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NONLINEAR DYNAMICS AND SENSITIVITY
TO IMPERFECTIONS IN AUGUSTI’S MODEL

DIEGO ORLANDO, PAULO BATISTA GONÇALVES, GIUSEPPE REGA AND STEFANO LENCI

The influence of geometric imperfections on the nonlinear behavior and stability of Augusti’s model un-
der static and dynamic loads is analyzed. This 2-DOF lumped-parameter system is an archetypal model
of modal interaction in stability theory representing a large class of structural problems. When the system
displays coincident buckling loads, several postbuckling paths emerge from the bifurcation point (critical
load) along the fundamental path, in particular coupled unstable postbuckling paths that control the non-
linear dynamics of the system for load levels lower than the critical load. Systems displaying unstable
postbuckling behavior are particularly sensitive to initial imperfections. They decrease the static buckling
load and distort the topology of the safe potential well. Herein, coupled/uncoupled dynamic responses,
bifurcations, escape from the prebuckling potential well, stability, space-time-varying displacements,
and attractor-manifold-basin phase portraits are numerically evaluated with the aim of enlightening the
effect of system imperfection sensitivity. In particular, the investigation of the reduction of escape load
for several varying system parameters highlights the remarkable loss of safety and dynamic integrity of
the structure due to penetration of eroding fractal tongues into the safe basin.

1. Introduction

The influence of imperfections on bifurcations can be traced back at least to [Koiter 1945] in problems of
elastic stability and [Zocher 1933] in problems involving liquid crystals. A mathematical treatment of the
problem can be found, for example, in [Iooss and Joseph 1980]. Analysis of the imperfection sensitivity
of simplified models exhibiting different types of bifurcation under static loads can be found in [Croll and
Walker 1972; Thompson and Hunt 1973; 1984; Naschie 1990], among others. These models have been
used to demonstrate the nonlinear behavior and stability of several classes of structures. The influence
of imperfection is particularly important in systems liable to postbuckling behavior. One area where the
study of imperfection sensitivity is essential is the analysis of systems where the interaction of different
buckling modes with equal or nearly equal bifurcation loads may conspire to increase or even generate
unstable postbuckling paths.

Augusti’s model constitutes an archetypal model for this class of problems [Augusti 1964]. Static
analysis of this model can be found in, for example, [Croll and Walker 1972; Baz̆ant and Cedolin 1991;
Pignataro et al. 1991; Raftoyiannis and Kounadis 2000]. Augusti’s model represents a large class of
structures where the postbuckling behavior is controlled by modal coupling. This model may present
two equal or nearly equal critical loads associated with two different critical modes. When the modes
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are analyzed separately, the structure exhibits a stable symmetric postbuckling behavior. However, when
the modal coupling is taken into account, apart from the uncoupled solutions, which become unstable,
new coupled unstable paths emerge from the bifurcation points. These unstable coupled paths delimit
the safe prebuckling well and the magnitude of the perturbations that the structure can withstand without
escaping from the safe well. Continuous structures displaying coincident or nearly coincident buckling
loads, are, among others, plates, shells, cold-formed struts, and some frame structures [Tvergaard 1973;
Baz̆ant and Cedolin 1991; Kiymaz 2005; Chen and Yu 2006; Brubak and Hellesland 2007; Dinis et al.
2007; Kołakowski 2007; Quinn et al. 2007]. A particularly notorious case is the cylindrical shell under
axial compression, which, as shown in [Koiter 1945], may display for certain geometries an infinite
number of coincident buckling loads [Heijden 2008]. Another interesting model in the static context
proposed by Augusti was thoroughly investigated in [Elishakoff et al. 1996].

The influence of modal coupling on the nonlinear dynamics of Augusti’s model has been addressed
in [Gonçalves et al. 2009]. Here, upon formulating the mechanical problem for the system with imper-
fections (Section 2), a detailed parametric analysis shows the influence of geometric imperfections on
the buckling and postbuckling behavior of Augusti’s model and how the unstable solutions control the
global behavior of the system (Section 3.1). The analysis of the system under harmonic base excitation
and different forcing directions clarifies the importance of the imperfections on the dynamics through
the analysis of bifurcation diagrams and the evolution of basins of attraction, focusing on the evaluation
of system load-carrying capacity (Section 3.2). Although this constitutes an important issue in nonlinear
structural dynamics, little is known on the influence of imperfections on the nonlinear dynamics of
structures liable to unstable postbuckling behavior.

2. Formulation of the problem

Figure 1a illustrates Augusti’s model. It is an inverted spatial pendulum composed of a slender, rigid
(but massless) bar of length l, with a tip-mass m, pinned at the base, where two rotational springs with
constant stiffnesses k1 and k2 initially act in perpendicular planes and rotate with the bar. The angles
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Figure 1. Augusti’s 2-DOF model. Perfect system: undeformed (a) and deformed (d);
imperfect system: undeformed (b) and deformed (c, d).
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θ1 and θ2 (Figure 1d) are chosen as the two DOFs. Figure 1a shows the system under a harmonic base
excitation Db(t), acting at an angle ϕ with respect to the x axis. The force Db(t) is decomposed into
two components, ub(t) in the x direction and vb(t) in the y direction. These components are given
by ub = Fb cosϕ sin(ωet) and vb = Fb sinϕ sin(ωet), where Fb is the forcing magnitude and ωe is the
forcing frequency. Figure 1 shows the auxiliary variables necessary for the derivation of the equations
of motion of the imperfect system. The initial configuration of the geometrically imperfect column is
defined by the angles φ and ψ shown in Figure 1b, where the two angles ϕ10 and ϕ20 are also reported.
The angles φ1 and φ2 are the geometric imperfections of the two torsional springs and γ1 and γ2 are their
deformations in the θ1 and θ2 directions (see Figure 1c). The following expressions hold:

ϕ3 = φ+ γ, θ1 = φ1+ γ1, θ2 = φ2+ γ2, (1)

ϕ1, ϕ2, and ϕ3 being the angles of the imperfect pendulum with the three axes in the deformed configu-
ration (Figure 1d).

The dimensionless total potential energy of the system is given by [Orlando 2010]
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and Pcr being the pendulum natural frequency and buckling load, respectively, while the dimensionless
kinetic energy is written as
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where the dot indicates differentiation with respect to time t .
Using Hamilton’s principle of least action, the equations of motion of the system are obtained as the

extremals of the functional 8=
∫ t2

t1
L dt , L being the Lagrangian. Then the evolution of θi with time is

subjected to the Euler–Lagrange equations of motion:

d
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= 0. (4)

Considering also a viscous damping for the geometrically imperfect Augusti’s model, the equations of
motion in terms of the generalized coordinates θ1 and θ2 are given explicitly by [Orlando 2010](
θ̈1(− cos2 θ1 cos2 θ2+ cos4 θ1 cos2 θ2+ cos2 θ1 cos4 θ2)+ θ̈2(− cos θ1 sin θ1 cos θ2 sin θ2

+cos3 θ1 sin θ1 cos θ2 sin θ2+cos θ1 sin θ1 cos3 θ2 sin θ2)+θ̇
2
1 (− cos θ1 sin θ1 cos4 θ2+cos θ1 sin θ1 cos2 θ2)

+ θ̇2
2 (cos θ1 sin θ1− 2 cos θ1 sin θ1 cos2 θ2− cos3 θ1 sin θ1+ 2 cos3 θ1 cos2 θ2 sin θ1+ cos θ1 cos4 θ2 sin θ1)

+ θ̇1θ̇2(2 cos2 θ1 cos θ2 sin θ2− 2 cos4 θ1 cos θ2 sin θ2)
)
+

(
2ξ1
�
θ̇1+

θ1−φ1

λ�2 −
1
�2

cos θ1 sin θ1√
1− sin2 θ1− sin2 θ2

)
× (1− 2 cos2 θ1− 2 cos2 θ2+ cos4 θ1+ cos4 θ2+ 2 cos2 θ1 cos2 θ2)

= F cosϕ sin τ cos θ1(1− 2 cos2 θ1− 2 cos2 θ2+ cos4 θ1+ cos4 θ2+ 2 cos2 θ1 cos2 θ2), (5)
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θ̈2(− cos2 θ1 cos2 θ2+ cos4 θ1 cos2 θ2+ cos2 θ1 cos4 θ2)+ θ̈1(− cos θ1 sin θ1 cos θ2 sin θ2

+cos3 θ1 sin θ1 cos θ2 sin θ2+cos θ1 sin θ1 cos3 θ2 sin θ2)+θ̇
2
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= F sinϕ sin τ cos θ1(1− 2 cos2 θ1− 2 cos2 θ2+ cos4 θ1+ cos4 θ2+ 2 cos2 θ1 cos2 θ2), (6)

where the dot now denotes d/dτ , with τ = ωet , �= ωe/ωp, F = Fb/ l, and Ci/ml2
= 2ξi/� (ξi are the

damping factors). Geometrical and inertial nonlinearities are seen to occur in (5) and (6).

3. Nonlinear behavior and imperfection sensitivity analysis

3.1. Static analysis. The nonlinear behavior of the imperfect system in the absence of dynamic excita-
tion can be described by the following set of two coupled nonlinear equations obtained from (2)

(θ1−φ1)− λ
cos θ1 sin θ1√

1− sin2 θ1− sin2 θ2

= 0, (θ2−φ2)− λ
cos θ2 sin θ2√

1− sin2 θ1− sin2 θ2

= 0. (7)

When k1 = k2 = k, the perfect model (φ = ψ = 0) displays two coincident buckling loads, Pcr1 = Pcr2 =

Pcr = k/ l, and orthogonal buckling modes θ1, {1, 0}T , and θ2, {0, 1}T . Figure 2a shows the fundamental
path (θ1 = θ2 = 0) for the perfect system, which is stable up to the static critical load (λ= 1), and the four
possible postbuckling paths: the two ascending unstable paths, which correspond to the two uncoupled
solutions (either θ1 or θ2 is zero), and the two descending unstable orthogonal paths at 45◦, which are the
solutions of the coupled system (7). The important fact to note is that interaction of the buckling modes
θ1 and θ2 conspires to produce the descending unstable paths and imperfection sensitivity, although each
mode taking place alone exhibits no imperfection sensitivity [Baz̆ant and Cedolin 1991]. Figure 2b shows
the nonlinear behavior of the imperfect system considering φ = 1◦ and ψ = 0◦. The multiple bifurcation
in Figure 2a is destroyed by the imperfection. In this case, the imperfect column under increasing static
loading displays a stable nonlinear equilibrium path contained in the x × z plane since ψ = 0◦ (see
Figure 1), which becomes unstable due to a subcritical pitchfork bifurcation. The critical load is lower
than that of the perfect system. Several unstable complementary paths corresponding to the perturbed
unstable postbuckling paths of Figure 1a are observed. These unstable paths control the global dynamics
of the system. Figure 2c shows the response of the imperfect system with φ= 1◦ and ψ = 45◦. In this case,
the nonlinear stable path loses stability at a limit point and the maximum load is even lower than in the
previous case. Again, several unstable complementary paths are observed. The load-carrying capacity
of the system decreases as φ and ψ increase, as illustrated by the imperfection sensitivity curves shown
in Figure 3, where the critical load of the imperfect system is plotted as a function of the imperfection
magnitude φ for selected values of ψ . The lowest critical loads are obtained for ψ = 45◦ when the
maximum modal coupling occurs.

Much of the global behavior and dynamics of a structural system can be understood from the topo-
logical structure of its potential energy function. For a static load level λ = 0.9, Figure 4 shows the
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(a) Perfect system (b) Imperfect system, φ = 1◦ and ψ = 0◦

 (c) Imperfect system, φ = 1◦ and ψ = 45◦

Figure 2. Equilibrium paths of the perfect and imperfect systems.

equipotential curves for the three cases analyzed in Figure 2. The perfect system, Figure 4a, displays
the four symmetric saddles corresponding to the four unstable postbuckling descending branches shown
in Figure 2a and a minimum corresponding to the stable prebuckling solution. The saddles and their
invariant manifolds separate the initial conditions that lead to bounded solutions surrounding the pre-
buckling configuration — which identify the so-called safe region [Soliman and Thompson 1989; Rega
and Lenci 2005] — from the unbounded escape solutions. For φ = 1◦ and ψ = 0◦, Figure 4b shows that
the safe region is bounded by the two saddles corresponding to the blue equilibrium path in Figure 2b.
There is a significant decrease in the area of the safe region due to the imperfection. For φ = 1◦ and
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Figure 3. Imperfection sensitivity of Augusti’s model.

ψ = 45◦, as shown in Figure 4c, the safe region is bounded by the saddle with the lowest potential
energy among the four saddles and is much smaller than in the previous case. The saddle corresponds
to the unstable black equilibrium path in Figure 2c. As illustrated by these results, the imperfections not
only decrease the load-carrying capacity of the structure, but also the set of initial conditions that lead
to safe bounded motions around the equilibrium configuration. The knowledge of these frontiers helps
the designer to separate the phase space into safe and unsafe domains and evaluate the degree of safety
of the system. The frontiers are associated with the stable and unstable manifolds of the saddles in the
conservative system, whose two-dimensional projections are shown in Figure 5. For the perfect system
there are two pairs of heteroclinic orbits, each pair connecting two opposite saddles at ±45◦ (Figure 5a).
For the imperfect system with φ = 1◦ and ψ = 0◦, Figure 5b shows that the safe region is bounded by
two homoclinic orbits, while for φ = 1◦ and ψ = 45◦, Figure 5c shows that there is only one homoclinic
orbit. In each case, the relevant manifolds lie on a four-dimensional hypersurface that bounds the initial
conditions leading to bounded solutions around the trivial prebuckling solution, that is, the interior of
this region is filled with a continuous family of stable trajectories. The equation of this surface can be
obtained by the principle of conservation of total energy, equating the sum of expressions (2) and (3) to
the value of the total energy at one of the relevant saddles, that is

T (θi , θ̇i )+ V (θi )= Vsaddle. (8)

Three-dimensional sections (θ1× θ2× θ̇1) of this four-dimensional region are shown in Figure 6, con-
sidering λ = 0.9 and ωp = 1.0 s−1. These sections show clearly the sharp decrease in the safe region
with the imperfection. This safe hypervolume decreases swiftly as the static load increases and vanishes
at the critical point. So, near a bifurcation point, even very small perturbations may lead to escape
from the prebuckling well. Since all structures work in a dynamical environment, an appropriate safety
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(a) Perfect system (b) Imperfect system, φ = 1◦ and ψ = 0◦

  
(c) Imperfect system, φ = 1◦ and ψ = 45◦

Figure 4. Curves of equal potential energy for λ = 0.9. PS: Saddles. PMi: Stable
position corresponding to a local minimum.

factor based on the geometry and size of the safe region and its variation with load and imperfections
must be used in design. Moreover, as structural systems are usually lightly damped, the response of the
real structure will only depart lightly from the conservative case. An analysis of the safe region gives
information on the maximum allowable displacements and velocities. These quantities must also be
referred to in vibration control to specify the upper bound of allowable disturbances.

3.2. Nonlinear dynamic analysis. Figure 7 shows the stability boundaries in force frequency-amplitude
control space for the perfect system and a forcing direction ϕ = 0◦. The escape load, Fesc, corresponds
to escape of the response from the prebuckling potential well in a slowly evolving system (dynamic
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(a) Perfect system

   
(a.1) Plane θ1× θ2 (a.2) Plane θ1× θ̇1 (a.3) Plane θ2× θ̇2

(b) Imperfect system, φ = 1◦ and ψ = 0◦

   
(b.1) Plane θ1× θ2 (b.2) Plane θ1× θ̇1 (b.3) Plane θ2× θ̇2

(c) Imperfect system, φ = 1◦ and ψ = 45◦

   
(c.1) Plane θ1× θ2 (c.2) Plane θ1× θ̇1 (c.3) Plane θ2× θ̇2

Figure 5. Two-dimensional projections of the stable and unstable manifold of the sad-
dles that limit the safe region for λ= 0.9 and ωp = 1.0 /s.
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(a) Perfect system (b) Imperfect system (c) Imperfect system
φ = 1◦ and ψ = 0◦ φ = 1◦ and ψ = 45◦

Figure 6. Three-dimensional sections of safe prebuckling region. λ= 0.9 and ωp = 1.0 /s.

�

Figure 7. Stability boundaries in force control space (load versus forcing frequency) for
the forcing direction ϕ = 0◦, considering the coupled and uncoupled cases. Fesc: escape
load.

buckling). These curves ensue from several bifurcation diagrams obtained by increasing slowly the
forcing amplitude while holding the frequency constant [Gonçalves et al. 2009; Orlando 2010]. Denoting
with ωi , i = 1, 2, the natural frequencies of the two linear vibration modes of the system, a large range
of forcing frequencies is considered, which includes the fundamental parametric resonances (ωe = ωi )
of the two modes and their principal subharmonic parametric resonances, of order 1

2 (that is, ωe = 2ωi )
and 1

3 (ωe = 3ωi ). For the perfect system ω1 = ω2, the fundamental and principal resonances correspond
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to the nondimensional forcing frequency values �= 1
3 , �= 2

3 , and �= 1, respectively, whereas for the
imperfect system the two natural frequencies differ from each other [Orlando 2010] and the same occurs
for the relevant resonant conditions.

Two cases are considered in Figure 7: the uncoupled case, when perturbations only in θ1 and θ̇1 are
considered and only these coordinates are excited, and the coupled case, when very small perturbations
in θ2 and θ̇2 are also considered after each load step (θ2 = θ̇2 = 0.001), causing the coupling of the
two modes. For the uncoupled case, the lowest values of the escape load occur in the neighborhood of
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(a) ωe = ω1 (b) ωe = ω2

Figure 9. Variation of the escape load with the forcing direction ϕ for the resonance regions.

the principal resonances (�= 2
3 and �= 1) of the two coinciding modes, as expected in a condition of

parametric excitation. In contrast, quite high Fesc values do occur in the region of fundamental resonance
(�= 1

3 ). But for even very small values of θ2 and θ̇2, which entail coupling of the two modes, a drastic
reduction in the escape load is observed in the latter region along with an overall reduction in the whole
excitation frequency range here analyzed. Indeed, there is a marked difference between the relevant
stability boundaries in the two cases, corroborating the importance of modal coupling in Augusti’s model.

Figure 8 shows the stability boundaries for different values of the forcing direction ϕ, respectively for
the perfect system (Figure 8a) and for the imperfect system considering φ = 1◦ and ψ = 45◦ (Figure 8b).
Figure 8a shows that, as soon as coupling comes into play due to the excitation (ϕ 6= 0◦), the escape load
decreases mostly in the larger frequency range, where it is higher for ϕ 6= 0◦, with the major reduction
occurring for ϕ = 45◦, namely, when the coupling effect is the highest. When imperfection is added
(Figure 8b), a significant decrease of the dynamic buckling load is observed with respect to the perfect
system (Figure 8a) for any value of the forcing frequency �, with the maximum reduction still occurring
for ϕ = 45◦, as expected, owing to the considered ψ = 45◦ imperfection value.

Overall, as in the static case, the dynamic buckling load displays high imperfection sensitivity with
drastic effects on the safety of the system. Figure 9 shows the variation of the escape load, Fesc, for the
perfect and imperfect columns with the forcing direction ϕ, by distinguishing between the regions of
fundamental resonance of the two DOFs, which do coincide in the perfect system (see Figure 8a) but
are slightly different in the imperfect one (Figure 8b). For the imperfect case, different values of the
imperfection direction ψ are considered and an initial column inclination φ = 10 is adopted. The results
show a high imperfection sensitivity for all values of ϕ. It is observed that the results are also sensitive to
the imperfection direction ψ , with the ensuing coupling effect entailing the strongest reduction of escape
load with respect to the perfect system when the latter exhibits no coupling, that is, for ϕ = 0◦.

Figure 10 shows the variation of the basin of attraction of the bounded solution between perfect and
imperfect systems, when considering a forcing direction ϕ = 0◦, a forcing magnitude F = 0.1, and a
forcing frequency �= 1

3 . The cross section of the basin of attraction of the perfect system (Figure 10a)
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(a) Perfect system (b) Imperfect system, φ = 1◦ and ψ = 45◦

  
Figure 10. Variation of the basin of attraction with the geometric imperfection (�= 1

3 ,
F = 0.1, ϕ = 0◦).

is still relatively integer (nonfractal) since the considered F = 0.1 value is below the escape threshold
(see Figure 8a). In contrast, for the imperfect system with φ = 1◦ and ψ = 45◦ (Figure 10b), a drastic
reduction of the safe basin area is observed, since the forcing magnitude is now slightly smaller than the
corresponding escape load (see Figure 8b; Fesc = 0.11).

 
Figure 11. Variation of the escape load with the column initial inclination φ for �= 1
and ψ = 45◦.
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Finally, Figure 11 shows the variation of the escape load with the column initial inclination φ. The
escape load reduction already occurring for the perfect system owing to the ϕ 6= 0◦ excitation direction is
clearly visible for φ = 0◦. As the initial inclination φ increases the escape load smoothly decreases, but
at φ = 1.2◦ it suddenly falls down to zero, which corresponds to the complete annihilation of the basin
of attraction for any excitation direction (also for the uncoupled case, ϕ = 0◦). This shows that even
very small imperfections may have a remarkable influence on the stability and safety of the structure and,
in particular, that the residual dynamic integrity of the system [Rega and Lenci 2005] associated with
the nonvanishing value of the escape load for φ = 1◦ actually corresponds to a very dangerous system
configuration from a nonlinear dynamics viewpoint.

4. Conclusions

In this paper the influence of geometric imperfections on the static and dynamic behavior of Augusti’s
model is studied through a detailed parametric analysis. The inherent strong modal coupling of the
model leads to various unstable postbuckling solutions that control the geometry of the safe prebuckling
potential well and, consequently, the global behavior of the system under dynamic loads. The initial
imperfections not only decrease the load-carrying capacity of the structure, but also decrease substantially
the safe region where initial conditions lead to bounded solutions within the prebuckling well. This region
is swiftly reduced as the static load approaches the critical value.

The results also highlight the influence of the imperfections on the forced response of the system
under harmonic base excitation with varying the horizontal direction. For any excitation frequency and
for all nonvanishing forcing directions, the imperfection considerably reduces the escape load and the
safe basin area, decreasing the safety of the system.

The analysis of Augusti’s model, as an archetypal model of a large class of structures liable to buckling
that display a strong modal coupling and imperfection sensitivity, illustrates the tools and steps necessary
for a rational evaluation of system safety and dynamic integrity.
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