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PERTURBATION STOCHASTIC FINITE ELEMENT-BASED
HOMOGENIZATION OF POLYCRYSTALLINE MATERIALS

SEVERINE LEPAGE, FERNANDO V. STUMP, ISAIAH H. KIM AND PHILIPPE H. GEUBELLE

This work presents a study of the influence on the macroscopic (homogenized) elastic properties of poly-
crystalline materials induced by uncertainties in the material texture and microstructure geometry. Since
many microelectromechanical systems are made of materials deposited as thin films with <<111>> fiber
texture, we study the variance of the homogenized elastic properties of the material around its nominal
<<111>> texture. To perform this analysis, the perturbation stochastic finite element method (PSFEM)
is coupled to the mathematical theory of homogenization leading to a second-order perturbation-based
homogenization method. This method is able to evaluate the mean and variance of a given homogenized
property as a function of the grain property uncertainty. The multiscale formulation is implemented in a
plane-stress linear elastic finite element framework based on a multigrain periodic unit cell generated by
Voronoi tessellation. This perturbation-based homogenization method is verified against Monte Carlo
simulations, showing its effectiveness and limitations. Then, through applications, it is evaluated how
different levels of uncertainty in grains induce uncertainty in the macroscopic elastic properties of the
polycrystalline material. In particular, the influence of the unit cell is studied. Finally, by coupling the
PSFEM with the Monte Carlo method, the effects on the macroscopic properties of uncertainty of both
the geometry and orientation of the grains is estimated.

1. Introduction

The performance of a microelectromechanical system (MEMS) is affected by uncertainties. Manufac-
turing processes may leave substantial uncertainties in the shape and geometry of the device, while the
material properties of a component are inherently subject to scattering. Moreover, microscale properties
are extremely sensitive to process variations. Accuracy and precision of standard processes are difficult
to control, so properties vary by recipe, by fabrication run, wafer-to-wafer, and across the wafer. The
design of accurate MEMS has to take into account the influence of these uncertainties. This paper focuses
on the prediction of material property variability that is inherent in MEMS due to their microfabrication
processes. The materials making up MEMS are deposited as thin films. In particular, this work is
motivated by the study of texturized gold thin films which are common MEMS materials. Although
the electric characterization of metallic thin films is well established, the mechanical characterization of
the same films is still a challenge. Moreover, the material properties are dependent on the fabrication
process and therefore are not the same as those for the bulk material. The material properties can even
be different between runs of the same fabrication process.

One approach to investigating property variability of metallic thin films is to use homogenization meth-
ods that allow the evaluation of the macroscopic properties based on the polycrystalline microstructure.

Keywords: perturbation stochastic finite element, homogenization, Monte Carlo method, polycrystalline material.

1153



1154 SEVERINE LEPAGE, FERNANDO V. STUMP, ISAIAH H. KIM AND PHILIPPE H. GEUBELLE

By that approach the microscopic features, which are defined by the microfabrication processes, can be
taken into account to calculate the macroscopic properties of the film.

The mathematical theory of homogenization (MTH) is a well established multiscale method that pro-
vides the equivalent homogeneous material properties for heterogeneous material when the separation
of scales works [Bensoussan et al. 1978; Sanchez-Palencia and Zaoui 1987]. The MTH provides the
deterministic model which the stochastic finite element scheme will be built upon.

Stochastic finite element methods can be classified into two main categories based on the kind of
results they yield. Firstly, reliability methods aim at calculating the failure probability, and hence focus
on the tails of the probability density function of the response. Secondly, other methods aim at calculating
the probabilistic characterization of the response. In this category, some methods, such as that presented
hereafter, determine only the first two statistical moments of the response. For details, see first two
statistical moments of the response. For more details, the reader should refer to [Schueller 1997; 2001;
Manohar and Ibrahim 1999; Sudret and der Kiureghian 2000; van den Nieuwenhof 2003].

Monte Carlo simulations have the major advantage that accurate statistical solutions can be obtained
for any problem whose deterministic solution is known, since they statistically converge to the correct
solution provided that a large number of simulations is employed. Indeed, the basic principle of direct
Monte Carlo simulation is to generate a sampling of the input parameters according to their probability
distributions and correlations. For each input sample, a deterministic finite element analysis is carried
out, giving an output sample. Finally, a response sampling is obtained, from which the mean and the
standard deviation of the response can be derived. The disadvantage of the direct Monte Carlo method
is that it is usually extremely computationally demanding due to the very large number of analyses that
have to take place. The convergence rate of the estimator does not only increase by increasing the number
of samples but also by decreasing the variance σ 2

y . Variance reduction techniques exploit additional a
priori information to reduce the necessary sample size n for a specified confidence level. Stratification
techniques widely used in practice, such as Latin hypercube sampling (LHS) [McKay et al. 1979], use
conditional expectations to reduce the variance of the estimator.

The basics of the perturbation stochastic finite element method (PSFEM) are expounded in [Kleiber
and Hien 1992]. This method consists in a deterministic analysis complemented by a sensitivity analysis
with respect to the random parameters. This permits the development of a Taylor series expansion of the
response, from which the mean and variance of the response can be derived knowing the mean, variance,
and correlation structure of the random parameters. Depending on the expansion order of the Taylor
series expansion (1 or 2), the statistical moments of the response are first or second-order accurate and
the method is called the first-order second moment (FOSM) or second-order second moment (SOSM)
method, respectively. The main advantages of the PSFEM are its simplicity and applicability to a wide
range of problems at low cost. It has been used in static and dynamic elastic analyses [Hien and Kleiber
1990; Kleiber and Hien 1992], buckling analyses [Altus and Totry 2003], composite ply failure prob-
lems [Onkar et al. 2007], inelastic deformation studies [Doltsinis and Kang 2006], linear transient heat
transfer problems [Hien and Kleiber 1997], the analysis of free vibration of composite cantilevers [Oh
and Librescu 1997], nonlinear dynamics [Lei and Qiu 2000], and the study of eigenvalues of structures
with uncertain boundary conditions [Huang et al. 2007]. Due to the Taylor series expansion, accurate
results are expected only in case of relatively small variability of the parameters and for nearly linear
problems. The derivatives of the structural matrices have to be calculated with respect to the random
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variables. This can be done analytically, semianalytically, or by finite difference. These computations
can be time-consuming, particularly when the second-order terms are included.

The PSFEM has been applied to the homogenization of elastic properties of composite materials such
as a bicomponent 1D bar [Kaminski 2000] and unidirectional fiber-reinforced composites [Kaminski
and Kleiber 2000; Sakata et al. 2008]. All these applications use random variables which are related to
inherent material properties of the composite components. This paper considers polycrystalline material
and in particular accounts for the uncertainty resulting from the scattering of constitutive grain orienta-
tion. Moreover, the effect of the unit cell size on the macroscopic (homogenized) property variation is
investigated as well as the geometry of the grains generated by Voronoi tessellation. The aim of this
study is not only to quantify the uncertainty in the macroscopic polycrystalline elastic properties but
also to gain confidence in the minimum size required to consider the unit cell as a representative volume
element (RVE) of the polycrystalline material. An unit cell is considered as a RVE when the standard
deviation of the homogenized properties is below a threshold defined by the analyst. In that case, the
unit cell is stochastically representative of the material behavior, that is, the standard deviation of the
output represents the uncertainty resulting from the input uncertainty.

After a review of the basics of the finite element implementation of the classical MTH in Section 2,
the perturbation stochastic finite element-based homogenization formulation is derived by applying the
PSFEM to the homogenization scheme in Section 3. In Section 4, the obtained methodology is first
verified against Monte Carlo results for a unit cell of 4 grains in which one random variable is considered.
Then, the methodology is applied on multigrain unit cells made of textured gold. This application inves-
tigates the influence of unit cell size, grain geometry, and orientation randomness on the macroscopic
(homogenized) elastic properties.

2. Multiscale model

As described in the previous section, the focus of this work is on quantifying the stochastic nature of the
elastic properties of polycrystalline media. More precisely, we aim at assessing how the uncertainties
in the material texture (that is, the grain orientation and stiffness) impact its homogenized macroscopic
elastic properties. As indicated earlier, the homogenization scheme adopted in this study is based on the
finite element implementation of the classical mathematical theory of homogenization (MTH). In this
section, the MTH is summarized and the grain-level anisotropic response is described.

Following the classic work [Bensoussan et al. 1978] as well as [Guedes and Kikuchi 1990], we start
from a y-periodic asymptotic expansion of the displacement field

u(x, y)≈ u(0)(x, y)+ ξ 1u(1)(x, y)+ ξ 2u(2)(x, y)+ . . . , (2-1)

where the superscripts in parentheses represent the level in the multiscale expansion, and x and y label
the material points at the macro and microscale, respectively (see Figure 1). The relation between the
two scales is defined by the asymptotic parameter ξ as y = x/ξ , where ξ roughly corresponds to the size
of the periodic unit cell that serves as the basis of the homogenization scheme. Applying the chain rule,

dϕ(x, y)
dx

=
∂ϕ(x, y)
∂x

+
1
ξ

∂ϕ(x, y)
∂ y

, (2-2)



1156 SEVERINE LEPAGE, FERNANDO V. STUMP, ISAIAH H. KIM AND PHILIPPE H. GEUBELLE

x

y

x2

2
y

x1

1

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx

Microscopic scale

Macroscopic scale

t

y

σ̄

�

ε̄

∂2

∂�t

∂�d

2

Figure 1. Schematic view of the homogenization scheme, with the microscopic scale
showing the polycrystalline periodic unit cell.

we obtain the corresponding expansion for the strain tensor

εi j ≈ ξ
−1
(
∂ Su(0)i

∂y j

)
+ ξ 0

(
∂ Su(0)i

∂x j
+
∂ Su(1)i

∂y j

)
+ ξ 1

(
∂ Su(1)i

∂x j
+
∂ Su(2)i

∂y j

)
+ . . . , (2-3)

where we adopt the symmetric gradient tensor notation

∂ S
•i

∂x j
=

1
2

(
∂•i

∂x j
+
∂• j

∂xi

)
. (2-4)

For the elastic problem characterized by a local fourth-order material stiffness tensor Di jkl and tractions
t applied along the portion ∂�t of the boundary ∂�, the principle of virtual work takes the form∫

�

Di jklεkl
∂ Svi

∂x j
d�−

∫
∂�t

tivi d�= 0 (2-5)

for all admissible displacements v satisfying

v ∈ [H 1
]
2, v = 0 on ∂�d = ∂� \ ∂�t , (2-6)

where [H 1
]
2 is the Sobolev space for the 2D problem. Combining (2-3) and (2-5) and grouping the terms

by powers of ξ leads to
1
ξ 2

∫
�

Di jkl
∂ Su(0)k

∂yl

∂ Svi

∂y j
d�= 0, (2-7)

1
ξ

∫
�

Di jkl

[(
∂ Su(0)k

∂xl
+
∂ Su(1)k

∂yl

)
∂ Svi

∂y j
+
∂ Su(0)k

∂yl

∂ Svi

∂x j

]
d�= 0, (2-8)

∫
�

Di jkl

[(
∂ Su(1)k

∂xl
+
∂ Su(2)k

∂yl

)
∂ Svi

∂y j
+

(
∂ Su(0)k

∂xl
+
∂ Su(1)k

∂yl

)
∂ Svi

∂x j

]
d�=

∫
∂�t

tivi d�. (2-9)
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As shown in [Guedes and Kikuchi 1990], we establish from (2-7) that u(0) is exclusively a function
of x, that is,

u(0)(x, y)= u(0)(x), (2-10)

while (2-8) leads to the following expression of the equilibrium at the microscale:

1
|2|

∫
2

Di jkl

[(
∂ Su(0)k

∂xl
+
∂ Su(1)k

∂yl

)
∂ Svi

∂y j

]
d2= 0, (2-11)

where 2 denotes the volume of the periodic unit cell.
Defining the macroscopic strain ε̄ = ∂ Su(0)/∂x and the fluctuation strain ε̃ = ∂ Su(1)/∂ y, we recast

(2-11) as

1
|2|

∫
2

Di jkl ε̃kl
∂ Svi

∂y j
d2=− 1

|2|

∫
2

Di jkl
∂ Svi

∂y j
d2ε̄kl, (2-12)

where we observe that the macroscopic strain serves as a loading term in the solution for the fluctuation
strain. Relation (2-12) allows us to solve for the fluctuation strain at every point in the periodic unit cell,
defining the strain localization operator Gi jkl as

ε̃i j (x, y)= Gi jkl(x, y)ε̄kl . (2-13)

Finally, the homogenized elastic properties of the polycrystalline material can be extracted from the
equilibrium equation (2-9). Assuming that vi is a function of x only, (2-9) reduces to [Guedes and
Kikuchi 1990] ∫

�

[
1
|2|

∫
2

Di jkl(ε̄kl + ε̃kl)d2
]
∂ Svi

∂x j
d�=

∫
∂�

tivi d∂�, (2-14)

or, combining with (2-13),∫
�

[
1
|2|

∫
2

Di jkl(Iklmn +Gklmn)d2
]
ε̄mn

∂ Svi

∂x j
d�=

∫
∂�

tivi d∂�, (2-15)

where Iklmn =
1
2 (δkmδln + δknδlm). From (2-15), we identify the homogenized elastic tensor Dh

i jkl as

Dh
i jmn =

1
|2|

∫
2

Di jkl(Iklmn +Gklmn)d2. (2-16)

For the finite element implementation of this homogenization scheme, it is more convenient to recast
(2-16) using the Voigt formulation (that is, in matrix notation) as

Dh
=

1
|2|

n∑
e=1

∫
2e
(De I + De Ge)d2, (2-17)

where the domain 2 has been subdivided into n elements and the superscript e denotes the local value
in element e.
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In this notation, the stiffness tensor of a material with cubic symmetry, such as the face centered cubic
material of interest in this work, is given by

De
c =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


, (2-18)

in a coordinate system attached to each crystal (or grain) as denoted by the subscript c. To transform
the stiffness matrix into the sample coordinate system (denoted by the subscript s), we adopt the Bunge
convention and introduce the triad (φ1, θ, φ2), defining the individual rotation matrices

R1 =

 cosφ1 sinφ1 0
−sinφ1 cosφ1 0

0 0 1

 , R2 =

1 0 0
0 cos θ sin θ
0 −sin θ cos θ

 , R3 =

 cosφ2 sinφ2 0
−sinφ2 cosφ2 0

0 0 1

 .
The resulting rotation matrix from the crystal coordinate system to the sample one is given by

Q = (R3 R2 R1)
T . (2-19)

The rotation of the forth-order tensor Di jmn denoted D in matrix notation is then expressed as

De
s = K De

c K T , (2-20)

while the compliance matrix Se
c = (De

c)
−1 is transformed as

Se
s = (K

−1)T Se
c K−1. (2-21)

In (2-20) and (2-21), K is given by [Ting 1996]

K =
[

K1 2K2

K3 K4

]
, (2-22)

where

K1 =

Q2
11 Q2

12 Q2
13

Q2
21 Q2

22 Q2
23

Q2
31 Q2

32 Q2
33

 , K2 =

Q12 Q13 Q13 Q11 Q11 Q12

Q22 Q23 Q23 Q21 Q21 Q22

Q32 Q33 Q33 Q31 Q31 Q32

 , K3 =

Q21 Q31 Q22 Q32 Q23 Q33

Q31 Q11 Q32 Q12 Q33 Q13

Q11 Q21 Q12 Q22 Q13 Q23

 ,
K4 =

Q22 Q33+ Q23 Q32 Q23 Q31+ Q21 Q33 Q21 Q32+ Q22 Q31

Q32 Q13+ Q33 Q12 Q33 Q11+ Q31 Q13 Q31 Q12+ Q32 Q11

Q12 Q23+ Q13 Q22 Q13 Q21+ Q11 Q23 Q11 Q22+ Q12 Q21

 ,
with Qi j denoting the components of Q defined in (2-19). To perform the analysis in a plane-stress
framework, the compliance matrix is first expressed in the sample coordinate system using (2-21). The
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Figure 2. For a unit cell with 64 grains: (a) typical φ1 distribution and finite element
mesh and (b) stress field (σxx ). The right figure emphasizes the heterogeneous nature of
the stress field in the RVE.

plane-stress compliance matrix is then obtained as

Se
s,2D =

Ss,11 Ss,12 Ss,16

Ss,21 Ss,22 Ss,26

Ss,61 Ss,62 Ss,66

 , (2-23)

where Ss,ab represents component ab of the 3D compliance matrix Se
s given by (2-21). Finally, the

stiffness matrix is found by inverting the compliance matrix:

De
s,2D = (S

e
s,2D)

−1.

As stated in Section 1, this work is motivated by the study of texturized gold thin films. In this
particular case, the material constants are C11 = 186 GPa, C12 = 157 GPa, and C44 = 42 GPa. To
represent the <<111>> fiber texture only two Euler angles need to be specified, θ = 54.7◦ and φ2 = 45◦.
The third angle φ1 is not defined and can assume any value, as all grains have the <<111>> pole normal to
the surface and the in-plane rotations are random. Here it is important to stress that the φ1 values used
in the application cases in Section 4 have been randomly chosen. However, φ1 is not considered as a
random variable of interest in this work since it does not describe the uncertainty of the material texture.

A typical result obtained with the multiscale scheme is presented in Figure 2 for the case of a 64-grain
RVE and a macroscopic strain ε̄xx equal to 1%. The heterogeneous stress field due to angles mismatch for
a macroscopic strain of 1% presents a ratio of approximately 2.4 between the maximum and minimum
stress values in the RVE.

3. Perturbation stochastic FE formulation

A set of stochastic variables enter the finite element-based homogenization scheme described in previous
section. These random variables, denoted hereafter by ζ , include quantities such as the stiffness and
orientation of the grains that compose the periodic unit cell. Our goal in this section is to derive the key
quantities entering the PSFEM formulation of the MTH scheme summarized in Section 2. We start from
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the stochastic form of the homogenized stiffness matrix (2-17) which is given by

Dh(ζ )=
1
|2|

n∑
e=1

∫
2e

(
De(ζ )I + De(ζ )Ge(ζ )

)
d2, (3-1)

where G implicitly depends on the uncertainty through

1
|2|

∫
BT D(ζ )Ge(ζ )d2= 1

|2|

∫
BT D(ζ )d2, (3-2)

with B denoting the traditional strain-displacement matrix.
The perturbation method considers the random design variables bi as perturbed from their expectation

b̄i , so that the random variables bi are written as the sum of a deterministic value b̄i and a zero-mean
random variable 1bi as

bi = b̄i +1bi . (3-3)

The covariance matrix C of the random variables bi is related to the zero-mean random variables as

Ci j = Cov(bi , b j )= E[1bi1b j ]. (3-4)

The perturbation method consists in expanding the random quantities about their expectations via a
truncated Taylor series expansion. The second-order Taylor expansion about the nominal value b̄ with
respect to the random variables bi is given by

Dh(b̄)≈ D̄h
+

n∑
i=1

Dh
,i1bi +

1
2

n∑
i=1

n∑
j=1

Dh
,i j1bi1b j , (3-5)

where the subscript ,i denotes the derivative with respect to random variable bi . Since the random
variables 1bi are zero-mean random variables of known covariance, the expectation of the homogenized
property matrix is

E[Dh(b̄)]≈ D̄h
+

n∑
i=1

Dh
,i E[1bi ]+

1
2

n∑
i=1

n∑
j=1

Dh
,i j E[1bi1b j ]= D̄h

+
1
2

n∑
i=1

n∑
j=1

Dh
,i j Cov(bi , b j ), (3-6)

while the variance of the homogenized property matrix is expressed as

Var
(

Dh(b̄)
)
=E

[(
Dh(b̄)−E[Dh(b̄)]

)2]
≈

n∑
i=1

n∑
j=1

Dh
,i Dh

, j E[1bi1b j ]=

n∑
i=1

n∑
j=1

Dh
,i Dh

, j Cov(bi , b j ).

(3-7)
The mean is second-order accurate with no first-order term in its expression, while the variance is
first-order accurate since no second-order term appears in its expression. The variance expression will
be the same whether a first-order or a second-order approximation is used in the perturbation method.

The first-order sensitivity of the homogenized property matrix has to be computed. Differentiating
(2-17) with respect to bi gives

Dh
,i (ζ )=

n∑
e=1

∫
2e

(
De
,i (ζ )I + De

,i (ζ )G
e(ζ )+ De(ζ )Ge

,i (ζ )
)
d2, (3-8)
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where G,i is computed by differentiating (3-2) as∫
BT D(ζ )G,i (ζ )d2=

∫
BT D,i (ζ )d2−

∫
BT D,i (ζ )G(ζ )d2. (3-9)

Similarly, (3-8) gives the second-order sensitivity of Dh :

Dh
,i j (ζ )=

n∑
e=1

∫
2e

(
De
,i j (ζ )I + De

,i j (ζ )G
e(ζ )

)
d2

+

n∑
e=1

∫
2e

(
De
,i (ζ )G

e
, j (ζ )+ De

, j (ζ )G
e
,i (ζ )

)
d2+

n∑
e=1

∫
2e

(
De(ζ )Ge

,i j (ζ )
)
d2, (3-10)

where G,i j is computed by differentiating (3-9)∫
BT D(ζ )G,i j (ζ )d2=

∫
BT D,i j (ζ )d2−

∫
BT D,i j (ζ )G(ζ )d2

−

∫
BT D,i (ζ )G, j (ζ )d2−

∫
BT D, j (ζ )G,i (ζ )d2. (3-11)

The quantities of interest, that is, the expectation of the homogenized property (3-6) and its variance
(3-7), are obtained by evaluating (3-8) and (3-10) in a finite element framework.

4. Verification

The second-order PSFEM is applied to analyze the influence of uncertainty on the behavior of a cubic
material in <<111>> texture. The objective of this section is to verify the PSFEM formulation by comparing
its results against Monte Carlo (MC) simulations. For this purpose, we chose to study a small unit cell
composed of only 4 grains, shown in Figure 3.

Using the material constants introduced at the end of Section 2, the 2D nominal stiffness matrix of
each grain is given by

D̄c
=

186 157 0
157 186 0
0 0 42

 (GPa), (4-1)

expressed in its material axes. The Euler angles are set to θ = 54.7◦ and φ2 = 45◦, and φ1 has randomly
assigned values of 188◦, 289◦, 294◦, and 68◦ for grains 1, 2, 3, and 4, respectively. C11, the first

3

1
4

2

Figure 3. Periodic unit cell composed of 4 grains used to perform the verification test
case of PSFEM.
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CoV (%) E[Ch
11] (GPa) E[Ch

11] (GPa)
√

Var[Ch
11] (GPa)

√
Var[Ch

11] (GPa)
(PSFEM) (MC, 2000 samples) (PSFEM) (MC, 2000 samples)

2 120.0338 120.0052 0.5410 0.5529
4 120.0235 119.8789 1.0820 1.1930
6 120.0133 119.6227 1.6229 2.1429

Table 1. Verification test case based on Figure 3 unit cell: PSFEM and MC results for
coefficients of variance of 2%, 4%, and 6% of the random variable C11 of grain 1.

component of the stiffness matrix expressed in the material axes of grain 1, is considered as a Gaussian
random variable. The effect of the level of uncertainty is studied by successively considering a coefficient
of variation, CoV(C11), of 2%, 4%, and 6%.

The unit cell is loaded with a tensile strain in direction 1 of the sample coordinate system. This loading
allows us to quantify the effect of uncertainty on the first column of the homogenized stiffness matrix
expressed in the unit cell axes. The mean and the standard deviation of the homogenized stiffness matrix
of the unit cell are computed using (3-6) and (3-7). In this paper, the results are presented for the first
component of the homogenized stiffness matrix, Ch

11.
In order to verify the validity of the PSFEM approach, the results are compared to the MC results.

A Latin hypercube sampling (LHS) method is used to generate 2000 samples of C11 whose mean and
standard deviation correspond to the values specified in the PSFEM study. LHS generates samples of a
normally distributed random variable s with a mean of zero and a standard deviation of one. C11 is then
expressed as a function of s:

C11 = C̄11(1+CoV(C11)s). (4-2)

Then, the homogenized stiffness matrix is computed for each value of C11. Finally, the mean and standard
deviation of the 2000 samples of Ch

11 are computed and compared to PSFEM results.
Table 1 compares the PSFEM and MC values of the mean and standard deviation of Ch

11 for the three
values of the coefficient of variation. The nominal value of Ch

11 is equal to 120.044 GPa, that is, the
value of the deterministic analysis. As the coefficient of variation increases, the mean value increasingly
deviates from the nominal value even if this difference is not significant. This variation is a quadratic
function, as explained previously and shown in Figure 4, left.

Figure 4, right, shows the variation of the relative error of the mean and standard deviation of Ch
11

computed by PSFEM with respect to MC values, which are considered as reference values. PSFEM
estimation error in both the mean and the standard deviation increases as the coefficient of variation
increases because the approximation of the variation of Ch

11 as a quadratic function with respect to the
uncertainty becomes less appropriate as the level of uncertainty increases.

The error in the mean is smaller than in the standard deviation. This is explained by the fact that
the mean estimation is second-order accurate while the standard deviation estimation is only first-order
accurate. The error is due to the fact that PSFEM approximates the variation of Ch

11 as a second-order
polynomial function while, as shown in the left part of Figure 4, the actual variation of Ch

11 is more
complex. This approximation is thus adequate in the vicinity of the nominal value.
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a function of the random variable, that is, C11 of grain 1. Right: percentage errors of
Ch

11 mean and standard deviation between MC and PSFEM analyses for various C11

coefficients of variation.

Another verification test case is to analyze the unit cell represented in Figure 3 assuming C11 of each
grain to be a random variable with a coefficient of variation of 3%. The uncertainty is thus characterized
by 4 random variables. The correlation between them is modeled by a correlation matrix. Three different
correlation matrices are successively investigated. First, the correlation is supposed to be a matrix full
of ones, which means that the four random variables are fully correlated and represent one and only
one random variable. The opposite case is to set the correlation matrix to be the identity matrix, which
is equivalent to considering 4 independent uncorrelated random variables. An intermediate correlation
matrix is also studied: 

1 0.5 0.25 0
0.5 1 0.5 0.25
0.25 0.5 1 0.5

0 0.25 0.5 1

 . (4-3)

Note that such a correlation matrix could result from the representation of C11 as a random field.
Both the mean and standard deviation increase as the correlation of the random variables increases,

as can be observed in Figure 5. The reduction of the variance due to the fact that the random parameter
is modeled by a random field instead of one random variable is also called the compensation effect on
the variability. The verification demonstrates that PSFEM is a suitable tool to quantify the uncertainty of
homogenized properties due to microstructural uncertainty. This method also allows us to evaluate the
effect of different levels of correlation between the random variables on the macroscopic response.

5. Study of geometry and material uncertainty

The second-order PSFEM is applied to the analysis of several unit cells of a cubic material with a <<111>>

texture. As explained in Section 2, for <<111>> texture, the Euler angles are θ = 54.7◦ and φ2 = 45◦, and
φ1 has random assigned values. The influence of uncertainty in the θ angle of each grain is studied on
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Figure 5. Effect of the correlation of random variables on the mean and standard de-
viation of Ch

11. Case 1: four independent random variables; case 2: correlation matrix
(4-3); case 3: one random variable.

the material behavior of periodic unit cells from 4 to 64 grains. In particular, the mean and standard
deviation of the homogenized Ch

11 are quantified.

5A. Influence of material texture uncertainty. To study the influence of texture uncertainty, a unit cell
with 16 grains and 16 random variables (one per grain) is generated. The angle θ which controls the
perpendicularity of the <<111>> pole with respect to the surface of the thin film is chosen as the random
variable. The random variables are assumed to be independent. The standard deviation of θ is varied
from 2◦ to 10◦. In each case, the mean and standard deviation of Ch

11 of the unit cell are computed using
PSFEM and are compared to the values obtained from MC analysis using 15000 samples. The same
finite element model, that is, with the same mesh and grain geometry, is used for the PSFEM and MC
analyses.

Figure 6 shows that as the standard deviation increases, the error of the PSFEM approximation in-
creases. The error on the mean remains lower than one percent while the error on the standard deviation
varies from 0.73% to 9.84%. As explained previously, PSFEM method relies on a second-order approx-
imation of the response, and so its accuracy is limited within a neighborhood of the expectation value
of the random variable. This analysis shows that for the particular problem of interest, the error on the
PSFEM is less than 0.73% for the mean and standard deviation when θ has a standard deviation of at
most 2◦. The error on the means remains low for θ standard deviation up to 10◦, that is, less than one
percent, while the error on the standard deviation becomes not negligible, that is, above 5%, once the
θ standard deviation reaches 7◦. This analysis allows us to quantify the limitation of PSFEM on the
quantification of the influence of material texture uncertainty.

It should be noted that the CPU requirement associated with the PSFEM is substantially lower than for
the MC method since considerably less homogenization problems have to be solved. Therefore, even if
PSFEM approximates the response statistics, it allows us to gain valuable knowledge on the macroscopic
property uncertainty induced by grain-level uncertainties at a lower cost than the classical MC method.
However, it should be noted that if the number of random variables becomes really large, PSFEM’s
computational cost may be such that using the MC method would be more advantageous.
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To study the effect of the unit cell size, for a fixed standard deviation of θ , the number of grains of the
unit cell is varied from 4 to 64. For each unit cell, the mean and standard deviation of Ch

11 are evaluated
using PSFEM and the MC method. For each unit cell size, MC analyses have been performed for three
LHS sets of 8000, 12000, and 15000 samples, respectively. The statistics for Ch

11 were obtained from
those of the three sets. The results of both methodologies are presented in Figure 7. The maximum error
on the mean is 0.0084% while for the standard deviation it is 8.1%. As the unit cell size increases, the
standard deviation of Ch

11 decreases up to a threshold of 0.31 GPa. The influence of the unit cell size
on the standard deviation of Ch

11 provides an important parameter to decide to what extent a unit cell
can be considered as a RVE. Once the standard deviation of the output reaches a threshold, the unit cell
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Figure 7. Material texture uncertainty study: Effect of unit cell size on MC and PSFEM
prediction of the mean (solid curves) and standard deviation (dashed curves) for Ch

11 with
a standard deviation of 2◦ in θ .



1166 SEVERINE LEPAGE, FERNANDO V. STUMP, ISAIAH H. KIM AND PHILIPPE H. GEUBELLE

Parameter Mean (GPa) Standard deviation (GPa)
Ch

11 119.782 0.311

Ch
12 68.2993 0.088

Ch
21 68.2993 0.088

Ch
22 119.7785 0.3356

Table 2. PSFEM mean and standard deviation of effective components of homogenized
stiffness matrix of a unit cell composed of 64 grains with a standard deviation of 2◦ in θ .

can be considered stochastically representative, that is, the standard deviation threshold value represents
the uncertainty resulting from the input uncertainty. For this particular case, when the unit cell contains
more than 64 grains, it is observed that a textural uncertainty, characterized by a 2◦ standard deviation,
introduces an uncertainty on Ch

11 characterized by a 0.31 GPa standard deviation.
All aforepresented results relate to Ch

11. Table 2 lists the mean and standard deviation obtained for
other effective components of the homogenized stiffness matrix. The results are for a unit cell composed
of 64 grains. For each grain, its θ angle is considered as a random variable characterized by a 2◦ standard
deviation. These 64 random variables are considered as independent, which means that their correlation
matrix is equal to the identity matrix. The uncertainty introduced on Ch

11 and Ch
22 are similar: 0.31 GPa

and 0.33 GPa, respectively. Conclusions based on one or on the other would be the same. The means
of Ch

12 and Ch
21 are equal as well as their standard deviation. The relative importance of the standard

deviation with respect to the mean is twice larger on the diagonal components than on the off-diagonal
ones. Based on these facts, the study will hereafter focus on Ch

11 results.

5B. Combining PSFEM and Monte Carlo methods to evaluate geometry and texture uncertainty. So
far, only uncertainty in the material parameters has been considered and PSFEM and MC analyses have
been carried out on only one representation of the unit cell. In order to take into account the geometric
uncertainty of grains as well as the grains material property randomness, MC and PSFEM are coupled.
A standard deviation of 10◦ is considered for θ . The geometry variation is taken into account by using
the Monte Carlo method. For each geometry sample, a PSFEM analysis is carried out in order to take
into account the material property uncertainty. Using the law of total expectation, the output mean is
computed by averaging over the geometry samples the mean obtained by PSFEM:

S̄ =

∑ngeo
igeo

S̄PSFEM

ngeo
. (5-1)

By applying the law of total variance, we get the value of the variance of the output as

Var(S)= Var(S̄PSFEM)+ E[Var(S)PSFEM]. (5-2)

It is assumed that the randomness of the material properties and the grain geometry are independent.
Monte Carlo analyses are performed for unit cells composed of 4, 16, 36, and 64 grains. For each

unit cell size, 100 different geometry samples are generated by an in-house Voronoi tessellation software
which can control the mean size of the grains. In this study, the mean grain size is defined as 21.36 nm.
The grain size is defined as the diameter of a circle whose area is equal to the grain’s area. The randomness
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Figure 8. Geometry and texture uncertainty study: Variation of Ch
11 mean and normal-

ized standard deviation for unit cell composed of 4 (solid curves) and 64 (dotted curves)
grains with a standard deviation of 10◦ in θ .

on the grain distribution inside the unit cell is obtained by randomly assigning the seed point of the
Voronoi tessellation.

Figure 8 presents the mean and standard deviation of Ch
11 versus the number of geometry samples

considered for the unit cells of 4 and 64 grains. The standard deviation was normalized with respect
to the standard deviations obtained using 100 samples. Those standard deviations were 9.86 GPa and
1.56 GPa for 4 and 64 grains, respectively. 20 geometric samples are sufficient to get a converged mean.
For the standard deviation, convergence occurs from 80 samples. In the following, results are those
obtained from 100 samples since they can be assumed as converged.

Figure 9 presents the mean and standard deviation of Ch
11 when considering geometric and material

uncertainties. It is observed that the mean oscillates between 113 and 114 GPa, while the standard
deviation decreases as the number of grains in the unit cell increases. The standard deviation is an
important parameter for deciding to what extent a unit cell can be considered as a RVE. From this graph,
it is concluded that for unit cells composed of 64 or more grains, the uncertainty in the homogenized
properties is less than 1.56 GPa, that is, about 1.4% of the Ch

11 mean. From a practical point of view, this
application shows that a unit cell of 64 grains can be considered as an RVE for the quantification of the
uncertainty of the macroscopic elastic properties of a polycrystalline material induced by uncertainties
on its grain geometry and texture.

To estimate the uncertainty of the geometry, the approximated grain size probability density function
is plotted in Figure 10. The probability density is obtained by discretizing the grain size into 20 segments.
The number of grains in each segment was counted and a value of the area of that segment was obtained;
these values were normalized by the total area of the histogram. Figure 10 shows that the probability
density functions for unit cells of 16 or more grains are similar. This guarantees that the comparison
between the unit cells with 16, 36, and 64 grains is meaningful since all of them have the same input
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uncertainty. So the differences in mean and standard deviation in this case can be attributed to the set of
grain orientations and the unit cell size.

6. Conclusion

This work presents the application of a perturbation-based stochastic method in the study of uncertainty
in homogenized elastic properties of polycrystalline materials. The perturbation stochastic finite element
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method (PSFEM) has been applied to the mathematical theory of homogenization. The formulation
obtained has been used to study the influence of geometry and material texture uncertainties at the grain
level on the macroscopic polycrystalline material properties.

By comparing the results with Monte Carlo results on verification test cases, it has been shown that the
PSFEM approximation errors depend on the problem of interest and the coefficient of variation for the
input random variables. In the case of homogenization of gold polycrystalline structures, the limitation
of PSFEM on the computation of the influence of material texture uncertainty has been quantified. The
error on the Ch

11 standard deviation remains below 5% for a standard deviation in the Euler angle defining
the <<111>> texture up to 7◦.

By combining Monte Carlo and PSFEM, the uncertainty of the geometry of the grains has been taken
into account on top of the material texture uncertainty. The convergence of this approach has been
demonstrated by numerical examples. The results show that for gold thin films, a unit cell with 64 grains
or more predicts an uncertainty characterized by a coefficient of variation of 1.4% on Ch

11 for a standard
deviation of 10◦ in the Euler angle defining the <<111>> texture.

The proposed approach is a general tool for quantifying the uncertainty of the elastic properties of
polycrystalline materials as a function of the grain geometric and material properties and the unit cell
size. Moreover, this study can provide better confidence on the necessary representative volume element
size.
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