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A COLLOCATION APPROACH FOR SPATIAL DISCRETIZATION
OF STOCHASTIC PERIDYNAMIC MODELING OF FRACTURE

GEORGIOS I. EVANGELATOS AND POL D. SPANOS

In this paper a collocation approach is presented for spatial discretization of the partial integrodifferential
equation arising in a peridynamic formulation in stochastic fracture mechanics. In the formulation nodes
are distributed inside the domain forming a grid, and the inverse multiquadric radial basis functions are
used as interpolation functions inside the domain. Due to this discretization the peridynamic stiffness is
generated in a manner similar to the finite element method. Further, any discontinuity in the domain is
included in this discretized form and affects only the peridynamic stiffness of the adjacent nodes. Using
this approach as a tool, the probability density function of the energy release rate can be determined
at a given crack tip point for all possible crack paths. Thus, the crack propagation direction can be
probabilistically identified. This is accomplished by numerical evaluation of the requisite Neumann
expansion using pertinent Monte Carlo simulations. Specific examples of applications are included.

1. Introduction

The problem of modeling dynamic or static systems that contain discontinuities is fundamental in me-
chanics. Fractured surfaces and propagating cracks are discontinuities which disrupt the domains of
differential equations and create mathematical singularities. There are several approaches to dealing with
these kinds of discontinuities. Two classical ones are the finite element method (FEM), with remeshing of
the continuous domain, and the extended finite element method (XFEM), which circumvents the constant
remeshing of the domain and uses the same mesh by simply adjusting the stiffness of the cracked element
[Zi and Belytschko 2003]. Further, mesh-free techniques have been applied to the same problem with
quite reasonable results [Belytschko et al. 1994; 1995]. However, all of these approaches have been based
on local mechanics theory. In local mechanics theory, a single point in the medium is in direct contact
with only its immediate neighboring points, and thus spatial derivatives exist in such a continuum. In
nonlocal mechanics, however, a single point in the medium is in direct contact with points further away
in addition to its immediate neighboring points. Nonlocal theories were initially developed in [Kröner
1967; Eringen et al. 1977] and since then several researchers have contributed to this concept.

In a pioneering publication, S. A. Silling extended the concept of nonlocal mechanics. Until then
the concept of nonlocality was used as a generalization of local mechanics and it was assumed that
spatial derivatives of a certain finite neighborhood around the point of interest could be used. Silling
[2000] proposed a fully nonlocal peridynamic modeling in which no spatial derivatives are needed, and
therefore the inherent problem of a discontinuity in the domain can be circumvented. The model involves
the formulation of a partial integrodifferential equation that holds for discontinuous domains with no
additional treatment such as enrichment.

Keywords: peridynamics, fracture mechanics, radial basis functions, stochastic medium, collocation method.
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Since this pioneering work, several publications have focused on the application of this approach to
a wide spectrum of problems. In [Silling et al. 2003] the deformation of an infinite bar was investigated
using peridynamic theory. In [Silling et al. 2007] a generalization of the original peridynamics framework
was proposed to extend the kinds of materials that can be modeled by peridynamic theory. In [Bobaru
et al. 2009] adaptive refinement was proposed and the uniform convergence of peridynamic theory to
classical mechanics was shown for dynamic and static 1D solutions when the horizon is approaching
zero. In [Warren et al. 2009] the previous peridynamic theory was extended to handle Poisson ratios
other than 1

4 and to allow bonds to exhibit noncentral forces. In [Macek and Silling 2007] peridynamic
theory was extended beyond EMU meshless formulations to FEM by incorporating truss elements. In
[Bobaru 2007] the peridynamic method was used to analyze the effect of van der Waals forces on the
mechanical behavior, strength, and toughness of 3D nanofiber networks. In the benchmark study, the
fracture was introduced at the microstructural level using the concept of bonds; it was concluded that
two main mechanisms control the deformation: fiber reorientation and fiber accretion. In [Silling and
Askari 2005] a numerical mesh-free method for solving the partial integrodifferential equation arising
from peridynamic theory was proposed and examples of modeling crack growth in brittle materials were
presented. In [Zhou and Du 2010] a mathematically based approach for linear peridynamic FEMs was
introduced.

In this paper a peridynamic modeling of systems with stochastic material properties exposed to sto-
chastic excitations is considered. Proceeding to this task, a novel spatial discretization of the peridynamic
equation is applied which allows for the stochastic extension of the model. The governing partial inte-
grodifferential equation is treated by the Kansa collocation method [Kansa 1990a; 1990b] using inverse
multiquadric (IMQ) radial basis functions (RBF). In this formulation the direction and length of the
crack propagation is not governed by the nodal density and positioning of the nodes as it is in the usual
mesh-free peridynamic approach. The approach is quite similar to the XFEM [Zi and Belytschko 2003]
where the crack is influencing only one finite element and the stiffness of the current element through
which the crack is going needs only to be determined. Further, the boundary conditions are imposed in a
simpler manner than in peridynamic theory; it is quite similar to FEM. Finally, after having established a
reliable collocation method to treat the deterministic problem, the stochastic problem is considered and
is solved utilizing the concept proposed in the stochastic finite element method (SFEM) [Ghanem and
Spanos 1991]. The reliability of the system is evaluated by calculating the probability density function
(PDF) of the energy release rate around the crack tip.

2. Peridynamic formulation

2.1. The peridynamic partial integrodifferential equation. Consider a mechanical component having
one dimension significantly smaller than the other two, and operating under an excitation in the plane
defined by its two significant dimensions. Obviously, the significant displacements of the vibrating
medium are lying on the same 2D plane. Next, consider nonlocal peridynamic theory for modeling
the behavior of the medium. The nonlocal theory of peridynamics involves a partial integrodifferential
equation for dynamic problems [Emmrich and Weckner 2007b]. Specifically, this equation is a second-
order differential equation with respect to time, and an integral equation with respect to space. In this
context, the governing equation of motion of any particle inside the vibrating 2D medium is given by the
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equation

ρ

[
ü(x, t)
v̈(x, t)

]
+

∫
H(x)

f
([

u(x, t)− u( x̂, t)
v(x, t)− v( x̂, t)

]
, x − x̂

)
dVx̂ =

[
bx(x, t)
by(x, t)

]
, (1)

where ü and v̈ denote the second-order derivatives of u and v with respect to time, and the vectors x and
x̂ are defined by the equations

x =
(

x
y

)
(2)

and

x̂ =
(

x̂
ŷ

)
. (3)

Note that ρ is the material density, bx(x, t) and by(x, t) are the force densities, u(x) and v(x) denote the
displacements of the point x on the x and y axes respectively, f denotes the force function measured in
force per unit volume squared exerted on the point x by the point x̂ , and H(x) is the domain of integration.
Note that the force function f may depend on the partial derivatives of the displacement with respect to
the directions x and y, and thus (1) is a partial integrodifferential equation. In peridynamic theory the
domain of x̂ is restricted by the position of x by defining the relative position

ξ = x − x̂ (4)

such that
|ξ |< δ. (5)

The distance δ is called the horizon and represents the distance of the nonlocal approximation. The
domain H(x) for every given point x is defined by the equation

H(x)= {x̂ : |x − x̂ |< δ}, (6)

and yields a circular disc centered at x of radius δ; Figure 1 helps to elucidate this concept.
Further, the pairwise force function f represents the force between two particles separated by a dis-

tance of length ξ [Silling 2000]. Thus it must exhibit the properties

f (−η,−ξ)=− f (η, ξ), (7)

(ξ + η)⊗ f (η, ξ)= 0, (8)

Horizon of point x

H

xx
ξ

δ

Body

Figure 1. Each point x in the body � interacts directly with the points x̂ in the circular
disc H(x) through bonds.
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where ⊗ is the symbol of the tensor product, and the vector η is defined by the equation

η =

[
u(x)− u( x̂)
v(x)− v( x̂)

]
. (9)

These restrictions ensure the conservation of angular momentum and the collinearity of the force with
respect to the relative position of the particles. Details on the force function can be found in [Silling
2000]. Next, for the linearized pairwise force function introduced in that reference, the force yields

f (η, ξ)= C(ξ)η, (10)

where the micromodulus C satisfies the condition

C(−ξ)= C(ξ). (11)

A fundamental measure of peridynamic theory is the bond stretch given by the formula

s =
|ξ + η| − |ξ |

|ξ |
. (12)

Specifically, stretch is used to determine whether the bond has failed or not, and thus it is the measure
governing the force between the particles, like strain in classical mechanics theory. Bonds which have
exceeded the predetermined value of s0 are damaged. In quantifying the damage on a specific point x
from the points in the horizon of x the function

φ(x, t)= 1−

∫
H(x) µ(x, t, ξ) dVx̂∫

H(x) dVx̂
(13)

is used, where the damage can be assumed to cause total failure of the bond by

µ(ξ, t)=
{

1 if s(t, ξ) < s0,

0 otherwise.
(14)

In linear peridynamics, the pairwise force amplitude is given by the equation [Silling 2000; Silling and
Askari 2005]

| f (η, ξ)| = c
|η|

|ξ |
, (15)

where the force vector f is aligned with the vector ξ + η, and for a 2D plate problem the constant c is
given by

c = 9E
2πδ3 , (16)

where k is the bulk modulus of the material in [Emmrich and Weckner 2007a]. Several other formulations
can be found in [Silling 2000] regarding the pairwise force function.
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2.2. Polar coordinate transformation. Equation (1) can also be cast into polar coordinates, yielding

ρ

[
ü(x, t)
v̈(x, t)

]
+

∫
H(θ,r)

f
([

u(x, t)− u(x + r , t)
v(x, t)− v(x + r , t)

]
,−r

)
|J | dθ dr =

[
bx(x, t)
by(x, t)

]
, (17)

where

|J | = −r, (18)

r =−ξ, (19)

r = r
(

cos θ
sin θ

)
. (20)

Note that (9) in polar coordinates yields

η =

[
u(x)− u(x + r)
v(x)− v(x + r)

]
, (21)

and equivalently (15) yields

| f (η, r)| = c
r
|η|. (22)

For purposes of elucidation, the displacements u and v of a bond are shown in Figure 2.
Adopting the linearized pairwise force function, and using the fact that the horizon δ is a small distance,

the total stretch of the bond can be approximated quite accurately by just the collinear component of the
vector r . The contribution to the extension of the bond from the perpendicular displacements with respect
to the vector r shown in Figure 2 can be neglected for small distances r . This is due to the assumption
that small rigid body rotations of the bond can be neglected (see Appendix C). With this assumption and
since this force is in the direction of the vector r the forces per unit volume in the x and y directions

v(x)

v(x) sin(90 −θ)−u(x) sinθ

u(x) cosθ+v(x+r) sinθ

u(x+r) cosθ+v(x+r) sinθ
r

v(x+r) sin(90 −θ)−u(x+r) sinθ

v(x+r)
u(x+r)

u(x)

r

y

x

θ

θ

Figure 2. A bond of length r and angle θ with respect to the global coordinate system.
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yield

forcex =
c
r
(
(u(x)− u(x + r)) dVx+r cos θ + (v(x)− v(x + r)) dVx+r sin θ

)
cos θ,

forcey =
c
r
(
(v(x)− v(x + r)) dVx+r cos θ + (v(x)− v(x + r)) dVx+r sin θ

)
sin θ.

(23)

These equations represent the force in the x and y directions due to one bond formed from two particles
at distance r and at angle from the reference point θ . Since (17) is given in polar coordinates, (1) can be
cast as

ρ

[
ü(x, t)
v̈(x, t)

]
+

∫ δ

0

∫ 2π

0

c
r

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

](
u(x, t)− u(x + r , t)
v(x, t)− v(x + r , t)

)
|J | dθ dr=

[
bx(x, t)
by(x, t)

]
. (24)

3. Spatial discretization

3.1. Radial basis function expansion. Having derived (24), we proceed to use the Kansa collocation
method for its spatial discretization; see [Kansa 1990a; 1990b]. In implementing the Kansa collocation
method, a series of nodes is distributed in the domain forming a grid of points. Inverse multiquadric
(IMQ) radial basis functions (RBFs) are used as defined in those references; they correspond to the
inverse of the Euclidean distance of the point x from the collocation node k:

gk(Ex)=
1√

(x − xk)2+ (y− yk)2+ψ
2
k

, (25)

where the distance ψk is a local shape parameter regulating the shape of the basis. Large values of this
parameter contribute to smoother shapes and are quite accurate approximations of flat and slowly varying
solutions. However, small parameters represent sharper shapes and are particularly good for peaks and
steep slopes. The IMQ function attains its maximum at the node and monotonically decreases as the
distance from the node increases. Next, using the same IMQs for both the u and v displacements yields

u(x)=
N∑

k=1

a1k gk(x)+
M∑

j=1

a2 j q j (x), v(x)=
N∑

k=1

d1k gk(x)+
M∑

j=1

d2 j q j (x). (26)

Further, the polynomials q that correspond to the a and d coefficients can be arbitrarily chosen. Note
that details on the Kansa collocation method and the IMQ RBFs are included in Appendix B. Next, (26)
on the collocation points with time-dependent coefficients can be cast in the form

u(x1, t)
v(x1, t)

...

0
...

=


g1(x1) 0 . . . q1(x1) 0 . . .

0 g1(x1) . . . 0 q1(x1) . . .
...

...
...

...
...

...

q1(x1) q1(x2) q1(x3) . . . 0 0
...

...
...

...
...

. . .





a11(t)
d11(t)
...

a21(t)
d21(t)
...


. (27)

Equation (27) is the basis upon which the 2D solution of the integrodifferential equation is expanded.
The difference in the displacements of a bond, denoted by the vector η and shown in (21), is obtained
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using (26). Specifically, the vector η with time dependence yields

η(x, r , t)=
[

G1(x, r) 0 G2(x, r) . . . Q1(x, r) 0 . . .

0 G1(x, r) 0 . . . 0 Q1(x, r) . . .

]


a11(t)
d11(t)
...

a21(t)
d21(t)
...


, (28)

where

Gk(x, r)= gk(x)− gk(x + r), Q j (x, r)= q j (x)− q j (x + r). (29)

3.2. Stiffness determination. Having represented the displacements by linear combinations of the basis
functions, an approach similar to the one of FEM is followed. It is assumed that the displacement of any
given point inside the domain is captured by interpolating the four adjacent nodes surrounding the point.
Figure 3, left, elucidates this interpolation scheme.

It is clear that for any point that belongs in the square, the four adjacent nodes contribute to its
displacement. This leads to a quite convenient and efficient way to integrate over the horizon of each
node. Figure 3, right, shows the horizon of each node in a specific element.

Obviously the integration of (1) can be performed using a finite element approximation inside an
element. Specifically, integration over the horizon is required only for one element and its four nodes.
Then, the integration over the horizon of each node is performed by merely adding the nodal values of
the elements, identically as done in FEM. Therefore combining (21), (24), and (28), the peridynamic
stiffness density of the node i is given as

K =
∫ δ

0

∫ 2π

0

c
r

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

] [
Gi (x i ) 0 . . . Q1(x i ) 0 . . .

0 Gi (x i ) . . . 0 Q1(x i ) . . .

]
|J | dθ dr. (30)

In this regard, combining (30) with (18) yields the second-order micromodulus tensor

C(ξ)= c
[

cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

]
, (31)

ri+3

i+3

ri+2

i+2

ri+1

i+1

ri

i

i+3 i+2

i+1i

δ

δ
δ

δ

Figure 3. Left: a point of interest surrounded by its four closest nodes. Right: horizon
of each node in a square element formed by four grid points.
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and combining (4), (19), and (20), (31) can be cast in a form identical to that of [Silling 2000] as

C(ξ)=
c
|ξ |2

ξ ⊗ ξ . (32)

Next, the stiffness density matrix corresponding to the g basis functions for a four-node element consists
of 4× 4 blocks of 2× 2 matrices and yields

KG =−

∫ δ

0



∫ π/2

0
C(θ, r)

[
G i (x i , r, θ) G i+1(x i , r, θ) G i+2(x i , r, θ) G i+3(x i , r, θ)

]
dθ∫ π

π/2
C(θ, r)

[
G i (x i+1, r, θ) G i+1(x i+1, r, θ) G i+2(x i+1, r, θ) G i+3(x i+1, r, θ)

]
dθ

∫ 3π/2

π

C(θ, r)
[
G i (x i+2, r, θ) G i+1(x i+2, r, θ) G i+2(x i+2, r, θ) G i+3(x i+2, r, θ)

]
dθ∫ 2π

3π/2
C(θ, r)

[
G i (x i+3, r, θ) G i+1(x i+3, r, θ) G i+2(x i+3, r, θ) G i+3(x i+3, r, θ)

]
dθ


dr. (33)

Further, the stiffness density matrix corresponding to the q basis functions for the node i consists of a
2×M matrix, where M is the number of the q functions, and yields

K Q =−

∫ δ

0

[∫ 2π

0
C(θ, r)

[
Q1(x i , r, θ) dθ . . . QM(x i , r, θ)

]
dθ
]

dr. (34)

4. Implementation aspect

4.1. Linear differential equations. Utilizing the concept shown in Figure 3 and combining (1), (33), and
(34) yields a set of linear differential equations. Specifically, the set of linear second-order differential
equations can be cast in the matrix form as


∑

i

ρi Gi

∑
j

ρ j Q j∑
j

QT
j 0





a11

d11
...

a21

d21
...


+


∑

i

KGi

∑
j

K Qi∑
j

QT
j 0





a11

d11
...

a21

d21
...


=

[
b
0

]
, (35)

where
∑

i ρi Gi is a 2N × 2N square matrix representing the nodal material density related to the g
basis functions,

∑
j ρ j Q j is a 2N × 2M rectangular matrix representing the nodal material density

related to the additional basis functions q,
∑

j QT
j is a 2M × 2N rectangular matrix and is called the

regularization condition, and finally 0 is a 2M × 2M zero matrix. More details on the regularization
conditions can be found in [Kansa 1990a; 1990b] and in Appendix B. Equivalently

∑
i KGi , which is a

square 2N × 2N matrix, is the stiffness density related to the g basis functions,
∑

j K Qi is the 2N × 2M
stiffness density matrix related to the q basis functions, and

[
b
0

]
is the 2N × 1 loading vector on top of a

2M × 1 zero vector representing the regularization conditions. Further, (35) is a 2(N +M)× 2(N +M)
system of second-order linear differential equations and can be readily integrated in time using a time
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integration scheme. Note that since the quantities at (30), (33), and (34) represent the stiffness density,
this collocation approach is different from FEM.

4.2. Crack-inclusion treatment. Next, we proceed to address the crack growth or crack initiation prob-
lem utilizing the preceding peridynamic theory. In this regard, assume that a crack exists in a specific
position in the medium. With the above formulation this crack will affect only the peridynamic stiffness
of the surrounding nodes. Naturally the cracks interrupt the horizon of the nodes surrounding them;
Figure 4 shows how the horizon of node i + 1 is affected.

It is perhaps easier to appreciate from Figure 4 how powerful the peridynamic formulation becomes
when it comes to dealing with discontinuities in the domain. The crack essentially describes the bond
failure at these points and therefore node i + 1 along with the other nodes cannot “see” past the crack,
thus inducing less stiffness density. This is implemented by using the same equations as before, only with
different integration limits in (33) and (34). The integration over the discontinuous horizon poses many
difficulties; it is carried out numerically in Appendix A. Gaussian quadrature is used for the element KG

referring to the healthy part of the domain, shown in Appendix A. Despite the fact that a more laborious
numerical integration is needed for the cracked element, peridynamic modeling through this approach
is quite efficient since a uniform grid of points would have only one kind of element and thus no other
integration is needed. For the integration over the horizon of the functions Q, closed-form solutions are
available for “healthy” bonds around the nodes, but for discontinuities numerical integration is again
needed, as shown in Appendix A.

Keeping in mind that the collocation approach yields stiffness density, in contrast to the finite element
formulation, which yields stiffness, note that the weak form of the problem, given in [Emmrich and
Weckner 2007b], is∫

R
ρ(x)∂2

t

(
u(x)
v(x)

)
w(x) dVx +

1
2

∫
R

∫
H(x)

(
u( x̂)
v( x̂)

)
C(x, x̂)w(x) dVx dVx̂

=

∫
R

(
bx(x, t)
by(x, t)

)
w(x) dVx . (36)

In this equation w denotes the weight function, and substituting the displacement function in (36) yields
the Galerkin approximation, which leads to FEM. As is clear for the stiffness expression, a double

i+3 i+2

i+1i

Figure 4. The disrupted horizon of node i + 1, as it is modeled in peridynamics.
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1*

4*

4

1

3

2
2*

3*R ,u* *

e

R,u

δ

Figure 5. The additional layer of material R∗ needed for implementing the boundary conditions.

integration is involved, one on the domain R and one in the horizon domain H . This emphasizes that in
the formulation of (33) and (34), the stiffness density at a collocation point is calculated. Therefore (1)
is solved not in terms of displacements and nodal forces as it is from (36), but rather in terms of loading
density at the collocation points and displacements. Utilizing this formulation, the peridynamic boundary
conditions are applied in a much simpler way since the input loading is actually a load density. Further,
two consecutive integrations over the discontinuous domains R and H are quite laborious. This is in fact
the reason why the finite element formulation is substituting the large number of bonds in an equivalently
large number of truss elements in [Macek and Silling 2007]. The formulation proposed herein is quite
similar to the truss approach; each node is virtually connected to all the trusses inside its horizon and
its stiffness is obtained by direct integration without the actual introduction of the trusses. Further, since
the crack is handled geometrically inside the element, there is no need of checking all the bonds inside
the domain. The displacements inside the domain are interpolated from the nodal displacements and
are directly obtained. Then, the energy release rate is calculated around the crack independently from
the mesh size. Naturally, for a more accurate approximation around the crack tip, enrichment of the q
functions according to [Fleming et al. 1997] is available in addition to the grid refinement.

4.3. Peridynamic boundary conditions. Having derived the governing equation as a set of linear second-
order differential equations in matrix form, we proceed to incorporate the boundary conditions. Details
on incorporating boundary conditions in peridynamic theory are covered in [Silling 2000]. However, due
to this formulation the implementation of boundary conditions becomes readily available. Specifically,
an additional layer of material is added to the external part of the elements standing on the boundaries
of the domain; it is denoted by R∗ in [Silling 2000]. The corresponding displacements of the additional
layer are decomposed on the same g and q basis functions and therefore the displacements of the material
R∗, denoted by u∗ in [Silling 2000], are given from (26). Figure 5 shows the additional layer of material
R∗ that needs to be added on the boundaries.

Next, the stiffness density related to the lightly shaded area has been already calculated from the
preceding equations. However, the stiffness density related to a small layer of thickness e and shown in
Figure 5 with the darker shade needs to be added to the stiffness density of the nodes. In this regard,
since the displacements u∗ are decomposed into the same basis as the displacements u, the boundary



COLLOCATION-BASED DISCRETIZATION OF STOCHASTIC PERIDYNAMIC FRACTURE MODELING 1181

conditions, such as simple supports, etc., can be applied on the external nodes 1∗, 2∗, etc., by utilizing
the expansion basis and the displacements of these nodes. Next, for imposing certain boundary conditions
on the collocation nodes of the Kansa method, specific rows in the matrices shown in (35) are changed to
account for the imposed constraints. Details can be found on the implementation of boundary conditions
of the Kansa collocation method in [Kansa 1990a; 1990b]. Note that the governing equation is solved
in terms of displacements u(x) and v(x) and force density b(x), and since the force loading conditions
by definition are force densities, the boundary conditions are imposed readily using the basis functions.
For comparison with any theoretical models involving stress applied on the above described example,
the loading density b(x) must be multiplied by the layer thickness e to yield force per unit area.

5. Illustrative example

To illustrate the applicability of the proposed approach, a deterministic problem is considered. In this
regard, a square 2D plate of dimensions 1 cm× 1 cm and bulk modulus k = 1 N/cm2 under tensile stress
is modeled with FEM and peridynamic theory. The tension is of unitary amplitude σ = 1 N/cm2 and
the displacements obtained by peridynamic theory are compared to the FEM displacements. Figure 6
shows the equivalent modeling of this simple problem with FEM and the proposed peridynamic theory
involving the Kansa collocation method.

For FEM, the nodal forces are readily calculated using the stress applied on that edge. In peridynamic
theory, however, the nodal forces are force densities and b∗e = σ thus the force density simply depends
on the additional layer thickness. The displacements given by the finite element model are compared to
the ones obtained from the proposed formulation in Table 1 on the next page; a layer of thickness e= δ/5
is assumed for the numerical calculations.

Next, a cracked element is considered. Figure 7 shows a simple patch test used to verify displacements
for a cracked square plate under tension.

4

1

3

2

0.5 N

K = 1
v = 1/4
e = 3/2

FE Model
Peridynamics Model

1cm

1cm

0.5 N

b = 1/e  N/cm3

4

1

3

2

1cm

1cm
e

Figure 6. A simple 2D plate of unit thickness under tension of σ = 1 N/cm2, modeled
via FEM and peridynamic theory by the Kansa collocation method.
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b = 1/e  N/cm3

4

1

3

2

1cm

1cm

e2*1*

3*4*
crack

v
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Figure 7. A cracked square plate under uniform tension modeled via peridynamic theory
and the Kansa collocation method.

The displacements of the theoretical solution are given by the closed-form equations in [Gdoutos
1990] and yield

u(x)=
k1

2µ

√
r

2π
cos
(
θ

2

)[
k2− 1+ 2 sin

(
θ

2

)]
, v(x)=

k1

2µ

√
r

2π
sin
(
θ

2

)[
k2+ 1− 2 cos

(
θ

2

)]
. (37)

Taking into account the symmetry of the loading, and transforming the coordinate system, the dis-
placements of the two models are compared for the displacements u and v. The symbol k1 stands for the
first mode stress intensity factor, r is the distance from the center of the element, µ stands for the shear
modulus, θ is the angle with respect to the initial crack, and k2 is a parameter depending on the Poisson
ratio and the crack geometry. For the element in Figure 7 the theoretical displacements are compared
with the results of the peridynamic formulation. However, the peridynamic results with this formulation
were not accurate. A more accurate approximation of the displacements around the crack tip points is
achieved through the enrichment of the basis functions q from [Fleming et al. 1997] with the basis

q5 =
√

r cos θ
2
, q6 =

√
r sin θ

2
, q7 =

√
r sin θ

2
sin θ, q8 =

√
r cos θ

2
sin θ. (38)

Peridynamics via Kansa collocation method FEM displacements
Node u (cm) v (cm) εx ν Node u (cm) v (cm) εx ν

1 −0.027 0.112 −0.160 0.237 1 0 0 −0.167 0.250
2 −0.187 0.112 2 −0.167 0
3 −0.026 0.787 εy 3 0 0.667 εy

4 −0.187 0.787 0.674 4 −0.167 0.667 0.667

Table 1. Comparison of displacements for a plate under uniform tension.
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Peridynamics via Kansa collocation method Theoretical displacements
Node* u (cm) v (cm) Node* u (cm) v (cm)

1 0.128 −0.31 1 0.1354 −0.3269
2 0.179 −0.078 2 0.1706 −0.0707
3 0.178 0.079 3 0.1706 0.0707
4 0.126 0.31 4 0.1354 0.3269

Table 2. Comparison of displacements for a cracked plate under uniform tension.

The problem of obtaining the displacements around the crack tip was encountered in [Fleming et al.
1997] and the results were accurate enough when the basis was expanded with the basis containing the
displacements near the crack tip. Thus, the linear functions q are enriched with an additional four basis
functions for the crack tip. For the simple example shown in Figure 7, Table 2 summarizes the results
for the corners of the square inside the element with side length 0.2 cm.

The numerical results obtained prior to the basis enrichment are omitted due to their poor accuracy.
However, it has been seen that the numerical results after the enrichment are significantly better than the
ones obtained without the basis enrichment. Further, there are persistent errors which must be addressed.
The horizon δ that has been used in both examples is δ = 1 cm and the solution of the first example
remains constant for any δ value less than 1 cm. The displacements obtained from the cracked domain
appear to be dependent on the horizon length for values larger than δ = 0.80 cm, which is another issue
that needs to be addressed. Integration over the horizon for the IMQ basis functions is achieved by
implementing the “visibility” criterion, extensively described in [Fleming et al. 1997]. That is, the crack
interrupts the horizon and thus the values of the g basis functions beyond the crack line are set equal to
zero. The same concept holds for all the q basis functions.

6. Stochastic peridynamic theory

6.1. Maximum energy release rate criterion. The reliability of a structure including a crack or initiating
a crack is considered in this section. Specifically, the probability of crack propagation and the direction
in which the crack will propagate is of particular interest. For this, the position of the propagating or
initiating fracture can be determined by the maximum energy release rate for brittle materials in [Gdoutos
1990]. To obtain the energy release rate, the length of the crack propagation is preselected as δα and
therefore points to be checked lay on the circular area given by the selected equation

x test = xc+ δα

(
cosφ
sinφ

)
(39)

for φ ∈ [0, 2π ], where x test is the position of the potential next crack tip and xc is the position of the
current crack tip. Since the points on the circle x test and the crack tip xc form potential fracture surfaces,
the work of all the tensile bonds per unit area of potential fracture can be directly calculated by (see
[Silling and Askari 2005])

G E =

∫
z

∫
V ′
w(η, ξ) dV ′ dz. (40)
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crack tip
initial crack surface

fracture surface

ϕ
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δ
ξ

θ

bond

V’

Z

Figure 8. The propagating fracture of length δα at angle φ from the initial crack and
the calculation of the energy release rate per unit of fractured area.

In this equation z denotes the perpendicular distance of a point from the fractured surface and V ′ is
the volume of integration. Figure 8 helps to elucidate the concept of the distance z and the volume of
integration. For the linearized pairwise force function, the work of a single bond yields

w(η, ξ)= 1
2 cs2
|ξ |, (41)

and utilizing (19) yields the energy per unit surface area of a 2D plate with unit thickness:

G E =

∫ δ

0

∫ δ

z

∫ cos−1(z/r)

− cos−1(z/r)

1
2 cs2r2 d θ̂ dr dz. (42)

Figure 8 also helps visualize the concept of bonds breaking and forming a cracked surface. Obviously,
the energy per unit surface area depends on the initial crack tip, the angle φ, and the length δα, since the
stretch s depends on these parameters. From the assumption of a linear pairwise force function and small
rigid body rotations shown in Appendix C, the stretch of the bonds can be calculated from a simpler form
than (12). This form is

s(x, r, θ)= 1
r
[
cos θ sin θ

] [u(x)− u(x + r)
v(x)− v(x + r)

]
, (43)

and Figure 2 helps to illustrate this concept. Next, combining (43), (42), and (39) and correlating the
angles θ̂ , φ, and θ through the simple equation

π/2− θ̂ +φ = θ (44)

yields

G E(δα, φ, xc)=

∫ δ

0

∫ δ

z

∫ φ+π−sin−1(z/r)

φ+sin−1(z/r)
|η(θ, ξ, z, δα, φ, xc)|

2 dθ dr dz, (45)
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where |η| is given for the linearized pairwise force function shown in Appendix C as

|η| = s|ξ |. (46)

Naturally, the angle at which the tensile energy per unit area is the maximum can be chosen as the fracture
propagation angle; see [Gdoutos 1990]. Further, in brittle materials the energy release is a measurable
quantity and can be used in real applications as a threshold for fracture. Figure 8 can be used to clarify
this concept; see also [Silling and Askari 2005].

6.2. Stochastic fracture on elastostatic peridynamic theory. Having derived the energy release rate as
a function of the crack tip xc, propagating crack length δα, and propagating crack angle φ, we proceed
to probabilistically identify the propagation angle. In this context, in classical mechanics, materials with
random properties are modeled by expressing the Young’s modulus as a random process. However, in
the peridynamic approach this must be modified. The fact that each node is connected with an infinite
number of points belonging in the node’s horizon should make the random process which represents the
micromodulus of the bonds depend both on the angle θ and on the distance r in the polar coordinate
system. In this paper, the bond micromodulus is treated as a random process depending only on the
distance from the node r . Therefore, the micromodulus coefficient c is a random process c(r, ϑ) where
ϑ is the random parameter. Further, the loading of the structure involves uncertainties which are specified
in terms of a random variable. The PDF of the energy release rate G E given in (45) must be calculated in
order for the reliability of the crack propagation to be calculated. Naturally the PDF of the coefficients
for the static case can be obtained by utilizing (35), which yields

a11

d11
...

a21

d21
...


=


∑

i

KGi
∑

j K Qi∑
j

QT
j 0


−1 [

b
0

]
. (47)

Obviously, the equation above includes a random matrix inversion and a multiplication by a random
forcing vector. In this context, (46) combined with (43) can be cast in the form

|η| =

n∑
i=1

αiβi , (48)

where αi =
[
a . . . d

]
is the set of the random coefficients, and

βi =
[
G1(x test+ z, r) cos θ . . . Q4(x test+ z, r) sin θ

]
is the set of the deterministic functions which depend on the angle φ and the length δα. Clearly,

|η|2 =

n∑
i=1

(αiβi )
2
+ 2

n−1∑
i=1

n∑
l

αiαlβiβl, (49)
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where l > i . In this case, the PDF of the energy release at a given orientation can be determined by
combining (49) and (45) and yields

G E(δα, φ, xc)=

∫ δ

0

∫ δ

z

∫ φ+π−sin−1(z/r)

φ+sin−1(z/r)
[β1(θ, r, z)2 . . . βn(θ, r, z)2] dθ dr dz

α
2
1
...

α2
n


+ 2

∫ δ

0

∫ δ

z

∫ φ+π−sin−1(z/r)

φ+sin−1(z/r)
[β1β2(θ, r, z) . . . βn−1βn(θ, r, z)] dθ dr dz

 α1α2
...

αn−1αn

 . (50)

Equation (50) involves a summation of products of deterministic coefficients multiplied by random
variables and yields the energy release rate for a given probable fracture surface. Having samples of
the random variables leads to the determination of the energy release rate PDF for any direction of
propagation and length since the deterministic coefficients depend only on φ, δα, and xc.

Assuming now that the micromodulus function is of the form of (31), the coefficient c of (15) can be
taken as a random process such as

c(r, ϑ)= c̃0+ ĉ(r, ϑ), (51)

where c̃0 is the mean value.
The stiffness density of (33) and (34) involve integration over the horizon δ. Thus, the random process

can be decomposed by the Karhunen–Loève expansion in a way extensively described in stochastic finite
element methods (SFEM) in [Ghanem and Spanos 1991]. In this study, the Monte Carlo simulation
(MCS) technique is pursued for the determination of the energy PDF, and thus, the random process
shown in (51) is sampled for the construction of the stiffness density. Due to the computational intensity
of MCS, only the static case with initial fracture inside the domain is addressed in this study. In this
context, (47), which involves the inversion of a random matrix, is obtained using the inverse Neumann
expansion used in SFEM [Ghanem and Spanos 1991]. This yields

a11

d11
...

a21

d21
...


=

Ne∑
j=0



∑

i

K̃Gi

∑
j

K̃ Qi∑
j

QT
j 0


−1

∑
i

KGi

∑
j

K Qi∑
j

QT
j 0




j 
∑

i

K̃Gi

∑
j

K̃ Qi∑
j

QT
j 0


−1 [

b
0

]
, (52)

where Ne is the order of the Neumann expansion, K̃G and K̃ Q are the average stiffness densities corre-
sponding to the mean value of the random field, and KG and K Q are the stiffness densities corresponding
to the zero mean random field. Note that a quite large sample of the coefficients must be calculated by
pertinent MC simulations in order for the PDF of the energy release rate to be available for all lengths
and angles of the crack propagation.

6.3. Monte Carlo application. For the example shown in Figure 9 with initial crack of 2 mm in the
middle of the domain, δα = 1 mm, the PDF of the energy release rate at angles φ = π and φ = 3π/4 is
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Initial crack

5cm

5cm

Figure 9. A 5 cm× 5 cm plate under tension, including an initial crack in the center.

calculated by extensive MC simulations of (50) and (52). White Gaussian noise is used for the random
process describing the micromodulus coefficient c with mean value obtained from (16) for bulk modulus
k = 1 N/cm2. The horizon is discretized using 100 points, and thus 100 identical independent Gaussian
random variables are considered. The inversion of the random matrix is obtained by a fourth-order
Neumann expansion and the loading is perturbed by an additional white Gaussian noise with standard
deviation 20% of the mean value which is taken to be equal to 1 N/cm2.

After a large enough sample of the coefficients is obtained by pertinent MCS of (52), the probability
density function of fracture in omnidirectional propagation orientations can be calculated by the deter-
ministic integration of the coefficients of (50) for any angle φ, propagation length δα, and initial crack
tip point xc. Figure 10 shows one realization of the random micromodulus coefficient with variance 20%
of the mean value shown in (51). Figure 11 summarizes the results for the two approaches. The state
of the art mesh-free numerical method is considered the method described in [Silling and Askari 2005].

Figure 10. Random micromodulus coefficient spanning the horizon from 0 to δ.
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Figure 11. The PDF of the energy release rate for the left crack tip point estimated by
6000 Monte Carlo simulations.

The grid used for the mesh-free numerical method is 1x = 0.01 cm and thus 10201 nodes have been
used. The horizon δ = 51x and the force constant c is sampled from a Gaussian distribution.

The PDFs obtained from 6000 MC simulations using the two methods are in reasonable agreement.
However, the difference of the PDFs shown in Figure 11 is attributed to the fact that the methods do
not produce identical results around the crack tip. Obviously, a finer grid of nodes will produce more
accurate results for the Kansa collocation method. Further, for slightly different cracks inside the element
the results deviate from the ones obtained by closed-form solutions. A possible resolution of this issue
is the refinement of the grid by adding more nodes on the cracked element. However, in this paper,
the introduction of a novel spatial discretization for deterministic/stochastic peridynamic modeling is
the primary concern, and further work is warranted towards the direction of specifically describing the
enrichment efficiency vis a vis the node refinement. In this model, node refinement was not considered
due to the nature and simplicity of the numerical example and due to the fact that the enrichment of the
q basis [Fleming et al. 1997] provided quite accurate results for the specific example. However, for more
elaborate cracks and medium shapes, node refinement is the most convenient option to achieve accuracy
at the expense of additional computation cost.

7. Concluding remarks

In this work the application of peridynamic modeling to stochastic systems incorporating discontinuities
has been considered. A novel approach for the spatial discretization of the integrodifferential equation
arising from peridynamic theory that allows for stochastic extension has been devised. This spatial
discretization has been based on the inverse multiquadric radial basis functions enriched with polynomials
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from the finite element method. Due to this formulation the stochastic problem has been solved in a
manner similar to the stochastic finite element method, with some minor differences arising from the
peridynamic stiffness density formulation. Following this similar path to the finite element method,
the stiffness density of each element surrounded by four nodes has been constructed incorporating the
fracture inside. The discontinuity inside the element has been handled by applying the visibility criterion
and by changing the integration limits in the polar coordinate system. After formulating the stiffness
density of the healthy and cracked elements, the global stiffness density matrix on the collocation points
has been assembled and the system has become readily solvable. Next, the idea that the crack propagates
in such a way that the energy release rate attains its maximum value has been adopted. In this context,
since a continuous approximation has been devised for the displacements inside the domain, the energy
release rate has been calculated progressively around the crack tip. For systems with random material
properties under random excitations the PDF of the energy release rate has been obtained by Monte
Carlo simulation of the requisite Neumann expansion. Further, having the PDF of the energy release
for the area around the crack tip determines whether the crack propagates and in which direction with
respect to the initial crack surface. Furthermore, this formulation has the advantage that the equilibrium
equation is formed in terms of force density and displacement. Thus, there is no need for a double
integration over the discontinuous medium. In the preceding regard, this is the first paper correlating
the peridynamic formulation with reliability of failure. Specifically, stochastic fracture propagation and
stochastic response of systems modeled utilizing the peridynamic formulation has been presented and
results have demonstrated the effectiveness of the proposed approach.

Appendix A: Numerical integration for stiffness determination

For elements that do not include fracture or any kind of discontinuity the integrations of (33) are carried
out by Gaussian quadrature using 2× 2 points. Figure A.1 shows the Gaussian quadrature points.

Integrating the function f (r, θ) on a 2D rectangular domain H = [θ1, θ2]× [r1, r2] yields∫ r2

r1

∫ θ2

θ1

f (r, θ) dr dθ =
r2− r1

2
θ2− θ1

2

∫ 1

−1

∫ 1

−1
f
(

r2− r1

2
r̂ +

r2+ r1

2
,
θ2− θ1

2
θ̂ +

θ2+ θ1

2

)
dr̂ d θ̂ .

(A.1)

(−1/   3,1/   3)

(−1,1)

(−1,−1)

(1,1)

(1,−1)

(1/   3,1/   3)

(−1/   3,−1/   3) (1/   3,−1/   3)
Gauss
Points

Figure A.1. Gaussian quadrature of 2× 2 points of weight 1.
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Applying Gaussian quadrature of 2× 2 points for the numerical integration of (A.1) yields∫ r2

r1

∫ θ2

θ1

f (r, θ) dr dθ =
r2− r1

2
θ2− θ1

2

2∑
i, j=1

(
r2− r1

2
r̂i +

r2+ r1

2
,
θ2− θ1

2
θ̂i +

θ2+ θ1

2

)
. (A.2)

Next, for elements including fracture and discontinuity, numerical integration on a refined grid of points
is needed. Figure A.2 shows an example of a refined grid.

The accurate determination of the fracture contour in polar coordinates is considered herein; specifi-
cally the determination of the curve AB shown in Figure A.2. For the purposes of elucidation consider
the initial crack shown in Figure A.3. Next, the position of the initial crack is known, therefore the
vectors shown in Figure A.3 can be obtained; z1 and z2 are the vectors from the node of interest to the
crack tips and u is the vector aligned with the crack with orientation from one crack tip to the other. The

Coarse grid for numerical integration

Fine grid for numerical integration

Contour of fracture

A

0

r

B

δ

2π θ

Figure A.2. Refined discretization for the numerical evaluation of the stiffness density
of a fractured element.

T T
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Figure A.3. Determination of the fractured contour of a cracked element.
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tangent of the angle of a vector z shown in Figure A.3 is given by

tan θ(a)=
l

|z1| cos θ1+α|u|
, (A.3)

where α is a coefficient such that α ∈ [0, 1]. Next, the partial derivative of (A.3) with respect to the
coefficient α yields

dθ
dα

1
cos2 θ(α)

=−
l|u|

(|z1| cos θ1+α|u|)2
. (A.4)

Carrying out the calculations yields a simplified expression for (A.4):

dθ =−
l|u|

(|z1| cos θ1+α|u|)2+ l2 dα. (A.5)

Obviously, as the vector αEu approaches the crack tip on the right, the rate of the angle is changing. Thus,
the curve AB shown in Figure A.2 is obtained numerically by fixing the dα value. Specifically, for a
certain dα value, α j is defined as

α j = j · dα, (A.6)

where j = 1, . . . , 1/dα and thus dθ j is defined as

dθ j =−
l|u|

(|z1| cos θ1+α j |u|)2+ l2 dα. (A.7)

Numerically integrating (A.7) by fixing dα yields

θ j = θ1−
∑

j

l|u|
(|z1| cos θ1+α j |u|)2+ l2 dα. (A.8)

Next, the corresponding length r j to the angle θ j shown in Figure A.2 yields

r j = |z1+α j u|. (A.9)

In this way the curve AB is obtained as points θ j and r j for α j ∈ [0, 1], and thus the contour of integration
is determined for the numerical integration. For purposes of elucidation, points A and B in Figure A.2
correspond to the crack tips z2 and z1 shown in Figure A.3. In the same way (34) is numerically eval-
uated for elements including cracks. However, for healthy elements, polynomial functions q, and the
micromodulus function shown in (31), the integration has a closed-form solution. Specifically, consider
the first four linear functions of FEM as the q functions

q1(x)= 1, q2(x)= x, q3(x)= y, q4(x)= xy. (A.10)

Combining (29), (34), and (A.10) yields

K Q = c
∫ δ

0

[∫ 2π

0

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

] [
0 r cos θ r sin θ (x + r cos θ)(y+ r sin θ)− xy

]
dθ
]

dr,

expanding which yields
K Q = c

[
K Q1 K Q2 K Q3 K Q4

]
, (A.11)
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where

K Q1 =

[
0 0
0 0

]
, K Q2 =

cos2 θ sin θ
3

+
2 sin θ

3
−

cos3 θ

3

−
cos3 θ

3
sin3 θ

3


∣∣∣∣∣∣∣
2π

0

r2

2

∣∣∣∣δ
0
,

K Q3 =

−cos3 θ

3
sin3 θ

3
sin3 θ

3
cos θ sin2 θ

3
−

2 cos θ
3


∣∣∣∣∣∣∣
2π

0

r2

2

∣∣∣∣δ
0
,

(A.12)

and finally

K Q4=

 −
cos4 θ

4
−

sin2 θ cos3 θ

4
+
θ

8
+

sin 2θ
16

−
sin2 θ cos3 θ

4
+
θ

8
+

sin 2θ
16

sin4 θ

4


∣∣∣∣∣∣∣
2π

0

r3

3

∣∣∣∣δ
0
+x K Q3+yK Q2. (A.13)

Appendix B: Kansa collocation method

The Kansa collocation method in 1D, for a set of N = L/1x + 1 equally spaced grid points of distance
1x , yields the equations in the following form:



u(0)
u(1x)
u(21x)

...

0
0


=



g1(0) g1(0) . . . gN (0) q0(0) . . .

g1(1x) g1(1x) . . . gN (1x) q0(1x) . . .

g1(21x) g1(21x) . . . gN (21x) q0(21x) . . .
...

...
...

...
...

...

q1(0) q1(1x) q1(21x) . . . 0 0
...

...
...

... 0 0





a11

a12
...

a1N

a21
...


. (B.1)

The last M rows represent the regularization equations of the coefficients which state that

N∑
k=1

q j (xk) d2k = 0 and
N∑

k=1

q j (xk) d2k = 0 for j = 1, . . . ,M, (B.2)

where M is the number of the additional basis functions q .
Assuming that the displacements of a point in the domain of Figure B.1 can be approximated by the

adjacent nodes, (26) yields the displacement for a point inside the upper right square:

u(x i + r)=
i+3∑
k=i

a1k gk(x i + r)+
M∑

j=1

a2 j q j (x i + r),

v(x i + r)=
i+3∑
k=i

d1k gk(x i + r)+
M∑

j=1

d2 j q j (x i + r).

(B.3)
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i+1
node i

i+2i+3i+4

i+5

i+6 i+7 i+8

horizon δ

Figure B.1. The horizon of one node over four elements, the stiffness density of the
node i is calculated through (33) and (34).

Figure B.2. IMQ basis function of the corresponding node on a four-node element, with
and without a crack inside the horizon.

Figure B.2 shows the IMQ function for the same node, both for a healthy and a cracked four-node element.
It can be seen that the visibility criterion is applied on the cracked element since the crack disrupts the
horizon of the node.

Appendix C: Linearized pairwise force function

The linearized pairwise force function as introduced in [Silling 2000] imposes an implicit assumption
of small rigid body rotations. Specifically, consider Equation (12), which defines the stretch of a bond.
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Figure C.1. One bond before and after deformation.

Carrying out the calculations yields

s =
∣∣∣∣1+ ηξ

∣∣∣∣− 1. (C.1)

Next, using complex notation for the vectors yields

η = |η|(cos θη+ i sin θη), ξ = |ξ |(cos θξ + i sin θξ ), (C.2)

where θη and θξ are the angles of the vectors with respect to the orthogonal reference system. Figure C.1
helps elucidate the concept. Next, combining both parts of (C.2) yields

η

ξ
=
|η|

|ξ |

(
cos(θη− θξ )+ i sin(θη− θξ )

)
. (C.3)

Obviously the angles of the vectors determine if the vector division yields a vector or a scalar. For the
case of

θη ' θξ , (C.4)

(C.3) yields
η

ξ
'
|η|

|ξ |
, (C.5)

and (C.1) becomes

s '
|η|

|ξ |
. (C.6)

Equation (C.6) implicitly assumes that the deformation of the bond is collinear with the bond’s initial
orientation or that the bond exhibits small rotation which can be neglected.
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