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FREE VIBRATION OF A SIMULATION CANDU NUCLEAR
FUEL BUNDLE STRUCTURE INSIDE A TUBE

XUAN ZHANG AND SHUDONG YU

This paper presents a numerical rigid-elasto model for vibration of a simulation nuclear fuel bundle
structure confined in a circular tube. The model is developed using the finite element method combined
with the floating frame formulation. The nonlinear dynamic equations are derived using the Lagrange
equations. Small-amplitude vibration about the static equilibrium position is obtained through lineariza-
tion. Numerical results show that the fundamental mode is a rocking-like mode, in which rigid body
translation and rotation are coupled with elastic deformations. Gravity is found to reduce the frequency
of the fundamental mode without affecting the higher modes. Experiments are conducted for a single
fuel bundle structure to validate the numerical results.

1. Introduction

Horizontally placed CANDU1 fuel bundles in a circular tube are used in the Canadian nuclear industry.
During operation, the fuel bundles experience small-amplitude flow-induced vibration, which can result
in significant wear to the supporting structures over a period of time.

Static deformations of fuel bundle structures have been investigated in [Cho et al. 2000; Horhoianu
and Ionescu 2006]. Dynamic models of a horizontally placed rod bundle sitting on the inner surface of
a tube have not been seen before in the literature.

A 43-element simulation fuel bundle is shown in Figure 1 on the next page. The bundle has 43 rods
distributed in 3 rings and at the center. The rods are interconnected by two endplates. Each endplate
consists of 3 circular rings and 16 ribs/webs. The weight of the bundle
is supported by the bearing pads on the bottom rods in the outer ring,
as shown on the right. Ideally there are four bearing pads in contact
with the tube surface and supporting the bundle weight. The radial
gaps between the tube surface and the bearing pads on the rods next to
the bottom rods are about 30–50µm, which permits small-amplitude
bundle vibration without impacting the supporting structure. This small-
amplitude vibration results in a relatively large motion in the top parts of
the bundle due to the large bundle diameter. When disturbed or excited,
the bundle vibrates about its equilibrium position.

Fuel channel inspections at the Darlington nuclear station indicated that bundle vibrations, for exam-
ple, rocking, induced by the coolant flow were responsible for the fretting between the pressure tube
spacer sleeve and the inlet bundle bearing pads [Judah 1992]. Modeling the bundle vibration requires
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formulation of the rigid-elastic motions of a 3D bundle structure. The superimposition method [Schwab
and Meijaard 2002] and the floating frame formulation [Shabana 2005] have been used to deal with rigid
and elastic motions of a 3D body.

Extending from [Zhang and Yu 2010a], this paper presents a numerical procedure for modeling the rod
bundles using the floating frame formulation. A rigid-elastodynamic model is established and applied to
the study of the fundamental mode of a single bundle. The influence of gravity is discussed based on the
simulation results. The simulation results are compared to experimental results.

2. Finite element model in the floating frame formulation

The floating frame formulation used in multibody dynamics is employed to couple the rigid body motion
and the elastic deformation of the bundle. Nonlinear equations of motion are obtained for the bundle
vibration, and then simplified to a set of linear equations for the small-amplitude vibrations about the
equilibrium.

As shown in Figure 1, left, a global inertia frame is chosen in such a way that the X -axis is horizontal
and the Y -axis is vertical. The origin of the global frame is chosen to be the center of the upstream
endplate. To describe the rigid body motion, a reference frame x-y-z is also defined in the figure. The
frame is rigidly attached to the mass center of the bundle so that it moves and rotates with the bundle.
This frame is regarded as the body frame of the bundle.

The bundle is discretized using two types of finite elements. The rods are modeled using a three-node
higher-order beam element in conjunction with Euler–Bernoulli theory [Meirovitch 2001]. The endplates
are modeled using a special nine-node isoparametric plate element [Yu and Wen 2007] in conjunction
with the third-order thick plate theory of [Reddy 1984]. The finite element model is shown in Figure 1,
right. The endplate is regarded as massless because its mass is significantly smaller than the mass of the
rods. Therefore the stiffness of the endplate can be condensed using static substructuring. A superelement
can then be achieved for each endplate using the procedures described in [Zhang and Yu 2010b].

Figure 1. Rod bundle: isoparametric view (left) and finite-element mesh (right).
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Two sets of degrees of freedom (DOFs) are considered in this model. The first set is the rigid body
(body frame) displacement including translations uc and rotations φ measured in the global frame X -Y -Z .
The second set is the deformation-induced displacement u f measured in the body frame. In the floating
frame formulation [Shabana 2005], the displacement of an arbitrary material point on the bundle can be
expressed as

u = uc+ [A(φ)− A0]x+ A(φ)u f ,

where A(φ)= A3 A2 A1 is the Euler rotation matrix,

A3 =

cosϕ3 − sinϕ3 0
sinϕ3 cosϕ3 0

0 0 1

 , A2 =

 cosϕ2 0 sinϕ2

0 1 0
− sinϕ2 0 cosϕ2

 , A1 =

1 0 0
0 cosϕ1 − sinϕ1

0 sinϕ1 cosϕ1

 .
ϕ1, ϕ2, and ϕ3 are three Euler angles. A0 is the initial value of A and is equal to the identity matrix I ;
u f can be further expressed in terms of the finite element nodal displacement ū f as

u f = tT N(x)T ū f ,

where N(x) is the shape function of the beam element, while t and T are the transformation matrices
between the element local frame and the body frame coordinates for the material point and the nodal
DOFs, respectively. Vector x is the distance vector from the body frame origin to the material point
measured in the body frame. Vector x can be expressed as x = x(b)E + tT x(e), where x(b)E is the distance
vector from the body frame origin to the element local frame origin measured in the body frame and x(e)

is the distance vector from the element local frame origin to the material point measured in the element
local frame.

The velocity of the arbitrary material point is

u̇ = u̇c+ Ȧ(x+ u f )+ Au̇ f =
[
Lr L̃ f

] { u̇r
˙̄u f

}
= Lq̇,

where

q =
{
uT

r ūT
f
}T
, ur =

{
uT

c φT }T
, Lr =

[
I B

]
, L̃ f = [ Ã] = [AtT N(x)T ū f ],

B =
[

A3 A2
∂A1
∂ϕ1

u∗ A3
∂A2
∂ϕ2

A1u∗ ∂A3
∂ϕ3

A2 A1u∗
]
= B(ϕ, u∗),

u∗ = x+ u f = x+ tT N(x)T ū f .

The kinetic energy of the system can then be expressed as

T =
∫

V

1
2
ρ u̇T u̇dV = 1

2

{
u̇r
˙̄u f

}T [Mrr Mr f

M f r M f f

]{
u̇r
˙̄u f

}
=

1
2

q̇T Mq̇, (1)

where

Mrr =

∫
V
ρLT

r Lr dV, Mr f =

∫
V
ρLT

r L̃ f dV, M f r =

∫
V
ρ L̃

T
f Lr dV, M f f =

∫
V
ρ L̃

T
f L̃ f dV .
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The potential energy of the system is simply the summation of the elastic potential energy Ve and the
gravity potential energy Vg:

V = Ve+ Vg, Ve =
1
2

{
ur

ū f

}T [0 0
0 K f f

]{
ur

ū f

}
=

1
2

qT K q, Vg =

∫
V
ρg
[
0 1 0

]
r dV, (2)

where K f f is the stiffness matrix obtained using the finite element method for the bundle and r is the
distance vector from the global origin to the arbitrary material point.

The bundle is assumed to be constrained at the four bearing pad locations. The bundle cannot move
due to the large weight and the frictional force between the bundle and the hosting tube. It is justified to
consider the nodes as simply supported at the four bearing pad locations when small oscillatory motion
is studied. Therefore, the following constraint conditions apply:

u(i) = uc+ [A(φ)− A0
]x(i)+ A(φ)ū(i)f = 0, (3)

where superscript (i) represents the i-th constrained node (i = 1, . . . , 4).
According to the free and constrained DOFs, (1) and (2) can be partitioned

T = 1
2


u̇r
˙̄u f c
˙̄u f i


T M11 M12 M13

M21 M22 M23

M31 M32 M33


u̇r
˙̄u f c
˙̄u f i

 , Ve =
1
2


ur

ū f c

ū f i


T K 11 K 12 K 13

K 21 K 22 K 23

K 31 K 32 K 33


ur

ū f c

ū f i

 , (4)

where ū f c =
{
ū(1)f

T
ū(2)f

T
ū(3)f

T
ū(4)f

T }T represents the DOFs corresponding to the constrained nodes
and ū f i represents the unconstrained DOFs.

From (3), ū f c can be expressed in terms of ur . The independent DOFs become q̃ = {uT
r ūT

f i }
T .

Substituting into (4), the kinetic energy and elastic potential energy become

T = 1
2
˙̃qT
[

M11 M13

M31 M33

]
˙̃q+ T̄ ( ˙̃q, q̃)= 1

2
˙̃qT Ms ˙̃q+ T̄ ( ˙̃q, q̃),

Ve =
1
2

q̃T
[

K 11 K 13

K 31 K 33

]
q̃+ V̄e(q̃)=

1
2

q̃T K s q̃+ V̄e(q̃),
(5)

where

T̄ ( ˙̃q, q̃)= 1
2(u̇

T
r M12 ˙̄u f c+ ˙̄uT

f c M21u̇r + ˙̄uT
f i M32 ˙̄u f c+ ˙̄uT

f c M23u̇r + ˙̄uT
f c M22 ˙̄u f c),

V̄e(q̃)= 1
2(u

T
r K 12ū f c+ ūT

f c K 21ur + ūT
f i K 32ū f c+ ūT

f c K 23ur + ūT
f c K 22ū f c).

Gravity potential can also be expressed as a composite function of q̃:

Vg = Vg[ur , ū f c(ur ), ū f i ] = Vg(q̃).

Assuming no nonconservative load, the equations of motion of the system can be obtained using the
Lagrange equations [Meirovitch 2001]:

d
dt

(
∂T

∂ ˙̃q

)T

−

(
∂T
∂ q̃

)T

+

(
∂Ve

∂ q̃

)T

+

(
∂Vg

∂ q̃

)T

= 0. (6)
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Substituting (2)–(4) into (6), notice that Ms depends on q̃ while K s is a constant. The equations of
motion become

Ms ¨̃q+ Ṁs ˙̃q+
d
dt

(
∂ T̄

∂ ˙̃q

)
−
∂

∂ q̃
( 1

2
˙̃q Ms ˙̃q)T −

∂ T̄
∂ q̃ + K s q̃+ R(q̃)+ H(q̃)= 0,

where R represents the nonlinear term from the derivative of the elastic potential energy and H represents
the force and moment induced by gravity:

R(q̃)=
∂ V̄e

∂ q̃
=

K 12ū f c+

(
∂ ū f c

∂ur

)T
K 21ur +

(
∂ ū f c

∂ur

)T
K 23ū f i +

(
∂ ū f c

∂ur

)T
K 22ū f c

K 32ū f c

= [ Rr

R f i

]
,

H(q̃)=
∂Vg

∂ q̃
=

{(
∂Vg

∂ur
+
∂Vg

∂ ū f c

∂ ū f c

∂ur

)T

,

(
∂Vg

∂ ū f i

)T}T

,

where
∂Vg

∂ur
=

∫
V
ρg
[
0 1 0

] [
I B

]
dV,

∂Vg

∂ ū f c
=

∫
V
ρg
[
0 1 0

] [
˜̃A
]

dV,

and ˜̃A is a fraction of Ã which corresponds to the constraint DOFs u f c. From (3), it can be obtained that

∂ ū f c

∂ur
=−A−1 [I B(u∗c)

]
,

where u∗c = x+ ū f c(q̃).
The damping effect caused by the velocity terms is not within the scope of this paper. Ignoring the

velocity terms Ṁs ˙̃q, (∂/∂ q̃)
( 1

2
˙̃q Ms ˙̃q

)
, ∂ T̄ /∂ q̃, and those in (d/dt)(∂ T̄ /∂ ˙̃q), the governing equations

become
Ms ¨̃q+ K s q̃+ S( ¨̃q, q̃)+ R(q̃)+ H(q̃)= 0, (7)

where

S( ¨̃q, q̃)=

M12 ¨̄u f c+

(
∂ ū f c

∂ur

)T
M21ür +

(
∂u f c

∂ur

)T
M23 ¨̄u f i +

(
∂ ū f c

∂ur

)T
M22 ¨̄u f c

M32 ¨̄u f c

= [ Sr

S f i

]
.

If the dynamic terms in (7) are dropped, a static equilibrium solution of the system q̃0 can be ob-
tained through iteration. A Fortran90 code is implemented to solve for the equilibrium solution. For a
convergence criterion of 0.001 for the L2 norm of the displacement vector, it takes two steps to reach
the converged equilibrium solution. Figure 2 shows the scaled global deformation of the bundle at three
different locations for the equilibrium solution.

Denoting δ as the deviation from the equilibrium position, the generalized coordinates can be expressed
as q̃= q̃0

+δ. Substituting this equation into (7), dropping the constant terms and linearizing the nonlinear
terms with a Taylor expansion at q̃0, the governing equation for oscillation about the equilibrium can be
obtained as

Ms δ̈+ S(δ̈, q̃0)+
(

K s +
∂R
∂ q̃ (q̃

0)+
∂H
∂ q̃ (q̃

0)
)
δ = 0. (8)
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The term S(δ̈, q̃0) can be further linearized using the Taylor expansion at δ̈ = 0, and (8) becomes(
Ms +

∂S
∂ δ̈
(0, q̃0)

)
δ̈+

(
K s +

∂R
∂ q̃ (q̃

0)+
∂H
∂ q̃ (q̃

0)
)
δ = 0, (9)

where

∂S
∂ δ̈
(0, q̃0)=


∂Sr
∂ ür

(
∂ ¨̄u f c

∂ ür

)T
M23

M32

(
∂ ¨̄u f c

∂ ür

)
0


δ̈=0

q̃=q̃0

,
∂R
∂ q̃ (q̃

0)=


∂Rr
∂ur

(
∂ ū f c

∂ur

)T
K 23

K 32

(
∂ ū f c

∂ur

)
0


q̃=q̃0

,

∂ ü f c

∂ ür
=̇

−A−1
− A−1 B(ϕ, u(1))

...

−A−1
− A−1 B(ϕ, u(4))

 , ∂u f c

∂ur
=̇

−A−1
− A−1 B(ϕ, u∗(1))

...

−A−1
− A−1 B(ϕ, u∗(4))

 ,

∂H
∂ q̃ =

Ne∑
i=1

∫
Vi


0 0 0

0 ∂B2,:
∂φ

∂B2,:
∂u f

0 ∂ Ã2,:
∂φ

0


q̃=q̃0

dV,

and where the subscript (2, :) represents the second row of the matrix. ∂Sr
∂ ür

and ∂Rr
∂ur

are 6× 6 matrices.

3. Numerical solutions and discussion

A numerical solution to the governing equations of motion, (9), is sought. The geometry and material
properties of the bundle are listed in Table 1. The numerical solution shows that the fundamental natural
frequency is 6.1 Hz. After normalizing the eigenvector, it is found that the Z -direction rigid body rotation
is the primary dominant component and the X -direction rigid body translation is the secondary. The

   

Figure 2. Scaled deformation in equilibrium at different locations: bundle ends (left),
bearing pads (middle), and midspan (right).
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Parameter Symbol Value

Bundle length (mm) L 500.0
Outer ring mean radius (mm) R1 42.5
Intermediate ring mean radius (mm) R2 30.0
Inner ring mean radius (mm) R3 16.5
Ring and rib width (mm) b 3.4
Endplate thickness (mm) t 3.0
Young’s modulus (GPa) E 200.0
Poisson’s ratio ν 0.3
Shear modulus (GPa) G 76.9

Table 1. Geometric dimensions and material properties.

   

Figure 3. Scaled deviation of the rocking mode at different locations: bundle ends (left),
bearing pads (middle), and midspan (right).

elastic DOFs are negligibly small except those on the two supporting rods at the bottom. To visualize the
solution, the mode shape of the small deviation is shown in Figure 3. The total displacement, which is
the static deformation superposed with the scaled deviation eigenvector, is shown in Figure 4. The mode
exhibits a rocking motion in terms of the total displacement.

It is necessary to validate the accuracy of the meshing scheme and the numerical methods used in this
paper against independent finite element code. Most general finite element codes do not incorporate the
floating frame formulation; therefore comparison can be made on a conventional finite element model
of the bundle structure. The above rigid-elasto model is degraded to a conventional finite element model
by removing the floating frame formulation. The modal solution from this model is compared to that of
an independent finite element model developed in ANSYS®ED 8.0 using straight beam elements. The
comparison of the natural frequencies is shown in Table 2.

From the above solutions, it can be seen that the rigid body motion and gravity have a significant
influence on the rocking frequency. The structural solution, which does not include the rigid body DOFs
and the gravity terms, shows a frequency of 7.7 Hz, while the rigid-elasto solution shows a frequency of
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Figure 4. Scaled total displacement of the rocking mode at different locations: bundle
ends (left), bearing pads (middle), and midspan (right).

Mode Natural frequencies (Hz)

This paper ANSYS ED 8.0

1 7.7 7.5
2 50.8 50.0
3 93.0 87.7
4 93.8 93.2
5 94.3 93.6
6 94.8 94.0

Table 2. Validation on the current finite element model (without floating frame formu-
lation) against ANSYS ED 8.0.

Mode Frequencies (Hz) Difference (%)

With Without

1 6.1 7.7 20.8
2 50.4 50.8 0.8
3 91.9 93.0 1.2
4 93.8 93.8 0.0
5 94.2 94.3 0.1
6 94.4 94.8 0.4

Table 3. Influence of gravity. Frequencies are shown for with and without floating frame
formulation and gravity.

6.1 Hz. The difference is 20.8%. It can be seen in Table 3 that the influence of gravity is only significant
on the fundamental mode. This is because the fundamental mode is related to rigid body rotations and
gravity does positive work when the bundle rocks from the equilibrium position to either side. The
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Figure 5. Scaled deformation of the rocking mode at different locations without floating
frame formulation and nonlinear terms: bundle ends (left), bearing pads (middle), and
midspan (right).

second mode is a pure vertical motion and the gravity work cancels itself in the motion. Higher modes
are characterized by the bending deformation of the rods, and thus receive little influence from gravity.
The fundamental mode of the structural solution is also shown in Figure 5 for comparison.

Although the influence of gravity is important, it needs to be clarified that the impact is delivered
“indirectly”. The major influence of gravity is enforced through the equilibrium solution hidden in the
nonlinear terms ∂S/∂ δ̈ and ∂R/∂ q̃, especially the latter. The ∂Rr/∂ur term in ∂R/∂ q̃ can be further
expressed as

∂Rr

∂ur
=

[
K 12

∂u f c

∂ur
+

(
∂u f c

∂ur

)T

K 21+ 2
(
∂u f c

∂ur

)T

K 22
∂u f c

∂ur

]
q̃0

+

[
uT

r
∂hA

i

∂ur
+

∂

∂ur
(hB

i u f i )+ uT
r
∂hC

i

∂ur

]
q̃0
, (10)

where hA
i , hB

i , and hC
i are the i-th rows of (∂u f c/∂ur )

T K 21, (∂u f c/∂ur )
T K 23, and (∂u f c/∂ur )

T K 22,
respectively. The terms in the second set of brackets in (10) contain the equilibrium solution which is
a consequence of gravity. If this term is dropped, the rocking frequency will increase to a value which
is almost identical to the structural solution. It should be noticed that the coupling term between the
constraint DOF and the rigid body DOF terms K 12 and K 21 is actually zero; therefore, the corresponding
terms in the second set of brackets are dominant. Even a small quantity in the second set of brackets
may have a strong influence on the result. Dissimilarly to this, the contributions from the nonlinear terms
in ∂S/∂ δ̈ are very small compared to those from M12 and M21, and hence have little influence on the
result.

Influences from the nonlinearity in the Euler rotation matrix A, the derivative matrix B, and the
constraint equations are relatively small compared to the indirect influence of gravity. However, if the
constraint equations are linearized so that ∂u f c/∂ur becomes a constant, then the derivatives of hA

i , hB
i ,

and hC
i in (10) will become zero and hence the influence from gravity will be lost.



1062 XUAN ZHANG AND SHUDONG YU

There is also a “direct” influence of gravity, the ∂H/∂ q̃ term. This represents the rate of change in
the gravity-induced moment with respect to the displacement. Although this term is derived from the
gravity potential, its impact is negligible in this application, because the rods in the bundle are almost
evenly distributed. Numerical solution shows that the values of the elements in the ∂H/∂ q̃ term are a
few orders lower in magnitude then those in the K s and ∂R/∂ q̃ terms.

4. Experiment

An experiment was carried out to determine the rocking frequency of the bundle. Lateral oscillation in the
horizontal direction of the bundle may be related to the rocking motion of the bundle. Its frequency can
be obtained by monitoring the oscillatory motion of a point on the outer ring of the bundle near the end.
Instead of using accelerometers, a noncontact displacement sensor is used for vibration measurement.
This type of sensor is more sensitive to low frequency, relatively large displacement vibrations.

To measure the bundle vibration, a 43-rod bundle is placed inside a 4-inch PVC tube supported by
strong steel columns, as shown in Figure 6. A noncontact differential variable reluctance transducer
(MicroStrain NC-DVRT-1.5) is used to recode the lateral displacement of the bundle. The sensor detects
the distance between a target object and the face of the transducer head. The reluctance of the coils
within the sensor is changed when the face of the transducer is in close proximity to a ferrous or highly
conductive material. The transducer outputs a voltage signal that is a nonlinear function of the distance.
The typical repeatability of this transducer is ±2µm and the frequency range is 0 to 800 Hz. The trans-
ducer is mounted at one side of the tube near the end of the bundle. The transducer head penetrates
the tube wall and approaches the rod around the 4 o’clock position. The initial gap from the head of
the transducer is around 200µm for the best gain factor in the output. The time-domain voltage signal
is sampled with a sampling rate of 5 kHz and recorded using a data acquisition system. The voltage
signal is then converted to gap distance and analyzed using code written in Matlab to obtain the spectral
information.

Figure 6. Experimental setup.
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Figure 7. The response of the bundle to an impulse.

The response of the bundle to an impulse is recorded and analyzed. The time-domain displacement
of the monitored point and its power spectral density are shown in Figure 7. The response of the rocking
mode is found to be clear and free of noise from higher modes, such as the 90–100 Hz mode group
corresponding to the first bending mode of the rods. The rocking mode frequency is 6.0 Hz. The damping
ratio calculated from the difference between the peaks in the time-domain signal is about 0.05. For such
a low damping ratio, the effect of damping on natural frequencies is negligible.

The tube is built from PVC, a material softer than steel. When the steel bearing pads contact the
tube inner surface, the soft material will deform. This deformation leads to a contact stiffness and may
have an influence on the fundamental frequency. It is necessary to examine the contact stiffness and
compare it to the overall equivalent stiffness that relates to the bundle deformation with the current
boundary conditions. The Boussinesq point contact solution [Johnson 1985] is used to estimate the order
of magnitude of the normal contact stiffness kC . Based on the solution, the normal elastic deformation w
at the contact location when a point object indents on a semiinfinite elastic space in the normal direction
can be expressed as

w =
2P(1− ν)

4πGr
, (11)

where P is the normal contact force, r is the contact point radius, G is the shear modulus of the elastic
space (G = 1 GPa for PVC), and ν is the Poisson’s ratio of the elastic space (ν = 0.41 for PVC). The
order of magnitude of the contact stiffness on one bearing pad can then be estimated as kC,1 ∼ P/w =
πGr/(1− ν) ≈ 107. The overall contact stiffness provided by the contact of the four bearing pads
is kC = 4kC,1 ∼ 4 × 107. Because the most potential energy in the rocking mode comes from the
deformation of the two rods that contact the tube through bearing pads, it is reasonable to compare kC

with the equivalent stiffness of these rods. The equivalent stiffness can be conveniently estimated by
dividing the weight of the bundle and the vertical displacement of its mass center from a static analysis.
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The order of magnitude of the equivalent stiffness is obtained as kE ∼ 1× 106, which is far smaller than
kC . This indicates that the contact stiffness can be considered infinite and the tube can be regarded as
rigid with regards to the lower bundle vibration modes.

5. Conclusions

The vibration of a 43-rod simulation CANDU fuel bundle horizontally placed in a supporting tube
is studied through numerical models and experiments. The floating frame formulation and nonlinear
constraint conditions are employed in a finite element model to predict the natural frequencies of the
small-amplitude oscillations about the equilibrium position. The fundamental mode is found to be a
low frequency rocking mode, which is a combination of rigid body motion and elastic deformation, but
is dominated by the rigid body rotation about a bundle axis. Gravity is found to influence the rocking
motion, and to reduce the frequency. The simulation results are in good agreement with experimental
results.
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