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NUMERICAL LINEAR STABILITY ANALYSIS
OF A THERMOCAPILLARY-DRIVEN LIQUID BRIDGE

WITH MAGNETIC STABILIZATION

YUE HUANG AND BRENT C. HOUCHENS

A full-zone model of a thermocapillary-driven liquid bridge exposed to a steady, axial magnetic field is
investigated using a global spectral collocation method for low-Prandtl number (Pr) fluids. Flow insta-
bilities are identified using normal-mode linear stability analyses. This work presents several numerical
issues that commonly arise when using spectral collocation methods and linear stability analyses in the
solution of a wide range of partial differential equations. In particular, effects such as discontinuous
boundary condition regularization, identification of spurious eigenvalues, and the use of pseudospectra
to investigate the robustness of the stability analysis are addressed. Physically, this work provides sim-
ulations in the practical range of experimentally utilized magnetic field stabilization in optically heated
float-zone crystal growth. A second-order vorticity transport formulation enables modeling of the liquid
bridge up to these intermediate magnetic field strength ranges, measured by the Hartmann number (Ha).
The thermocapillary driving and magnetic stabilization effects are observed up to Ha= 500 for Pr= 0.001
and up to Ha= 300 for Pr= 0.02. Prandtl number effects on temperature and flow fields are investigated
within Pr ∈ (10−12, 0.0667) and indicate that Pr= 0.001 is a good representation of the base state in the
Pr→ 0 limit, at least up to Ha= 300.

1. Introduction

Float-zone growth processes are methods to grow crystals with the highest purity. A cross-sectional
region of a polycrystalline ingot is melted by lateral heating, for example, in an optical heating furnace
[Eyer et al. 1979]. This molten region holds itself from spilling by surface tension, forming a liquid
bridge between the feed rod and the grown crystal. As the liquid bridge moves through the furnace, the
melt resolidifies as a single crystal if properly controlled. Throughout the process the melt never contacts
a crucible, and therefore the grown crystal has very low oxygen contamination. Sufficient heat input is
required to avoid the onset of morphological instability at the solidification front [Davis 1993]. The
thermocapillary effect at the free surface drives a flow within the liquid bridge. This flow is susceptible
to instabilities, which result in structural imperfections in grown crystals and uneven dopant distribution
for doped crystals [Eyer et al. 1985; Cröll et al. 1994]. Therefore stabilization techniques are typically
used in crystal growth practice. For example, two silicon crystal rods were grown in a double ellipsoidal
mirror furnace with rod rotation in Spacelab-1 [Martinez and Eyer 1986]. A review of liquid bridge
stabilization strategies can be found in [Lappa 2005b]. One strategy for molten semiconductors, which
have properties similar to liquid metals, is to apply external magnetic fields to control flow motion.
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The optically heated liquid bridge has been studied by the crystal growth community using simpler
models such as the half-zone model, resembling one half of a liquid bridge, and the full-zone model. The
liquid bridge has a barrel shape in microgravity and a sagged shape under terrestrial conditions. These
free-surface shapes have been simulated in both half-zone [Morthland and Walker 1996] and full-zone
[Lappa 2004] models, respectively. In [Nakamura et al. 1998], m = 1 and 2 oscillating instability modes
were observed in molten silicon in an optically heated half-zone configuration on the TR-IA rocket. The
hydrodynamic and hydrothermal instability mechanisms of low and high-Pr liquid bridges, respectively,
have been confirmed in [Chen et al. 1997; Lappa 2005a; Bouizi et al. 2007] and elsewhere. Lan and
Yeh [2004; 2005] performed quite complete full-zone modeling involving three-dimensional radiation,
a deformable free surface and melting interfaces, dopant distribution, and axial and transverse magnetic
damping. Prange et al. [1999] studied the half-zone instability with axial magnetic field stabilization up
to Ha= 25.

This work presents a full-zone liquid bridge model with magnetic stabilization, with a focus on the
numerical methods and analyses utilized. The goals of this paper are twofold: first, to provide insight
into magnetohydrodynamic control in the liquid bridge problem which will aid in the design of float-
zone crystal growth experiments and, second, to demonstrate through example the treatment of several
common numerical issues, such as regularization, identification of spurious eigenvalues, and sensitivity
of linear stability analyses as quantified by pseudospectral analysis, techniques relevant to a wide array
of numerical analysis studies.

2. Problem description

2A. Full-zone model of a liquid bridge. A liquid bridge of a molten semiconductor is bounded by top
and bottom solid boundaries (Figure 1). Both boundaries are assumed flat, electrically insulating, and
at the melting temperature T ∗0 of the semiconductor. The lateral cylindrical free surface is assumed
nondeformable due to high surface tension and the microgravity environment. The diameter and height
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Figure 1. Full-zone model of a liquid bridge with a parabolic heat flux at the free surface
and an axially applied magnetic field.
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of the liquid bridge are 2R∗ and 2bR∗, respectively. The aspect ratio b is held at 1 in this paper. An
axisymmetric heat flux is applied at the lateral free surface. This heat flux is approximated with a
maximum intensity q∗ at the equatorial plane and parabolic reduction to zero at the top and bottom
boundaries. The thermal conductivity of the melt is k∗. A constant, uniform external magnetic field is
applied in the axial direction with a magnetic flux density of B∗ = B∗o êz . Variables with an asterisk
superscript are dimensional quantities.

The characteristic length, temperature, and magnetic flux density are R∗, 1T ∗ = q∗R∗/k∗, and B∗o ,
respectively. Temperature is scaled as T = (T ∗− T ∗0 )/1T ∗. The nondimensional governing equations
are incompressible continuity, the Navier–Stokes equations including the electromagnetic body force,
the energy equation neglecting viscous dissipation, conservation of charge, and Ohm’s law:

∇ · v = 0, (2-1)

∂v

∂t
+ (v ·∇)v =−∇P +∇2v+Ha2( j × êz), (2-2)

Pr
[
∂T
∂t
+ (v ·∇)T

]
=∇

2T, (2-3)

∇ · j = 0, (2-4)

j =−∇φ+ v× êz, (2-5)

where

Ha=
(
σ ∗

µ∗

)1
2 B∗o R∗, Pr=

µ∗c∗p
k∗

. (2-6)

The Hartmann number Ha is proportional to the magnetic flux density B∗o and measures the ratio
of the electromagnetic body forces to the viscous forces. The Prandtl number Pr indicates the relative
effectiveness of thermal convection to heat conduction in the melt. Pr is a material property, where c∗p
is the specific heat of the melt. For fluids with small Prandtl number (for example, Prsilicon ≈ 0.02), heat
conduction is dominant over convection.

Nondimensional boundary conditions include a nondeformable and electrically insulating free surface
(vr = 0 and jr = 0 at r = 1) with flow induced by the thermocapillary boundary conditions, (2-9), and
no-slip, no-penetration and electrically insulating top and bottom boundaries (v = 0 and jz = 0 at z =±b)
which are maintained at the melting temperature (T = 0 at z =±b).

The full-zone is a more realistic liquid bridge model for optically heated float-zone crystal growth as
compared to the half-zone, though both capture much of the primary physics of the flow field. In the
full-zone model the heat flux is input on the free surface, rather than from a hot bottom wall, as in the
half-zone. Also, no constraint is enforced at the midplane in the full-zone. Thus the temperature varies
at the midplane (see Figures 4a and 4b) and flow is allowed to be nonzero and even cross the midplane
(see Figure 6). Note that in this work axial symmetry is assumed in the base flow for computational
efficiency, but no boundary condition is imposed at the midplane. Therefore the full-zone character is
maintained.

In contrast, the half-zone intends to model one half of the liquid bridge. A no-slip, no-penetration solid
boundary at fixed temperature is enforced in the half-zone, at the location of the midplane. A thermally
insulating free surface is commonly assumed. The half-zone is driven by the temperature difference
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between two bounding disks. Despite these simplifications, the half-zone is an effective liquid bridge
model for both experimental and computational studies. However, the onset of flow instabilities tend
to be delayed in the half-zone by the presence of the no-slip boundary that replaces the midplane and
removes momentum from the flow through viscous effects. An extensive comparison of the half-zone
and full-zone models can be found in [Houchens and Walker 2005].

2B. Thermocapillary-driven flow. The temperature gradient at the free surface produces surface tension
differences, called the thermocapillary or Marangoni effect. The surface tension γ ∗ drives a flow within
the liquid bridge, and is approximated as a linearly decreasing function of temperature:

γ ∗(T ∗)= γ ∗0 +
dγ ∗

dT ∗
(T ∗− T ∗0 ), (2-7)

where dγ ∗/dT ∗ is a negative quantity. With the Newtonian constitutive relations

τ ∗r z = µ
∗

(
∂v∗z

∂r∗
+
∂v∗r

∂z∗

)
, τ ∗rθ = µ

∗

[
r∗ ∂
∂r∗

(
v∗θ

r∗

)
+

1
r∗
∂v∗r

∂θ

]
, (2-8)

the nondimensional thermocapillary boundary conditions become

∂vz

∂r
=−ReFZ

∂T
∂z

at r = 1,
∂vθ

∂r
−
vθ

r
=−ReFZ

1
r
∂T
∂θ

at r = 1, (2-9)

where

ReFZ =

∣∣∣dγ ∗dT ∗

∣∣∣1T ∗

µ∗V ∗c
=

ρ∗R∗
∣∣∣dγ ∗dT ∗

∣∣∣1T ∗

µ∗2
. (2-10)

The thermocapillary Reynolds number ReFZ measures the thermocapillary effect. The subscript FZ
refers to the full-zone model temperature scaling. The related Marangoni number Ma = ReFZ× Pr is
also commonly used in thermocapillary flow studies. The viscous Reynolds number is

Reviscous =
ρ∗v∗max R∗

µ∗
=
ρ∗vmaxV ∗c R∗

µ∗
= vmax, (2-11)

where V ∗c = µ
∗/(ρ∗R∗) is the characteristic flow velocity. Thus the maximum dimensionless velocity

vmax is equivalent to the viscous Reynolds number in this scaling.
Figure 2 shows the thermocapillary-driven flow in r ∈ (0, 1), z ∈ (0, b) at some θ plane. From

z = 0→ 1 the temperature decreases along the free surface (r = 1), and therefore the surface tension
increases. The thermocapillary effect pulls fluid from the equatorial plane toward the top boundary along
the free surface. This flow then hits the top boundary, turns inwards and circulates back to the equatorial
plane in the interior of the liquid bridge.

3. Steady axisymmetric base flow

3A. Base flow assumptions. Periodic and/or three-dimensional flow in the liquid bridge results in imper-
fections in grown crystals such as striations and nonuniform dopant distribution. With sufficient magnetic
stabilization, the base flow is steady (∂/∂t = 0), axisymmetric (∂/∂θ = 0) with zero azimuthal velocity
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Figure 2. Stream function contours of the thermocapillary-driven flow (Pr = 0.02,
Ha= 0, at the critical ReFZ = 1546.58, flow grid r × z = 35× 45, temperature grid
r × z = 30× 30, α = 300).

(vθ0 = 0), and exhibits axial symmetry about the equatorial plane. For this base flow state the governing
equations simplify to

∂vr0

∂r
+
vr0

r
+
∂vz0

∂z
= 0, (3-1)

vr0
∂vr0

∂r
+ vz0

∂vr0

∂z
=−

∂P0

∂r
+
∂2vr0

∂r2 +
1
r
∂vr0

∂r
−
vr0

r2 +
∂2vr0

∂z2 −Ha2vr0, (3-2)

vr0
∂vz0

∂r
+ vz0

∂vz0

∂z
=−

∂P0

∂z
+
∂2vz0

∂r2 +
1
r
∂vz0

∂r
+
∂2vz0

∂z2 , (3-3)

Pr
(
vr0
∂T0

∂r
+ vz0

∂T0

∂z

)
=
∂2T0

∂r2 +
1
r
∂T0

∂r
+
∂2T0

∂z2 , (3-4)

with boundary conditions

vr0 = 0, jr0 = 0,
∂vz0

∂r
=−ReFZ

∂T0

∂z
F(z),

∂T0

∂r
= 1−

( z
b

)2
at r = 1, (3-5)

vr0 = 0, vz0 = 0, T0 = 0, jz0 = 0 at z =±b, (3-6)

where
F(z)= 1− exp

{
−α

[
1−

( z
b

)2 ]2}
(3-7)

is a regularization function to remove the ∂vz0/∂r singularity at (r, z)= (1,±b) between the thermocapil-
lary driving force on the free surface and the no-penetration conditions at the top and bottom boundaries.

Base flow variables are denoted with subscript 0 to differentiate them from perturbation variables
(which have subscript 1).

3B. Second-order vorticity transport formulation. In [Houchens and Walker 2005], a fourth-order stream
function formulation was introduced for the base flow problem, with the stream function ψ defined as

vr0 =
1
r
∂ψ

∂z
, vz0 =−

1
r
∂ψ

∂r
. (3-8)
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The resulting equations were discretized using a global spectral collocation method with Chebyshev
basis functions. In this formulation, the momentum equations can be combined into a single fourth-order
partial differential equation governing ψ . Unfortunately, the coefficients on the derivatives of the Cheby-
shev functions increase dramatically as the derivative order increases. From a numerical standpoint,
the combination of order-one coefficients on the first and second derivatives and huge third and fourth
derivatives in one equation causes numerical difficulties. This imbalance in fact imposes a constraint
on the maximum viable grid resolution in obtaining converged solutions. This consequently limited the
maximum magnetic stabilization intensity (Ha) that could be studied [Houchens and Walker 2001].

Reducing the maximum Chebyshev derivative order improves the numerical performance, at the ex-
pense of more dependent variables. In this work, this is achieved by introducing the azimuthal vorticity
ωθ into the formulation as

ωθ =
∂vr0

∂z
−
∂vz0

∂r
. (3-9)

The nondimensional governing equations of the second-order vorticity transport formulation are

ωθ =
1
r
∂2ψ

∂r2 −
1
r2
∂ψ

∂r
+

1
r
∂2ψ

∂z2 , (3-10)

1
r
∂ψ

∂z

[
∂ωθ

∂r
−
ωθ

r

]
−

1
r
∂ψ

∂r

[
∂ωθ

∂z

]
=
∂2ωθ

∂r2 +
1
r
∂ωθ

∂r
+
∂2ωθ

∂z2 −
ωθ

r2 −
Ha2

r
∂2ψ

∂z2 , (3-11)

Pr
(

1
r
∂ψ

∂z
∂T0

∂r
−

1
r
∂ψ

∂r
∂T0

∂z

)
=
∂2T0

∂r2 +
1
r
∂T0

∂r
+
∂2T0

∂z2 , (3-12)

with boundary conditions

ψ = 0,
∂2ψ

∂r2 −
∂ψ

∂r
= ReFZ

∂T0

∂z
F(z),

∂T0

∂r
= 1−

( z
b

)2
, at r = 1, (3-13)

∂ψ

∂z
= 0, ψ = 0, T0 = 0, at z = b. (3-14)

The base flow variables are represented with Chebyshev polynomials:

ψ
(

r, z
b

)
= r2

NRF+1∑
L=0

NZ F+1∑
M=0

AL M T2L(r)T2M+1

( z
b

)
, (3-15)

ωθ

(
r, z

b

)
= r

NRF∑
L=0

NZ F∑
M=0

BL M T2L(r)T2M+1

( z
b

)
, (3-16)

T0

(
r, z

b

)
=

NRT∑
L=0

NZ T∑
M=0

CL M T2L(r)T2M

( z
b

)
, (3-17)

where Tn(r)= cos(n arccos r) are the Chebyshev basis functions. As a result of radial symmetry (axisym-
metry), only even Chebyshev terms are utilized in r , with the overall radial symmetry set by the multiple
of r in front of the representation. This corresponds to the behaviors as r→ 0, which were investigated
for ψ , ωθ , and T using the Frobenius method. Moreover, due to the axial symmetry, only even or odd
Chebyshev terms are nonzero in z. Taking advantage of axisymmetry and the axial symmetry, the unique
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computational domain for the base flow is reduced to r ∈ (0, 1), z ∈ (0, b) at θ = 0 and is discretized
using Gauss–Lobatto collocation grids (NRF×NZ F for the flow field and NRT ×NZ T for the temperature
field) given, for example, by

rI F = cos IFπ

2NRF
for IF = 0, 1, 2, . . . , NRF , (3-18)

zK F = cos KFπ

2NZ F
for KF = 0, 1, 2, . . . , NZ F . (3-19)

These grids weight the finest resolution toward the free surface and the solid boundary where it is most
needed.

At r = 0 or z = 0, the governing equations (3-10) and (3-11) and the first two boundary conditions
in (3-13) (at z = 0) reduce to 0= 0. To impose constraints at r = 0 and z = 0, the first nonzero leading
order of these equations are applied. For example, after substituting the representations for ψ and ωθ
from (3-15) and (3-16), respectively, (3-10) becomes

NRF∑
L=0

NZ F∑
M=0

BL MrT2L T2M+1−

NRF+1∑
L=0

NZ F+1∑
M=0

AL M
r
b2 T2L T ′′2M+1−

NRF+1∑
L=0

NZ F+1∑
M=0

AL M(rT ′′2L + 3T ′2L)T2M+1

= 0. (3-20)

Equation (3-20) simplifies to 0= 0 at r = 0. Instead, if the Chebyshev basis functions are expanded in
their Taylor series

T2L(r)= (−1)L[1− 2L2r2
+

2
3 L2(L2

− 1)r4
+ O(r6)

]
, (3-21)

the coefficients of the nonzero leading order (r1) can be used as a constraint at r = 0:

NRF∑
L=0

NZ F∑
M=0

BL M�r(−1)L T2M+1−

NRF+1∑
L=0

NZ F+1∑
M=0

AL M
�r
b2 (−1)L T ′′2M+1

−

NRF+1∑
L=0

NZ F+1∑
M=0

AL M [�r(−1)L(−4L2)+ 3(−1)L(−4L2
�r)]T2M+1 = 0. (3-22)

It was found that the constraints above at r = 0 and z= 0 enhance the accuracy of the solution greatly with
minimal additional computational cost. Therefore these constraints were applied in all cases presented
here. At the top boundary z = b, boundary conditions were applied using orthogonality, hence special
treatment was not required at (r, z)= (0, b)

The ReFZ is ramped up starting from ReFZ < 1, where the flow field is almost stagnant, until the
desired value is obtained. Solutions for lower ReFZ cases become initial guesses for larger ReFZ cases.
The governing equations and boundary conditions are solved using the Newton–Raphson iterative method.
LU decomposition and back substitution is performed using the DGESV routine [Intel 2008] in LAPACK
[Anderson et al. 1999]. The base flow code is written in Fortran 90.

3C. Magnetic damping. When exposed to an axial static magnetic field, radial and azimuthal flow mo-
tions are damped by the electromagnetic body force. Figure 3 demonstrates this magnetic damping effect
by varying the Hartmann number Ha while keeping the material properties (Pr) and the heat input (ReFZ)
fixed.
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Figure 3. Magnetic damping effect on the stream function contours (Pr= 0.02, ReFZ =21,914.8).

Without magnetic damping (Ha= 0), a primary circulation “cell” forms due to the thermocapillary
effect. Flow circulates counterclockwise throughout r ∈ (0, 1) in the upper half of the liquid bridge.
Small secondary recirculation cells also emerge in the interior due to strong convection. At Ha= 25, the
electromagnetic effect weakens the primary circulation cell and confines it within r ∈ (0.5, 1). When
exposed to a magnetic field in the +z direction, radial inflow (in the −r direction) near the (r, z)= (1, 1)
corner induces electric current in the +θ direction (into the page). This electric current leads to the
Lorentz force exerted in the +r direction, which opposes the inflow moving in the −r direction. By
continuity, the flow is turned downward and then circulates back as a loop.

As the magnetic field further intensifies, the primary circulation cell is confined more dramatically
near the free surface, and more circulation cells develop in the interior. The most significant flow is
always within the primary circulation cell. Extremum stream function values within each cell show that
the interior of the liquid bridge is effectively stagnant, which is ideal for crystal growth from a melt.

Note that in this example ReFZ is chosen at 21,914.8, which is near the critical value for Pr= 0.02 at
Ha= 50. This ReFZ value is well above the critical instability values for Ha= 0 and Ha= 25; therefore
the actual flow would be perturbed from the base flow states shown here.
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Figure 4. Prandtl number effect on the temperature field and the flow field (Ha= 50, ReFZ =21,914.8).

3D. Prandtl number effect. The crystal growth community has frequently studied the effect of Prandtl
number Pr, representing different physical materials, in various liquid bridges, typically without magnetic
stabilization. For example, Kasperski et al. [2000] first investigated the different characteristics of low
and high-Pr full-zone instabilities. Levenstam et al. [2001] performed a fairly continuous Pr study using
the half-zone with a focus on the intermediate Pr range which bridges the gap between the low and high-Pr
regimes. Bouizi et al. [2007] presented full-zone instabilities over a wide range of Pr ∈ (0.001, 100) by
three-dimensional nonlinear spectral computations.

For a liquid bridge with small Pr, conduction is dominant over convective heat transfer. In the limit of
Pr→ 0, the temperature field is decoupled from the flow field. For example, the isotherms for Pr= 10−6

(Figure 4a) indicate pure conduction. In this case Tmax = 1.0633 remains constant as the magnetic field is
varied over Ha ∈ (0, 300) (not shown). Tmax is always located at (r, z)= (1, 0), the location of maximum
heat flux.
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As Pr increases, Tmax is reduced due to convective heat transfer (at a fixed Ha) assisting conduction
in distributing the thermal energy throughout the domain. At Pr = 0.0667, isotherms are bent by con-
vection (Figure 4b). Notice that the T = 0.5 curve shifts by a large amount compared to the case of
Pr= 10−6.

Compared to the temperature distribution, the Prandtl number has a less significant impact on the flow
field with magnetic stabilization. In moving from Pr= 10−6 to Pr= 0.0667, the flow is weakened (see
Figures 4c and 4d) due to the weaker thermocapillary driving force resulting from the smaller temperature
gradient at the free surface. Otherwise, the cell thicknesses and locations of local extrema change little,
primarily because the electromagnetic damping, proportional to the radial flow velocity, increases as the
flow intensifies.

The primary flow instabilities for small-Pr liquid bridges with magnetic stabilization are hydrodynamic
in nature. The first instability for Pr < 0.4 is characterized by stationary disturbances [Bouizi et al.
2007]. Within this range, [Houchens and Walker 2005] further suggested three subregimes with different
axial symmetries of the perturbations, which were confirmed in [Bouizi et al. 2007], both in full-zone
geometries. In [Levenstam and Amberg 1995; Leypoldt et al. 2000] the secondary instability was found
to be three-dimensional and oscillatory in the half-zone.

For high-Pr liquid bridges, convective heat transfer is dominant over conduction and the instability
mechanism is hydrothermal. The base flow first transitions to oscillatory perturbations (see [Leypoldt
et al. 2000], for example). Due to strong thermal convection at high Pr, isotherms are dramatically
distorted such that a large temperature gradient exists at the free surface near the top and bottom bound-
aries. In reality, the melt-solid interfaces may deform significantly from the assumed rigid plane due
to this strong thermal convection. To accurately resolve high-Pr liquid bridges, more realistic boundary
conditions are needed, hence this work is limited to low-Pr cases.

For a fixed Pr > 0 (with ReFZ fixed as in Figure 5), increasing Ha continuously confines the flow
into a narrower region near the free surface and reduces the effectiveness of convective heat transfer into
the interior. Thus Tmax increases, which enhances the thermocapillary driving effect. Therefore the flow
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Figure 5. Effects of Prandtl number and magnetic damping on viscous Reynolds num-
ber and nondimensional kinetic energy (ReFZ =21,914.8 fixed in all cases).
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velocity increases at the free surface, but this is limited to a narrow cell due to magnetic damping. Reviscous

also increases proportionally to the maximum nondimensional velocity vmax which always occurs near
(r, z)= (1, b). This explains the initial increase of Reviscous with Ha for Pr≥ 0.02 in Figure 5a. Eventually
magnetic damping is sufficiently large that vmax is reduced, even though Tmax continues to increase and
approach 1.0633 (the value in the limit of no convective heat transfer). Also observe that Reviscous

decreases monotonically with increasing Ha for Pr ≤ 0.001. For Pr ≤ 0.001 the temperature field is
effectively decoupled from the flow field and Tmax remains constant as Ha increases. Therefore increasing
Ha does not enhance the thermocapillary effect. Pr= 0.01 marks the division between these two trends.

The nondimensional kinetic energy, computed as the integral of velocity squared over the domain,
drops quickly as Ha increases (see Figure 5b), which demonstrates the magnetic damping effect. For
a fixed ReFZ (∝ q∗R∗/k∗), the fact that kinetic energy also drops as Pr (= µ∗c∗p/k∗) increases can be
explained as follows. Assume that the dynamic viscosity µ∗, specific heat c∗p, and radius R∗ remain
unchanged. Increasing Pr then corresponds to decreasing the thermal conductivity k∗ and consequently
a reduction in maximum heat flux q∗ (to maintain a constant ReFZ). Therefore with less thermocapillary
driving force, kinetic energy within the melt is reduced as Pr increases. Also note that the Pr= 0.001,
Pr = 10−6 and Pr = 10−12 curves are virtually indistinguishable, which indicates that Pr = 0.001 is a
good approximation for the limit of Pr→ 0, at least over the range 0≤ Ha≤ 300.

4. Normal-mode linear stability analysis

4A. Disturbances. Normal-mode linear stability analysis, which compares well with nonlinear simula-
tions in the half-zone [Levenstam et al. 2001], was used to study the stability of the base flow in the
full-zone liquid bridge. The base flow was subjected to infinitesimal three-dimensional normal-mode
disturbances of the form

ξ(r, θ, z, t)= ξ0(r, z)+ εReal{exp(λt + i m θ)ξ1(r, z)} for ξ = vr , vz, P, T, jθ , (4-1)

ζ(r, θ, z, t)= εReal{exp(λt + i m θ)iζ1(r, z)} for ζ = vθ , φ, jr , jz, (4-2)

where ε is an infinitesimal magnitude and m denotes the azimuthal wave number of the disturbance. For
uniqueness, disturbance waves must complete themselves as they travel through θ = 0→ 2π , therefore
m is integer valued. Axisymmetric m = 0 cases were not investigated as they have been shown to be very
stable in similar systems [Kasperski et al. 2000]. The extra factor of i in (4-2) accounts for the phase
shift in the variables which are zero in the base state, yielding a purely real linear stability problem.

Disturbances adhere to one of two axial symmetries. When perturbation variables have the same
axial symmetry as their corresponding base flow variables, the mode is denoted as “symmetric”. When
perturbation variables have the opposite axial symmetry as their corresponding base flow variables, the
mode is denoted as “antisymmetric”. Any combination of these disturbance types will result in a critical
ReFZ that larger than the smaller ReFZ,cr of these two.

Figure 6 shows an example of streamlines in the base flow along with the disturbed flow. In the ax-
isymmetric base flow state, a weightless fluid particle released at the starting point circulates on the black
closed path (the stream function contour) within a fixed θ plane. This specific example first transitions
to stationary antisymmetric disturbances with m = 2. At the critical ReFZ, a particle released at the same
starting point changes its “orbiting radius” as it circulates, while oscillating within a θ = π/m wedge.
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Figure 6. Streamlines in the base flow (black closed path) and disturbed flow (gray
spiral path), and disturbed flow (vectors) at the midplane (Pr= 0.02, Ha= 0 at ReFZ,cr =

1546.58, stationary antisymmetric disturbances with m= 2, base flow grid r×z= 35×45,
temperature grid r×z=30×30, linear stability grid r×z=28×28, α=300, perturbation
versus base flow maximum magnitude ratio 5%).

Note that the path is cut off intentionally at the “end” point to better show its spiral structure. Flow in
other wedges and in the lower half of the liquid bridge can be inferred from the symmetry and mode
number of the disturbance.

Arrows in the z = 0 plane of Figure 6 show the disturbed flow motion at the liquid bridge midplane.
Flow circulates from the liquid bridge interior back to the free surface due to the viscous effect. The
flow at z = 0 has no azimuthal component due to the antisymmetric disturbance mode. Perturbed flow
crosses the midplane into the upper or lower half of the liquid bridge. In contrast, the half-zone assumes
a no-slip, no-penetration midplane.

4B. Critical thermocapillary Reynolds number. The critical ReFZ,cr measures the critical point at which
the base flow transitions to the first instability. Beyond ReFZ,cr, one or more infinitesimal disturbances
grow in time, breaking either the axisymmetry or the axial symmetry or both, and potentially evolving
the motion to a periodic flow. The goal is to find the first transition to instability among all possible
disturbance modes.

By substituting the disturbance variables of (4-1) and (4-2) into the governing equations and boundary
conditions and linearizing (neglecting ε2 terms) and discretizing, a generalized eigenvalue problem is
obtained:

AM x = λBM x, (4-3)

The entire generalized system was solved using either the routine RGG in EISPACK or the routine
DGGEV in LAPACK [Anderson et al. 1999], with refinement of the critical eigenvectors performed via
the inverse iteration method [Saad 1992]. The real part of the leading eigenvalue (or pair) λR determines
the stability of this system. If the imaginary part of the leading eigenvalue pair λI 6= 0, the base flow tran-
sitions to a periodic disturbance. Otherwise λI = 0 and the transition is stationary. For each disturbance
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mode (Pr, Ha, m, antisymmetric or symmetric mode), a neutrally stable mode is found if the leading
eigenvalue (or pair) has λR = 0. A slight increase in ReFZ causes this mode to become unstable and
grow in time.

Finding the ReFZ associated with a neutrally stable mode is an iterative process. Starting from a stable
ReFZ,s (with λR < 0) and an unstable ReFZ,u (with λR > 0), a better approximation ReFZ,3 is predicted
using the regula falsi method. The new λR corresponding to ReFZ,3 is computed using the shifted inverse
iteration method. The ReFZ,3 then replaces either ReFZ,s or ReFZ,u . In this way the bounds on the
neutrally stable ReFZ are narrowed through iterations until convergence. The linear stability analysis
code is written in Fortran 90.

Variables in the linear stability analysis are the velocity perturbations vr1 and vz1, temperature per-
turbation T1, and electric potential perturbation φ1. Reduction from the 9 primitive stability variables
to these four is accomplished using incompressible continuity and θ momentum to solve for vθ1 and
P1, respectively. The electric current density perturbations ( jr1, jθ1, and jz1) are solved using Ohm’s
law and then substituted into conservation of charge. The resulting set of partial differential equations
can be found in [Houchens and Walker 2001] for the half-zone. Similarly to the base flow analysis,
these variables are represented as Chebyshev polynomials. Only even or odd terms in both r and z
are nonzero due to the symmetries. In addition, by modeling antisymmetric and symmetric disturbance
modes separately, the full-zone liquid bridge domain can be halved at the midplane. The price is that
two codes have to be developed. An NR × NZ Gauss–Lobatto collocation grid is adopted for r ∈ (0, 1)
and z ∈ (0, b), which is equivalent to a grid resolution of r × z = (2× NR)× (4× NZ ) in the full-
domain liquid bridge simulation if no symmetries are observed. The finest stability analysis grid used
was NR × NZ = 50× 70 for high-Ha cases.

Disturbances with a wide range of azimuthal wave numbers m, for both the antisymmetric and sym-
metric modes, are investigated. Axisymmetric disturbances (m = 0) are not studied in this work because
they are unlikely to be the critical disturbance mode. For example [Bouizi et al. 2007] reported that
ReFZ,cr for the m = 0 mode ranges from seven times to thousands of times larger than ReFZ,cr for the
critical m = 2 mode for Pr ∈ (0.001, 0.04).

For a fixed Pr, a neutrally stable ReFZ versus Ha branch can be obtained for each disturbance mode.
The critical ReFZ,cr is the lowest among all neutrally stable ReFZ’s. For example, the neutral stability
branches for Pr = 0.02 (Figure 7a) show how the critical disturbance mode changes from m = 2 to
3 and then 4 for Ha ∈ (0, 50). The m = 2 symmetric branch (dashed line) deviates from the critical
antisymmetric modes as Ha increases. Although other stability branches above the critical branch are
not valid for predicting a second and third bifurcation, they provide insight into flow stability when
subject to these perturbation modes.

Table 1 lists ReFZ values on the Pr = 0.02 neutral stability branches. For both antisymmetric and
symmetric disturbance modes, m is tracked from 1 to 8 for Pr= 0.02, and to at least the critical m+ 4
for Pr= 0.001. ReFZ values not shown in Table 1 are higher than these listed ReFZ’s for the same Ha.
The m = 5 antisymmetric branch never becomes critical up to Ha= 300 for Pr= 0.02.

The ReFZ,cr versus Ha curves for Pr = 0.02 and Pr = 0.001 (see Figure 7b) summarize the first
instabilities over a wide Ha range. The ReFZ,cr increases quickly with increasing Ha, which demonstrates
the magnetic stabilization effect. Stronger magnetic fields damp the flow, so that more driving energy
must be fed in before the flow trips to an instability. The critical curves determine the minimum magnetic
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Figure 7. Example of neutral stability branches for Pr = 0.02 and the first instability
critical curves for Pr= 0.02 and for Pr= 0.001.

Antisymmetric Symmetric
Ha m = 2 m = 3 m = 4 m = 5 m = 2

0 1,546.58 1,618.42
5 1,842.97 2,041.81

10 2,629.52 3,098.39
15 4,291.10 4,187.74 4,978.35
20 6,946.57 5,671.88 8,337.20

25 10,653.30 7,800.11 8,964.73 14,980.91
30 10,501.11 10,642.13
40 15,575.20
50 25,513.47 21,914.83 24,545.29
60 29,168.06 30,544.57

70 36,961.68 37,672.75
80 44,999.40 45,250.00
90 53,316.88 53,583.48

100 61,747.38 62,263.88
110 70,289.58 71,229.01

120 79,037.36 80,562.15
150 105,776.82 109,765.83
200 162,032.06 153,945.51
250 204,740.95 225,107.28
300 263,317.80 259,068.47 293,492.96

Table 1. Neutrally stable ReFZ’s for Pr= 0.02 branches (ReFZ,cr’s are underlined).
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field strength required to avoid instabilities in the optically heated float-zone crystal growth process. Note
that Pr= 0.001 is chosen because its critical curve very likely marks the lower limit of critical curves for
Pr→ 0. According to [Houchens and Walker 2005], at Ha = 0 the ReFZ,cr for Pr = 10−10 is less than
1% smaller than ReFZ,cr for Pr = 0.001. Details of the perturbation flow field and the energy analysis
between the base state and perturbed field are presented and validated with other liquid bridge studies in
[Huang and Houchens 2011]. Here the focus is instead on the numerical issues that arise in the spectral
collocation technique and linear stability analyses. The following sections are widely applicable to a
range of partial differential equations. First, identification of spurious eigenvalues is discussed. Then,
regularization and grid dependence issues are covered. Finally, the use of pseudospectra to investigate
the robustness of stability analyses are addressed.

4C. Identifying spurious eigenvalues. In the linear stability analysis, unstable systems are identified by
positive leading eigenvalues. However, some spurious eigenvalues (usually with very large magnitudes)
emerge in the generalized eigenvalue problem, (4-3), bearing no physical meaning regarding system
stability. It is crucial to identify and separate them from the remaining legitimate eigenvalues to correctly
predict the stability of the system.

Legitimate eigenvalues are independent of linear stability grid resolution. In Table 2, to test if the
leading eigenvalue pair 350.47± 7542.09i on a 30× 40 grid is legitimate or spurious, the linear stability
code was run on two other grid sizes, 28×28 and 40×50. The fact that 350.47±7542.09i is not present
on these two grids indicates that it is a spurious eigenmode. All other leading eigenvalues agree well,
independent of the grid.

As a direct proof, perturbation variable contours are plotted (Figure 8a) using eigenvectors corre-
sponding to the spurious eigenvalue pair 350.47± 7542.09i . The checkerboard pattern has no physical
justification, but is rather an oscillation of a high-order mode(s) in each direction between Gauss–Lobatto
collocation points. This is clearly shown in the Chebyshev polynomial coefficient plot (Figure 8b) for
vr1, where

vr1

(
r, z

b

)
= rm−1

NR+1∑
L=0

NZ∑
M=0

AL M T2L(r)T2M

( z
b

)
. (4-4)

Grid size r × z = 28× 28 r × z = 30× 40 r × z = 40× 50

Leading
eigenvalues

350.47± 7542.09i
−34.61± 9.25i −34.61± 9.26i −34.61± 9.25i
−94.58± 110.75i −94.58± 110.75i −94.58± 110.75i
−113.45± 56.60i −113.46± 56.59i −113.46± 56.60i
−129.35± 175.31i −129.35± 175.31i −129.35± 175.31i
−140.05± 72.15i −140.04± 72.15i −140.04± 72.15i
−197.10± 320.75i −197.10± 320.75i −197.10± 320.75i

...
...

...

Table 2. Identification of a spurious eigenvalue (underlined) through grid refinement of
the linear stability analysis (Pr= 0.001, Ha= 0, ReFZ= 1000, m= 1, α= 400, symmetric
mode).
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Figure 8. Perturbation contours and Chebyshev polynomial coefficients associated with
the spurious eigenmode 350.47±7542.09i in Table 2 (Pr= 0.001, Ha= 0, ReFZ = 1000,
m = 1, α = 400, linear stability grid r × z = 30× 40).

The coefficients of the highest-order Chebyshev terms have the largest magnitudes, which are responsi-
ble for the high-frequency, oscillating contours. Note that for a legitimate eigenmode, the Chebyshev
polynomial coefficients decay exponentially when the representation is sufficient. Therefore, for this
case the legitimate leading eigenvalue is a complex pair with negative real part −34.61± 9.26i as shown
in Table 2. The base flow is stable at ReFZ = 1000 for this branch (Pr = 0.001, Ha = 0, and m = 1
symmetric disturbance mode).

5. Numerical aspects

5A. Regularization of the vorticity singularity. A regularization function F(z) (from (3-7)) is intro-
duced in the thermocapillary boundary condition to remove the singularity of the velocity gradient at
the corner (r, z) = (1, b). While ∂vz0/∂r = 0 at (r, z) = (1, b) due to the boundary condition vz0 = 0
at z = b, the thermocapillary boundary condition, without regularization, gives a nonzero ∂vz0/∂r at
(r, z) = (1, b) due to the nonzero temperature gradient ∂T0/∂z at the free surface. This singularity is
removed by multiplying the thermocapillary boundary condition by a function that decays quickly to 0
as z→ b but remains equal or close to 1 for the rest of z.

An optimum value of the regularization parameter α is achieved when increasing α further has no
measurable impact on the flow and the singularity is effectively removed. Figure 9 shows a test over a
wide range of α. With a sufficiently large value the physics becomes independent of α, as indicated by the
“desired range”. But too large an α may provide insufficient regularization. In Figure 9, the vr0 contours
bear wiggles and circles, indicating α=50,000 is too large for this case. With even less smoothing (higher
α), the vorticity singularity may cause the numerical solver to predict the wrong physics, suggested by
the sudden drop of the critical ReFZ beyond α =100,000. On the other hand, if the value of α is too
small, the regularization effectively reduces the heat input at the free surface which reduces the driving
force and explains the increase of the critical ReFZ (“too much regularization”) for α in range 10–100 in
Figure 9.
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Figure 9. Searching for the desired range of regularization parameter α (semilog plot,
Pr= 0.02, Ha= 50, flow grid r× z = 40×40, temperature grid r× z = 30×30, stability
grid r × z = 40× 40).

A fast-decaying regularization function is especially important for high-Pr liquid bridge simulation.
Due to strong heat convection, the temperature at the free surface varies slowly along r = 1 until very
close to (r, z) = (1, b). This feature is best preserved by a regularization function that decays quickly
near (r, z) = (1, b). The choice of regularization function is arbitrary as long as the singularity is re-
moved with minimum modification of the physics. For example, in [Bouizi et al. 2007] a power function
regularization function F(z)= (1− z2n)2 was adopted, where n is a regularization parameter.

5B. Grid resolution and independence. A solution which does not vary with significant further grid
refinement indicates that the grid resolution is sufficient and the results are reliable. Table 3 shows such
a test based on the critical ReFZ. Significant resolution increases are introduced for the base flow grids
and the stability analysis grid, but the ReFZ,cr barely changes, demonstrating grid independence was
achieved.

More subtle inferences can be made from this test. ReFZ,cr increased slightly on finer grids in Table 3.
This is expected because a fixed regularization parameter (α = 400) affects more grid points on a finer
axial grid than on a coarser axial grid. The thermocapillary effect is weakened at more collocation

the critical ReFZ for
stability grid (r × z)

% difference
34× 60 50× 70

flow grid, temperature grid 30× 75, 25× 25 61,775.37 61,840.74 0.11%
(r × z) 70× 100, 40× 40 61,789.51 61,841.79 0.08%

% difference 0.02% 0.002%

Table 3. Grid dependence study based on ReFZ,cr for Pr= 0.02,Ha= 100, α = 400.
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points on finer grids, therefore a higher ReFZ,cr is expected. However if this regularization effect were
eliminated, ReFZ,cr would be lower on finer grids, because coarser grids tend to smear out the largest
gradients, which contribute energy to the instability mechanism. On coarser grids, ReFZ,cr increases
to compensate for this smearing effect until the energy is sufficient to trip the instability. Thus, in
practice, it is necessary to carry out both grid and regularization dependence studies simultaneously. The
regularization parameter must be increased as the grid is refined.

5C. Model robustness investigated by pseudospectra. As discussed above, the flow stability in the
liquid bridge is determined by its eigenvalues. For the generalized eigenvalue problem, (4-3), each
eigenvalue (each black dot in Figure 10) is associated with one flow perturbation eigenmode. Purely real
eigenvalues correspond to perturbations in which the base flow transitions to steady, three-dimensional
(not axisymmetric) perturbed flow. Complex eigenvalue pairs correspond to perturbations in which the
base flow transitions to three-dimensional time-dependent flow, with the imaginary components repre-
senting the frequency.

Compared to the simplified numerical full-zone model, real world experiments include many imper-
fections that are difficult to represent. For example, in experiments the heat flux will not be strictly
parabolic or axisymmetric and the free surface will not be exactly cylindrical. It is therefore desirable to
predict what impact these imperfections might have, to verify the robustness of the model as compared
to the experiment it is intended to represent.

Furthermore, numerical errors in the model may also play a significant but unpredictable role. For
example, round-off errors in the eigenvalue problem may accumulate during computation and affect the
results. Simulation results are more meaningful provided they are valid even when the model is subject

(a) Pseudospectra overview (b) Zoom in to the leading eigenvalues

Figure 10. Eigenvalues (black dots) and their pseudospectra σε (contours) of the gen-
eralized eigenvalue problem (4-3) (Pr = 0.02, Ha = 50, ReFZ =21,879.5, flow grid
r × z = 70× 100, temperature grid r × z = 40× 40, stability grid r × z = 35× 50,
α = 1000).
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to these minor changes, whether these are purely numerical or result from the inability of the model to
represent small imperfections in the experiment.

Pseudospectral analysis provides a quantitative measure to test model robustness. Small numerical
errors ε are purposefully introduced into either or both AM and BM matrices in the eigenvalue problem
AM x = λBM x (see (4-3)). Note that ε is different from the ε used in the linear stability analysis. In
fact, ε acts like a random perturbation on ε. The small errors introduced through ε can represent physical
perturbations on the boundary conditions, geometry, and flow field of the model. They can also be purely
numerical perturbations. In this problem such perturbations could be relatively minor (introducing slight
curvature in the free surface) or more egregious (violations of conservation of charge).

After introducing these ε scale errors, the modified generalized eigenvalue problem is solved again to
investigate any physically meaningful changes. For example, a possible scenario of significant interest
would result if a previously more-stable branch became the critical mode in the modified system. This
has tremendous relevance in this problem, as only one known experimental study in a low-Pr fluid in
the half-zone configuration has indicated possible observation of the steady, three-dimensional transition
before onset of periodicity [Takagia et al. 2001]. In other experiments, the instability has appeared to
jump directly to the higher branch associated with the periodic transition, suggesting that the distinction
between the preferred modes may be very subtle. Results will show, fortunately or unfortunately, that
such sensitivity is not found in the full-zone model.

Introduced in [Reddy and Trefethen 1990], pseudospectra present a systematic method for carrying out
such analyses. For an introduction and a simulation method (EigTool) for problems of small or moderate
size, the reader is referred to [Embree and Trefethen 2011]. An extensive discussion on pseudospectra,
including fluid mechanics applications, can be found in [Trefethen and Embree 2005].

For the large generalized eigenvalue problem in this work the matrix AM is perturbed with the random
matrix E in the way described in [van Dorsselaer 1997] using

σε(AM,BM)= {z ∈ C : ‖(z BM−AM)−1
‖> 1/ε}

= {z is an eigenvalue of (AM+ E,BM) for some E with ‖E‖< ε}. (5-1)

This analysis must be repeated until representative pseudospectra are obtained. Resulting pseudospectra
σε contours indicate the sensitivity of the original eigenvalues to the random noise introduced via ε.
The results of this analysis are given by the color contours in Figure 10. The color gradient indicates
the magnitude of the ε perturbation. The smallest ε = 10−8 perturbations do not affect the leading
eigenvalues at a measurable level, hence the blue contours are not visible around these eigenvalues in
the complex plane. The first blue envelope that can be observed at this order occurs for eigenvalues with
real parts near −1500. As the order of ε increases, more eigenvalues are influenced. For example, a
perturbation of size ε = 10−5 may move enclosed eigenvalues anywhere within the medium-red regions
in Figure 10.

The leading real eigenvalue and complex eigenvalue pair are the most likely to become critical. The
linear stability analysis predicts that the real eigenvalue will dominate. This is confirmed by the pseu-
dospectra in Figure 10. Namely, at the largest pseudospectral perturbation of ε = 10−4.5, the leading real
eigenvalue maintains its leading position and explores only a very small region near its origin. In fact, no
dark red contours of any eigenvalue extend into the positive half of the real plane. Since the pseudospectra
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contours of all the eigenvalues remain behind the leading eigenvalue, the branches associated with these
modes will not become critical, even in the modified system. Therefore the critical eigenmode (stationary,
antisymmetric disturbances with m = 4 in this example) predicted by the original generalized eigenvalue
problem remains valid under such perturbations. Therefore, in careful experiments it would be expected
that the stationary mode would be observed first.

To quantitatively or qualitatively relate ε = 10−4.5 numerical perturbations to specific physical changes
in the fluid model is appealing, but intractable without imposing further structure on the perturbation.
Random changes in matrix elements are often nonphysical, resulting in violations of the conservation
of mass, energy, and momentum, and breaking the orthogonality of boundary conditions. Thus even a
small ε may have significant impacts on the physical system. In fact, the entire domain in Figure 10
is contained in the contour σε(AM,BM) for ε ≥ 10−4.35. Nevertheless, the pseudospectra suggests the
results of the linear stability analysis are quite robust, particularly for the leading eigenvalues which are
of most interest.

6. Conclusions

A thermocapillary-driven full-zone liquid bridge with magnetic stabilization is modeled numerically.
A wide range of three-dimensional flow disturbances are tracked using a normal-mode linear stability
analysis. The first instability curve for Prandtl number Pr= 0.02 (for example, molten silicon) is obtained
up to an intermediate Hartmann number of Ha ∈ (0, 300). Within this range, the steady axisymmetric
base flow first transitions to stationary three-dimensional disturbances with axial symmetries opposite
to their base flow components (the antisymmetric disturbance mode). Moreover, first instabilities for
Pr= 0.001, representing the Pr→ 0 limit, are presented up to Ha= 500. For Pr= 0.001, the base flow
also first transitions to stationary three-dimensional disturbances. Axial critical disturbance symmetries
are antisymmetric below Ha= 40 and symmetric for Ha ∈ (40, 500). The critical azimuthal wave number
m increases with Ha for both Pr= 0.02 and Pr= 0.001.

Magnetic stabilization effects are observed and quantitatively measured for a steady external magnetic
field in the axial direction. The induced Lorentz force acts proportionally against radial flow motion,
thus multiple cell-like circulation patterns form within the liquid bridge. The most significant flow is
confined to an increasingly narrow region near the free surface as Ha increases. At the interior the flow
is damped until it is almost stagnant, which provides steady crystal growth conditions at the interface.
This damping effect is also confirmed by quantitative studies of the viscous Reynolds number and kinetic
energy versus Ha. Because the flow disturbances are greatly suppressed by magnetic stabilization, a more
intense thermocapillary driving force is needed to trip instabilities within the liquid bridge. For example,
the critical thermocapillary Reynolds number ReFZ,cr at Ha= 300 is two orders of magnitude larger than
when no magnetic field (Ha= 0) is applied.

Small-Prandtl number liquid bridges, dominated by heat conduction, are studied over the range Pr ∈
(10−12, 0.0667). For Pr≤ 0.001, the temperature field is effectively decoupled from the flow field, mim-
icking a pure conduction state such that the temperature distribution is almost unchanged over the range
Ha= 0→ 300. Thermal convection becomes important as Pr increases. It helps unify the temperature
distribution throughout the domain as suggested by the isotherms. At higher Pr, the temperature gradient
on the free surface concentrates near the liquid-solid boundaries (r, z)= (1,±b), which intensifies the
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thermocapillary effect in these regions. Interestingly, the flow “circulation cell” thicknesses and locations
are almost unaffected by increases in Pr over the range studied, mainly because the electromagnetic force,
proportional to the radial flow velocity, also increases as convection intensifies.

Numerical techniques and analyses are also highlighted extensively in this work. For example, the
vorticity singularity in the spectral scheme is removed by applying an exponential regularization func-
tion. The desired range of the regularization parameter α is determined by balancing the removal of
the singularity and the invariance of the physics. The generalized eigenvalue problem AM x = λBM x
in the linear stability analysis is investigated from a numerical perspective. Spurious eigenvalue modes
with no physical meaning are identified by a combination of grid dependence studies and plotting of the
eigenmodes. The pseudospectra indicate that results predicted by this full-zone model are valid even if
the model is subject to minor changes, be they numerical or physical.
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