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GEOMETRICALLY NONLINEAR THERMOMECHANICAL RESPONSE OF
CIRCULAR SANDWICH PLATES WITH A COMPLIANT CORE

YEOSHUA FROSTIG AND OLE THOMSEN

The geometrically nonlinear response of a circular sandwich plate that consists of two face sheets and
a compliant (“soft”) core with mechanical properties that may be either independent or dependent of
temperature and subjected to both mechanical loads and thermal induced deformations, but remain elastic
linear throughout the loading process, is presented. The mathematical formulation follows the principles
of the high-order sandwich panel theory (HSAPT) and includes the vertical flexibility of the core in addi-
tion to the temperature dependency of the mechanical properties of the core material. The mathematical
formulation outlines the set of governing partial differential equations as well the appropriate boundary
conditions for a general sandwich layout. The particular case of an axisymmetric circular sandwich
plate subjected to axisymmetric mechanical and thermal loads, and with axisymmetric boundary condi-
tions is studied analytically and numerically. The numerical study includes an interaction of mechanical
and thermal loads which is presented through results within the plate for various load levels of various
structural quantities as well as equilibrium curves of temperatures versus these structural quantities. The
results reveal that the combination of mechanical and thermal loads along with a compliant core material
with mechanical properties that degrade with increasing temperatures shifts the behavior from a linear
and stable (strength controlled) response into a strongly nonlinear response with limit point behavior and
associated loss of stability, when large displacements and large rotations (geometrical nonlinearity) are
included in the modeling.

1. Introduction

Lightweight sandwich structures are being used increasingly in the aerospace, naval and transportation
industries due to their excellent stiffness-to-weight and strength-to-weight ratios. Typical sandwich
structures are often composed of a low stiffness/strength (compliant or “soft”) core material made of
a polymeric foam or a Nomex® honeycomb that is flexible in the thickness direction, and laminated
composite or metallic face sheets. The core usually provides the shear resistance/stiffness to the sandwich
structure, as well as vertical (through-thickness) support to the face sheets that is associated with core
vertical normal stresses. The use of compliant foam or Nomex core materials is often associated with
localized effects such as indentation in case of localized, concentrated or line loads, abrupt geometrical
changes or changes of mechanical properties as well as in the vicinity of stiff points such as inserts or
supports. Thus, the low core through-thickness stiffness may be detrimental to the safety of a sandwich
structure, either because of strength constraints such as stress allowables or due to loss of stability.

Sandwich structures are typically exposed to mechanical load as well as to aggressive environment

Keywords: circular sandwich plate, high-order, geometrically nonlinear analysis, large displacements, thermal loads,
compliant core, radial axisymmetry, thermomechanical response, temperature-dependent properties.
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that may be associated with elevated temperature conditions. Traditionally, a typical design process of
such structures examines separately the responses due to the mechanical and thermal loads, i.e., the
deformations induced by thermal sources. However, the interaction between the mechanical and thermal
loads may lead to an unsafe response with loss of stability and structural integrity, especially when the
deformations are large and the mechanical properties such as stiffness and strength degrade as the tem-
perature level is raised. This thermal degradation of the mechanical properties is especially pronounced
for polymer foam core materials, where significant degradation of the mechanical properties may occur
well within the operational temperature range. For example, PVC foams such as Divinycell® (see [DIAB
2003]) lose all stiffness and strength at about 80–100◦C, while PMI (polymethacrylimide) foams such
as Rohacell® (see [Rohacell 2004]) lose heat distortion resistance at about 200◦C.

The effects of this degradation on the load-thermal interaction response are not well understood by
researchers and industry. At the same time there is growing concern within the wind turbine blade, marine
and aeronautical sectors that the simultaneous action of mechanical loads and elevated temperatures may
compromise the structural integrity under certain circumstances. Hence, reliable computational models
are needed for the accurate prediction of the load response of sandwich structures subjected to combine
mechanical and thermal loads, including the thermal degradation of material properties as well as the
nonlinear interactions between the mechanical and thermal loads. In the present paper such a model
based on the principles of the high-order sandwich panel theory (HSAPT) is proposed for the case of
circular sandwich plates.

Generally, two main categories are presented in the literature to describe the load response of sandwich
structures. The first category assumes the sandwich structures to be compressible in the through-thickness
direction, and the other category of models is based on the assumption of through-thickness incompress-
ibility, i.e., infinite stiffness in the through-thickness direction, which is also known as antiplane core
conditions; see [Allen 1969]. The majority of structural models assume that the core is incompressible;
see for example the textbooks and review articles [Allen 1969; Plantema 1966; Zenkert 1995; Vinson
1999; Noor et al. 1996; Librescu and Hause 2000; Hohe and Librescu 2004]. However, in reality a
sandwich structure is a layered structure with two face sheets and a core that compressible (has finite
stiffness). The effect of the through-thickness core compressibility has been considered in through the use
of the HSAPT models, and by others as well; see for example [Petras and Sutcliffe 2000]. A large number
of computational models have been proposed based on the assumption of incompressible sandwich panels,
and in most of these the layered sandwich assembly is replaced with an equivalent single layer (ESL);
see for example [Mindlin 1951; Reddy 1984].

The same two categories of models — with compressible or incompressible core — have been pro-
posed for circular sandwich plates. Computational models for sandwich plates with an incompressible
core using the ESL approach have been considered for both static and dynamic applications by many re-
searchers, including Selke [1971], who used the Reissner approach to analyze a mirror made of an annular
sandwich plate resting on a ring; Montrey [1973], who used the split rigidities approach of [Allen 1969]
to investigate the linear static response of a load introduced through an insert to a circular sandwich plate;
Gupta and Sharma [1982], who used the zigzag approach of [Allen 1969]; and Wang [1995a; 1995b],
who used Reissner–Mindlin first-order shear deformable theory for the analysis of radially symmetric
circular plates. In all the references mentioned the core is assumed to be incompressible, and in most
cases the problem considered is radially symmetric. Thermal effects have been considered by Kao [1970]
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assuming that the core is incompressible, the face sheets are membranes, and the through-thickness shear
is being carried by the core only.

Vibration analyses of circular sandwich plates been considered by many researchers, including Gupta
and Jain [1982], who used first-order shear deformable plate theory (FOSDPT) to determine the dy-
namic response of a circular sandwich plate with a variable thickness assuming polynomial type of
modes; Sherif [1992], who used a similar approach for the nonlinear dynamic problem where the core is
viscoelastic and the modes are of polynomial type; and Du [1994] and Du and Li [2000] who discussed
the radially symmetric large amplitude free vibration of circular sandwich plates assuming that the face
sheets are membranes. Notice that the quoted models are limited to axisymmetric or isotropic plate
behavior, to membrane action with no bending effects in the face sheets, and to incompressible cores.
Zhou and Stronge [2006] used the FOSDPT approach assuming some special modes to deal with the
vibration of a circular sandwich plate of a general layout.

The effect of the out of plane flexibility of the compressible core for circular plates has been con-
sidered in [Thomsen 1995; 1997; Thomsen and Rits 1998] using an elastic foundation and the HSAPT
approaches, respectively. Rabinovitch and Frostig [2002a] used the HSAPT approach to investigate the
response of a circular sandwich plates that are either fully bonded or debonded, and they used a similar
approach to study the response of an reinforced concrete (RC) circular plate strengthened with a circular
patch with an axisymmetric layup [2002b], with a general non-axisymmetric layout [2004a], and a with
a delaminated patch [2004b]. In all these cases the computational models are limited to linear, small
deformations. Recently, Santiuste et al. [2011] investigated the thermal-mechanical response of circular
sandwich plates including thermal degradation of the core properties, large displacements and rotations
and assuming axially symmetric loads and boundary condition. The paper emphasizes on the nonlinear
finite element analysis of such structures with some comparison with the axisymmetric HSAPT model
results.

The literature survey reveals that most references address computational models that are usually lim-
ited to an incompressible core, while ignoring all the localized effects involved as a result of the out of
plane flexibility of the core. For all the static cases discussed geometrically linear analyses are considered,
while for the dynamic cases nonlinear vibration analyses have been considered but still assuming an
incompressible core and specific vibration modes.

In this paper, the principles of the HSAPT approach are used to determine the geometrically nonlin-
ear response of a circular sandwich plate when subjected to a combination of mechanical and thermal
loads, where the mechanical properties of the core material change with temperature. The computational
model is based on the assumption of large displacements and moderate rotations with negligible shear
deformations and linear constitutive relations for the face sheets. The core is modeled as a 3D small
deformation linear elastic continuum with shear and vertical normal rigidities that are assumed to be of
finite value, while the in-plane radial, circumferential and shear rigidities are neglected; see [Frostig et al.
1992] and the study in [Santiuste et al. 2011]. In addition, the loads are applied to the face sheets only,
while the thermal loads is applied to all constituents. Finally, the face sheets and core are assumed to
be fully bonded, and the face-core interfaces are able to transfer both shear and vertical normal stresses
accordingly.

The mathematical formulation presents first the field and governing equations along with the appro-
priate boundary conditions and the closed-form solutions for the core displacement and stress fields of
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a circular sandwich plate with a general construction layout. This is followed by the formulation for
the special case of a radially symmetric sandwich plate. Finally, a numerical study of the response of
circular sandwich plates subjected to axisymmetric combined mechanical and thermal loads is presented.
This includes response curves within the sandwich plate and equilibrium curves of temperature versus
selected structural variables/quantities.

2. Mathematical formulation

The field equations and the boundary conditions are derived following the steps of the HSAPT approach.
They are derived using the variational principle of extremum of the total potential energy as follows:

δ(U + V )= 0 (1)

where U is in the internal potential strain energy, V is is the potential energy of the external loads, and
δ is the variational operator.

The internal potential energy of the circular sandwich plate expressed in polar coordinates reads:

δU =
∑
j=t,b

(∫ 2π

0

∫ Ro

Ri

∫ 1
2 d j

−
1
2 d j

(
σrr j (r, θ, z j )δεrr j (r, θ, z j )+ σθθ j (r, θ, z j )δεθθ j (r, θ, z j )

+ τrθ j (r, θ, z j )δγrθ j (r, θ, z j )
)
r dz j dr dθ

)
+

∫ 2π

0

∫ Ro

Ri

∫ c

0

(
τr zc(r, θ, zc)δγr zc(r, θ, zc)+ τθ zc(r, θ, zc)δγθ zc(r, θ, zc)

+ σzzc(r, θ, zc)δεzzc(r, θ, zc)
)
r dzc dr dθ, (2)

where σrr j (r, θ, z j ) and σθθ j (r, θ, z j ) ( j = t, b) are the normal stresses in the radial and circumferential di-
rections of the upper and the lower face sheets, respectively; εrr j (r, z j ) and εθθ j (r, θ, z j ) ( j = t, b) are the
normal strains in the radial and circumferential directions of the face sheets, respectively; τ j zc(r, θ, zc),
and γ j zc(r, θ, zc) ( j = r, θ) are the vertical shear stresses and the shear angle on the radial and circum-
ferential faces of the core, respectively; σzzc(r, θ, zc), and εzzc(r, θ, zc) are the vertical normal stresses
and strains in the core, respectively; R j ( j = i, o) are the inner and outer radii of the plate; c is the
height of the core; zk(k = t, b, c) are the vertical coordinates of the face sheets measured from their
centroid planes, and of the core measured from upper the face-core interface, respectively; r is the
radial coordinate measured from center of plate, and finally θ is the circumferential coordinate measured
positive in the counterclockwise direction. For geometry, sign conventions, coordinates, deformations
and internal resultants, see Figure 1.

The variation of the potential energy of the external loads reads:

δV =−
∫ 2π

0

( ∑
j=t,b

(∫ Ro

Ri

(
nrr j (r,θ)δu0 j (r,θ)+ nθθ j (r,θ)δv0 j (r.θ)+ q j (r,θ)δw j (r,θ)

)
r dr

)

+

Ro∑
Re=Ri

(
Nrre j (Re,θ)δu0 j (Re,θ)+ Nrθe j (Re,θ)δv0 j (Ri ,θ)+ Pe j (Re,θ)δw j (Re,θ)

+Mrre j (Re,θ)δw j,r (Re,θ)+Mrθe j (Re,θ)δw j,θ (Re,θ)
)
Re

)
dθ, (3)
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where nkk j and q j (k= r, θ; j = t, b) are the external distributed loads in-plane and the vertical distributed
load, respectively, at the upper and the lower face sheets; u0 j , v0 j and w j ( j = t, b) are the in-plane
displacements in the radial and circumferential directions, and the vertical displacements, respectively of
the upper and lower face sheets, respectively; Dm f (r, θ) (m = r, θ) denotes a derivative of the function
f (r, θ) with respect to the m-th variable or a derivative at a specified location; Nne j , Pne j and Mne j

(n = rr, rθ and j = t, b) are the external concentrated loads in the radial and circumferential directions,
in the vertical direction and the external bending moments in the radial and circumferential directions at
the upper and lower face sheets. For sign conventions and definitions of loads see Figure 1.

The displacement distributions through the face sheet thicknesses there are assumed to follow the
Euler–Bernoulli assumption of negligible through-thickness shear deformations and they read ( j = t, b):

u j (r, θ, z j )= u0 j (r, θ)− z j
∂

∂r
w j (r, θ),

v j (r, θ, z j )= v0 j (r, θ)− z j
∂

∂θ
w j (r, θ),

(4)
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Figure 1. A typical circular sandwich plate: (a) plate layout, geometry and sign con-
vention; (b) loads; (c) stress resultants in face sheets and core.
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where u0 j and v0 j are the radial and circumferential displacements, respectively, of the mid-plane of
the face sheets. Adopting the kinematic relations corresponding to moderately large deformations (von
Kármán class of deformations), the radial and circumferential normal strains and the in-plane shear angle
read ( j = t, b):

εrr j (r, θ)= εrroj (r, θ)+ z jχrr j (r, θ)−αj T j (r, θ, z j ),

εrroj (r, θ)=
∂

∂r
u0 j (r, θ)+

1
2

(
∂

∂r
w j (r, θ)

)2
,

χr j (r, θ)=−
∂2

∂r2w j (r, θ),

εθθ j (r, θ)= εθθoj (r, θ)+ z jχθθ j (r, θ)−αj T j (r, θ, z j ),

εθθoj (r, θ)=
1
r

u0 j (r, θ)+
1
r
∂

∂θ
v0 j (r, θ)+

1
2r2

(
∂

∂θ
w j (r, θ)

)2
,

χθθ j (r, θ)=−
1
r
∂

∂r
w j (r, θ)−

1
r2
∂2

∂θ2w j (r, θ),

γrθ j (r, θ)= γrθo j (r, θ)+ z jχrθ j (r, θ),

γrθo j (r, θ)=
1
r
∂

∂θ
u0 j (r, θ)−

1
r
v0 j (r, θ)+

∂

∂r
v0 j (r, θ)+

1
r
∂

∂r
w j (r, θ)

∂

∂θ
w j (r, θ),

χrθ j (r, θ)=−
2
r
∂2

∂θ ∂r
w j (r, θ)+

2
r2
∂

∂θ
w j (r, θ),

(5)

where εkko j (k = r, θ) denotes the mid-plane strains in the radial and circumferential directions, γrθo j

( j = t, b) the in-plane shear angles of the top and bottom face sheets, χkl j (k, l = r, θ) the radial,
circumferential and twist curvatures, the temperature distribution through the depth of the (top or bottom)
face sheet reads,

T j (r, θ, z j )=
1
2
(
T jb(r, θ)+ T j t(r, θ)

)
+

z j

h

(
T jb(r, θ)− T j t(r, θ)

)
( j = t, b), (6)

and αj ( j = t, b) the coefficient of thermal expansion of the face sheet.
The kinematic relations of the core material are derived assuming small displacements and rotations,

and they read

γr zc(r, θ, zc)=
∂

∂zc
uc(r, θ, zc)+

∂

∂r
wc(r, θ, zc),

γθ zc(r, θ, zc)=
∂

∂zc
vc(r, θ, zc)+

∂

∂θ
wc(r, θ, zc),

εzzc(r, θ, zc)=
∂

∂zc
wc(r, θ, zc)−αcT (r, θ, zc),

(7)

where uc(r, θ, zc), vc(r, θ, zc) and wc(r, θ, zc) are the radial, circumferential and vertical core displace-
ments, respectively.
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The compatibility conditions corresponding to perfect bonding between the face sheets and the core
require that the following conditions are fulfilled:

uc(r, θ, zcj )= u0 j (r, θ)+ 1
2(−1)kd j

∂

∂r
w j (r, θ),

vc(r, θ, zcj )= v0 j (r, θ)+ 1
2(−1)kd j

∂

∂θ
w j (r, θ),

wc(r, θ, zcj )= w j (r, θ),

(8)

where k = 1 when j = t , k = 0 when j = b, and zcj ( j = t, b) are the vertical coordinates at the upper
and the lower face-core interfaces, respectively; thus zct = 0 and zcb = c. See Figure 1 for coordinate
definitions for the core.

The field equations and the boundary conditions are derived using the variational principle (1), the
variational energies (2) and (3), the kinematic relations (5)–(7) of the face sheets and the core, the
compatibility requirements (8), and the stress resultants (see Figure 1).

Hence, after integration by parts and some algebraic manipulations, the field equations for the face
sheets ( j = t, b) read:

−
∂

∂θ
Nrθ j (r, θ)+ Nθθ j (r, θ)− Nrr j (r, θ)− r ∂

∂r
Nrr j (r, θ)− rnrr j (r, θ)+ (−1)krτr z j (r, θ)= 0,

−2Nrθ j (r, θ)−
∂

∂θ
Nθθ j (r, θ)− rnθθ j (r, θ)− r ∂

∂r
Nrθ j (r, θ)+ (−1)krτθ z j (r, θ)= 0,

r ∂
∂θ

mθθ j (r, θ)+
∂

∂r
Mθθ j (r, θ)−

2
r
∂

∂θ
Mrθ j (r, θ)−

d j

2

(
r ∂
∂θ
τθ zc j (r, θ)+r ∂

∂r
τr zc j (r, θ)+τr zc j (r, θ)

)
+

(
(−1)k−1rτr zc j (r, θ)+ rnrr j (r, θ)− Nθθ j (r, θ)

)
∂

∂r
w j (r, θ)

+

(
(−1)k−1τθ zc j (r, θ)+ nθθ j (r, θ)+

2
r

Nrθ j (r, θ)
)
∂

∂θ
w j (r, θ)

−2Nrθ j (r, θ)
∂2

∂θ ∂r
w j (r, θ)− rq j (r, θ)+ (−1)krσzz j (r, θ)−

1
r
∂2

∂θ2 Mθθ j (r, θ)− r ∂
2

∂r2 Mrr j (r, θ)

− r Nrr j (r, θ)
∂2

∂r2w j (r, θ)−
1
r

Nθθ j (r, θ)
∂2

∂θ2w j (r, θ)− 2 ∂2

∂θ ∂r
Mrθ j (r, θ)− 2 ∂

∂r
Mrr j (r, θ)= 0, (9)

where k = 1, 2 indicate the upper and the lower face-core interfaces, respectively; Nrr j , Nθθ j and Nrθ j

( j = t, b) are respectively the in-plane stress resultants in the radial and circumferential directions and
the in-plane shear stress resultants of the face sheets; Mrr j , Mθθ j and Mrθ j ( j = t, b) are the bending
moment resultants in the radial and circumferential directions and the torsion moment resultants of the
face sheets; τr zc j and τθ zc j ( j = t, b) are the radial and circumferential core shear stresses at the upper and
the interfaces of the core, respectively, and σzzcj are the vertical normal stresses at the upper and the lower
face core interfaces, respectively. It should be noticed that the core shear stresses in the circumferential
direction are null when no in-plane distributed loads are applied; see second equation in (9).
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The field equations for the core read:

∂

∂zc
τr zc(r, θ, zc)= 0,

∂

∂zc
τθ zc(r, θ, zc)= 0,

r
∂

∂zc
σzzc(r, θ, zc)+ r

∂

∂r
τr zc(r, θ, zc)+ τr zc(r, θ, zc)− r

∂

∂θ
τθ zc(r, θ, zc)= 0.

(10)

It should be noticed that due to the geometrical nonlinearities of the face sheets, the equilibrium con-
ditions on each differential segment of the face sheets and the core, which equal to the field equations,
should be conducted on the deformed shape of the face sheets, and the undeformed shape of the core;
see Figure 1.

The boundary conditions at the inner and outer edges of the face sheets and the core (i.e., at r = Ri

and Ro) of the circular sandwich plate are given below.
The boundary conditions for the face sheets ( j = t, b) read:

λNrr j (Rk,θ)−Nre j (Rk,θ)= 0 or u0 j (Rk,θ)−u0e j (Rk,θ)= 0,

λNrθ j (Re,θ)−Nrθe j (Re,θ)= 0 or v0 j (Rk,θ)−v0e j (Rk,θ)= 0,

−Mre j (Rk,θ)−λMrr j (Rk,θ)= 0 or Dw j (Rk,θ)−Dwej (Rk,θ)= 0,

λ
(
Re Nrr j (Re,θ)Drw j (Re,θ)+Dr Mrr j (Re,θ)Re

+
1
2 d jτr (Re,θ)Re+Nrθ j (Re,θ)Dθ (w j )(Re,θ)

+2Dθ (Mrθ j )(Re,θ)−Mθθ j (Re,θ)+Mrr j (Re,θ)
)

+Dθ (Mrθe j )(Re,θ)Re− Pe j (Re,θ)Re = 0 or w j (Rk,θ)−we j (Rk,θ)= 0, (11)

where λ = 1 when r = Ro and λ = −1 when r = Ri ; k = o or i ; u0e j , v0e j , Dwe j and we j ( j = t, b)
are the prescribed radial, circumferential, radial rotations and vertical displacements at the edges of the
upper and the lower face sheet, respectively; Nre j , Nrθe j ( j = t, b)are the external imposed radial and
circumferential loads (stress resultants); Mre j and Mrθe j ( j = t, b) are the bending and twist moment
resultants in the radial and circumferential directions, respectively, imposed at the edges of the face
sheets; and

Dk( f )(Rl, θ)=
∂

∂k
f (r, θ)|r=Rl (k = r, θ; l = i, o)

is the derivative of the function f at the edge of the panel.
The boundary conditions for the core read:

τr zc(Rk, θ)= 0 or wc(Rk, θ, zc)−wec(Rk, θ, zc)= 0, (12)

where wec(Rk, θ, zc) are the prescribed vertical core displacements at the edge of the sandwich plate
with a specified distribution through the depth of the core.

In order to express the governing equations in explicit form, the core stress and displacement fields
must be defined first. This will be derived next for a core with uniform mechanical properties that are
temperature-independent (TI).
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3. Core fields — uniform mechanical properties (TI)

The explicit formulation of the isotropic core stress and displacement fields is achieved by using the
kinematic relations (7), the compatibility conditions (8) and the constitutive relations

εzzc(r, θ, zc)=
σzzc(r, θ, zc)

Ezc
+αcTc(r, θ, zc),

γr zc(r, θ, zc)=
τr zc(r, θ)

Gr zc
, γθ zc(r, θ, zc)=

τθ zc(r, θ)
Gθ zc

,

(13)

where Ezc, Gr zc and Gθ zc are the vertical modulus of elasticity and the shear moduli of the core in the
radial and circumferential directions, respectively; and Tc(r, θ, zc) is the temperature field within the core
imposed throughout the sandwich plate.

The stress field within the core is derived through the solution of the field equations (10) of the core.
Hence they read:

τr zc(r, θ, zc)= τr (r, θ), τθ zc(r, θ, zc)= τθ (r, θ),

σzzc(r, θ, zc)=−zc
∂

∂r
τr (r, θ)− zc

1
r
τr (r, θ)− zc

∂

∂θ
τθ (r, θ)+Cw1(r, θ),

(14)

where Cw1(r, θ) is a coefficient of integration to be determined through the compatibility conditions at
the face-core interfaces; see third equation in (8).

The displacements fields of the core in the radial and circumferential directions are determined through
the constitutive relations (13), and by enforcing four compatibility conditions (8); in the radial and
circumferential directions at the upper face-core interface, respectively, and in the vertical direction at
the upper and the lower interfaces, respectively. The temperature field is assumed to be radially symmetric
for simplicity and linear through the depth of the core.

After some algebraic manipulations the explicit description of the radial stress and displacements
fields in the core read:

σzzc(r,θ)=− 1
2 Ezc

(
Tcb(r)+Tct(r)

)
αc+

1
c

Ezc
(
wb(r,θ)−wt(r,θ)

)
+

1
2(−2zcj+c)

(
∂

∂r
τr (r,θ)+

∂

∂θ
τθ (r,θ)+

1
r
τr (r,θ)

)
,

wc(r,θ, zc)=−
zc
2c
(−zc+c)

(
Tcb(r)−Tct(r)

)
αc+

zc
c
wb(r,θ)+

(
1− zc

c

)
wt(r,θ)

+
1

2Ezc
zc(−zc+c)

(
∂

∂r
τr (r,θ)+

∂

∂θ
τθ (r,θ)+

1
r
τr (r,θ)

)
,

uc(r,θ, zc)=−
z2

c(3c−2zc)

12c
d
dr
(
Tct(r)−Tcb(r)

)
αc−

z2
c

2c
∂

∂r
wb(r,θ)+

( z2
c

2c
− zc−

dt
2

)
∂

∂r
wt(r,θ)

−
z2

c(3c−2zc)

12Ezcr2

(
r2 ∂

2

∂r2 τr (r,θ)+r2 ∂2

∂θ ∂r
τθ (r,θ)+r ∂

∂r
τr (r,θ)−τr (r,θ)

)
+

zc
Gr zc

τr (r,θ)+u0t(r,θ),

vc(r,θ, zc)=−
z2

c
2c

∂

∂θ
wb(r,θ)+

( z2
c

2c
− zc−

dt
2

)
∂

∂θ
wt(r,θ)

−
z2

c(3c−2zc)

12Ezcr

(
r ∂

2

∂θ2 τθ (r,θ)+
∂

∂θ
τr (r,θ)+r ∂2

∂θ ∂r
τr (r,θ)

)
+

zc
Gθ zc

τθ (r,θ)+v0t(r,θ), (15)
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Notice that the distribution, through the depth of the core, of the vertical normal stresses is linear, that
of the vertical displacement is quadratic and those of the radial and circumferential displacements are
cubic. In addition, the circumferential displacements are shown to be independent of the temperature
due to the assumption of a radially symmetric thermal field.

4. Nonlinear governing equations

The governing equations are derived assuming that the face sheets are linear elastic and isotropic, and
that the core is linear, elastic and orthotropic. Hence, the nonlinear stress resultant-displacement relations
for the face sheets ( j = t, b) can be expressed in the form:

Nrr j (r,θ)= A j

(
∂

∂r
u0 j (r,θ)+

1
2

(
∂

∂r
w j (r,θ)

)2
−

1
2
αj (1+µj )

(
T j t(r)+ T jb(r)

)
+µj

(
1
r

u0 j (r,θ)+
1
r
∂

∂θ
v0 j (r,θ)+

1
2r2

(
∂

∂θ
w j (r,θ)

)2
))
,

Nθθ j (r,θ)= A j

(
1
r

u0 j (r,θ)+
1
r
∂

∂θ
v0 j (r,θ)+

1
2r2

(
∂

∂θ
w j (r,θ)

)2

−
1
2
αj (1+µj )

(
T j t(r)+ T jb(r)

)
+µj

(
∂

∂r
u0 j (r,θ)+

1
2

(
∂

∂r
w j (r,θ)

)2
))
,

Nrθ j (r,θ)=
1
2

A j (1−µj )

(
1
r
∂

∂θ
u0 j (r,θ)−

1
r
v0 j (r,θ)+

∂

∂r
v0 j (r,θ)+

1
r
∂

∂r
w j (r,θ)

∂

∂θ
w j (r,θ)

)
,

Mrr j (r,θ)=D j

(
−
∂2

∂r2w j (r,θ)−
αj

d j

(
T j t(r)−T jb(r)

)
(1+µj )−

µj

r
∂

∂r
w j (r,θ)−

µj

r2
∂2

∂θ2w j (r,θ)
)
,

Mθθ j (r,θ)=D j

(
−

1
r
∂

∂r
w j (r,θ)−

1
r2
∂2

∂θ2w j (r,θ)−
αj

d j

(
T j t(r)−T jb(r)

)
(1+µj )−µj

∂2

∂r2w j (r,θ)
)
,

Mrθ j (r,θ)= D j (1−µj )

(
−

2
r

(
∂2

∂θ ∂r
w j (r,θ)

)
+

2
r2

(
∂

∂θ
w j (r,θ)

))
. (16)

Here µj ( j = t, b) is the Poisson’s ratio for the face sheets and A j ,D j ( j = t, b) are the in-plane and
flexural rigidities, respectively, which are given by

A j =
E j d j

1−µ2
j
,

D j =
E j d3

j

12(1−µ2
j )
.

The governing equations are derived through substitution of the stress resultant-displacements relations
(16) of the face sheets into the field equations (9), and the compatibility conditions — given in the first
and second equations in (8) — between the core and the lower face sheet in the radial and circumferential
directions, which combined with the core displacement field (15) yield two compatibility equations.
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Hence, the governing equations for the face sheets after some algebraic manipulations read ( j = t, b):

A j

(
1
2

r(1+µj )αj
d
dr

(
T j t (r)+ T jb(r)

)
+

1
2
(µj − 1)

((
∂

∂r
w j (r,θ)

)2
+

1
r
∂2

∂θ2
u0 j (r,θ)+

1
r
∂2

∂θ2
w j (r,θ)

∂

∂r
w j (r,θ)

)
−

1
2
(1+µj )

(
−

1
r2

(
∂

∂θ
w j (r,θ)

)2
+

∂2

∂θ ∂r
v0 j (r,θ)+

1
r
∂2

∂θ ∂r
w j (r,θ)

∂

∂θ
w j (r,θ)

)

− r ∂
2

∂r2
u0 j (r,θ)− r ∂

∂r
w j (r,θ)

∂2

∂r2
w j (r,θ)−

1
2r
(−3+µj )

∂

∂θ
v0 j (r,θ)+

1
r

u0 j (r,θ)−
∂

∂r
u0 j (r,θ)

)
+ (−1)krτr (r,θ)− rnrr j (r,θ)= 0,

A j

(
−

1
2
(1+µj )

(
∂2

∂θ ∂r
u0 j (r,θ)+

∂2

∂θ ∂r
w j (r,θ)

∂

∂r
w j (r,θ)

)

+
1
2
(µj − 1)

(
∂

∂θ
w j (r,θ)

(
∂2

∂r2
w j (r,θ)+

1
r
∂

∂r
w j (r,θ)

)
+ r ∂

2

∂r2
v0 j (r,θ)−

1
r2
v0 j (r,θ)+

1
r
∂

∂r
v0 j (r,θ)

)

−
1
r
∂2

∂θ2
v0 j (r,θ) −

1
r2

∂

∂θ
w j (r,θ)

∂2

∂θ2
w j (r,θ) +

1
2r
(−3 + µj )

∂

∂θ
u0 j (r,θ)

)
+ (−1)krτθ (r,θ) − rnθθ j (r,θ) = 0,

−
αj

d j
D j (µj +1)

(
r d2

dr2

(
T jb(r)−T j t (r)

)
+

d
dr

(
T jb(r)−T jb(r)

))
+D j r

∂4

∂r4
w j (r,θ)+

D j

r3
∂4

∂θ4
w j (r,θ)+2D j

∂3

∂r3
w j (r,θ)

+
(
nθθ j (r,θ)+ τt (r,θ)

) ∂
∂θ
w j (r,θ)+ (−1)krσzz j (r,θ)− rq j (r,θ)+ r ∂

∂θ
mθθ j (r,θ)+ r ∂

∂r
mrr j (r,θ)

+
1

2r3

((
−2r

(
µj r

∂

∂r
u0 j (r,θ)+

∂

∂θ
v0 j (r,θ)+u0 j (r,θ)

)
+r2αj (µj+1)

(
T j t (r)+T jb(r)

))
A j−4D j (µj−3)

)
∂2

∂θ2
w j (r,θ)

−
1
2

A j

(
r
(
∂

∂r
w j (r,θ)

)2 ∂2

∂r2
w j (r,θ)+

1
r3

(
∂

∂θ
w j (r,θ)

)2 ∂2

∂θ2
w j (r,θ)

)

−
1
2

A jµj

((
∂

∂r
w j (r,θ)

)3
+

1
r

(
∂

∂r
w j (r,θ)

)2 ∂2

∂θ2
w j (r,θ)+

1
r

(
∂

∂θ
w j (r,θ)

)2 ∂2

∂r2
w j (r,θ)

)

+

(
A j

(
µj+1

2

(
T j t (r)+ T jb(r)

)
αj −

2µj−1

2r2

(
∂

∂θ
w j (r,θ)

)2
−

1
r
∂

∂θ
v0 j (r,θ)

−
1
r

u0 j (r,θ)+
µj−1

r
∂2

∂θ ∂r
w j (r,θ)

∂

∂θ
w j (r,θ)−µj

∂

∂r
u0 j (r,θ)

)
+ rτr (r,θ)+ rnrr j (r,θ)+

D j

r2

)
∂

∂r
w j (r,θ)

+
1
r2

(
A j (µj − 1)

(
r ∂
∂r
v0 j (r,θ)− v0 j (r,θ)+

∂

∂θ
u0 j (r,θ)

)(
r ∂2

∂θ ∂r
w j (r,θ)−

∂

∂θ
w j (r,θ)

))
+

2
r2

D j (µj − 2)
(

∂3

∂θ2 ∂r
w j (r,θ)− r ∂4

∂θ2 ∂r2
w j (r,θ)

)
−

(
A j

(
r ∂
∂r

u0 j (r,θ)+µj
∂

∂θ
v0 j (r,θ)+µj u0 j (r,θ)−

µj+1

2
rαj

(
T j t (r)+ T jb(r)

))
+

D j

r

)
∂2

∂r2
w j (r,θ)

+mrr j (r,θ)−
1
2

d j

(
τr (r,θ)+ r ∂

∂r
τr (r,θ)+ r ∂

∂θ
τθ (r,θ)

)
= 0. (17)

The two corresponding resulting compatibility equations read:
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−
1

12
c2 d

dr

(
Tct(r)−Tcb(r)

)
αc−

1
2
(c+db)

∂

∂r
wb(r, θ)−

1
2
(c+dt)

∂

∂r
wt(r, θ)+u0t(r, θ)−u0b(r, θ)

+

(
c

Gr zc
+

1
12

c3

Ezcr2

)
τr (r, θ)−

c3

12Ezc

(
1
r
∂

∂r
τr (r, θ)+

∂2

∂r2 τr (r, θ)+
∂2

∂θ ∂r
τθ (r, θ)

)
= 0,

−
1
2
(c+ db)

∂

∂θ
wb(r, θ)−

1
2
(c+ dt)

∂

∂θ
wt(r, θ)+

τθ (r, θ)c
Gθ zc

+ v0t(r, θ)− v0b(r, θ)

−
c3

12Ezc

(
1
r
∂

∂θ
τr (r, θ)+

∂2

∂θ2 τt(r, θ)+
∂2

∂θ ∂r
τr (r, θ)

)
= 0, (18)

where k = 1, 2 correspond to the upper and the lower face-core interfaces, respectively.
The unknowns in the set of the governing equations (or the fundamental variables of the problem) con-

sist of the in-plane radial and circumferential displacements (u0 j and v0 j ) and the vertical displacement
(w j ) of the two face sheets ( j = t, b), and the two core shear stresses in the radial and circumferential
directions (τr , τθ ), respectively. Thus the order of the set of partial differential equations (PDEs) includes
two for the in-plane displacements of each face sheets and shear stresses in the core, and four for the
vertical displacements of each face sheet. Hence, the total order of the complete set of PDEs is 18, which
corresponds exactly to the number of boundary conditions to be imposed at the edges of sandwich plate
including both the face sheets and the core; see Equations (11) for the face sheets and Equations (12) for
the core.

The general solution to the set of nonlinear PDEs and the corresponding boundary conditions may be
reduced to a set of nonlinear ordinary differential equations (ODEs) through the use of methods such
as Kantorovich, Galerkin or similar approaches with the aid of periodic functions in the circumferential
direction; see for example [Rabinovitch and Frostig 2002a]. In order to understand the effects of the
main parameters on the nonlinear thermomechanical response including degradation of the mechanical
core properties with increasing temperature, the special case of a radially symmetric (or axisymmetric)
circular sandwich plate is studied next.

5. Radially symmetric sandwich plates — nonlinear governing equations

The case of radially symmetric sandwich plates requires that the mechanical properties of all constituents
are dependent on the radial coordinate only, that the loads (mechanical and thermal) scheme is radially
symmetric, and that the imposed boundary conditions do not depend on the circumferential coordinate.
Accordingly, all the dependent variables of the problem must be functions of the radial coordinate only.
For completeness, the field equations, constitutive relations and the explicit description of the governing
equations for the case of radially symmetric panel is presented in the following.

The field equations for the face sheets ( j = t, b) are:

−rnrr j (r)− r d
dr

Nrr j (r)+ (−1)krτr zc j (r)+ Nθθ j (r)− Nrr j (r)= 0, (−1)kτθ zc j (r)− nθθ j (r)= 0,(
(−1)k−1r d

dr
w j (r)−

d j

2

)
τr zc j (r)−

d j

2
r d

dr
τr zc j (r)+

(
rnrr j (r)−Nθθ j (r)

) d
dr
w j (r)+

d
dr

Mθθ j (r)

+(−1)krσzzcj (r)− r Nrr j (r)
d2

dr2w j (r)− rq j (r)− 2 d
dr

Mrr j (r)− r d2

dr2 Mrr j (r)= 0, (19)
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where k = 1, 2 for the upper and the lower face-core interfaces respectively. Please notice that if no
radial in-plane external loads is imposed, then the circumferential shear stresses within the core are zero.
Hence the number of equations reduces to two for each face sheet.

The number of boundary conditions at the inner and outer plate radii, Ri , and Ro, changes to three for
each face sheet as follows ( j = t, b):

λNrr j (Rk)− Nre j (Rk)= 0 or u0 j (Rk)− u0ej (Rk)= 0

λMrr j (Rk)+Mre j (Rk)= 0 or Dw j (Rk)− Dwej (Rk)= 0

λ
(

R j Nrr j (Rk)D(w j )(Rk)− Rkmrr j (Rk)

+ R j DMrr j (Rk)+
1
2 d j R jτr zc j (Rk)

+Mrr j (Rk)−Mθθ j (Rk)
)
− R j Pe j (Rk)= 0 or w j (Rk)−we j (Rk)= 0 (20)

where λ = 1 for r = Ro and λ = −1 for r = Ri ; k = o or i . Notice that due to the radially symmetric
constraints there are no boundary conditions imposed with respect to loads and displacements in the
circumferential direction.

The stress resultant-displacement relations read:

Nrr j (r)= A j

(
−

1
2
(1+µj )

(
T j t(r)+ T jb(r)

)
αj +

d
dr

u0 j (r)+
1
2

( d
dr
w j (r)

)2
+

1
r
µj u0 j (r) j

)
,

Mrr j (r)= D j

(
−

1
d j
(1+µj )

(
T j t(r)− T jb(r)

)
αj +

d2

dr2w j (r)+
1
r
µj

d
dr
w j (r)

)
,

Nθθ j (r)= A j

(
1
2
αj (µ

2
j − 1)

(
T j t(r)+ T jb(r)

)
+

1
r
(1−µ2

j )u0 j (r)
)
+µj Nrr j (r),

Mθθ j (r)= D j

(
αj

d j

(
T j t(r)− T jb(r)

)
(µ2

j − 1)+ 1
r
(µ2

j − 1) d
dr
w j (r)

)
+µj Mrr j (r).

(21)

Here it should be noticed that the stress resultants in the circumferential direction are expressed in terms
of displacements, temperatures and stress resultants in the radial direction for brevity. In addition, it is
seen that the stress resultants do not depend on the circumferential displacement.

Hence, through substitution of (21) into the field equations (19), and using the r dependent variables
in the compatibility equations (18), the governing equations for face sheets ( j = t, b) in the axisymmetric
sandwich plate case read:

A j

(
1
2
(µj + 1)r d

dr
(
T j t(r)+ T jb(r)

)
αj +

µj−1
2

( d
dr
w j (r)

)2

− r d2

dr2 u0 j (r)− r d
dr
w j (r)

d2

dr2w j (r)+
1
r

u0 j (r)−
d
dr

u0 j (r)
)
+ (−1)krτr (r)− rnrr j (r)= 0,

1
2

A j (µj − 1) 1
r2

(
r3 d2

dr2 v0 j (r)− v0 j (r)+ r d
dr
v0 j (r)

)
+ (−1)krτθ (r)− rnθθ j (r)= 0,
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−
αj

d j
D j (1 + µj )

(
r d2

dr2

(
T jb(r) − T j t(r)

)
+

d
dr
(
T jb(r) − T j t(r)

))
−

1
2

A jµj

( d
dr
w j (r)

)3

+ D j

(
r d4

dr4w j (r) + 2 d3

dr3w j (r) −
1
r

d2

dr2w j (r) +
1
r2

d
dr
w j (r)

)
+ (−1)krσzz j (r) − rq j (r)

+

((
µj+1

2
(
T j t(r)+ T jb(r)

)
αj −

u0 j (r)
r
−µj

d
dr

u0 j (r)
)

A j + rτr (r)+ rnrr j (r)
)

d
dr
w j (r)

−A j

(
r
2

( d
dr
w j (r)

)2
+ r d

dr
u0 j (r)+ u0 j (r)µj −

r
2
αj (1+µj )

(
T j t(r)+ T jb(r)

)) d2

dr2w j (r)

+ r d
dr

mrr j (r)+mrr j (r)−
d j

2

(
τr (r)+ r d

dr
τr (r)

)
= 0. (22)

And the compatibility equations equal:

−
1

12
c2 d

dr
(
Tct(r)− Tcb(r)

)
αc−

1
2
(c+ db)

d
dr
wb(r)−

1
2
(c+ dt)

d
dr
wt(r)− u0b(r)+ u0t(r)

+

(
c

Gr zc
+

1
12

c3

Ezcr2

)
τr z(r)−

c3

12Ezcr

(
d
dr
τr z(r)+ r d2

dr2 τr z(r)
)
= 0,

τθ (r)c
Gθ zc

+ v0t(r)− v0b(r)= 0. (23)

The interfacial vertical normal stresses read ( j = t, b):

σzz j (r)=−
Ezc
2
(
Tcb(r)+ Tct(r)

)
αc+

Ezc
c
(
wb(r)−wt(r)

)
+

1
2r
(c− 2zcj )

(
r d

dr
τr z(r)+ τr z(r)

)
, (24)

where zcj = 0, c at the upper and the lower interfaces, respectively. The stress and displacements fields of
the radially symmetric case can be determined by imposing the constraints that all dependent quantities
are only dependent of the radial coordinate r ; see (14) and (15).

In addition, when no in-plane external circumferential loads are imposed — see the second equation
in (19) — and substituting this result into the second compatibility in (23), the following conditions are
obtained:

τθ (r)= 0, v0t(r)− v0b(r)= 0. (25)

The physical interpretation of (25) is that the circumferential displacements in the upper and the lower
face sheets must be identical and equal to zero, since no external displacements are imposed in this
direction.

It should be noticed that for the case when the mechanical core properties are temperature-dependent,
the solution procedure to determine the stress and displacements field of the core follows the approach
outlined in [Frostig and Thomsen 2007; 2009], to which reference is made for brevity.

The nonlinear governing equations for the radially symmetric circular sandwich plate case can be
expressed by a set of fourteen order ordinary differential equations (ODEs). The boundary value problem
constituted by the set of ODEs together with the associated boundary condition can be solved using
numerical schemes such as the multiple-point shooting method [Stoer and Bulirsch 1980], or the finite-
difference (FD) approach using trapezoid or mid-point methods with Richardson extrapolation or deferred
corrections [Ascher and Petzold 1998], as implemented in Maple, along with parametric or arc-length
continuation methods [Keller 1992]. Here, the FD approach implemented in Maple has been used. In
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the next section the results of a numerical study that discusses the thermomechanical nonlinear response
of a radially symmetric sandwich plate are presented.

6. Numerical study

The nonlinear thermomechanical response of a radially symmetric circular sandwich plate with a foam
core that has temperature-dependent mechanical properties loaded by a partially uniformly distributed
load at mid-span is studied. First, the combined response of a uniformly heated plate with the partially
distributed load is discussed with results along the plate and equilibrium curves. The equilibrium curves
of temperature versus extreme values of displacements are compared with results of nonlinear finite
element analyses (FEA) conducted using ABAQUS/Standard. This is followed by a study that includes
the equilibrium curves where a temperature gradient is imposed across the sandwich plate thickness such
that the temperature of the lower face sheets is higher than the temperature of the upper face sheet.

The specific sandwich plate configuration (see Figure 2a) consists of a circular sandwich plate with
a diameter of 300 mm; two face sheets of 0.5 mm thickness with a coefficient of thermal expansion
αj = 0.00001 ( j = t, b) and made as glass/epoxy composite laminates, and a Divinycell HD-60 foam
core with Ec0= 52.5 MPa and Gc0= 20.2 MPa (at 20◦C) with a thickness of 19.05 mm with αc= 0.00035
made by DIAB [2003]. The supporting system imposed at the edge of the sandwich plate consists of a

Figure 2. Circular sandwich plate geometry and deformed shapes: (a) plate layout, me-
chanical and thermal loads and supporting scheme; (b) deformed shape due to mechan-
ical and uniformly distributed load.
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horizontally moveable simple supports of the lower face sheet, while the upper face sheet and the core
are free of any displacement constrains or stress tractions. In addition, the center of the sandwich plate
is assumed to be horizontally immoveable. The loads system includes mechanical loads and an imposed
thermal field; see Figure 2a. The mechanical load consists of a patch load of uniform distribution of
2.0 MPa imposed at a circular area around center of plate with a diameter 40 mm at the upper face sheet,
and a temperature field with a linear through-thickness distribution in the core and uniform temperatures
through the thickness of the face sheets. The thermal gradient, 1T , raises the temperature imposed on
the lower face sheet; see Figure 2a.

The temperature-dependent (TD) core properties are specified according to the Divinycell HD grade
PVC foam core data sheet [DIAB 2003], which includes measured material properties in a working range
of temperatures between 20 to 80◦C. The mechanical properties of Divinycell PVC foam degrades as the
temperatures are raised and they are defined here through curve-fitting of the data that appears in [DIAB
2003] (see Figure 3a) as follows:

Ezc(r, zc)= Ec0 f (T ),

Gr zc(r, zc)= Gc0 f (T ),

f (T )=−2.821963496 10−13 T 8
+ 9.528319971 10−11 T 7

+ 0.03070734934 T

− 1.325134998 10−8 T 6
− 0.009541812399 T 2

+ 9.703157671 10−7 T 5

+ 0.0008705288588 T 3
− 0.00003952259514 T 4

+ 1.1903,

(26)

where Ec0 and Gc0 refer to the elasticity and shear moduli of the core at T = 20◦C. Notice that when
a thermal gradient is applied to the sandwich plate the mechanical properties of the core are dependent

Figure 3. Elastic core moduli: (a) moduli magnitude versus temperatures; (b) moduli
distribution through depth of core.
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on the vertical coordinate (Figure 3b). In addition, it is assumed here that the temperature dependence is
identical for the modulus of elasticity and the shear modulus of the core. For further details see [Frostig
and Thomsen 2007; 2009].

The solution procedure uses a parametric continuation method with the temperature T as the parameter.
The procedure halts when the solution does not converge or when it violates the assumption of large
displacements and moderate rotations (displacements exceeding D/10). The results are also limited to a
temperature of 79.7◦C, which is closed to the upper limit of the range of operating temperatures for the
HD-60 foam considered; see DIAB [2003].

The first case presents the thermomechanical response of a circular sandwich plate with a uniformly
distributed temperature through the plate thickness that changes from 20◦C to 79.6◦C, and a mechanical
distributed load of 2.0 MPa partially distributed at center of plate; see Figure 2 for details. The deformed
shapes at different temperature levels appear in Figure 2b from which it is observed that the deformation
patterns display a significant indentation zone at the upper face sheet and a much smaller at the lower one.
Or in other words the indentation deformation decays through the core thickness. It should be noticed
that although the mechanical load has not been changed the indentation deepens and narrows as the
temperature is raised as a result of the degradation of the temperature-dependent mechanical properties
of the core. Moreover, localized in-plane displacements are observed in the core above the lower supports;
see Detail A in Figure 2b. In addition, the radial in-plane displacements of the upper and the lower face
sheets at the edges of the sandwich plate are very small as a result of the 2D in-plane action of the plate
in the radial and circumferential directions although both edges are free to slide horizontally.

The predicted variations of selected structural quantities along the radius of the sandwich plate appear
in Figure 4 for different temperatures. The vertical displacements of the face sheets (see Figure 4a)
display an indentation at mid-span (r = 0) that deepens and narrows as the temperature is raised. It
should be noticed that the displacements increase monotonically up to 78◦C, after which disproportional
increases of the displacements are observed as a result of the development of a limit point; see Figure 5a.
In addition, the vertical displacements at the edge of the upper face sheet are not zero, due to the vertical
flexibility of the core. The radial variation of the radial and the circumferential bending moment resultants
for each face sheet (see Figure 4b) are associated with large values at the edges of the loaded area, around
center of plate at the upper face sheet, and even larger in the vicinity of the edge of the lower face sheet
due to the presence of the supports at this location. The in-plane face sheet stress resultants in the radial
and circumferential directions are associated with tensile values around center, compressive values in
the circumferential direction, and zero radial stress resultants at the edge of the sandwich plate; see
Figure 4c. Please notice that at low temperatures, both stress resultants are in compression but the radial
stress resultants change into tensile values as the temperature is raised, while the circumferential stress
resultants change from tensile at center to compression at the plate edge. The radial in-plane mid-height
displacements of the face sheets (see Figure 4d) are quite small in comparison with the vertical ones
(see Figure 4a) but they reach large values at the face sheet edges at high temperatures. The radial
interfacial shear stresses at the face-core interfaces are associated with large values in the vicinity of the
edge of the loaded area and much smaller values toward the sandwich plate edge; see Figure 4e. Large
interfacial vertical normal stresses are observed within the radial distance of the loaded area, at lower
temperatures, as well as at the edge of the plate at high temperatures; see Figure 4f. At lower temperature
levels the shear stresses in the core and the interfacial vertical normal stresses at the upper face sheet
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Figure 4. Thermomechanical radial response for a partially distributed load and a uni-
form temperature distribution. Face sheets: (a) vertical displacements; (b) radial and
circumferential bending moments; (c) radial and circumferential in-plane stress resul-
tants; (d) radial in-plane mid-height displacements. Core: (e) shear stresses; (f) face-
core interfaces vertical normal stresses. Thicker black lines represent the upper face and
thinner ones the lower face; red lines in (b) and (c) represent circumferential magnitudes.



GEOMETRICALLY NONLINEAR THERMOMECHANICS OF SANDWICH PLATES WITH SOFT CORE 943

Figure 5. Equilibrium curves of temperature vs. extremum values of selected structural
quantities for a partially distributed load and a uniform temperature distribution. Face
sheets: (a) vertical displacements; (b) radial and circumferential bending moments; (c)
radial and circumferential in-plane stress resultants; (d) radial in-plane mid-height dis-
placements. Core: (e) shear stresses; (f) face-core interface vertical normal stresses.
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are almost equal in magnitude to the applied pressure load, and they reduce as the temperature level
increases. Actually, what happens is that as the mechanical properties of the degrade it stops carrying
any more stresses and each face sheets behave as an independent plate rather than a part of the sandwich
panel with a composite action that forms the couple in the face sheets. At the edge of the sandwich plate
the interfacial vertical normal stresses change to tension at the upper interface and to compression at the
lower interface due to the presence of the edge support system at the lower face sheet and the vertical
displacements at the upper face, but without significant effects of the degradation of the mechanical core
properties.

The equilibrium curves corresponding to the thermomechanical response are described by temperature
versus extremum values of selected structural quantities; see Figure 5. The predicted curves of the
extremum vertical displacements of the upper and the lower face sheets predicted by the nonlinear HSAPT
model and the nonlinear FEA predictions using ABAQUS/Standard appear in Figure 5a. For details on
the FEA modeling such as element types, material properties of the face sheets and material model for the
core see [Santiuste et al. 2011]. Figure 5a reveals that loss of stability in the form of a limit point occurs
as the temperatures are raised and the mechanical properties degrade. The FEA results compare very well
with the HSAPT model, although the FEA results predict a slightly stiffer structure at almost all values of
temperatures as expected. Similar trends are observed for the radial and circumferential bending moment
resultant curves; see Figure 5b. Here it should be noticed that the largest bending moment resultants occur
at the lower face sheet in the vicinity of the support (see also Figure 4b). The in-plane stress resultants
in the radial and circumferential directions reveal a loss of stability at high temperatures. In addition, the
circumferential stress resultants reach larger values in compression and tension as the temperatures are
raised. The radial in-plane mid-height displacements of the face sheets (see Figure 5d) are associated
with large values as the temperature is increased and approach the upper temperature range. The shear
stresses in the core follow a different trend; see Figure 5e. At low temperatures the interfacial shear
stresses are quite large and they decrease as the temperature is raised. The implication of this is that
the contribution of the couple that forms in the sandwich plate (known also as the composite action)
as a result of the overall bending is significantly reduced as the temperature is raised. The interfacial
vertical normal stresses follow a similar trend as the interfacial shear stresses; see Figure 5f. Notice that
at low temperatures the extremum compressive stresses at the upper interface are quite large and that
they reduce as the temperature increases. The extremum tensile interfacial stresses are almost constant
through the entire range of temperatures at the upper and the lower face sheets, and they almost disappear
at high levels of temperature.

The effect of a temperature gradient between the upper and the lower face sheets, where the upper
face sheet is at a temperature of T , whereas the lower face sheet is at a temperature of T +1T . The
maximum core temperature is increased to 79◦C at the lower face sheet or to a temperature level where
solution convergence is not achievable. Notice that under such conditions the moduli of the core are
coordinate-dependent (varies in both radial and though-thickness directions) which require a special
solution procedure that yields a closed-form solution for the core fields. For details see [Frostig and
Thomsen 2007; 2009].

The equilibrium curves of temperature at the upper face-sheet versus extremum values of selected
structural quantities for different temperature gradients appear in Figure 6. They consist of the results
obtained for the temperature-dependent core (TD) using the moduli of the core that appear in Figure 3



GEOMETRICALLY NONLINEAR THERMOMECHANICS OF SANDWICH PLATES WITH SOFT CORE 945

Figure 6. Equilibrium curves of temperature vs. extremum values of selected structural
quantities for a partially distributed load and different thermal through-thickness gradi-
ents. Face sheets: (a) vertical displacements (HSAPT and FE); (b) radial and circum-
ferential bending moments. Core: (c) shear stresses; (d) face-core interfaces vertical
normal stresses.

and the case of a core with temperature-independent (TI) with moduli values that correspond to T = 20◦C
and a zero thermal gradient. The plots of temperature versus the extreme vertical displacements appear
in Figure 6a, and it is seen that at all thermal gradient levels a loss of stability is observed. It occurs
when the temperature at the lower face sheet approaches the higher levels of the operating temperature
of the core. Please notice that the degradation of core properties at the higher temperature is significant
only within a small fraction of the core height near the lower face-core interface. The TI case exhibit
linear behavior and is unaffected by the temperature level.

Similar trends are observed for the radial bending moment resultants (see Figure 6b) while the cir-
cumferential bending moment resultants are almost independent of the temperature.
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The core shear stresses (see Figure 6c) follow an opposite trend; as the temperature is raised the
core shear stresses decreases independent of the thermal gradient values. The vertical normal interfacial
stresses follow the trends of the shear stresses; see Figure 6d. Notice that as the temperature is raised the
vertical normal interfacial stress values decrease. In all cases the TI core exhibit linear results that are
independent of the temperature levels and they are completely different than the results obtained when
the thermal degradation of the foam core is taken into account.

7. Summary and conclusions

A general and rigorous systematic geometrically nonlinear high-order computational model of circular
sandwich plates with general layout and a compliant core material is presented. The mathematical
formulations outlines the derivation of the nonlinear field equations; the appropriate boundary condi-
tions; as well as the stress and deformations fields of the core, when the sandwich plate is subjected
to mechanical loads in parallel with thermally induced deformations and when the core properties are
temperature-independent. The case of a sandwich core with temperature-dependent properties is also
treated following the procedure outlined in [Frostig and Thomsen 2007; 2009]. In succession of this the
special case of radially symmetric sandwich plates are considered and it yields the nonlinear governing
equations for such plates when subjected to combined mechanical and thermal loads.

The results of a numerical study are presented. This includes the nonlinear load response characteris-
tics of radially symmetric circular plates subjected to combined thermal and mechanical loads, as well
as the effects of different thermal gradient values through the depth of the core.

The response is also associated with stress concentration regions due to localized effects such as at the
edge of the loaded region as well as the support region. The shear and interfacial vertical normal stresses
results reveal that as the temperatures are raised the collaboration between the face sheets diminishes and
the load transfer mechanism is associated with independent significant bending in each face sheet rather
than as part of a composite action that form a couple in an ordinary sandwich panels. Loss of stability is
observed as the temperatures approach the upper limit of the range of working temperature. In general,
it is associated with very large displacements, bending moments and in-plane stress resultants.

The conducted numerical study reveals that the response becomes unstable as the temperature is
increased and the mechanical core properties degrade. Hence, in such cases the design of sandwich
structures should be controlled by stability criteria rather than stress constraints.

The effects of imposing different thermal gradients across the core thickness have also been examined.
Notice that when the temperature distribution through the core depth is not uniform the core stiffness
parameters will vary through the core thickness. This requires a special solution procedure. It has been
found that for temperature gradient levels a loss of stability occurs when the temperature at the tensile
face sheet approaches the upper limit of the temperature range.

In general, the nonlinear response of a circular sandwich plate is much stiffer than the case of a
unidirectional sandwich panel or beam. When comparing with the sandwich panel or beam cases, the
presence of circumferential rigidity in addition to the longitudinal rigidity improves the stiffness of the
sandwich circular plate. Thus, the presence of a 2D in-plane stress field stabilizes the load response of
sandwich plates when compared to the unidirectional panel/beam response characteristics. However, the
use of core materials with temperature-dependent mechanical properties that degrade with increasing
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temperature yields an unstable response independent of the structural configuration (1D beam/panel or
2D plate). Hence, a reliable design of any type of sandwich structure must take into account the loss
of stability that may occur within the working range of temperatures due to thermal degradation when
compliant sandwich core materials are used.
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