross stiffened (BACS) plates with the
CCCF boundary condition.

conditions in Table 3. It is observed from Table 3 that for a particular type of plate the fundamental linear
frequency is highest for the CCCF boundary condition, whereas it is lowest for the SSSF condition. This
clearly indicates that clamped-end conditions provide greater rigidity compared to simply supported ends.
As a result of the increased stiffness of the system due to end rigidity a higher fundamental frequency is
obtained. In the case of uniaxially stiffened plates having a single simply supported end along with the
free edge, adjacent clamped ends correspond to a higher fundamental frequency, but for biaxially stiffened
plates an opposite trend manifests. Similarly for uniaxially stiffened plates having a single clamped end
in addition to the free edge, adjacent simply supported ends correspond to a lower fundamental frequency,
but for biaxially stiffened plates the situation is reversed. The table also reveals that the highest stiffness
and thus highest fundamental frequency corresponds to cross stiffened plates. Table 4 presents numerical
values of normalized nonlinear frequency (ωnl/ω1) at specific points (wmax/tp = 0.0, 1.0, and 2.0) on the
backbone curves for the six modes of three different types of plates having the CCCF boundary condition
(shown in Figures 8a, 9a, and 10a).

3.3. Mode shape plots. To highlight the effect of vibration amplitude on the dynamic behavior in greater
detail the mode shape plots for all six vibration modes are presented for the three types of plates in
Figures 11–13. For each mode of vibration, two mode shape plots corresponding to linear (wmax/tp = 0)
and nonlinear (wmax/tp = 2.00) frequencies are given. In each of these figures, the surface plot and its
corresponding contour plot for the vibrating stiffened plate have been presented. The amplitude of vibra-
tion is normalized by the absolute difference between the two extremities of the displacement amplitudes.
The first six mode shapes for a CCCF uniaxially single stiffened plate under uniform transverse loading
are given in Figure 11. Interchange of the linear and nonlinear mode shapes described in Figures 11c
and 11d appropriately supports the case of switching between the third and fourth mode. It is also
observed from Figure 11f that the linear and nonlinear mode shape plots are totally different, which
corroborates that switching occurs between the sixth and seventh modes. The mode shape plots along
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Figure 11. Mode shape plots for uniaxially single stiffened rectangular plate with CCCF
boundary condition under UDL: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4,
(e) mode 5, and (f) mode 6.
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Figure 12. Mode shape plots for uniaxially double stiffened rectangular plate with
SCSF boundary condition under UDL: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4,
(e) mode 5, and (f) mode 6.
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Figure 13. Mode shape plots for biaxially cross stiffened rectangular plate with CSCF
boundary condition under UDL: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4,
(e) mode 5, and (f) mode 6.
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with contour plots for all six vibration modes for a uniaxially double stiffened plate are presented in
Figure 12, corresponding to SCSF boundary condition (Figure 9e). As expected the mode shape plots
in Figure 12d–f support the case of double mode switching. It is clearly seen that the linear mode shape
plot in Figure 12d corresponds to the nonlinear mode shape in Figure 12e, the linear mode shape plot
in Figure 12e corresponds to the nonlinear mode shape in Figure 12f, and the linear mode shape of
Figure 12f is similar to the nonlinear mode shape in Figure 12d. Figure 13 gives the linear and nonlinear
mode shape plots for biaxially cross stiffened plates with CSCF boundary conditions. Here interchange
of mode shapes between the fourth and fifth modes is observed.

3.4. Effect of stiffener position on dynamic behavior. The backbone curves of a uniaxially single stiff-
ened plate with CCCF boundary conditions are presented in Figure 14 corresponding to two different
stiffener positions, η1

stf = 1.0 and η1
stf = 0.5, that is, the stiffener is placed parallel to the free edge. In one

case the stiffener is positioned at the free edge spanning the length of the plate, whereas for the other the
stiffener is at the center of the plate along the x-direction. The figure shows that the general trends of the
backbone curves remain identical to those discussed in the preceding section. The effect of shifting the
stiffener position on the dynamic behavior of the system is apparent from the changes in the backbone
curves of the two cases. For example, switching between the second and third modes of vibration takes
place for the central stiffener position as shown in Figure 14b, but the phenomenon is absent for the
stiffener placed at the free edge (η1

stf = 1.0). The fundamental linear frequencies for the η1
stf = 1.0 and

η1
stf = 0.5 positions of the stiffeners are found as 200.493 and 155.704 Hz, respectively. This indicates

that a higher stiffness of the system corresponds to plates with stiffeners at the free edge.
Mode shape plots for the first six vibration modes for a CCCF plate with the stiffener positioned at

the free edge are presented in Figure 15. Two mode shape plots corresponding to linear and nonlinear
frequencies are provided along with the corresponding contour plots for the vibrating system. Similar to

Figure 14. Backbone curves of uniaxially single stiffened rectangular plate with CCCF
boundaries for different stiffener positions: (a) η1

stf = 1.0 and (b) η1
stf = 0.5.
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Figure 15. Mode shape plots for uniaxially single stiffened rectangular plate with the
stiffener along the free edge, that is, η1

stf = 1.0, having CCCF boundary condition:
(a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5, and (f) mode 6.
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Figures 11–13, here also the amplitude of vibration for the surface plots is normalized by the difference
between the extremities of the displacement amplitude. It is found that the mode shape plots for linear
and nonlinear frequencies are similar in nature. However, minor variations in these mode shape plots are
apparent from the contour plots and point to the fact that the amplitude of vibration influences the mode
shapes of the system.

4. Conclusion

The present work deals with large-amplitude free-vibration analysis of stiffened plates with various flex-
ural boundary conditions that include a single free edge. The stiffened plates are classified into three
categories, by number and orientation of the stiffeners: uniaxially single stiffened, uniaxially double
stiffened, and biaxially cross stiffened. A domain decomposition technique is applied to generate the
appropriate grid of computation points for the various types of plates. The analysis involves two steps, the
first being solution of the static displacement field of the system produced due to a uniformly distributed
transverse loading. The second step takes up the free-vibration analysis as an eigenvalue problem on
the basis of known static displacement field. The square roots of the computed eigenvalues provide
the loaded natural frequencies of the system. The mathematical formulation of the static problem is
based on the principle of minimum potential energy, whereas Hamilton’s principle has been applied for
the dynamic analysis. The results of both static and dynamic analyses are validated with the published
results of other researchers and good agreement is observed in almost all the cases. The large-amplitude
dynamic behavior has been presented as backbone curves in a dimensionless frequency-amplitude plane.
The general trend of the backbone curves indicates hardening-type nonlinearity. Mode switching has
been observed for some specific boundary conditions and geometries of the system and the results are
adequately backed up by three-dimensional mode shape plots presented along with contour plots in a
few specific cases.

Appendix: Details of stiffness matrices and load vector

The form of [Kb] is

[Kb] =

kb
11 0 0
0 0 0
0 0 0

 ,
where

[kb
11] = D(ab)

nw∑
j=1

nw∑
i=1

∫ 1

0

∫ 1

0

[{
1
4
(φi ,ξξ )(φ j ,ξξ )+

1
b4 (φi ,ηη )(φ j ,ηη )+

1
a2b2 (φi ,ξξ )(φ j ,ηη )

+
1

a2b2 (φi ,ηη )(φ j ,ξξ )

}
−
(1− ν)
a2b2 {(φi ,ξξ )(φ j ,ηη )+ (φi ,ηη )(φ j ,ξξ )− 2(φi ,ξη )(φ j ,ξη )}

]
dξdη.

The form of [Km] is

[Km] =

km
11 0 0

km
21 km

22 km
23

km
31 km

32 km
33

 ,
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where

[km
11] =

E ptp

2(1− ν2)
(ab)

nw∑
j=1

nw∑
i=1

∫ 1

0

∫ 1

0

[
1
a4

( nw∑
i=1

diφi ,ξ

)2
(φi ,ξ )(φ j ,ξ )+

1
b4

( nw∑
i=1

diφi ,η

)2
(φi ,η )(φ j ,η )

+
1

a2b2

( nw∑
i=1

diφi ,ξ

)2
(φi ,η )(φ j ,η )+

1
a2b2

( nw∑
i=1

diφi ,η

)2
(φ j ,ξ )(φ j ,ξ )

+
2
a3

( nw+nu∑
i=nw+1

diαi−nw,ξ

)
(φi ,ξ )(φ j ,ξ )+

2
b3

( nw+nu+nv∑
i=nw+nu+1

diβi−nw−nu,η

)
(φi ,η )(φ j ,η )

+
2ν
a2b

( nw+nu+nv∑
i=nw+nu+1

diβi−nw−nu,η

)
(φi ,ξ )(φ j ,ξ )+

2ν
ab2

( nw+nu∑
i=nw+1

diαi−nw,ξ

)
(φi ,η )(φ j ,η )

+
(1− ν)

ab2

{( nw+nu∑
i=nw+1

diαi−nw,η

)
(φi ,ξ )(φ j ,η )+

( nw+nu∑
i=nw+1

diαi−nw,η

)
(φi ,η )(φ j ,ξ )

}
+
(1− ν)

a2b

{( nw+nu+nv∑
i=nw+nu+1

diβi−nw−nu,ξ

)
(φi ,ξ )(φ j ,η )+

( nw+nu+nv∑
i=nw+nu+1

diβi−nw−nu,ξ

)
(φi ,η )(φ j ,ξ )

}]
dξdη,

[km
21] =

E ptp

2(1− ν2)
(ab)

nw+nu∑
j=nw+1

nw∑
i=1

∫ 1

0

∫ 1

0

[
1
a3

( nw∑
i=1

diφi ,ξ

)
(φi ,ξ )(α j−nw,ξ )

+
ν

ab2

( nw∑
i=1

diφi ,η

)
(φi ,η )(α j−nw,ξ )+

(1− ν)
ab2

( nw∑
i=1

diφi ,ξ

)
(φi ,η )(α j−nw,η )

]
dξdη,

[km
22] =

E ptp

2(1− ν2)
(ab)

nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0

∫ 1

0

[
2
a2 (αi−nw,ξ )(α j−nw,ξ )

+
(1− ν)

b2 (αi−nw,η )(α j−nw,η )

]
dξdη,

[km
23] =

E ptp

2(1− ν2)

nw+nu∑
j=nw+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

∫ 1

0

[
2ν(βi−nw−nu,η )(α j−nw,ξ )

+(1− ν)(βi−nw−nu,ξ )(α j−nw,η )
]
dξdη,

[km
31] =

E ptp

2(1− ν2)
(ab)

nw+nu+nv∑
j=nw+nu+1

nw∑
i=1

∫ 1

0

∫ 1

0

[
1
b3

( nw∑
i=1

diφi ,η

)
(φi ,η )(β j−nw−nu,η )

+
ν

a2b

( nw∑
i=1

diφi ,ξ

)
(φi ,ξ )(β j−nw−nu,η )+

(1− ν)
a2b

( nw∑
i=1

diφi ,ξ

)
(φi ,η )(β j−nw−nu,ξ )

]
dξdη,

[km
32] =

E ptp

2(1− ν2)

nw+nu+nv∑
j=nw+nu+1

nw+nu∑
i=nw+1

∫ 1

0

∫ 1

0
[2ν(αi−nw,ξ )(β j−nw−nu,η )

+(1− ν)(αi−nw,η )(β j−nw−nu,ξ )]dξdη,
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[km
33] =

E ptp

2(1− ν2)
(ab)

nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

∫ 1

0

[
2
b2 (βi−nw−nu,η )(β j−nw−nu,η )

+
(1− ν)

a2 (βi−nw−nu,ξ )(β j−nw−nu,ξ )

]
dξdη.

The form of [Ksx ] is

[Ksx ] =

ksx
11 ksx

12 0
ksx

21 ksx
22 0

0 0 ksx
33

 ,
where

[ksx
11] =

nsx∑
p=1

[
Esa

2

nw∑
j=1

nw∑
i=1

∫ 1

0

{
2(I p

y + Ap
y ep

x
2
)

a4 (φi ,ξξ )(φ j ,ξξ )− Q p
y

2
a4

( nw∑
i=1

diφi ,ξ

)2
(φi ,ξξ )(φ j ,ξ )

−Q p
y

1
a4

( nw∑
i=1

diφi ,ξ

)
(φi ,ξ )(φ j ,ξξ )+ Ap

y
1
a4

( nw∑
i=1

diφi ,ξ

)2
(φi ,ξ )(φ j ,ξ )

+Ap
y

2
a3

( nw+nu∑
i=nw+1

diαi−nw,ξ

)2
(φi ,ξ )(φ j ,ξ )

}
dξ
]
,

[ksx
12] =

nsx∑
p=1

[
Esa

2

nw∑
j=1

nw+nu∑
i=nw+1

∫ 1

0

{
−Q p

y
2
a3 (αi−nw,ξ )(φ j ,ξξ )

}
dξ
]
,

[ksx
21]=

nsx∑
p=1

[
Esa

2

nw+nu∑
j=nw+1

nw∑
i=1

∫ 1

0

{
−Q p

y
2
a3 (φi ,ξξ )(α j−nw,ξ )+Ap

y
1
a3

( nw∑
i=1

diφi ,ξ

)
(φi ,ξ )(α j−nw,ξ )

}
dξ
]
,

[ksx
22] =

nsx∑
p=1

[
Esa

2

nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0

{
Ap

y
2
a2 (αi−nw,ξ )(α j−nw,ξ )

}
dξ
]
,

[ksx
33] =

nsx∑
p=1

[
Esa

2

nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

{
2(I p

yz + Ap
y (bη

p
stf)

2)

a4 (βi−nw−nu,ξ )(β j−nw−nu,ξ )

}
dξ
]
.

The form of [Ksy] is

[Ksy] =

ksy
11 0 ksy

13

0 ksy
22 0

ksy
31 0 ksy

33

 ,
where

[ksy
11] =

nsy∑
q=1

[
Esb
2

nw∑
j=1

nw∑
i=1

∫ 1

0

{
2(I q

x + Aq
x eq

y
2
)

b4 (φi ,ηη )(φ j ,ηη )− Qq
x

2
b4

( nw∑
i=1

diφi ,η

)2
(φi ,ηη )(φ j ,η )

−Qq
x

1
b4

( nw∑
i=1

diφi ,η

)
(φi ,η )(φ j ,ηη )+ Aq

x
1
b4

( nw∑
i=1

diφi ,η

)2
(φi ,η )(φ j ,η )

+Aq
x

2
b3

( nw+nu∑
i=nw+1

diβi−nw,η

)2
(φi ,η )(φ j ,η )

}
dη
]
,
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[ksy
22] =

nsy∑
q=1

[
Esb
2

nw+nu∑
j=nw+1

nw+nu∑
i=nw+1

∫ 1

0

{
2(I q

xz + Aq
x (aξ

q
stf)

2)

b4 (αi−nw,ηη )(α j−nw,ηη )

}
dη
]
,

[ksy
33] =

nsy∑
q=1

[
Esb
2

nw+nu+nv∑
j=nw+nu+1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

{
Aq

x
2
b2 (βi−nw−nu,η )(β j−nw−nu,η )

}
dη
]
,

[ksy
31] =

nsy∑
q=1

[
Esb
2

nw+nu+nv∑
j=nw+nu+1

nw∑
i=1

∫ 1

0

{
−Qq

x
2
b3 (φi ,ηη )(β j−nw−nu,η )

+Aq
x

1
b3

( nw∑
i=1

diφi ,η

)
(φi ,η )(β j−nw−nu,η )

}
dη
]
,

[ksy
13] =

nsy∑
q=1

[
Esb
2

nw∑
j=1

nw+nu+nv∑
i=nw+nu+1

∫ 1

0

{
−Qq

x
2
b3 (βi−nw−nu,η )(φ j ,ηη )

}
dη
]
.

The load vector { f } is of the form { f } =
{

f11 f12 f13
}T

, where { f11} = p(ab)
∑nw

j=1
∫ 1

0

∫ 1
0 φ j dξdη,

{ f12} = { f13} = 0. In the present analysis, results are individually generated for uniformly distributed
load

(
{ f11} = p(ab)

∑nw
j=1

∫ 1
0

∫ 1
0 φ j dξdη

)
.

List of symbols

a, b length and width of the plate
bp

sx , bp
sy width of p-th stiffener along the x- and y-directions

{d} vector of unknown coefficients
ep

x , ep
y eccentricity of p-th stiffener along the x- direction and y-directions

E p elastic modulus of the plate material
Es elastic modulus of the stiffener material
{ f } load vector
[K ] stiffness matrix
[Kb] stiffness matrix due to bending
[Km] stiffness matrix due to stretching
[Ksx ]

p, [Ksy]
p stiffness matrices of the p-th stiffener along the x- and y-directions

[M] mass matrix
[Mp] mass matrix for plate
[Msx ], [Msy] mass matrix for the x and y-direction stiffeners
nsx , nsy number of stiffeners in the x and y-directions
nw, nu, nv number of constituent functions for w, u, and v
p uniformly distributed transverse load
P concentrated transverse load
tp thickness of the plate
t p
sx , t p

sy thickness of p-th stiffener along the x- and y-directions
T total kinetic energy of the system
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Tp kinetic energy of the plate
Ts total kinetic energy of the stiffeners
T p

sx , T p
sy kinetic energy of the p-th stiffener along the x- and y-directions

u, v, w displacement along the x , y, and z-directions
U total strain energy of the system
Ub strain energy due to bending of the plate
Um strain energy due to stretching of the plate
Up strain energy of the plate
Us strain energy of the stiffeners
U p

sx , U p
sy strain energy of the p-th stiffener along the x- and y-directions

V work potential
x p

stf, y p
stf position of p-th stiffener along the x- and y-directions

αi set of functions defining approximate displacement field u
βi set of functions defining approximate displacement field v
δ variational operator
ε predefined value of error limit for the iteration scheme
φi set of functions defining approximate displacement field w
η normalized coordinates in the y-direction
λ relaxation parameter
ρp, ρs density of the plate and stiffener material
τ time coordinate
ν Poisson’s ratio
ω natural frequency of the system
ω1 first linear natural frequency
ωnl nonlinear frequency
ξ normalized coordinates in the x-direction
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