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CRITICAL THRESHOLD AND UNDERLYING DYNAMICAL PHENOMENA IN
PEDESTRIAN-INDUCED LATERAL VIBRATIONS OF FOOTBRIDGES

STEFANO LENCI AND LAURA MARCHEGGIANI

The problem of lateral vibrations of footbridges due to the synchronization of the pedestrians’ motion
with that of the supporting structure is analyzed by means of a 3D discrete time model. The map is linear
in the mechanical part, and nonlinear in the synchronization part. A very simple and predictive formula
is obtained for the critical number of pedestrians, which also takes into account the imperfect resonance
between the pedestrians’ natural frequencies and the bridge frequency. It is shown that the underlying
mechanism triggering the sudden appearance of swaying bridge motion is a perturbation of a pitchfork
bifurcation. The results presented in this paper are not related to a specific real case and are based on a
quite reasonable hypothesis, and therefore it is expected that they have general validity.

1. Introduction

As a consequence of the technological development of new materials and of the architectural trend toward
lightness and slenderness, modern footbridges have small natural frequencies, which can resonate with
those of the pedestrian-induced load [Živanović et al. 2005; Venuti and Bruno 2009], which are in the
range 1.4–2.4 Hz for vertical forcing and in the range 0.7–1.2 Hz for horizontal (lateral) forcing. In this
situation unwanted large bridge motions may occur.

Various footbridges have experienced excessive lateral vibrations due to pedestrian-induced loads; the
most famous is the London Millennium Bridge, which underwent, on its opening day, large horizontal
vibrations due to the synchronization of the pedestrians’ motion with the natural modes of the structure
[Dallard et al. 2001a; 2001b]. Other bridges which have suffered similar problems are the Toda Park
Bridge [Fujino et al. 1993; Nakamura and Kawasaki 2006] and the Maple Valley Bridge [Nakamura
and Kawasaki 2006] in Japan, the Solferino Footbridge in Paris [Danbon and Grillaud 2005], and the
Alexandra Bridge in Ottawa [Dallard et al. 2001a].

The pedestrian-induced lateral vibrations occurred in bridges of different structural types (suspension,
cable-stayed, and steel girder bridges) as well as on footbridges made of different materials (steel, com-
posite steel-concrete, and reinforced and prestressed concrete) [Živanović et al. 2005]. It is therefore
confirmed that a large-enough crowd of pedestrians can induce strong lateral vibrations on footbridges
of any type, although this requires the lateral mode to have a low-enough natural frequency [Dallard et al.
2001a], approximately below 1.2 Hz, as stated.

The phenomenon behind pedestrian-induced lateral vibrations on footbridges is that of synchronous
lateral excitation [Dallard et al. 2001a; Strogatz et al. 2005; Živanović et al. 2005; Eckhardt et al. 2007].
People walking in a crowd exhibit a random level of synchrony, and in general produce a lateral force
on the bridge. In fact, even if the bridge is still and the pedestrians are not synchronized at all, due to the
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stochasticity of the process the net force, which is the sum of all the lateral forces applied to the bridge
by the footsteps of pedestrians, is not null, although it is possibly small. This small force produces small
oscillations of the bridge.

As soon as the small bridge vibrations become perceptible to the unconscious human cognition pro-
cesses, pedestrians tend spontaneously to walk in synchrony with the bridge, by slightly changing their
walking frequency and phase. Of course, this tendency is somehow proportional to the vibration am-
plitude, and so it is very small, and possibly negligible, for very small displacements. However, it is
believed that this phenomenon starts for very low levels of amplitude of the motion, well below the
amplitude threshold perceived by conscious feeling.

This instinctive behavior, which is the mechanism through which the pedestrians interact with the
bridge, produces an increase of the synchronization level, and the associated net force grows. This estab-
lishes an unwanted positive feedback loop, where the increase in oscillation amplitude causes pedestrians
to increase their lateral footfall forcing and their level of synchrony, by following the movements of the
deck in order to balance themselves [Dallard et al. 2001a; 2001b]: the more the bridge moves, the more
the crowd pushes it to move further.

It has been observed that for potentially susceptible spans there is a critical number of pedestrians Ncr

that will cause the vibrations to increase suddenly to unacceptable levels. The oscillations are small below
Ncr and, due to the synchronization, they increase rapidly above Ncr. This critical threshold is of great
practical interest, and its prediction is the goal of almost all studies. This paper aims to provide a simple
and reliable analytical prediction of Ncr, as well as to further understanding of the overall phenomenon.

The nature of the problem is nonlinear, as has been confirmed, for example, by tests performed on the
London Millennium Bridge [Dallard et al. 2001a]; in spite of this, however, it can be detected within a
mechanically linear framework, since even the “large” oscillations are orders of magnitude smaller than
the span length. The nonlinearity is only in the interaction between the structure and pedestrians.

Several papers have recently addressed this topic, even if a standard and generally accepted model of
pedestrian-induced lateral dynamic loading and of dynamical interaction with the bridge is still missing.
Živanović et al. [2005] have performed a comprehensive review of the existing literature on the topic
until 2003, while an updated review can be found in [Venuti and Bruno 2009].

Early studies on pedestrian-induced vibrations of footbridges [Blanchard et al. 1977; Matsumoto et al.
1978; Wheeler 1980] concerned only the measurement and modeling of the vertical component of pedes-
trian load on a motionless surface.

Dallard et al. [2001a; 2001b] have conducted a series of controlled crowd tests on the Millennium
Bridge and have proposed a load model based on empirical observations. Also a formula has been ob-
tained for the critical number of pedestrians; it actually depends only on the modal damping of the bridge
through a proportionality constant which is strictly related to the specific real case-study (the Millennium
Bridge). The findings of the present paper extend somewhat these works, by better highlighting the nature
of this constant (for example, that it depends on the bridge natural frequency).

Nakamura [2004] has proposed an interactive forcing model analogous to the previous one, but which
allows the schematization of the self-limiting nature of the synchronization phenomenon and the predic-
tion of the steady-state amplitude. Also this model is based on coefficients which have been estimated
from experimental tests [Fujino et al. 1993; Nakamura and Kawasaki 2006] and cannot easily be gener-
alized to other footbridges.
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In [Newland 2003] the problem is approached by referring to the interaction phenomenon between
fluid flow and structures which is widely studied in wind engineering and commonly known as lock-in.
His model includes the empirical assumption that 40% of the pedestrians are synchronized with the
bridge lateral frequency, independent of the amplitude of the oscillations.

Fujino et al. [1993] have adopted a model of harmonic forcing by empirically tuning a synchronization
parameter for the lateral vibrations of the Toda Park Bridge (according to their experimental data). This
model does not predict any sudden transition to a vibrating state of the bridge but assumes a continuous
increase in the vibration amplitude as the number of pedestrians increases.

Roberts [2005] has schematized the interaction between the pedestrians and the footbridge assuming
that synchronization occurs when the pedestrians’ motion is larger than the bridge motion; from this
critical condition, he has obtained a limit number of pedestrians.

In [Ricciardelli and Pizzimenti 2007] a systematic experimental campaign has been performed aimed
at characterizing dynamically the lateral force exerted by pedestrians on footbridges, both in the case
of a still deck and in the case of a laterally moving deck; deterministic and stochastic lateral loading
models for the static case have been provided and the bases have been put in place for more sophisticated
dynamic models including crowd-structure interaction. The mechanism of crowd synchronization has
been investigated only from the qualitative point of view, deferring quantitative study and modeling until
after further measurements.

The excessive lateral vibrations of the Solferino Bridge in Paris have been explained in [Blekherman
2007] on the basis of autoparametric resonance by using a double pendulum model; the process of
possible synchronization of pedestrian loading with the relevant vibrational modes, which are nonlinearly
coupled in a ratio of 2:1 between their frequencies, depends on the achievement of parametric resonance.

Piccardo and Tubino [2008] have performed an interesting extensive critical analysis of the excitation
mechanisms identified in the literature and they have proposed a new forcing model based on experi-
mental tests carried out on harmonically moving platforms [Dallard et al. 2001a]. The force exerted by
pedestrians is modeled as harmonic with an amplitude depending on the deck lateral displacement, and
a simple criterion defining the limit pedestrian mass is introduced. They mainly ascribe to a mechanism
of parametric excitation the lateral sway motion induced by crowds in very flexible, lowly damped
footbridges, with a first lateral natural frequency around 0.5 Hz corresponding to half of the first lateral
walking frequency.

In Venuti et al. [2007] a first-order model has been developed based on the mass conservation equation,
in order to macroscopically describe the dynamics of the crowd in the framework of hydrodynamic mod-
eling. The crowd, considered as a pedestrian flow, is assumed to behave like a continuous compressible
fluid; the structural system is modeled by means of a generalized single degree of freedom (SDOF) model.
The two-way interaction between the crowd and the structure is studied. This model permits taking into
account the triggering of the lock-in and its self-limited nature, previously explained only in [Strogatz
et al. 2005]. The effects of the two different kinds of synchronization, that is, between the pedestrians and
the structure and among the pedestrians, are introduced; the presence of different frequency components
in the overall force exerted by the pedestrians is considered. Some parameters, used in the formulation of
the model, come from reasonable qualitative considerations about pedestrian behavior and would require
specific experimental tests to be confirmed.
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In [Bodgi et al. 2007] a similar approach has been adopted to simulate the mechanics of synchronous
lateral excitation induced by pedestrians on footbridges.

Strogatz et al. [2005] have been the first, to the best of our knowledge, to mathematically describe
and predict the simultaneous growth of bridge movement and crowd synchronization, an observation
that was unexplained in previous models but that is confirmed by analyses of video footage [Arup 2000]
recorded during overcrowding conditions on real footbridges [Fujino et al. 1993; Dallard et al. 2001a].
They proposed a model (called SAMEO in [Marcheggiani and Lenci 2010] from the initials of the
authors) which is particularly interesting for its contribution to the physical-mathematical explanation of
the underlying mechanical event, as well as for the reasonable description of the phenomenon itself.

The SAMEO model is quite simple in its formulation and general enough to be possibly applied to
any bridge at risk of synchronous lateral excitation. It models the bridge as a SDOF oscillator that
interacts nonlinearly with each pedestrian. The pedestrians are modeled as limit-cycle phase oscillators
(this choice comes from a similitude with biological systems, for example, fireflies). The key parameter
of the model, C , measures the pedestrians sensitivity to bridge lateral vibrations; it can be determined
only experimentally.

The SAMEO model has been investigated in depth in [Marcheggiani and Lenci 2010], where extensive
numerical simulations have been performed in order to detect the effects of the main parameters on the
system’s response, in particular on the critical threshold. Various extensions have been proposed to model
some important aspects not considered in [Strogatz et al. 2005], such as, for example, the self-interaction
between pedestrians.

Although the original model and its extensions are simple in their formulation and meaning, they are
quite involved in terms of the associated equations of motion, which is a set of N + 2 (N being the
number of pedestrians) nonlinear ordinary differential equations. This system can be fully solved only
numerically, although some approximated analytical techniques have been obtained in [Abrams 2006]
to get some partial information. This is a limitation of the model, together with the fact that it does not
provide immediate information.

In order to overcome the previous drawbacks, in [Lenci and Marcheggiani 2008] a simplified model
is proposed and applied with some success to the case of the Millennium Bridge. The main idea is
that of passing from ordinary differential equations to maps, that is, from a continuous time system
to a discrete time one. In particular, a peak-to-peak map [Candaten and Rinaldi 2000], similar to that
introduced by Lorenz in discovering chaotic attractors, has been considered and analyzed in depth. The
discrete time permits simple computations (which can be performed by hand), and provides a simple but
very predictive formula for Ncr and a better understanding of the dynamical phenomena lurking in the
background.

The work [Lenci and Marcheggiani 2008] is continued in this paper; another discrete time model is
proposed, now based on the stroboscopic Poincaré map (instead of the peak-to-peak map). The mechani-
cal part is described by the position x and velocity y, while the bridge-pedestrian interaction is described
by a new state variable σ measuring the degree of synchronization of the pedestrians. We thus get a 3D
map, linear in the mechanical part and nonlinear only in the interaction part, whose behavior is analyzed
without exact knowledge of the evolution law for σ . Just its overall properties and local behavior are
used, thus providing a very general analysis, which in particular extends that of [Lenci and Marcheggiani
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2008]. The main results are obtained by a bifurcation analysis of the fixed points of the map, which of
course is specific to the considered simplified model.

This paper is organized as follows. In Section 2 the mechanical model is illustrated leading to the me-
chanical part of the discrete time model. Then, the pedestrian-bridge interaction is analyzed in Section 3,
where the main properties of the third evolution law are discussed. The fixed points of the map, which
are the dynamical behaviors of interest for the computation of the critical threshold, are considered in
Section 4, where a simple formula for Ncr is obtained, and where the effect of imperfections is discussed.
Some properties of the map in the resonant case are discussed in Section 5, and conclusions are presented
in Section 6.

2. Mechanical model

Based on experience in real cases, in particular on that of the London Millennium Bridge mentioned in
Section 1, we assume that the phenomenon of lateral synchronization involves only one lateral mode
ϕ(Z) of the structure, so that the mechanical equation of motion is

M Ẍ(T )+ B Ẋ(T )+ K X (T )= F(T ), (1)

where M , B, and K are the modal mass, damping, and stiffness, respectively, and X (T ) is the modal
amplitude. Note that M includes also the mass of the pedestrians, and in general is not a fixed number.
However, in real cases the mass of pedestrians is about 10–15% of the total mass, and so it is expected
that it does not play a key role. F(T ) is the modal force, that is, the projection on the considered mode
ϕ(Z) of the force F(Z , T ) exerted by pedestrians along the span, F(T )=

∫ L
0 F(Z , T )ϕ(Z)d Z . In fact,

the load of each pedestrian depends not only on the force he applies on the bridge, but also on his position
Z ∈ [0, L] along the span.

The definitions

�=

√
K
M
, t =�T, ξ =

B

2
√

M K
=

B�
2K

, x(t)= X (T ), f (t)=
F(T )

K
, (2)

where � is the natural frequency of the considered mode, permit us to rewrite (1) in the form

ẍ(t)+ 2ξ ẋ(t)+ x(t)= f (t), (3)

which will be used in the following. Note that the time t is dimensionless, while x has the dimension of
length.

2.1. A single pedestrian and the stroboscopic Poincaré map. We initially consider the effect of a single
pedestrian by assuming

f (t)= g sin(ωpt −φ), (4)

where:

• g> 0 is the dimensionless amplitude, such that G = gK ∼= 30N is the maximum lateral force exerted
by a pedestrian [Belli et al. 2001; Marcheggiani and Lenci 2010];

• ωp is the dimensionless (circular) frequency, such that f p =�p/(2π)=�ωp/(2π)= 0.7–1.2 Hz
is the pedestrian footstep native frequency [Živanović et al. 2005]; and
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• φ ∈ [0, 2π ] is the pedestrian phase, which depends on the time the pedestrian enters the bridge.

Equation (4) is an approximation of the real force, since experimental data concerning lateral walking
forces on a still surface [Bodgi et al. 2007; Ricciardelli and Pizzimenti 2007] have shown that it is much
closer to a square wave than to a harmonic force [Belli et al. 2001]. However, expression (4) can be
considered as the first term in the Fourier series of the real excitation, thus capturing the most important
energy content and maintaining the simple expression needed for analytical computations.

The solution of (3) and (4) starting from x(0)= xn and ẋ(0)= yn is

x(t)= e−ξ t[c1 sin
(
t
√

1− ξ 2
)
+ c2 cos

(
t
√

1− ξ 2
)]
+ g[d1 sin(ωpt)+ d2 cos(ωpt)], (5)

where

d1 =
(1−ω2

p) cos(φ)− 2ξωp sin(φ)

(1−ω2
p)

2+ (2ξωp)2
, d2 =

−(1−ω2
p) sin(φ)− 2ξωp cos(φ)

(1−ω2
p)

2+ (2ξωp)2
,

c1 =
ξ xn + yn −ωpgd1− ξgd2√

1− ξ 2
, c2 =−gd2+ xn.

(6)

Note that the initial conditions do not modify d1 and d2, only c1 and c2.
After one period Tp = 2π/ωp of the excitation we have from (5)

x(Tp)= e−ξTp
[
c1 sin

(
Tp

√
1− ξ 2

)
+ c2 cos

(
Tp

√
1− ξ 2

)]
+ gd2 (7)

and

ẋ(Tp)=e−ξTp
[(
−c1ξ−c2

√
1−ξ 2

)
sin
(
Tp

√
1−ξ 2

)
+
(
−c2ξ+c1

√
1−ξ 2

)
cos
(
Tp

√
1−ξ 2

)]
+gωpd1. (8)

The main idea of this paper consists in moving from a continuous time system, (3), to a discrete
one. This can be obtained by introducing an appropriate Poincaré section of the continuous flow, and by
considering the associated Poincaré return map [Wiggins 1997].

We use the stroboscopic Poincaré map obtained by sampling the system position and velocity at each
excitation period Tp = 2π/ωp, which is mathematically well defined. It is given by{

xn+1

yn+1

}
=

{
fx(xn, yn)

fy(xn, yn)

}
= e−ξTp

[
αx αxy

−αxy αy

]{
xn

yn

}
+ g

{
βx

βy

}
, (9)

where use is made of (7) and (8), and where xn+1 = x(Tp) and yn+1 = ẋ(Tp) (see [Wiggins 1997]), the
functions fx(xn, yn) and fy(xn, yn) are defined by the last equality, and

αx = ξ
sin
(
Tp
√

1− ξ 2
)√

1− ξ 2
+ cos

(
Tp

√
1− ξ 2

)
, αy =−ξ

sin
(
Tp
√

1− ξ 2
)√

1− ξ 2
+ cos

(
Tp

√
1− ξ 2

)
,

αxy =
sin
(
Tp
√

1− ξ 2
)√

1− ξ 2
,

βx = e−ξTp(−ωpd1αxy − d2αx)+ d2, βy = e−ξTp(−ωpd1αy + d2αxy)+ωpd1.

(10)

Note that in the resonant case Tp = 2π/
√

1− ξ 2 we have αx = αy = 1, αxy = 0, βx = d2(1− e−ξTp), and
βy = ωpd1(1− e−ξTp).
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2.2. Crowd of pedestrians. When a crowd of N uniformly distributed pedestrians is walking on the
bridge the net force is

f (t)=
N∑

i=1

gi sin(ωp,i t −φi ). (11)

In principle, the parameters gi and ωp,i are stochastic variables which depend on the age, health
condition, height, etc., of the population of pedestrians. However, φi , which is also a stochastic variable,
depends only on the instant of time the pedestrian enters the bridge, and not on his human characteristics.

Single pedestrian action is modeled by (4) and the action of the crowd by (11); we neglect the in-
teractions between pedestrians, and focus only on the interaction of each pedestrian with the bridge,
which is the main mechanism responsible for the considered phenomenon. For the pedestrian-pedestrian
interactions, an interesting topic involving complex living systems, but which is out of the scope of this
paper, we refer to, for example, [Johansson et al. 2008].

In the following we make the assumption that each pedestrian of the crowd has the same natural
frequency, ωp,i = ωp. This is motivated by the fact that only pedestrians with a natural frequency close
to that of the bridge can undergo the synchronization phenomenon we are dealing with, since it involves
resonance. This fact is confirmed by the movie of the opening of the Millennium Bridge [Arup 2000],
where it is clearly seen that only some pedestrians synchronize (it was estimated at about 40% [Newland
2003]). The others are not influenced by the bridge motion and maintain their natural walking, and so,
by stochastic arguments, we can assume that they provide a zero net force on the bridge and thus are not
of interest. We conclude that only a narrow band of native frequencies is of real interest, and we consider
just one, ωp, in order to fulfill the objective of having a simple, but predictive, model.

By the previous basic hypothesis, which guarantees that the stroboscopic Poincaré map is still well
defined, we have that (11) becomes

f (t)= sin(ωpt)
N∑

i=1

gi cos(φi )− cos(ωpt)
N∑

i=1

gi sin(φi ). (12)

The summations appearing in (12) depend on the degree of synchronization of the pedestrians, that is,
on the degree of correlation of their phases φi .

In the case of perfectly asynchronous pedestrians we have that φi is a stochastic variable uniformly
distributed in [0, 2π ], which implies that

N∑
i=1

gi cos(φi )=

N∑
i=1

gi sin(φi )= 0 ⇒ f (t)= 0. (13)

This can be seen by a standard Monte Carlo analysis. In practice in this case for each pedestrian there
exists, on average, a pedestrian with opposite phase.

In the perfectly synchronous case pedestrians have exactly the same phase, φi = φ± 2nπ , so that

N∑
i=1

gi cos(φi )= cos(φ)
N∑

i=1

gi = cos(φ)Ngav,

N∑
i=1

gi sin(φi )= sin(φ)
N∑

i=1

gi = sin(φ)Ngav, (14)
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and
f (t)= Ngav sin(ωpt −φ). (15)

In the previous expressions N is the number of (synchronized) pedestrians whose frequency is close
to ωp, that is, a subset of the total number of pedestrians walking on the bridge (see previous comments);
only in calibrated experiments with controlled people is N the total number of pedestrians. The average
force of each pedestrian is gav, such that Gav = gavK ∼= 30N (see Section 2.1), and φ is the average
phase; its value is inessential, and it will be used in due course to simplify the computations.

From the previous expressions we see that f (t) ranges from f (t) = 0 (the perfectly asynchronous
case) to f (t)= Ngav sin(ωpt −φ) (the perfectly synchronous case). In real cases the actual force is in
between these two bounds, and depends on the degree of synchronization. Thus we assume

f (t)= Ngavσ sin(ωpt −φ), (16)

where σ is a dimensionless measure of the degree of synchronization, which ranges from 0 (the perfectly
asynchronous case) to 1 (the perfectly synchronous case).

Equation (16) is formally identical to (4), so that mathematically we bring back the crowd case to that
of an equivalent (single) pedestrian, and we can take advantage of the formulas of Section 2.1. In doing
this, we use the “free” overall phase to simplify the expressions. In particular, by assuming (without loss
of generality)

sin(φ)=
−2ξωp√

(1−ω2
p)

2+ (2ξωp)2
, cos(φ)=

1−ω2
p√

(1−ω2
p)

2+ (2ξωp)2
, (17)

we have

d1 =
1√

(1−ω2
p)

2+ (2ξωp)2
, d2 = 0, (18)

so that
βx =−ωpd1e−ξTpαxy, βy = ωpd1(−e−ξTpαy + 1). (19)

The map (9) becomes{
xn+1

yn+1

}
= e−ξTp

[
αx αxy

−αxy αy

]{
xn

yn

}
+ σN

{
−e−ξTpαxy

1− e−ξTpαy

}
, (20)

where

N =
Ngavωp√

(1−ω2
p)

2+ (2ξωp)2
. (21)

3. Pedestrian-bridge interaction

In the previous section only the mechanical part has been considered. In order to model the dynamical
bridge-pedestrian interaction and to describe the natural tendency of the systems to synchronize, we must
consider also the human part, starting from the basic observation that the two parts influence each other.
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The first step in this direction is to assume that not only xn and yn vary in (discrete) time, but also the
synchronization parameter σ , which is now considered as a state variable, σn , and no longer as a (fixed)
parameter. Thus, (20) becomes{

xn+1

yn+1

}
=

{
fx(xn, yn, σn)

fy(xn, yn, σn)

}
= e−ξTp

[
αx αxy

−αxy αy

]{
xn

yn

}
+ σn N

{
−e−ξTpαxy

1− e−ξTpαy

}
. (22)

Note that the passage from (20) to (22) is not a simple substitution of σ with σn , but a conceptual change
which, for example, increases the dimension of the dynamical system.

The next step consists in proposing a (discrete time) evolution law for the new state variable σn:

σn+1 = fσ (xn, yn, σn), (23)

so that (22) and (23) become a well-defined dynamical system. The choice of the function fσ (xn, yn, σn)

entails modeling the bridge-pedestrian interaction, and so it is the key point. In fact, while for the mechan-
ical part (22) there are physical (Newtonian) laws, for the human part (23) there are no corresponding
axiomatic laws, and any choice is by definition subjective.

Common sense suggests that the degree of synchronization strongly depends on the amplitude,

An =

√
x2

n +
y2

n

ω2
p
, (24)

of the bridge motion, and weakly on the current synchronization σn . Thus, in this work we assume

σn+1 = fσ (An). (25)

The following properties help in the characterization of the nonlinear function fσ (An):

(1) fσ (0)= 0. In fact, in a (mathematically) perfect case, in the absence of motion there is no synchro-
nization at all and the force on the bridge is zero. Actually, since the synchronization is a stochastic
process, in real (or imperfect) cases even if the bridge is still, the lack of synchronization is not
perfect, and there is a net force, although very small. This is achieved by assuming fσ (0) = ε,
|ε| � 1. In the sequel we will consider both the perfect and the imperfect cases.

(2) fσ (An) is a monotonic increasing function, since there is experimental evidence that the degree of
synchronization increases with the amplitude of the motion.

(3) fσ (An) is as simple as possible, since there is no experimental evidence for strange behaviors for
certain values of A0. Mathematically this property can be formulated by assuming that fσ (An) is
smooth, that is, continuously differentiable, in ]0,∞[ and that it has at maximum one inflection
point.

(4) limAn→∞ fσ (An) = 1, as, for large excitation amplitudes, all the pedestrians synchronize (that is,
there is no asymptotic limit less than 1). This property mathematically describes the saturation
condition; in practice the rate of convergence toward 1 is important, since it is practically expected
that for large but finite values of An we have achieved a practically complete synchronization.

Any function satisfying the previous four points is acceptable in principle.
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For the forthcoming developments the most important characteristic of the function fσ (An) is its
behavior around the origin An = 0. Without loss of generality we can assume the following local behavior:

fσ (An)= ε+ γk(An)
k
+ . . . , (26)

where ε is the imperfections parameter (see point (1)), k is a positive real number determining the local
rate of convergence toward An = 0, and γk is a parameter measuring the “slope” of the local behavior,
that is, the sensitivity of the pedestrians to the movement of the bridge. Both k and γk are parameters of
the model to be determined theoretically or experimentally.

4. Fixed points

Now that we have the map ((22) and (25)) describing the evolution law for the coupled bridge-pedestrian
system we can study its dynamic behavior. We start by considering the fixed points

x0 = fx(x0, y0, σ0), y0 = fy(x0, y0, σ0), σ0 = fσ (A0), A0 =

√
x2

0 +
y2

0

ω2
p
, (27)

which correspond to periodic oscillations of the original continuous time system.
Solving the first two equations of (27) yields

x0 = 0, y0 = σ0 N ⇒ A0 =
σ0 N
ωp

. (28)

Substituting this expression in (27)3 gives the nonlinear algebraic equations permitting determination of
the fixed points:

σ0 = fσ
(
σ0 N
ωp

)
⇒

ωp

N
A0 = fσ (A0). (29)

Equation (29) can be graphically solved by drawing the graph of fσ (A0) and of the straight line
(ωp/N )A0, as schematically shown in Figure 1. This permits the inference of the main qualitative
properties of the solution without exact knowledge of the function fσ (A0).

f A
s
( )0

0

1

A0

wp

N
A0

increasing N

Ncr

solution

Figure 1. A schematic representation of the graphical solution of (29).



PEDESTRIAN-INDUCED LATERAL VIBRATIONS OF FOOTBRIDGES 1041

The solutions of (29) are now discussed by considering separately the perfect (ε = 0, Figure 1) and
imperfect (ε 6= 0) cases, and by using N as a varying (driving) parameter for parametric analysis and for
bifurcation diagrams.

4.1. Perfect case. In the perfect case fσ (0) = 0, so that we have the trivial (or rest) solution A0 = 0
corresponding to the still bridge (see (29) and Figure 1). This is the main path of solutions.

To determine if there are secondary solutions bifurcating from the trivial one, we consider the local
behavior (26) of fσ (A0), so that (29) becomes

ωp

N
A0 = γk Ak

0+ . . . . (30)

From the previous equation we conclude that if k 6= 1 there are no solutions in the neighborhood of
A0 = 0 for finite values of N , that is, there are no bifurcation points.

If, on the other hand, k = 1, then there is a branching at (we write γ instead of γ1 for simplicity)

N cr =
ωp

γ
, (31)

which, as shown in Figure 1, corresponds to the N providing the same slope at the origin for fσ (A0) and
(ωp/N )A0.

Combining (21) and (31) we get

Ncr =

√
(1−ω2

p)
2+ (2ξωp)2

γ gav
. (32)

This expression is the most important result from a practical point of view, since it gives the critical
number of pedestrians triggering the phenomenon of lateral synchronization, that is, the maximum num-
ber of (synchronizable) pedestrians allowed on the bridge deck. In fact, below this threshold there is
only the rest solution, so nothing happens. It is just at this Ncr that a different solution becomes possible,
and the swaying of the bridge appears. This is enough from a designer point of view, and it is valuable
because (32) is a very simple formula obtained with reasonable hypotheses. In particular, it does not
require knowledge of the whole function fσ (A0), but only of its local behavior.

The model parameter γ , which has dimensions of inverse length, measures the sensitivity of the
pedestrians to the bridge motion. Its meaning can be understood by considering the following piecewise
linear expression, which is the simplest choice for fσ (A0):

fσ (A0)=


γ A0, for 0< A0 ≤

1
γ
,

1, for A0 ≥
1
γ
.

(33)

This expression shows that 1/γ can be approximately considered as the amplitude such that all the
synchronizable pedestrians are actually synchronized. In fact, the limit for An →∞ in point (4) is
just a mathematical issue, since in practice the phenomenon occurs for small (or moderately small)
displacements, justifying the mechanically linear framework used in (1).

Expression (32) provides the critical number as a function of the pedestrians’ native frequency ωp. The
worst situation corresponds to the resonant case, because in this case each pedestrian has the maximum
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effect on the bridge. In fact, by minimizing (32) with respect to ωp we get

ωp,min =
√

1− 2ξ 2 = ωres, (34)

confirming, as expected, that the resonance is the worst situation. By inserting (34) into (32) we obtain

Ncr,min =
2ξ
γ gav

=
B
√

M K
1
γ

K
Gav
=

B�
γGav

, (35)

where we have assumed 4ξ 2
− 4ξ 4 ∼= 4ξ 2 due to the smallness of ξ , and where we remember that

Gav ∼= 30N [Belli et al. 2001; Marcheggiani and Lenci 2010].
Expression (35) is the same one obtained in [Lenci and Marcheggiani 2008] with a different model, and

agrees with the predictions of the more sophisticated SAMEO model studied in [Marcheggiani and Lenci
2010]. The fact that it is a result of two different models supports its reliability. In fact, in [Lenci and
Marcheggiani 2008] it has been shown that it predicts very well experimental results from the literature.
Furthermore, based on the results of the London Millennium Bridge, it has been shown that a reasonable
value for γ , likely valid in any circumstance, is γ = 0.14–0.17 cm−1

= 14–17 m−1. This means that
there is a complete synchronization for δ= 1/γ = 6–7 cm (δ refers to the [Lenci and Marcheggiani 2008]
notation), a fact that agrees well with experimental observations [Arup 2000; Dallard et al. 2001a; 2001b].
This value also agrees well with the 4.5 cm identified as the limit lateral displacement in [Nakamura and
Kawasaki 2006].

Expression (32) is the generalization of (35) to the case of nonperfect resonance, since, contrarily to
(35), it permits the detection, still in a simple way, of the effects of ωp.

Formula (35) is now extremely simple, since it requires only the knowledge of the real damping and
circular frequency of the involved (lateral) mode

Ncr,min = 0.0022B [kgsec−1
]� [sec−1

]. (36)

In spite of its straightforwardness, it is very predictive. In fact, we remember that the critical number of
pedestrians which destabilized the north span of the London Millennium Bridge was about 155 [Dallard
et al. 2001a; 2001b]. Since for the north span we have [Strogatz et al. 2005] M = 113000 kg, K =
4730000 kgsec−2

→�= 6.47 sec−1 (that is, the natural frequency is 1.03 Hz), and B = 11000 kgsec−1,
we obtain from (36) Ncr,min = 156. Note that the mass of the critical number of pedestrians is about
m = 155× 80= 12480 kg, that is, 11% of the modal mass.

To further show its reliability, we apply (36) to the Toda Park Bridge, best known as the T-Bridge, a
cable-stayed footbridge in Japan. According to [Nakamura and Kawasaki 2006] we have M = 237000 kg,
K =8092000 kgsec−2

→�=5.84 sec−1 (that is, the natural frequency is 0.93 Hz), and B=22200 kgsec−1.
Therefore the critical number of synchronizable pedestrians is Ncr,min = 285. In this case we do not have
the experimental value of Ncr, as in the case of the Millennium Bridge, but we know from [Fujino et al.
1993] that with N ∼= 2000 pedestrians (an extremely congested situation) the bridge experienced syn-
chronized oscillations. Considering that about 20% of pedestrians synchronized, as explicitly remarked
in [Fujino et al. 1993], we have N ∼= 400, which is in good agreement with Ncr,min = 285 (we cannot
expect equality, since we have data only for a synchronized situation).

In the case of the Maple Valley cable-stay bridge, also known as the M-Bridge, in Japan, we have
that the third asymmetric and, to a minor extent, the fourth symmetric modes are involved in the lateral
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synchronization [Nakamura and Kawasaki 2006; Nakamura and Kawasaki 2009]. For the third mode
we have synchronization, for example, when there are about 41 pedestrians on the deck (see [Nakamura
and Kawasaki 2009, case M-6, Figure 11]). In this case we have [Nakamura and Kawasaki 2009] M =
97200 kg, K = 29648570 kgsec−2

→ � = 5.52 sec−1 (that is, the natural frequency is 0.88 Hz), and
B = 2905 kgsec−1. Therefore the critical number of synchronizable pedestrians is Ncr,min = 35.

From the previous work we have seen that the main solution curve has a bifurcation point at Ncr. The
type of bifurcation depends on the higher-order terms of the Taylor expansion (26):

fσ (A0)= γ A0+ γ2(A0)
2
+ γ3(A0)

3
+ . . . , (37)

so that from (29) the local behavior of the branching solution is

N (A0)=
ωp

γ
−
ωpγ2

γ 2 A0−
ωp(γ3γ − γ

2
2 )

γ 3 (A0)
2
+ . . . . (38)

From (38) we see that if γ2 6= 0 we have a transcritical bifurcation. Otherwise, we have a supercritical
pitchfork bifurcation if γ3 < 0 or a subcritical pitchfork bifurcation if γ3 > 0 (in this case fσ (A0) has
an inflection point, which implies that the pitchfork is preceded by a saddle-node bifurcation for a lower
value of N , see Figure 2); this is a consequence of the fact that the trivial solution is stable for N < Ncr.
This is obvious by common sense, and can be proved mathematically by noticing that the Jacobian matrix
of the map at the rest position is

αx e−ξTp αxye−ξTp −Nαxye−ξTp

−αxye−ξTp αye−ξTp N (1−αye−ξTp)

0 γ

ωp
0

 , (39)

and the associated characteristic equation is (use is made of the property αxαy +α
2
xy = 1)

s3
− e−ξTp(αx +αy)s2

+

(
γ N
ωp

(−1+αye−ξTp)+ e−2ξTp
)

s+ γ Ne−ξTp

ωp
(−e−ξTp +αx)= 0. (40)

In fact, (40) has one solution satisfying s = 1 for N = ωp/γ = N cr, while below this threshold we have
|s|< 1.

The whole bifurcation scenario for different values of γ2 and γ3 is qualitatively depicted in Figure 3.
It is worth remarking that, again, the most interesting properties are determined only by the local

behavior of fσ (A0).
Up to now we have considered only the case k = 1, which is the most interesting from a practical point

of view because it is the unique case in which the model has a bifurcation point, which describes well,
both qualitatively and quantitatively, the real behavior. For the sake of completeness we consider now
also the cases k < 1 and k > 1. Functions with these characteristics are schematically shown in Figure 2.

By referring to Figure 2 the solution scenarios can be easily understood. For k < 1, and supposing that
fσ (A0) has regular behavior with an always negative curvature (as the function in Figure 2, see point
(3)), we see that, in addition to A0 = 0, for every value of N there is always one and only one solution
A0. Furthermore, the function A0 = A0(N ) is monotonically increasing and goes to infinity for N →∞.
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k>1

0

1

A0

f A
s
( )0

k=1

k<1

(a)

(b)

Figure 2. A schematic representation of fσ (A0) for different values of exponent k of (26).

The case k > 1 is slightly more involved. In fact we have that for small values of N (that is, very steep
straight lines), there are no solutions. When N increases, at a certain threshold the line becomes tangent
to the curve fσ (A0) (as line (a) in Figure 2), at a point ahead of the unique inflection point. Above this
threshold there are always two solutions (see line (b) in Figure 2), one of which approaches zero and the
other infinity as N →∞. This is a saddle-node bifurcation, where a solution suddenly appears, far from
the main path. This does not seem to capture the behavior observed in real cases, although we cannot
exclude in principle that it could happen in different (unobserved up to now) situations. We only note
that to detect the saddle-node threshold a local analysis around A0 = 0 is no longer sufficient.

4.2. Imperfect case. In the imperfect case fσ (0)= ε > 0, so that A0 = 0 is no longer a trivial solution.
Considering the most interesting case k = 1 we have that

ωp

N
A0 = ε+ γ A0+ γ2(A0)

2
+ γ3(A0)

3
+ . . . , (41)

so that locally the solution is

N
ωp
=

A0
ε
− γ

( A0
ε

)2
+ (−γ2ε+ γ

2)
( A0
ε

)3
− (γ 2

3 − 2γ γ2ε+ γ
3)
( A0
ε

)4
+ . . . . (42)

The main branch emanating from (A0, N ) = (0, 0) is no longer at rest, although not so far from it,
since ε is small — otherwise it cannot be considered as an imperfection and must be carefully considered
in an appropriate way. There are no longer branching points and branching paths ensuing from the main
one, a fact that constitutes the main distinction with respect to the perfect case (Section 4.1).

All possible situations are qualitatively depicted in Figure 3, together with the corresponding perfect
scenario. Each case of Figure 3 is clearly an unfolding of a local branching bifurcation, according to the
fact that transcritical and pitchfork bifurcations are not structurally stable [Wiggins 1997].

Comparing the pictures of Figure 3 with the numerical simulations of the SAMEO model [Marcheg-
giani and Lenci 2010] and with the experimental outcomes (the results of the Arup tests can be looked
up, for example, in [Newland 2001; Abrams 2006]) we see that the situation actually occurring is that of
Figure 3c; in fact, for low values of N there are small (but not null) oscillations, which suddenly but not
instantaneously (as it would be in the perfect case of a pitchfork bifurcation) increase around a critical
threshold.



PEDESTRIAN-INDUCED LATERAL VIBRATIONS OF FOOTBRIDGES 1045

0

0

0

0

A0 A0

A0A0

N N

NN

Ncr Ncr

NcrNcr

imperfe
ct

imperfect

imperfect
imperfect

perfect perfect

perfectperfect

pe
rf

ec
t

p
erfect

pe
rf

ec
t

a) g2<0

transcritical

c) g2=0, g3<0

pitchfork
supercritical

b) g2>0

transcritical

d) g2=0, g3>0

pitchfork
subcritical

p
erfect

Figure 3. Qualitative bifurcation paths for perfect and imperfect cases; stable (solid
lines) and unstable (dashed lines).

From the previous considerations we can draw the following conclusions:

• The theoretical critical value Ncr computed in the previous section is a reference value, of course of
great engineering interest, and not the mathematically exact value of the critical threshold, which
actually does not exist.

• The dynamical phenomenon underlying the problem of pedestrian-induced lateral vibrations of
footbridges is a perturbation of a pitchfork bifurcation. This result was also obtained in [Lenci
and Marcheggiani 2008] and is herein confirmed with a different model.

5. The resonant case

We have seen in the previous sections that the resonant case is the worst situation, and thus in this section
it is studied in detail.

We start by noticing that the minimum of Ncr for varying ωp is obtained for ωp =
√

1− 2ξ 2 (see
(34)). This is the mathematical resonance, corresponding to the maximum of the amplification factor
[Clough and Penzien 1975]. The engineering resonance is given by ωp =

√
1− ξ 2 and corresponds to

the coincidence between the external (excitation) and internal (natural) frequencies. When ξ is small, as
occurs in practical cases, the difference is negligible.

In the engineering resonance case we have αx = αy = 1, αxy = 0, and the map given by (22) and (25)
becomes (Tp = 2π/

√
1− ξ 2):

xn+1 = e−ξTp xn, yn+1 = e−ξTp yn + σn N (1− e−ξTp), σn+1 = fσ (An). (43)
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From (43)1 we conclude that, for any trajectory, xn → 0 for n→∞. This means that the (planar)
invariant manifold x = 0 is globally attractive, so that the most interesting dynamics live on it. Note that
due to (28)1 the fixed points obtained in the previous section belong to the manifold.

On the invariant manifold system (43) reduces to the 2D map

yn+1 = (1− a)yn + aNσn, σn+1 = fσ

(
|yn|

ωp

)
= fσ

(
|yn|√
1− ξ 2

)
= f̄σ (|yn|), (44)

where a = 1− e−ξTp = 1− e−2πξ/
√

1−ξ2 is a positive number less than 1. In real structures it is possibly
small, a ∼= 2πξ (and in this case fσ coincides with f̄σ ), but this hypothesis is not required here.

Given an initial point Pn= (yn, σn) in the phase space (R, [0, 1]) of (44), its image Pn+1= (yn+1, σn+1)

can be obtained by the following graphical procedure, which is a noticeable property of map (44) and
which is illustrated in Figure 4:

(1) From Pn draw a vertical line and individuate points A and B where it intersects line r of equation
σn = yn/N and the function f̄σ (|yn|), respectively.

(2) From A draw the line s of slope 1/(aN ) (which is more steep than line r since a < 1).

(3) From Pn draw a horizontal line and individuate the point C of intersection with s.

(4) From C draw a vertical line and from B a horizontal line. The intersection point is Pn+1.

0 yn

1
f
s
(| )y |n

r

s

1
N

1

Pn

1
aN

1

A

B

sn

C

Pn+1

yn

yn

N

sn

yn

N
-sn

ay -an nNs(1-  )a y -an nNs

Figure 4. Sketch of the graphical construction of the 2D map (44). In gray is attracting
region R = (yn, σn) ∈ ([0, N ], [0, 1]).
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Figure 5. Some properties of the map (44).

From the previous graphical construction it is immediately seen that the unique nontrivial fixed point
(when it exists, that is, above N cr) corresponds to y0 such that points A and B coincide, that is, when
line r intersects f̄σ (|yn|). This corresponds exactly to the point found by the graphical construction of
Figure 1.

By using the graphical construction of Figure 4 it is possible to note the following properties, which
are illustrated in Figure 5 and which further help in understanding the behavior of the 2D map:

• segment F-G is the diagram of the horizontal displacements of the points belonging to segment
D-E , that is, the points having a fixed yn and varying σn and

• the image of segment D-E is segment H -I .

It is useful to rewrite (44)1 in the alternative form

1yn = yn+1− yn = a(Nσn − yn). (45)

Since 0≤ σn ≤ 1, we have that

−ayn ≤1yn ≤ a(N − yn). (46)

From the left-hand side inequality we see that for all negative yn the difference 1yn is positive, so that
every point in the region yn < 0 tends to move toward yn = 0. From the right-hand side inequality, on
the other hand, we see that for all yn > N the difference 1yn is negative, so that every point in the region
yn > N tends to move toward yn = N (see an example in Figure 5). The conclusion is that the region
R = (yn, σn) ∈ ([0, N ], [0, 1]), which is shown in gray in Figures 4 and 5, is globally attracting, and
the steady-state behavior lies therein. In fact, points belonging to R do not escape from it, since from
0≤ yn ≤ N and 0≤ σn ≤ 1 it follows (see (44)1) that 0≤ yn+1 ≤ N .

On the attracting region R the map (44) is invertible, because f̄σ (yn) is invertible on R+ by the
assumptions made in Section 3.
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Figure 6. The six subregions of the attracting region of the map (44).

In the case N > N cr the region R can be divided into six subregions, as shown in Figure 6. From the
graphical constructions introduced above we see that:

• R1→ R3 ∪ R4 ∪ R5 ∪ R6;

• R2→ R4 ∪ R5 ∪ R6;

• R3→ R3;

• R4→ R2 ∪ R3;

• R5→ R6;

• R6→ R5 ∪ R6.

An example is reported in Figure 7 where f̄σ (y)= tanh(y), N = 1.5 (> N cr = 1), and a = 0.3.
From the previous scheme we conclude that periodic or chaotic solutions (not necessarily stable) are

possible only in R3, alternating in R2 and R4, and alternating in R5 and R6. These considerations are
the starting point for the detailed study of the dynamical behavior of the map (44), which is out of the

Figure 7. The six subregions of the attracting region and their images after one iteration
of the map, where f̄σ (y)= tanh(y), N = 1.5 (> N cr = 1), and a = 0.3.
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scope of the present paper and is left for future work. We only note that in some isolated numerical
simulations based on the example of Figure 7 we have seen that the bifurcated equilibrium point P0 is
globally attractive for the whole phase space.

6. Conclusions

A 3D discrete-time dynamical system has been proposed for studying the pedestrian-induced lateral
vibrations of footbridges. For the mechanical part, the model is based on the stroboscopic Poincaré
map of the flow of the associated continuous time, one mode system, while the coupling between the
pedestrians and the bridge motion has been modeled by assuming that the degree of synchronization of
the pedestrians is a function fσ of the amplitude of the bridge oscillations.

The fixed points of the map have been studied in detail, without exact knowledge of fσ . Only the
local behavior of fσ around the rest position and some qualitative properties have been used. Both the
perfect and the imperfect cases have been considered.

In the perfect case it has been shown that in the unique case of interest in practice (corresponding to
f ′σ (0)= γ ∈ ]0,∞[) there is a main path of rest solutions. When the number of pedestrians N increases,
at a certain threshold Ncr a secondary path bifurcates from the previous one, thus allowing for “large”
oscillations of the bridge. This is the threshold of activation of the unwanted lateral oscillations, and it
is of primary importance in practice. With the proposed model a very simple, predictive, and general
formula is obtained for Ncr, a fact that constitutes the main result of this paper.

The imperfect case has been considered, by including the effect of small imperfections. It has been
shown how the four possible fixed-points scenarios are modified by the imperfections. The one corre-
sponding to a perturbation of a pitchfork bifurcation is noted to agree with experimental observations on
real cases (the Arup experiments on the Millennium Bridge) and with numerical simulations of a more so-
phisticated model. Thus, it is concluded that the dynamical phenomenon underlying the synchronization
problem is a perturbation of the pitchfork bifurcation.

The present paper is devoted to the construction of the model and to the study of the fixed points,
which is sufficient to obtain the desired formula for the critical number of pedestrians and to understand
the main dynamical aspects. The detailed study of the whole dynamics of the system, including more
complex phenomena such as chaos, is worthwhile but out of the scope of this work, and is left for future
work.
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