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DYNAMIC BEHAVIOR OF MAGNETOSTRICTIVE/PIEZOELECTRIC LAMINATE
CYLINDRICAL SHELLS DUE TO ELECTROMAGNETIC FORCE

B. BIJU, N. GANESAN AND K. SHANKAR

The effect of electromagnetic force on the dynamic response of magnetostrictive/piezoelectric laminate
cylindrical shells is addressed using a semianalytical finite element method. The electric field is repre-
sented using electric scalar potential and the magnetic field by magnetic vector potentials. The electric
field acting on the charged particles of a moving conductor is derived from the Lorentz force. The
mechanical force generated by the interaction of the derived current density with the magnetic field is
accounted for in the successive load steps using an iterative solution technique. The Terfenol-D/PZT
configuration of the laminate is analyzed for the first circumferential harmonics of the shell structure
with a clamped-free boundary condition. The effect of electromagnetic force on the dynamic response is
marginal at normal operating conditions but numerical studies suggest that the magnetoelectric effect is
significantly influenced by a small increase in magnetic potential at increased velocities of the shell.

1. Introduction

Magnetostrictive/piezoelectric laminates have attracted attention for their magnetoelectric effects, orig-
inating from the electroelastic and magnetoelastic couplings inherent in the material. The composite
consists of a piezoelectric phase, showing a coupling between the mechanical and electric fields, and a
piezomagnetic phase, showing a coupling between the mechanical and magnetic fields. In addition, a
magnetoelectric coupling effect, which is absent in the constituent phases, is exhibited by this class of
materials. This unique feature allows magnetic control of electric polarization, electric control of mag-
netization, and control of electric and magnetic fields with mechanical stress, which make the material
suitable for a wide range of applications such as magnetic field probes, medical ultrasound imaging,
sensors, actuators, and so on.

The magnetoelectric properties of laminate composites of magnetostrictive/piezoelectric materials
were investigated in [Ryu et al. 2001]. In [Sunar et al. 2002] the finite element modeling of a fully
coupled thermopiezomagnetic medium using a thermodynamic potential was presented. A magnetic
vector potential is needed to derive the elemental matrices using the above formulation. An analytical
solution for the transient response of a magnetoelectroelastic hollow cylinder was presented in [Hou
and Leung 2004], where a plain strain condition with axisymmetric loading was used so that radial
displacement only was considered to derive the solution. In [Dai and Wang 2006] an analytical solution
was presented for the transient response of a magnetoelectroelastic hollow cylinder placed in an axial
magnetic field subjected to thermal shock, mechanical load, and transient electric excitation. The finite
element formulation of MEE cylindrical shells using the magnetic vector potential in cylindrical coor-
dinates was done in [Biju et al. 2010]. In [Shindo et al. 2010] the nonlinear electromagnetomechanical
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behavior of a magnetostrictive/piezoelectric laminate under a magnetic field was studied both numerically
and experimentally.

The effect of electromagnetic force on the dynamic response of magnetostrictive/piezoelectric laminate
cylindrical shells is addressed using a semianalytical finite element method in this paper. Dynamic
loading will generate time-changing electric and magnetic fields in multifunctional smart materials. The
electric field is represented using the electric scalar potential and modeling of the magnetic field is done
using the magnetic vector potential in cylindrical coordinates. The current density acting on the charged
particles of a moving conductor is evaluated using Ohm’s law. The mechanical force generated by the
interaction of the derived current density with the magnetic field is calculated using the Lorentz force
equation and accounted for in the successive load steps using an iterative solution technique. Magneto-
strictive Terfenol-D (Tb0.3Dy0.7Fe2) and piezoelectric PZT (Pb(Zr,Ti)O3) layers are used for modeling
the axisymmetric cylindrical shell.

2. Theoretical formulation

2.1. Constitutive equations. The constitutive equations for the magnetostrictive/piezoelectric laminate
in a cylindrical coordinate system (r, θ, z) relating stress σ j , electric displacement Dl , and magnetic
field intensity Hl to strain Sk , electric field Em , and magnetic flux density Bm , exhibiting linear coupling
between magnetic, electric, and elastic fields, can be written as (see [Shindo et al. 2010])

σ j = C jk Sk − e jm Em, Dl = el j Sk − εlm Em, (1)

for piezoelectric behavior and

σ j = C jk Sk − d jm Bm, Hl =−dl j Sk −µ
−1
lm Bm, (2)

for magnetostrictive behavior. C jk , εlm , and µlm are elastic, dielectric, and magnetic permeability co-
efficients, respectively, and e jl and d jl are the piezoelectric and piezomagnetic material coefficients
(d jl = q jlµ

−1
lm ). Here j, k = 1, . . . , 6 and l,m = 1, . . . , 3.

2.2. Finite element modeling of electric and magnetic fields. The mechanical displacements, electric
scalar potential, and magnetic vector potentials are expressed using Fourier series in the circumferential
direction:

ur =
∑

un
r cos nθ, uθ =

∑
un
θ sin nθ, uz =

∑
un

z cos nθ, φ =
∑

φn cos nθ, (3a)

Ar =
∑

An
r cos nθ, Aθ =

∑
An
θ sin nθ, Az =

∑
An

z cos nθ, (3b)

where ur , uθ , and uz are the radial, circumferential, and axial displacements, φ is the electric scalar
potential, and Ar , Aθ , and Az are the radial, circumferential, and axial components of the magnetic
vector potential as nodal variables, respectively. Superscript n denotes the symmetric components of the
primary variables: thus un

r , un
θ , un

z , φn , An
r , An

θ , and An
z .

The displacements {u}={ur , uθ , uz}
T, electric potential (φ), and magnetic potential {A}={Ar , Aθ , Az}

T

within the element can be expressed in terms of suitable shape functions:

{u} = [Nu]{ue
}, φ = [Nφ]{φe

}, {A} = [NA]{Ae
}. (4)
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The strains can be related to the nodal degree of freedom by the following expression:

{S} = [Bu]{ue
}, (5)

where [Bu], the strain displacement matrix, can be written as

[Bu] =



∂N1
∂r

0 0 · · ·

N1
r

nN1
r

0 · · ·

0 0 ∂N1
∂z
· · ·

0 ∂N1
∂z

−
nN1

r
· · ·

∂N1
∂z

0 ∂N1
∂r
· · ·

−
nN1

r
∂N1
∂r
−

N1
r

0 · · ·


. (6)

Using the Maxwell’s relation, the electric field vector can be expressed as


Er

Eθ
Ez

=

−
∂φ

∂r

−
1
r
∂φ

∂θ

−
∂φ

∂z


−


Ȧr

Ȧθ
Ȧz

 , {E} = −[∇Nφ]{φe}− [NA]{ Ȧe} = [Bφ]{φe
}− [NA]{ Ȧe}. (7)

The derivative of the shape function matrix [Bφ] matrix is written as

[Bφ] =


−
∂N1
∂r
−
∂N2
∂r
−
∂N3
∂r
−
∂N4
∂r

nN1
r

nN2
r

nN3
r

nN4
r

−
∂N1
∂z
−
∂N2
∂z
−
∂N3
∂z
−
∂N4
∂z

 . (8)

Recalling Maxwell’s relations,

B =∇ × A, ∇ × H = J0+
∂D
∂t
, (9)

where J0 is the current supplied by an external source and ∂D/∂t is the displacement current. When
dynamic mechanical loading is present, including the effect of the motion of the conductor, Ohm’s law
can be written as

J = σ
{

E + ∂u
∂t
× B

}
+ J0, (10)

where J is the total current density and σ is the electrical conductivity of the material.
In cylindrical coordinates

∇ × A = r̂
(

1
r
∂Az

∂θ
−
∂Aθ
∂z

)
+ θ̂

(
1
r
∂Ar

∂z
−
∂Az

∂r

)
+ ẑ 1

r

(
∂r Aθ
∂r
−
∂Ar

∂θ

)
. (11)
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The magnetic flux density vector can be expressed as


Br

Bθ
Bz

=


1
r
∂Az
∂θ
−
∂Aθ
∂z

1
r
∂Ar
∂z
−
∂Az
∂r

1
r

(
∂r Aθ
∂r
−
∂Ar
∂θ

)


, {B} = [BA]{Ae}, (12)

where the derivative of shape function matrix [BA] is written as

BA =


0 ∂N1

∂z
nN1

r
· · ·

∂N1
∂z

0 −
∂N1
∂r
· · ·

nN1
r

1
r
∂(r N1)

∂r
0 · · ·

 . (13)

3. Evaluation of elemental matrices

The finite element equations for magnetostrictive/piezoelectric laminate cylindrical shell can be written
as

[Me
uu]{ü

e
}+ [Ce

uu]{u̇
e
}+ [Ce

u A]{ Ȧ
e
}+ [K e

uu]{u
e
}+ [K e

uφ]{φ
e
}− [K e

u A]{A
e
} = {Fe

},

[K e
φu]{u

e
}− [K e

φφ]{φ
e
} = {Ge

}, −[K e
Au]{u

e
}− [Ce

φA]{ Ȧ
e
}+ [K e

AA]{A
e
} = {Me

},
(14)

where {Fe
}, {Ge

}, and {Me
} correspond to elemental load vectors of applied mechanical force, electric

charge, and magnetic current, respectively. Different elemental matrices in (14) for the n-th harmonic
are defined as

[Me
uu] = P

∫
A
[Nu]

T
[ρ][Nu]r dr dz, [Ce

u A] = P
∫

A
[Bu]

T
[e][NA]r dr dz,

[Ce
φA] = P

∫
A
[Bφ]T [ε][NA]r dr dz, [K e

uu] = P
∫

A
[Bu]

T
[c][Bu]r dr dz,

[K e
uφ] = P

∫
A
[Bu]

T
[e][Bφ]r dr dz, [K e

u A] = P
∫

A
[Bu]

T
[d][BA]r dr dz,

[K e
φφ] = P

∫
A
[Bφ]T [ε][Bφ]r dr dz, [K e

AA] = P
∫

A
[BA]

T
[µ]−1

[BA]r dr dz,

(15)

where P = 2π for n = 0 and P = π for n > 0, and n is the circumferential harmonic number. When
electric and magnetic loading are absent, (14) can be written in coupled form asMuu 0 0

0 0 0
0 0 0




ü
φ̈

Ä

+
Cuu 0 Cu A

0 0 −CφA

0 0 0




u̇
φ̇

Ȧ

+
 Kuu Kuφ −Ku A

Kφu −Kφφ 0
−K Au 0 K AA


u
φ

A

=


F(t)
0
0

 . (16)

The magnetic field generated due to mechanical loading will generate current density within the electri-
cally conductive magnetostrictive layer. The finite element equation for current density can be written
as

{J e
} = P

∫
A
[N ]T

{
σ
(
∂u
∂t
× B

)
+ J0

}
r dr dz. (17)
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The vector of nodal Lorentz force can be written as

{Fe
} = P

∫
A
[N ]T {J × B}r dr dz. (18)

This Lorentz force will generate an additional force vector in the equation of motion for the mechanical
field. Simultaneous solution of (16) and (18) will account for the effect of the electromagnetic force on
the dynamic response of the shell structure.

4. Results and discussions

4.1. Validation. Computer code has been developed to study the effect of electromagnetic force on elec-
tric and magnetic response of the structure. The dimensions of the cylinder used for the analysis are
L = 4.0 m, Ri = 0.5 m, and the Terfenol-D and PZT-5A layers are 0.005 m each in thickness. A perfect
bonding is assumed between layers and potential noise effects are neglected. The system of equations
is solved using the Newmark-beta solution technique. The damping is assumed to be proportional and
the damping matrix is derived as [Cuu] = α[Muu] +β[Kuu] where α and β are the proportional damping
coefficients depending on natural frequencies of the structure. Damping ratios of 1% and 2% are assumed
for first and second modes, respectively, and the values of the proportional damping constants α and β
are calculated accordingly.

A rectangular wave made up of a fundamental frequency and its combined odd and even harmonics
is used as the load cycle. Each load step, the time increment is applied at 10 equal time intervals. The
cylinder is subjected to a uniform internal pressure of 1 N/m2 with a clamped-free boundary condition.
The electric and magnetic potentials are assumed to be zero at the clamped end. The load vectors corre-
sponding to applied electric charge and magnetic current are also assumed to be zero. The absolute values
of nodal velocity and magnetic flux density at the end of first load step are used for calculating the load
vector for successive iterations. The results presented below are for the first circumferential harmonics of
the shell structure (n = 1). A node near the clamped end of the shell giving maximum response is chosen
for showing the results. The study is carried out for the Terfenol-D/PZT configuration of the laminate.

The commercial finite element package ANSYS 12.0 is used for the validation studies. The material
properties of PZT-5A and Terfenol-D used for the analysis are shown in Tables 1 and 2. ANSYS cannot
model fully coupled piezomagnetic material behavior and hence the present code is validated neglecting
the piezomagnetic coupling. The response for the validation studies is calculated for the axisymmetric

Elastic constants (×109 N/m2) Density (kg/m3)
C11 C12 C23 C22 = C33 C44 = C66 ρ

94.23 40.38 40.38 94.23 26.92 9250

Magnetic permeability Piezomagnetic constants Electric conductivity
(×10−6 Ns2/C2) (N/Am) (×1010S/m)
µ11 µ22 = µ33 q11 q12 q35 σ

6.29 6.29 400 −200 167.67 1.67

Table 1. Material properties of Terfenol-D [Olabi and Grunwald 2008] for radial plane
of symmetry.
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Figure 1. Validation of code for (a) radial displacement ur , (b) axial displacement uz ,
and (c) electric potential φ using code and ANSYS.

mode (n = 0) of the shell structure. The time harmonic response of the Terfenol-D/PZT laminate shell
using our code and ANSYS is shown in Figure 1. It is seen that the result is in good agreement and
hence the code is extended to study the dynamic response of fully coupled Terfenol-D/PZT laminate.

Elastic constants (×109 N/m2) Density (kg/m3)
C11 C12 C23 C22 = C33 C44 = C66 ρ

86.85 54.01 50.77 99.2 21.1 7750

Dielectric constants Piezoelectric constants
(×10−9C/Vm) (C/m2)

ε11 ε22 = ε33 e11 e12 e35

1.5 1.53 15.0 −7.2 12.32

Table 2. Material properties of PZT-5A [Chen et al. 2007] for radial plane of symmetry.
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Figure 2. Variation of electric potential φ without and with consideration of the velocity effect.

4.2. Dynamic response of clamped-free Terfenol-D/PZT shell. The time harmonic response is calcu-
lated without considering the velocity effect and with the velocity effect after the first duty cycle of
mechanical loading. Figure 2 represents the variation of electric potential (φ) of a node near the clamped
end of the shell with and without considering the effect of velocity and the derived electromagnetic force.
It is seen that there is no significant variation in the response when the dynamic electromagnetic force is
accounted for. This is because the magnetic field generated due to piezomagnetic coupling of Terfenol-D
is too small to influence the dynamic response.

Figure 3 shows the variation of the magnetic vector potential in the radial (Ar ), circumferential (Aθ ),
and axial (Az) directions without and with considering the effect of velocity in the dynamic response.
It is seen that the axial component of the magnetic vector potential is the dominant component, so its
influence on the electric field will be more in the axial direction.

The magnetic flux density generated in the radial (Br ), circumferential (Bθ ), and axial (Bz) directions
is shown in Figure 4a. The absolute value of the magnetic flux density in all directions is very small and
among the three components, the circumferential component is the significant one. The nodal velocity
variation in three directions is shown in Figure 4b.

Numerical studies are carried out by varying the nodal velocities and magnetic vector potentials, in
order to understand the influence of velocity on generated electric potential. The nodal velocity and
magnetic vector potential are increased independently and as a combination to study the influence of
electromagnetic force on dynamic response. Figure 5a shows the variation of electric potential (φ) when
the nodal velocity is increased from the initial value obtained in a transient analysis. A significant
increase in electric potential is noticed when the nodal velocity reaches approximately 3.0 times the
initial value. Similarly Figure 5b shows the variation of electric potential (φ) when the magnetic vector
potential is increased; when the potential reaches 1.74 times the initial value, there is a marked increase.
A combination of increase in velocity and magnetic potential is done on a trial and error basis and the
variation of electric potential (φ) which is relevant in the present study is shown in Figure 5c. It is seen
that when the nodal velocity is increased to 2.5 times the initial velocity, a 10% increase in magnetic
vector potential will significantly increase the generated electric potential.
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Figure 3. Variation of magnetic vector potential in (a) radial Ar , (b) circumferential Aθ ,
and (c) axial Az directions without and with considering velocity effect.
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Figure 4. Variation of (a) magnetic flux density and (b) nodal velocity in radial, circum-
ferential, and axial directions.
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Figure 5. Variation of electric potential φ with (a) increased nodal velocity, (b) in-
creased magnetic vector potential, and (c) a combination of both.

5. Conclusions

The dynamic response of magnetostrictive/piezoelectric laminate cylindrical shells subjected to uniform
internal pressure is studied using a semianalytical finite element method. The Terfenol-D/PZT config-
uration of the laminate is analyzed for the first circumferential harmonics of the shell structure with a
clamped-free boundary condition. Numerical studies are also carried out by varying the nodal velocities
and magnetic vector potentials for understanding the influence of velocity on the generated electric poten-
tial. The effect of the electromagnetic Lorentz force on dynamic response is marginal at normal operating
conditions, but numerical studies suggest that the magnetoelectric effect is significantly influenced by a
small increase in magnetic potential at an increased velocity of the shell.
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