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POSTBUCKLING AND DELAMINATION GROWTH FOR DELAMINATED
PIEZOELECTRIC ELASTOPLASTIC LAMINATED BEAMS UNDER

HYGROTHERMAL CONDITIONS

YING-LI LI, YI-MING FU AND HONG-LIANG DAI

The postbuckling and delamination growth for delaminated piezoelectric elastoplastic laminated beams
under hygrothermal conditions are investigated. By considering hygrothermal environments, transverse
shear deformation, geometrical nonlinearity and piezoelectric effect, the incremental nonlinear equilib-
rium equations of the piezoelectric elastoplastic laminated beams with delamination are obtained. The
finite difference method and iterative method are adopted to solve the equations. Based on these, the
delamination growth for the piezoelectric elastoplastic laminated beams is studied using J-integral the-
ory. In the numerical examples, the effects of hygrothermal environments, transverse shear deformation,
geometrical nonlinearity and piezoelectricity on the postbuckling behavior and delamination growth for
the delaminated piezoelectric elastoplastic laminated beams are discussed in detail.

1. Introduction

Piezoelectric laminated structures have great application potential in mechanical, aerospace, nuclear,
reactor, and civil engineering, and in many modern industries due to their excellent properties. The
challenge is that, during the manufacturing and service process, damage can arise that weakens the
mechanical properties and reduce significantly the service life of the structure. Delamination is the main
form of damage in laminated structures, and its growth has a detrimental influence on the behavior of the
structure. The concentration of load-induced stress along the delamination front an cause delamination
growth and ultimately lead to structural failure. At the same time, as structures can still bear loads after
exceeding their yield limits, it is uneconomical to restrict structural design to the elastic regime. To make
the best of the material, investigation should be extended to the mechanical properties in plastic stage.

Temperature and humidity variations cause hygrothermal stress, which also influences the performance
of the piezoelectric composites. Consequently, it is important to analyze the postbuckling and delamina-
tion growth of delaminated piezoelectric elastoplastic beams by considering the effects of the hygrother-
mal conditions, transverse shear deformation, geometric nonlinearity, and the piezoelectric effect.

We mention some relevant studies. Davidson et al. [2000] analyzed energy release rates and stress
intensity factors for delaminated composite laminates. Applying the finite element method, Nilsson et al.
[2001] researched delamination buckling and growth in a slender composite panel. Park and Sankar
[2002] and Wang and Qiao [2004] computed energy release rates of delaminated plates with the first-order
shear deformable theory. A boundary layer theory of shell buckling was extended to the case of shear
deformable laminated cylindrical panels under hygrothermal environments and a singular perturbation
technique was employed to determine the buckling loads and postbuckling equilibrium paths in [Shen
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2002; Shen 2001]. Tafreshi [2006] used the virtual crack closure technique to find the distribution of
the local strain energy release rate along the delamination front. Münch and Ousset [2002] developed a
numerical method to simulate delamination growth in layered composite structures within the framework
of fracture mechanics in large displacement.

Much research has been conducted in elastoplastic mechanics. But most existing elastoplastic models
are based on Hill’s yield criterion, which suppose the material yield is independent of the spherical stress
tensor. Actually, under the acting of the spherical stress tensor, the structures will be distorted due to the
different elastic constants in each principal direction. According to the von Mises distortion energy yield
criteria, the materials will get into the plastic stage if the distortion energy reaches a certain value, and
the materials have apparent Bauschinger effect under the action of the stresses. Hence, Hill’s hypothesis
is inconsistent with the practical situation. Against the flaw mentioned above, Yuan and Zheng [1990]
established a new yield criterion that relate to the spherical stress tensor, and obtained the associated
plastic flow law for the elastoplastic material. Pi and Bradford [2003] investigated elastic and elasto-
plastic flexural–torsional buckling and postbuckling behavior of arches that are subjected to a central
concentrated load by using the rational finite element model.

In order to analysis the growth of the delamination, we have to get a clue of the stress field along the
delamination front. Rice [1968] proposed the J integral theory in 1968 and used an integral to describe
the intensity of the stress and strain field in the vicinity of the crack tip of elastoplastic structure. Yang et al.
[2002] studied the theory of J integral near crack tip in the plate of linear-elastic orthotropic composite
material by using a complex function method. Simha et al. [2008] discussed the crack driving force in
elastic–plastic materials, with particular emphasis on incremental plasticity, by using the configurational
forces approach and standard constitutive models for finite strain. Based on the law of conservation of
energy, the generalized piezoelectric J integral was defined in [Pak and Herrmann 1986; Pak 1990; Zuo
and Sih 2000], including piezoelectric effects and was proved to be unaffected by the choice of a contour.
However, up to now, the analysis of delaminated piezoelectric elastoplastic laminated beams is still open.

This paper aims to study the postbuckling behavior and energy release rate of the delaminated piezo-
electric elastoplastic laminated beams and investigate the effects of hygrothermal conditions, transverse
shear deformation, geometric nonlinearity and piezoelectricity on their behavior. The incremental theory
of elastoplastic is employed to derive the governing equations. The numerical solutions are obtained
by using the finite difference method and the iteration method. Numerical simulations demonstrate the
effects of the hygrothermal conditions, yield stress, piezoelectricity, slenderness ratio, delamination size,
and delamination length on postbuckling behavior and energy release rate.

2. Elastoplastic constitutive models of mixed hardening orthotropic materials

In the case of the elastoplastic deformation, we make these assumptions:

(1) Spherical stress tensors produce plastic deformations, and plastic strains are compressible.

(2) Uniform dilatation produced by active stresses will not influence the plastic deformation.

(3) The yield surface moves and expands along with plastic deformation.

(4) The dimensionless yield criterion of orthotropic material is isomorphic with the von Mises criterion
of isotropic material.



POSTBUCKLING AND DELAMINATION FOR PIEZOELECTRIC ELASTOPLASTIC LAMINATED BEAMS 87

Based on there assumptions, Tian et al. [2009] defined the dimensionless yield function as
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The constant K , with dimensions of stress, can be determined by experiments in the simple stress state;
σi j and 6i j are the stress tensor and yield stress tensor components, respectively, along each direction
of orthotropic materials; bi j is the back stress tensor, which represents the transition of the center of the
yield surface, and reflects the kinematics hardening.
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the mixed hardening yield function can be given as

Fp = f (σ̃
′

i j )− [σ̃ (ε̄
p)]2, (4)

where σ̃ is the effective stress defined in (3), which is the function of effective plastic strain ε̄ p, and can
be acquired by the simple extension experimental curves.

Assuming a non-associated flow rule, the plastic part of the strain tensor increment dε p
i j is proportional

to the gradient of the stress function Fp, commonly named plastic potential function

dε p
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∂Fp
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= λp

∂ f
∂σi j

, (5)

where λp is a non-negative scalar called plastic multiplier or consistency parameter.
Substituting (1) and (2) into (4), the following formulas can be obtained
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Define the effective plastic strain increment as
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According to (7) and (8), we obtain
d ε̄ p
= 2σ̃ λp. (9)

The plastic strain can be decomposed as

dε p
i j = dε p(I)

i j + dε p(II)
i j , (10)

where dε p(I)
i j , the incremental plastic strain of isotropic hardening, and dε p(II)

i j , the incremental plastic
strain of kinematics hardening, are defined by

dε p(I)
i j = adε p

i j , dε p(II)
i j = (1− a) dε p

i j . (11)

Here a is the mixed hardening parameter within span (−1, 1); the value a = 1 denotes pure isotropic
hardening, and a = 0 denotes pure kinematic hardening. When a is negative, the yield surface shrinks.
Other values denote mixed hardening. The incremental back stress tensor can be defined as a linear
function of incremental plastic strain tensor of kinematics hardening:

dbi j = cdε p(II)
i j , (12)

where c is the ratio constant. According to (5) and (11), the back stress increment can be expressed as

dbi j = c(1− a)λp
∂ f
∂σi j

. (13)

The total strain increment is decomposed into elastic and plastic strain increments:

dεi j = dεe
i j + dε p

i j . (14)

The elastic constitutive equation is
dσi j = Ce

i jkldε
e
kl; (15)

using (14) and (15), one gets
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)
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According to the consistency condition, and letting H ′ = dσ̃ /d ε̄ p, from (4), we have
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Substituting (5), (9), (13) and (16) into this, we obtain

λp =
X i j dεi j

S
, (18)
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Substituting (18) into (16), the incremental elastoplastic constitutive equation can be written as

dσi j = (Ce
i jkl −C p

i jkl) dεkl, (20)

where C p
i jkl = X i j Xkl/S. Therefore, the incremental elastoplastic constitutive equation of orthotropic

materials is
dσi j = (Ce

i jkl −χC p
i jkl) dεkl . (21)

If Fp = 0 and ∂ f
∂σi j

dσi j > 0, then χ = 1. If Fp < 0 or ∂ f
∂σi j

dσi j ≤ 0, then χ = 0.

3. Fundamental equations of delaminated piezoelectric laminated beams
under hygrothermal conditions

Consider a delaminated piezoelectric laminated beam under an axial load P depicted in Figure 1. The
delaminated piezoelectric laminated beam is composed of a fiber-reinforced laminated beam and the up-
per and lower piezoelectric layers. Take the piezoelectric layers as elastic layers and the fiber-reinforced
laminates to be elastoplastic. The global coordinate system oxz is shown in Figure 1 and the reference
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plane z = 0 is located at the midsurface of the undeformed laminated beams. The beam with throughout
width delamination has length L , thickness he and delaminated length L(2). L(1) is the distance from
the left end of the delamination to that of the beam. In order to investigate the delamination growth,
the delaminated laminated beam is divided into four regions which are respectively denoted as �(i)e

(i = 1, 2, 3, 4). Here the indices 2 and 3 represent the delaminated segments, while 1 and 4 represent
the intact segments. The length of each region is defined as L(i), and the coordinate x for each region
is measured from the left end. The thickness of regions 2 and 3 are h(2)e and h(3)e respectively, and
obviously h(2)e + h(3)e = he. The piezoelectric layers with thickness h p are perfectly bonded on the
upper and lower surfaces of the laminated beam. The corresponding piezoelectric layers bonded on the
regions �(i)e are denoted by �(i)p. Then the whole piezoelectric laminated beam is divided into four
regions denoted by �(i), and �(i) = �(i)e +�(i)p. The coordinate system of every region ox (i)z(i) is
located at the midsurface of the related region. The thickness of the whole piezoelectric laminated beams
is h = he

+ 2h p.
Supposing ū(i), w̄(i) denote the displacements of an arbitrary point in region �(i) throughout the x ,

z direction, respectively, and φ(i) denotes the angle the section rotate along the neutral axis, then the
displacement components are given by

ū(i)(x, z)= u(i)(x)+ zφ(i)(x),

w̄(i)(x, z)= w(i)(x)+ w̃(i)(x),
(22)

where u(i), w(i) are displacement components of the points on the midsurface. w̃(i) denotes the initial
deflection and x , z is the coordinate of corresponding region.

If that ε̄(i)x , ε̄
(i)
xz are the strains of an arbitrary point in region �(i), the nonlinear strain-displacement

relations can be written as

ε̄(i)x = ε
(i)
x + zκ(i)x , ε̄(i)zx = ε

(i)
zx , (23)

where ε(i)x , ε(i)xz are the strains of the corresponding points on the midsurface, and κ(i)x is the curvature,
and
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,x (24)

where the comma denotes the derivative with respect to the coordinate.
When the load acting on the beam varies, the displacement and strains of an arbitrary point of the

beam would alter accordingly. Then, the strain increments of the midsurface are

dε(i)x = du(i),x +
1
2 dw(i)2,x + (w

(i)
,x + w̃

(i)
,x ) dw(i),x , dε(i)zx = dw(i),x + dφ(i), dκ(i)x = dφ(i),x . (25)

The incremental elastoplastic stress-strain relations of a single layer for the fiber-reinforced laminated
beam in the local coordinate can be obtained as{
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dτ (i)kzx

}
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15

Ce
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}
. (26)
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Under hygrothermal conditions, the incremental elastoplastic stress-strain relations of the kth layer
for the fiber-reinforced laminated beam are{

dσ (i)kx

dτ (i)kzx

}
=

(
Qk

11 Qk
15

Qk
15 Qk

55

){
d ε̄(i)kx −ϑ
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x dc
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where ϑk
x = ϑ11 cos2 θk +ϑ22 sin2 θk , and γ k

x = γ11 cos2 θk + γ22 sin2 θk . dσ (i)kx , dτ (i)kzx denote the normal
stress and shear stress increments of any points in the laminated beam, respectively, and Qk

i j denotes the
stiffness factor of the fiber-reinforced materials in the global coordinate. Denote θk as the playing angle
of the kth layer, ϑ11, ϑ22 as the thermal expansion coefficients in the longitudinal and lateral direction of
the orthotropic material, and γ11, γ22 as the humidity expansion coefficients. dT is the variation of the
temperature and dc is the wet variation, which is defined as the ratio of the incremental mass d M after
moisture absorption to the dry mass M .

According to the (25) and (27), the incremental membrane stress resultants d N (i)L , the shear stress
resultants d Q(i)L and stress couples d M (i)L of the fiber-reinforced laminated beam can be written asd N (i)L
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=
A(i)L1 A(i)L2 B(i)L1

A(i)L2 A(i)L3 B(i)L2
B(i)L1 B(i)L2 D(i)L

1




dε(i)x

dε(i)zx

dκ(i)x

−


d N (i)
T

d Q(i)
T

d M (i)
T

 , (28)

where

d N (i)
T =

∫
�(i)e

Qk
11(ϑ

k
x dT + γ k

x dc) dz, A(i)e1 =

∫
�(i)e

Qk
11dz, B(i)L1 =

∫
�(i)e

Qk
11z dz,

d Q(i)
T =

∫
�(i)e

ηQk
15(ϑ

k
x dT + γ k

x dc) dz, A(i)L2 =

∫
�(i)e

Qk
15dz, B(i)L2 =

∫
�(i)e

Qk
15z dz,

d M (i)
T =

∫
�(i)e

Qk
11(ϑ

k
x dT + γ k

x dc)z dz, A(i)L3 =

∫
�(i)e

ηQk
55dz, D(i)L

1 =

∫
�(i)e

Qk
11z2dz,

where the last term of (28) is the stress resultants and couples resulting from the hygrothermal conditions.
η denotes the shear stress modified coefficient, which is assumed as η = 5/6. As only cross-ply beams
are considered in this paper, Qk

15 = 0 and A(i)e2 = B(i)e2 = 0.
The elastic constitutive relations of orthotropic piezoelectric layers can be described as{

σ
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D(i)
=
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E (i)x
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}
= e ·
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ε̄
(i)
x

ε̄
(i)
xz

}
+ t · E(i), (30)

where σ (i)px and τ (i)pxz are the stress components of the piezoelectric layer, ς is the heat stress coefficient,
D(i)

x and D(i)
z are the electric displacement components, E (i)x and E (i)z are the electric-field intensity

components, Q p
i j is the elastic constant, ei j is the piezoelectric stress constant, and ti j are dielectric

constants.
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It is assumed that only the electric field component E (i)z throughout the thickness direction is applied
on the piezoelectric layers. Denoting V (i)

T , V (i)
B and E (i)T , E (i)B as the electric voltages and the electric-field

intensity on the upper and down surface, respectively, then the following relations are obtained

E (i)T = V (i)
T /h p, E (i)B = V (i)

B /h p. (31)

According to (29) and (23), the membrane stress resultants N (i)p, shear stress resultants Q(i)p and stress
couples M (i)p of the piezoelectric layers can be written asN (i)p
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−
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e

0
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e

 , (32)

where the last term is the change of stress resultants and stress couples after applying voltages on piezo-
electric layer, and
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From (27) and (32), the membrane stress resultants N (i), shear stress resultants Q(i) and stress couples
M (i) of piezoelectric laminated beam can be written asN (i)
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where
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According to the classical nonlinear theory of laminated plates, and in view of the effect of the shear
stress resultants on the membrane stress resultants, the nonlinear equilibrium equations of the laminated
beams with initial deflection are acquired as

N (i)
,x − (Q

(i)φ(i)),x = 0, Q(i)
,x + [N

(i)(w(i),x + w̃
(i)
,x )],x = 0, Q(i)

−M (i)
,x = 0. (36)

When the axial load acting on the piezoelectric laminated beam increases by a small quantity d P , the
incremental nonlinear equilibrium equations can be obtained as
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,x − Q(i)

,x dφ(i)− d Q(i)
,x φ
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− d Q(i)
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,x (w
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By introducing the dimensionless parameters
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, λi =

L(i)

h
, H =

L
h
,

Ā(i)1 =
A(i)1

K h
, Ā(i)3 =

A(i)3

K h
, B̄(i)1 =

B(i)1

K h2 , D̄(i)
1 =

D(i)
1

K h3 ,

N̄ (i)
b =

N (i)
b

K h
, M̄ (i)

b =
M (i)

b

K h2 , P̄ =
P

K h
, W̃ (i)

=
w̃(i)

h

and substituting them, together with (27) and (34), into (37), we obtain the dimensionless nonlinear
equilibrium equations of the delaminated piezoelectric laminated beam with initial deflection under the
action of the axial load P . They read as follows, where i = 1, 2, 3, 4:

Ā(i)1

[
1
βi

dU (i)
,ξξ +

1
λ2

i
(W (i)

,ξ + W̃ (i)
,ξ ) dW (i)

,ξξ +
1
λ2

i
(W (i)

,ξξ + W̃ (i)
,ξξ ) dW (i)

,ξ +
1
λ2

i
dW (i)

,ξξdW (i)
,ξ

]

+
B̄(i)1

λi
dϕ(i),ξξ − Ā(i)3 ϕ

(i)
,ξ

(
1
λi

dW (i)
,ξ + dϕ(i)

)
− Ā(i)3 ϕ

(i)
(

1
λi

dW (i)
,ξξ + dϕ(i),ξ

)
− Ā(i)3 dϕ(i),ξ

(
1
λi

dW (i)
,ξ + dϕ(i)

)
− Ā(i)3 dϕ(i)

(
1
λi

dW (i)
,ξξ + dϕ(i),ξ

)
− Q̄(i)dϕ(i),ξ − Q̄(i)

,ξ dϕ(i) = 0,

Ā(i)3

(
1
λi

dW (i)
,ξ + dϕ(i)

)
−

[
B̄(i)1

[
1
λiβi

dU (i)
,ξξ +

1
λ3

i

(W (i)
,ξ + W̃ (i)

,ξ ) dW (i)
,ξξ

+
1
λ3

i

(W (i)
,ξξ + W̃ (i)

,ξξ )dW (i)
,ξ +

1
λ3

i

dW (i)
,ξξdW (i)

,ξ

]
+

D̄(i)
1

λ2
i

dϕ(i),ξξ

]
= 0, (38)
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Ā(i)3

(
1
λi

dW (i)
,ξξ + dϕ(i),ξ

)
+

1
λi

N̄ (i)dW (i)
,ξξ +

1
λi

N̄ (i)
,ξ dW (i)

,ξ

+
1
λi

(
W (i)
,ξξ + W̃ (i)

,ξξ + dW (i)
,ξξ

){
Ā(i)1

[
1
βi

dU (i)
,ξ +

1
λ2

i
(W (i)

,ξ + W̃ (i)
,ξ ) dW (i)

,ξ +
1

2λ2
i

dW (i)2
,ξ

]
+

B̄(i)1

λi
dϕ(i),ξ

}
+

1
λi

(
W (i)
,ξ + W̃ (i)

,ξ + dW (i)
,ξ

){
Ā(i)1

[
1
βi

dU (i)
,ξξ +

1
λ2

i
(W (i)

,ξ + W̃ (i)
,ξ ) dW (i)

,ξξ

+
1
λ2

i
(W (i)

,ξξ + W̃ (i)
,ξξ ) dW (i)

,ξ +
1
λ2

i
dW (i)

,ξξdW (i)
,ξ

]
+

B̄(i)1

λi
dϕ(i),ξξ

}
= 0. (39)

Now we consider the dimensionless boundary conditions, continuity conditions of displacements and
equilibrium conditions of moments and forces of delaminated piezoelectric laminated beams.

Assuming that the both ends of piezoelectric laminated beams are clamped with in-plane movable, the
dimensionless boundary conditions are

dW (1)(0)= 0, d N̄ (1)(0)=−d P̄, dϕ(1)(0)= 0,

dW (4)(1)= 0, d N̄ (4)(1)=−d P̄, dϕ(4)(1)= 0.
(40)

The dimensionless continuity conditions of displacements are

dU (2)(0)= dU (1)(1)−
1−α2

2H
dϕ(1)(1), dU (3)(0)= dU (1)(1)+

1−α3

2H
dϕ(1)(1),

dW (1)(1)= dW (2)(0)= dW (3)(0), dϕ(1)(1)= dϕ(2)(0)= dϕ(3)(0),

dU (2)(1)= dU (4)(0)−
1−α2

2H
dϕ(4)(0), dU (3)(1)= dU (4)(0)+

1−α3

2H
dϕ(4)(0),

dW (4)(0)= dW (2)(1)= dW (3)(1), dϕ(4)(0)= dϕ(2)(1)= dϕ(3)(1).

(41)

The dimensionless equilibrium conditions of moments and forces are

d N̄ (1)(1)= d N̄ (2)(0)+ d N̄ (3)(0), d Q̄(1)(1)= d Q̄(2)(0)+ d Q̄(3)(0),

d M̄ (1)(1)= d M̄ (2)(0)+ d M̄ (3)(0)−
1−α2

2
d N̄ (2)(0)+

1−α3

2
d N̄ (3)(0),

d N̄4(0)= d N̄ (2)(1)+ d N̄ (3)(1), d Q̄4(0)= d Q̄(2)(1)+ d Q̄(3)(1),

d M̄4(0)= d M̄ (2)(1)+ d M̄ (3)(1)−
1−α2

2
d N̄ (2)(1)+

1−α3

2
d N̄ (3)(1).

(42)

4. Analysis of energy release rate along delamination front

In order to analyze the fatigue growth of the delamination, the stress field near the delamination front
must be known. In fact, it is quite a tough task to analyze the stress of the delamination front due to its
singularity. However, the energy release rate, which indicates intensity of stress fields near delamination
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Figure 2. Left: the path of the J integral along the delamination front. Right: a rectan-
gular path of the J integral along the delamination front.

front, can be determined. As a result, most researches of delamination growth were carried out by
investigating the energy release rate. Rice [1968] proposed the J integral to describe the intensity of
the stress and strain field in the vicinity of the crack tip for the elastoplastic structure. The J integral
denotes the energy released when the crack tip propagates at a unit distance in the direction along the
crack surface, that is, the energy release rate of an elastoplastic crack. In the case of linear elastic, the J
integral is equal to the energy release rate G.

Rice [1968] defined the J integral of a two-dimensional crack as

J =
∫
0

(
Udz− Ti

∂ui

∂x
ds
)
, (43)

where U =
∫ εi j

0 σi j dεi j is the strain energy density, Ti = σi j n j is the stress tensor along the length
element ds, ui is the displacement vector, En is the unit external normal vector, and 0 is an arbitrary
contour surrounding the crack tip as shown in Figure 2, left. The counter-clockwise is supposed as the
positive direction of the arc s.

Based on the law of conservation of energy, the generalized piezoelectric J integral was defined in
[Pak and Herrmann 1986; Pak 1990; Zuo and Sih 2000], including piezoelectric effects and was proved
to be independent of the choice of a contour:

J =
∫
0

(Hnk − Ti ui,k + D j n j Ek) d0, (44)

where H =U − E j D j .
Offsetting the global coordinate system oxz to the right end of the delamination and taking the integral

path surrounding the right end of the delamination as a rectangle as shown in Figure 2, right, then yields
(see [Li et al. 2011])

J1 = JAB + JBC + JC D + JDE + JE F + JFG . (45)

Noting that along the path AB, C E and FG, dx = 0 and for the path BC and E F , dz = 0.
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5. Solution methodology

It is impossible to seek an analytic solution satisfying (38)–(39) and all the conditions (40)–(42). We
therefore employ the finite difference method to discretize the coordinate variable. The considered do-
main of each region is 0 ≤ ξ1, ξ2, ξ3, ξ4 ≤ 1 and each region is divided into M sections. All derivative
terms relative to the space coordinate variable are replaced by difference scheme for the nonlinear equi-
librium equations (38)–(39) and solution-determining conditions (40)–(42). The difference schemes of
all derivative terms in these equations as dU (i)

,ξ , dU (i)
,ξξ , dW (i)

,ξ , dW (i)
,ξξ , dϕ(i),ξ , dϕ(i),ξξ can be easily obtained.

Given that C p
i j in (26) relates to the current stresses and strains, the value of A(i)1 , A(i)3 , B(i)1 , D(i)

1 can not
be obtained by direction integration along the thickness of the beam. Therefore, we discrete C p

i j along the
thickness of the beam, and divide the thickness into n uniform parts. Then by setting zk =−h/2+ kh/n,
the values of A(i)1 , A(i)3 , B(i)1 , D(i)

1 can be obtained by using the compound trapezoid formula. The com-
pound trapezoid formula is also utilized to work out the J integral value, where the partial derivations
of the displacements are approximated by difference schemes.

Then the nonlinear terms of governing equations and corresponding conditions are linearized and can
be written as

(X · Y ) j = (X) j (Y ) jp , (46)

in which (Y )Jp is the value of the former iterative step. For the primary iteration, secondary extrapolation
method is introduced to obtain the value of (Y )Jp , that is

(Y ) jp = A(Y ) j−1+ B(Y ) j−2+C(Y ) j−3. (47)

As for different iterations, the coefficients A, B and C are given by

j= 1 : A = 1, B = 0, C = 0,

j= 2 : A = 2, B=−1, C = 0,

j≥ 3 : A = 3, B=−3, C = 1.

(48)

The cubic nonlinear terms are treated by the same method as the quadratic nonlinearity.

6. Numerical results and discussion

To ensure the accuracy and effectiveness of the present approaches, buckling of the isotropic elastic
delaminated beams is analyzed. Neglecting the initial deflection, hygrothermal effects, piezoelectric
effects and nonlinearity, (38)–(39) degenerates to

Ā(i)1

βi
dU (i)

,ξξ +
B̄(i)1

λi
dϕ(i),ξξ = 0,

Ā(i)3

λi
dW (i)

,ξξ + Ā(i)3 dϕ(i),ξ −
αi P̄cr Ā(i)1

λi
dW (i)

,ξξ = 0,

Ā(i)3

λi
dW (i)

,ξ + Ā(i)3 dϕ(i)−
B̄(i)1

βiλi
dU (i)

,ξξ −
D̄(i)

1

λ2
i

dϕ(i),ξξ = 0 (i = 1, 2, 3, 4),

(49)
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Geometric parameters
β2 = 0.2 β2 = 0.3 β2 = 0.5 β2 = 0.6 β2 = 0.8

[Li and Zhou 2000] 0.63758 0.61012 0.43127 0.33275 0.12437
present 0.64312 0.62135 0.44805 0.34107 0.13841

Table 1. Values of P̄cr for different delaminated lengths: current method compared with
[Li and Zhou 2000].

where P̄cr is the critical load of the isotropic delaminated beam. By (49), in conjunction with the condi-
tions (40)–(42), the critical buckling load can be obtained.

Table 1 shows the critical loads of delaminated isotropic beams obtained with the present approach
and compares them with those in [Li and Zhou 2000], the material parameters and geometric parameters
being the same. The close agreement observed lends credibility to the present method.

The constant K in (1) can be determined by a simple tension test, and then 611(= K ) can be deter-
mined. In the following numerical examples, set σ̃ (ε̄ p)=611+611(ε̄

p)0.51, a = 0.6 and c = 2K/3.
Let the dimensionless initial deflections be

W̃ (i)
=

W̃0

βi
sin ξπ, (50)

where W̃0 is the amplitude of the initial deflection of the beam without delamination.
If there is no specific explanation, in the following numerical examples we select PZT-5A as the

piezoelectric layers and the corresponding material parameters are EL = ET = 61 GPa, GLT = 22.6 GPa,
GL Z = GT Z = 21.1 GPa, υLT = 0.35, e31 = 7.209 C/m2, VT = VB . The material parameters of the
laminated beam are adopted as EL = 181.0 GPa, ET = 10.3 GPa, GLT = GL Z = 7.17 GPa, GT Z =

3.87 GPa, υLT = 0.28, 611 = 500 MPa, 655 = 200 MPa, ϑ11 = 6.1×10−6 K−1, ϑ22 = 30.3×10−6 K−1,
γ11 = 0, γ22 = 0.6× 10−6. For the sake of simplification, in present study, both ambient temperature
and moisture are assumed to have a uniform distribution and leave out the hygrothermal effects of the
piezoelectric layers. The material properties are assumed to be independent of temperature and moisture.
The slenderness ratio of the beams is H = 10 and all layers have same thickness. The stacking sequences
of the fiber-reinforced beam are [0◦/90◦/0◦]10. To simplify, only the postbuckling and delamination
growth of piezoelectric elastoplastic laminated beams with symmetrical delamination are investigated in
the numerical examples.

Analysis of postbuckling for delaminated piezoelectric elastoplastic laminated beams under hygrother-
mal conditions. In the calculation examples, the influences of the yield stress, delamination sizes and
depths, hygrothermal conditions and piezoelectric effects on the postbuckling of delaminated piezoelec-
tric elastoplastic laminated beams are discussed respectively. When analyze the postbuckling problem,
we set W̃0 = 0.1. In the following figures, P̄/P̄∗cr is the ratio of the dimensionless axial load to the
dimensionless critical load of the beam without delamination, and W (3)

0 is the maximum dimensionless
deflection of region 3.

Figure 3, left, shows the comparison of postbuckling behavior between delaminated piezoelectric
elastic and elastoplastic laminated beams, when α2 = 0.4, β2 = 0.5 and V =1T =1c = 0. It can be
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Figure 3. Left: comparison of postbuckling behavior between delaminated elastic and
elastoplastic laminated beams. Right: Effect of yield stress on postbuckling behavior of
delaminated piezoelectric elastoplastic laminated beams.

seen that the postbuckling curve of delaminated elastoplastic beams is quite different from the elastic
beams. There exists a maximum in the elastoplastic postbuckling curve, which means that when the axial
load surpasses the load carrying capacity, the deflection of the beams would increase rapidly.

For delaminated piezoelectric elastoplastic laminated beams with different slenderness ratio and yield
stress, the variable curves of dimensionless load with the largest deflection of region 3 are presented in
Figure 3, right, with α2 = 0.4, β2 = 0.5 and V = 1T = 1c = 0. It is illustrated that the larger the
slenderness ratio is, the more easily the delaminated piezoelectric elastoplastic laminated beams would
yield, and the lower the load carrying capacity is. Note that when the yield stress of the fiber-reinforced
material is less, the load carrying capacity of the delaminated piezoelectric elastoplastic beams is reduced.

Setting β2 = 0.5 and V = 0, the effects of hygrothermal condition and delamination depths on the post-
buckling curves of the delaminated piezoelectric elastoplastic laminated beams are depicted in Figure 4,
left. As 1T is much larger than 1c in practice, we take 1T = 0 ∼ 100◦ C and 1c = 0% ∼ 1%.
Since magnitude of ϑk

x , γ
k
x are of the same order and the variation of humidity 1c is quite limited, so the

humidity has little impact on the postbuckling curve and temperature is the main influencing factor. From
the figure we can see that, with the same load, the increase of temperature decreases the load carrying
capacity. That is because the increase of temperature is equivalent to an axial pressure, which reduces
the stiffness of the beam. Under the same load, the beam with hygrothermal effects would yield a larger
deflection than the beam in the thermostatic environments. In addition, the deeper the delamination is,
the smaller the load carrying capacity is.

Under the action of the three types of electric load, the effects of delamination sizes on the postbuckling
curves of the delaminated piezoelectric elastoplastic laminated beams with α2= 0.4 are shown in Figure 4,
right. The dimensionless control voltages are taken as V = e31VT /K h = 0.1, 0 and −0.1, respectively,
and the hygrothermal effects are not considered, namely, 1T = 1c = 0. It is indicated that, with the
same geometric parameters and external load, acting a positive voltage on the beams is equivalent to an
axial load, which leads to a larger deflection of the beams. It is just the opposite for the negative voltage.
On the other hand, the larger the delamination size is, the lower the load carrying capacity is.
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Figure 4. Left: effect of hygrothermal conditions on postbuckling behavior of delam-
inated piezoelectric elastoplastic laminated beams. Right: effect of control voltage on
postbuckling behavior of delaminated piezoelectric elastoplastic laminated beams.

Analysis of delamination growth for delaminated piezoelectric elastoplastic laminated beams under
hygrothermal conditions. In the following calculation examples, the influences of the yield stress, de-
lamination sizes and depths, hygrothermal conditions and piezoelectric effects on the energy release
rate of delaminated piezoelectric elastoplastic laminated beams without initial deflections are discussed
respectively. In the following figures, J̄ (= J1/K h) is the dimensionless value of J integral along the
right delamination front.

Figure 5, left, presents the variation curves of energy release rate for delaminated piezoelectric elasto-
plastic laminated beams with different slenderness ratio and yield stress, when α2 = 0.4, β2 = 0.5 and
V = 1T = 1c = 0. It can be observed that the larger the slenderness ratio is, the larger the value of
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Figure 5. Left: effect of yield stress on energy release rate of delaminated piezoelec-
tric elastoplastic laminated beams. Right: Effect of hygrothermal conditions on energy
release rate of delaminated piezoelectric elastoplastic laminated beams.
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Figure 6. Effect of control voltage on energy release rate of delaminated piezoelectric
elastoplastic laminated beams.

J integral, that is, the energy release rate, along the right delamination front is, which results in the
delamination growth easier to occur. Moreover, when the yield stress of the fiber-reinforced material is
larger, the J integral value along the right delamination front rises more quickly.

Setting β2 = 0.5 and V = 0, the effects of hygrothermal condition and delamination depths on the
energy release rate curves of the delaminated piezoelectric elastoplastic laminated beams are shown in
Figure 5, right. It can be noticed that, with the same load, the increase of temperature make the energy
release rate rise and the delamination propagate more easily. In addition, the deeper the delamination is,
the larger the energy release rate is.

Subjected to three types of electric load, the effects of delamination sizes on the energy release rate
of the delaminated piezoelectric elastoplastic laminated beams with α2 = 0.4 and 1T = 1c = 0 are
presented in Figure 6. It is shown that, with the same geometric parameters and external load, applying
a positive voltage leads to the energy release rate larger. However, the negative voltage is good for the
stability of the delaminated beam. On the other hand, the larger the delamination size is, the larger the
energy release is and the delamination growth is easier to occur.

7. Conclusions

The postbuckling and delamination growth for delaminated piezoelectric elastoplastic laminated beams
under hygrothermal conditions are investigated in this paper. The numerical solutions are presented by
using the finite difference method and the iteration method. The main conclusions can be drawn as
follows. Under the same axial load, the postbuckling behavior of a delaminated elastic-plastic laminated
beam is quite different with that of the delaminated elastic laminated beam and there is a load carrying
capacity for the delaminated elastic-plastic laminated beam. With smaller yield stress, larger slender-
ness ratio, deeper and larger delamination, the load carrying capacity of the delaminated piezoelectric
elastoplastic beam is lower. The effects of temperature increasing and positive voltage are equivalent
to the axial pressures, which lead to the larger deformation of the beam and have a detrimental effect
on the stability of the delaminated beams. The larger yield stress of the fiber-reinforce material makes
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the energy release rate rise more quickly. When the slenderness ratio of the delaminated piezoelectric
elastoplastic laminated beam, the external axial load, the increase of the temperature and the positive
voltage are larger, and the delamination is deeper or larger, the energy release rates are larger and the
delamination growth is easier to occur.
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