Journal of

Mechanics of Materials and Structures

INDENTATION AND RESIDUAL STRESS IN THIE AXIALLY SYMIMIETRIC BLASTOPLASTIC CONTACT PROBLEM

Volume 7, No. 10

Tian-hu Hao

INDENTATION AND RESIDUAL STRESS IN THE AXIALLY SYMMETRIC ELASTOPLASTIC CONTACT PROBLEM

Tian-hu Hao

Abstract

Most theoretical studies of mechanical indention, going back to Boussinesq, Hertz, and later Sneddon, address the relations between indenter pressure, indention size, and stress components. However, the relationship between indention and residual stress is also interesting. Here we use the Dorris and NematNasser method to derive a relation between the indention and the residual stress components for an axisymmetric load.

1. Introduction

The elastic contact problem plays a key role in interpreting experimental results of indention. This study was first considered by Boussinesq and Hertz in the late nineteenth century, and later Sneddon made major contributions. These authors derived general relationships among the load, the displacement, and the contact area for an axisymmetric indenter.

Also of interest is the relationship between the indention and the residual stress. This has been addressed for example in [Suresh and Giannakopoulos 1998], where it is stated that the residual stress cannot be determined using the loading theory of elasticity. In [Hao 2006] we made some progress in the study of the problem in the framework of the theory of finite elasticity. The paper continues that investigation, by considering the important unloading case. As in the previous paper, we derive the elastoplastic deformation is derived using the DNN method [Dorris and Nemat-Nasser 1980]. The elastic deformation is eliminated from the total deformation, leading to the residual plastic deformation. Thus we determine the relation between the residual stress and the residual plastic deformation.

2. Analysis of the axially symmetrical finite elastic-plastic case

Following Dorris and Nemat-Nasser we write, for the axially symmetrical case,

$$
\begin{equation*}
D_{a b}=0.5\left(v_{a, b}+v_{b, a}\right), \quad D_{\theta \theta}=v_{2} / x_{2} \tag{1}
\end{equation*}
$$

where x_{1} and x_{2} denote z and r, v_{a} is the increment displacement, $v_{a, b}=\partial v_{a} / \partial x_{b}$ and $D_{a b} ; D_{\theta \theta}$ are the components of the rate tensor. Note that in [Dorris and Nemat-Nasser 1980] v_{a} is the velocity, but in this paper, it is the incremental displacement, whose dimension is length. Since we are dealing with small deformations superposed on initial stress body, the increment displacement v_{a} of the small deformation is a small part of the whole displacement.

[^0]Still following Dorris and Nemat-Nasser, we use the current configuration as the reference one. We deal with the first Piola-Kirchhoff stress increment $\delta \sigma_{a b}$, where the index a denotes the direction of the stress and the index b denotes the normal to the surface subjected to $\delta \sigma_{a b}$ in the reference configuration (note that $\delta \sigma_{a b} \neq \delta \sigma_{b a}$). Only the incompressible case is considered; the compressible case can be derived from the results of the incompressible case and it will be studied in another paper.

We turn to the constitutive equations, still following [Dorris and Nemat-Nasser 1980]. Similarly to what is done in Appendix A - compare A - we can write

$$
\begin{equation*}
\delta \sigma_{a b}=\Phi_{a b c e} D_{c e}+P \delta_{a b}-D_{a c} T_{c b}-D_{b c} T_{c a}+v_{a, c} T_{c b} \tag{2}
\end{equation*}
$$

where $\Phi_{a b c e}$ will be discussed later, P is an unknown scalar function (hydrostatic pressure), and $T_{c a}$ is the Cauchy stress. For the flow theory, the constitutive equation is

$$
\begin{equation*}
\Phi_{a b c e}=\left(2 \mu \delta_{a c} \delta_{b e}-6 A \mu^{2} S T_{a b}^{\prime} T_{c e}^{\prime} / \bar{T}^{2}\right) \tag{3}
\end{equation*}
$$

where μ is the elastic constant, S equals $(2 h / 3+2 \mu)^{-1}, T_{a b}^{\prime}$ and $D_{a b}^{\prime}$ are the deviatoric parts of the Cauchy stress $T_{a b}$ and rate $D_{a b}$, the scalar A is defined as 1 if $T_{a b}^{\prime} D_{a b}^{\prime} \geq 0$ and as 0 if $T_{a b}^{\prime} D_{a b}^{\prime}<0$, and $\bar{T}^{2}=1.5 T_{a b}^{\prime} T_{a b}^{\prime}$.

The value of h is given by

$$
h=\left(\frac{1}{E_{t}}-\frac{1}{E}\right)^{-1}
$$

where E is the initial Young's modulus and E_{t} is the instantaneous tangent modulus. E_{t} equals $d \sigma / d \epsilon=$ $E n\left(\sigma / \sigma_{y}\right)^{1-1 / n}$ for $0 \leq n \leq 1, \sigma$ is the true stress, σ_{y} is the yield stress and ϵ is the logarithmic strain (σ and ϵ are of simple tension or compression).

From total deformation theory, one has

$$
\begin{equation*}
\Phi_{a b c e}=2 \mu\left(\bar{\gamma} / \gamma_{0}\right)^{n-1} \delta_{a c} \delta_{b e}-\frac{3 h(1-n)}{n} T_{a b}^{\prime} T_{c e}^{\prime} / \bar{T}^{2} \tag{4}
\end{equation*}
$$

for some n satisfying $0 \leq n \leq 1$; here $\bar{\gamma}$ is the effective increment strain and γ_{0} is a reference increment strain.

Because (3) and (4) are in similar form, from now on, only the flow theory case is discussed. When $A=0$, i.e., $T_{a b}^{\prime} D_{a b}^{\prime}<0$ or $\sigma<\sigma_{y}$, we are in the unloading case or the elastic case, and we can deal with this problem as in [Hao 2006]. The case $A=1$, i.e., $T_{a b}^{\prime} D_{a b}^{\prime} \geq 0$ and $\sigma>\sigma_{y}$, is the loading case, to be considered in this paper. As the cone indention causes compressive stresses, in order to satisfy the requirement of the loading case $A=1$, the residual stress must also be compressive.

Following [Dorris and Nemat-Nasser 1980], in view of the constitutive equations, one obtains

$$
\begin{align*}
\delta \sigma_{22} & =2 \mu v_{2,2}+2 \mu^{2} S v_{1,1}+P \tag{5}\\
\delta \sigma_{11} & =\left(2 \mu-4 \mu^{2} S-T\right) v_{1,1}+P \tag{6}\\
\delta \sigma_{21} & =(2 \mu-T)\left(v_{1,2}+v_{2,1}\right) / 2+T v_{2,1} \tag{7}\\
\delta \sigma_{12} & =(2 \mu-T)\left(v_{1,2}+v_{2,1}\right) / 2 \tag{8}\\
\delta \sigma_{\theta \theta} & =2 \mu v_{2} / r+2 \mu^{2} S v_{1,1}+P \tag{9}
\end{align*}
$$

where T is the residual stress.
The homogeneous residual stress σ_{R} is equal to T. When the $x y$-plane is parallel to the surface, the residual stresses σ_{x} and σ_{y} are also equal to T. The first equilibrium equation is

$$
\begin{equation*}
\delta \sigma_{22,2}+\left(\delta \sigma_{22}-\delta \sigma_{\theta \theta}\right) / x_{2}+\delta \sigma_{21,1}=0 \tag{10}
\end{equation*}
$$

From the calculations in Appendix B, one obtains

$$
\begin{equation*}
2 \mu v_{2,221}+2 \mu^{2} S v_{1,121}+P_{, 21}+\left(1 / x_{2}\right) 2 \mu\left(v_{2,21}-v_{2,1} / x_{2}\right)+(2 \mu-T)\left(v_{2,111}+v_{1,121}\right) / 2+T v_{2,111}=0 \tag{11}
\end{equation*}
$$

The other equilibrium equation is

$$
\begin{equation*}
\delta \sigma_{11,1}+\delta \sigma_{12,2}+\delta \sigma_{12} / x_{2}=0 \tag{12}
\end{equation*}
$$

Also in view of Appendix B, one has

$$
\begin{equation*}
\left(2 \mu-8 \mu^{2} S-T\right) v_{1,112} / 2+P_{, 12}+(2 \mu-T)\left(v_{1,222}+v_{1,22} / x_{2}-v_{1,2} / x_{2}^{2}\right) / 2=0 \tag{13}
\end{equation*}
$$

Considering (11) and (13) and eliminating $P_{, 12}$, one has

$$
\begin{align*}
2 \mu v_{2,221}+2 \mu^{2} S v_{1,121} & +\left(1 / x_{2}\right) 2 \mu\left(v_{2,21}-v_{2,1} / x_{2}\right)+(2 \mu-T)\left(v_{2,111}+v_{1,211}\right) / 2+T v_{2,111} \\
& -\left(2 \mu-8 \mu^{2} S-T\right) v_{1,112} / 2-(2 \mu-T)\left(v_{1,222}+v_{1,22} / x_{2}-v_{1,2} / x_{2}^{2}\right) / 2=0 \tag{14}
\end{align*}
$$

Let $L\left(v_{2}\right)=v_{2,22}+v_{2,2} / x_{2}-v_{2} / x_{2}^{2}$ and $L\left(v_{1,2}\right)=v_{1,222}+v_{1,22} / x_{2}-v_{1,2} / x_{2}^{2}$. Substituting into (14), one obtains

$$
\begin{equation*}
2 \mu L\left(v_{2}\right)_{, 1}+6 \mu^{2} S v_{1,112}+(2 \mu+T) v_{2,111} / 2-(2 \mu-T) L\left(v_{1,2}\right) / 2=0 \tag{15}
\end{equation*}
$$

Let v_{2} be F_{11}, where F_{11} is $\partial^{2} F / \partial x_{1}^{2}$. In view of Appendix C, one has

$$
\begin{equation*}
\left(4 \mu-12 \mu^{2} S\right) L(F)_{11}+(2 \mu+T) L^{0} F_{1111}+(2 \mu-T) L^{2}(F)=0 \tag{16}
\end{equation*}
$$

Let $G\left(s, x_{1}\right)$ be $\int_{0}^{\infty} x_{2} F\left(x_{1}, x_{2}\right) J_{1}\left(s x_{2}\right) d x_{2}$ which is the Hankel transform of $F\left(x_{1}, x_{2}\right)$ with order 1 [Sneddon 1951]. Therefore, one has

$$
\begin{align*}
& 4 \mu(1-3 \mu S) \int_{0}^{\infty} x_{2} L(F)_{11} J_{1}\left(s x_{2}\right) d x_{2} \\
& \quad+(2 \mu+T) \int_{0}^{\infty} x_{2}(F)_{1111} J_{1}\left(s x_{2}\right) d x_{2}+(2 \mu-T) \int_{0}^{\infty} x_{2} L^{2}(F) J_{1}\left(s x_{2}\right) d x_{2}=0 \tag{17}
\end{align*}
$$

If $x_{2} \rightarrow 0$ and $\infty, x_{2} F \rightarrow 0$, we have

$$
\begin{align*}
& \int_{0}^{\infty} x_{2} L(F) J_{1}\left(s x_{2}\right) d x_{2}=-s^{2} G\left(s, x_{1}\right) \\
& \int_{0}^{\infty} x_{2} L^{2}(F) J_{1}\left(s x_{2}\right) d x_{2}=-s^{2} \int_{0}^{\infty} x_{2} L(F) J_{1}\left(s x_{2}\right) d x_{2}=s^{4} G\left(s, x_{1}\right) \tag{18}
\end{align*}
$$

Substituting (18) into (17), one obtains

$$
\begin{equation*}
-4 \mu s^{2}(1-3 \mu S) G\left(s, x_{1}\right)_{, 11}+(2 \mu+T) G\left(s, x_{1}\right)_{, 1111}+s^{4}(2 \mu-T) G\left(s, x_{1}\right)=0 \tag{19}
\end{equation*}
$$

Let $G\left(s, x_{1}\right)=N(s) \exp \left(m x_{1}\right)$, where m is a function of s. We obtain $G\left(s, x_{1}\right)_{11}=N(s) \exp \left(m x_{1}\right) m^{2}$, $G\left(s, x_{1}\right),_{1111}=N(s) \exp \left(m x_{1}\right) m^{4}$ and

$$
\begin{gather*}
s^{4}(1-Q)-2 s^{2}(1-3 \mu S) m^{2}+(1+Q) m^{4}=0 \\
m^{2}=r^{2} s^{2}=s^{2}\left\{(1-3 \mu S) \pm\left[Q^{2}-6 \mu S-9 \mu^{2} S^{2}\right]^{1 / 2}\right\} /(1+Q) \tag{20}
\end{gather*}
$$

where $r^{2}=\left\{(1-3 \mu S) \pm\left[Q^{2}-6 \mu S-9 \mu^{2} S^{2}\right]^{1 / 2}\right\} /(1+Q)$ and $Q=T / 2 \mu$. One can deal only with the case where there are two different real positive roots r_{1}^{2} and r_{2}^{2}. It can be proved that the same results will be obtained in the case with two conjugate complex roots.

Letting $x_{1} \rightarrow \infty, v_{2} \rightarrow 0, F_{1} \rightarrow 0, r_{1}, r_{2}>0$, similar to [Hao 2006], one obtains

$$
\begin{align*}
G\left(s, x_{1}\right)=\int_{0}^{\infty} x_{2} F\left(x_{1}, x_{2}\right) J_{1}\left(s x_{2}\right) d x_{2} & =N_{1}(s) \exp \left(m_{1} x_{1}\right)+N_{2}(s) \exp \left(m_{2} x_{1}\right) \\
& =N_{1}(s) \exp \left(-r_{1} s x_{1}\right)+N_{2}(s) \exp \left(-r_{2} s x_{1}\right) \tag{21}
\end{align*}
$$

Considering $x_{1}=0, \delta \sigma_{21}=0$, in view of Appendix C, one has

$$
\begin{equation*}
G\left(s, x_{1}\right)=N_{1}(s) e^{-r_{1} s x_{1}}+N_{2}(s) e^{-r_{2} s x_{1}}=N_{1}(s)\left(e^{-r_{1} s x_{1}}-U e^{-r_{2} s x_{1}}\right) \tag{22}
\end{equation*}
$$

where

$$
U=\frac{r_{1}^{3}+r_{1}(2 \mu-T) /(2 \mu+T)}{r_{2}^{3}+r_{2}(2 \mu-T) /(2 \mu+T)}
$$

Now, the stress component $\delta \sigma_{11}$ and v_{1} are discussed. According to Appendix C, one has

$$
\begin{align*}
\delta \sigma_{11} & =(2 \mu-T)\left[U\left(r_{2}^{2}+1\right)-\left(r_{1}^{2}+1\right)\right] \int_{0}^{\infty} s J_{0}\left(s x_{2}\right) s^{3} N_{1}(s) d s / 2 \tag{23}\\
v_{1} & =\left(r_{1}-U r_{2}\right) \int_{0}^{\infty} s J_{0}\left(s x_{2}\right) s^{2} N_{1}(s) d s \tag{24}
\end{align*}
$$

The boundary conditions are

$$
\begin{array}{cl}
\left(r_{1}-U r_{2}\right) a^{4} \int_{0}^{\infty} s^{3} J_{0}\left(s x_{2}\right) N_{1}(s) d s=a^{4}\left[v_{1}\left(x_{2}\right)\right]_{x_{1}=0} & \text { for } x_{1}=0, a \geq x_{2} \geq 0 \\
\int_{0}^{\infty} s^{4} J_{0}\left(s x_{2}\right) N_{1}(s) d s=0 & \text { for } x_{1}=0, x_{2}>a \tag{25}
\end{array}
$$

where a is the radius of contact area, which will be discussed in detail later. Finally,

$$
\begin{equation*}
p^{3} N_{1}(s)=p^{3} N_{1}(p / a)=f(p), \quad s=p / a . \tag{26}
\end{equation*}
$$

3. The circular cone and the residual stress

We now turn to a circular cone on a half-space and consider the residual stress. Let α be the angle of the circular cone (the angle between the axis of symmetry and the generatrix). Then

$$
\begin{equation*}
\left[v_{1}\left(x_{2}\right)\right]_{x_{1}=0}=b+a \cot \alpha\left(1-x_{2} / a\right) \text { for } a \geq x_{2} \geq 0 \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{4}\left[v_{1}\left(x_{2}\right)\right]_{x_{1}=0}=a^{4}\left[b+a \cot \alpha\left(1-x_{2} / a\right)\right]=\left(r_{1}-U r_{2}\right)\left(A_{0}+A_{1} x_{2} / a\right) \text { for } a \geq x_{2} \geq 0 \tag{28}
\end{equation*}
$$

On the foundation of that the stress component $\delta \sigma_{11}$ is finite at the edge of the punch, the relation between b and a can be obtained. Similar to [Hao 2006], we obtain
$f(P)=$

$$
\begin{equation*}
\frac{1}{\sqrt{\pi}}\left\{A_{0}\left(\cos p+p \int_{0}^{1} u \sin (p u) d u\right) \frac{\Gamma(1)}{\Gamma(3 / 2)}+A_{1}\left(\cos p+p \int_{0}^{1} u^{2} \sin (p u) d u\right) \frac{\Gamma(3 / 2)}{\Gamma(2)}\right\} \tag{29}
\end{equation*}
$$

According to [Hao 2006] and Appendix D, for the compressive force R on the cone, one obtains

$$
\begin{equation*}
R=\pi(2 \mu-T) a^{2} \cot \alpha \frac{r_{2} r_{1}\left(r_{1} r_{2}-\beta\right)+\left(r_{2}^{2}+r_{1} r_{2}+r_{1}^{2}\right)+\beta}{2 r_{2} r_{1}\left(r_{2}^{2}+2 r_{1} r_{2}+r_{1}^{2}\right)^{1 / 2}} \tag{30}
\end{equation*}
$$

where $\beta=\frac{2 \mu-T}{2 \mu+T}$ and r_{1}, r_{2} can be calculated from the equalities $r_{2}^{2} r_{1}^{2}=\beta, r_{2}^{2}+r_{1}^{2}=\frac{2 \mu-6 \mu^{2} S}{2 \mu+T}$.
The contact radius a is

$$
\begin{equation*}
a=\left(\frac{R\left[r_{2} r_{1}\left(r_{2}^{2}+2 r_{1} r_{2}+r_{1}^{2}\right)^{1 / 2}\right]}{\pi(2 \mu-T)\left[r_{2} r_{1}\left(r_{1} r_{2}-\beta\right)+\left(r_{2}^{2}+r_{1} r_{2}+r_{1}^{2}\right)+\beta\right] \cot \alpha}\right)^{1 / 2} \tag{31}
\end{equation*}
$$

from which the contact area πa^{2} is easily calculated. The penetration depth is

$$
\begin{equation*}
v_{1}\left(x_{1}, x_{2}\right)_{x_{1}=0, x_{2}=0}=\frac{1}{2} \pi a \cot \alpha=\frac{1}{2}\left(\frac{\pi R \cot \alpha\left[r_{2} r_{1}\left(r_{2}^{2}+2 r_{1} r_{2}+r_{1}^{2}\right)^{1 / 2}\right]}{(2 \mu-T)\left[r_{2} r_{1}\left(r_{1} r_{2}-\beta\right)+\left(r_{2}^{2}+r_{1} r_{2}+r_{1}^{2}\right)+\beta\right]}\right)^{1 / 2} \tag{32}
\end{equation*}
$$

4. The unloading of the indenter

Lastly, as the residual stress is determined by the indention, the unloading of the indenter is now discussed. For the unloading case, let A be 0 in (3), i.e., $S=0$ in (20). One obtains two roots r_{1}, r_{2}. Then, all other related values (penetration depth, contact area) of the purely elastic case are obtained.

For an example, the penetration depth in the unloading case is studied.

$$
\begin{equation*}
h=0.5\left\{\pi R \cot \alpha\left[r_{2} r_{1}\left(r_{2}+r_{1}\right)\right] /(2 \mu-T)\left[r_{2} r_{1}\left(r_{1} r_{2}-r_{2}^{2} r_{1}^{2}\right)+\left(r_{2}^{2}+r_{1} r_{2}+r_{1}^{2}\right)+r_{2}^{2} r_{1}^{2}\right]\right\}^{1 / 2} \tag{33}
\end{equation*}
$$

where h is the penetration depth of the purely elastic case and the values of r_{1}, r_{2} can be obtained where $S=0$ in (20). Subtracting it from the elastoplastic case, one obtains the penetration depth for the residual plastic deformation case.

5. Results and explanation

As an illustration, we take the specific example considered in [Hao 2006]. The parameters are $\mu=10-$ $100 \mathrm{GPa}, \sigma_{y}=$ yield stress $=200 \mathrm{MPa}, R=0.46 \mathrm{~kg}$ and $\alpha=\pi / 12$. The results are in Figures $1-3$.

In the figure, N is a function of the elastic shear modulus μ and the plastic constant $k=E_{t} / E$ (recall that E is the initial Young's modulus and E_{t} is the instantaneous modulus). This parameter N equals $\left\{\left(\mu^{1 / 2} / 3 \mu_{0}\right)^{k} k^{(1-k)}\right\}$, where $\mu_{0}=7$ Gpa. When $E_{t}=0$ i.e. $k=0$ or $N=0$, the material is soft. When $k=1$ or $N=\left(\mu^{1 / 2} / 3 \mu_{0}\right)$, the material is tough. Therefore, the parameter N is a coefficient to determine

Figure 1. Elastoplastic case: contact radius (left) and penetration depth (right) versus residual stress.

Figure 2. Purely elastic case: contact radius (left) and penetration depth (right) versus residual stress.

The ratio of elastic part deformation
to the whole deformation

Figure 3. Ratio of elastic part deformation to the whole deformation, plotted versus residual stress.
the softness or toughness of materials. Figure 1 shows that in the elastoplastic case, the contact radius and the penetration depth vary with the residual stress. However, in the purely elastic case $(k=1)$, when N is constant, we see in Figure 2 that the contact radius and penetration depth are nearly constant. These figures show that the shear modulus is almost an identified factor to determine the contact area, the contact radius and the penetration depth. These figures also show that the effect of Jaumann rate is not notable for this case. Therefore, in the purely elastic case, when the Jaumann rate is even considered, we hardly determine the residual stress according to the indention. This means that in order to determine the residual stress the plastic deformation must be considered. Figure 3 shows that when N is a constant, the larger the residual stress is, the smaller the ratio of elastic part deformation to whole deformation becomes. Naturally, the larger the residual stress becomes, the larger the plastic part deformation also becomes.

6. Conclusions

In this paper, the axially symmetrical elastoplastic contact problem and its application are studied. The relation among the penetration depth, the contact radius and the residual stress has been determined. Besides, the unloading case is considered. The essence of this method is to deviate from the linear theory to consider Jaumann rate. When deviating from the linear theory a little, this difficult problem can be studied easily. For an example, when studying the effects of air inside crack in the piezoelectric materials, we must deal with the opening crack after deformation because before deformation, the crack is closed and no air can be in it. Therefore, in this case, the replacement of the boundary after deformation by that before deformation leads to great deviation. In order to avoid it, we use the approximate boundary after deformation. The approximate boundary after deformation is the boundary before deformation plus the displacement. Naturally, the displacement is found for the body before deformation as in the theory of elasticity. On the basis of this consideration, the semipermeable boundary condition was suggested in [Hao and Shen 1994].

Appendix A. Jaumann rate increment, reference and current configurations

According to [Dorris and Nemat-Nasser 1980], for an incompressible body, the Jaumann rate is

$$
\dot{\sigma}_{a b}=D T_{a b} / D t+\left(u_{a, c}-D_{a c}^{\prime}\right) T_{c b}-T_{a c} D_{c b}^{\prime}, \quad D_{a b}^{\prime}=0.5\left(u_{a, b}+u_{b, a}\right)
$$

where u_{a} is the velocity component, $\sigma_{a b}$ is the Piola stress component and $T_{a b}$ is the Cauchy stress component. For convenience, only the hypo-elastic solid is dealt with

$$
\dot{\sigma}_{b a}=\left(2 \mu D_{a b}^{\prime}+\dot{P} \delta_{a b}\right)+\left(u_{a, c}-D_{a c}^{\prime}\right) T_{c b}-T_{a c} D_{c b}^{\prime}
$$

Using the variables $\delta \sigma_{b a}$ and $D_{a b}$ from (1) to replace $\dot{\sigma}_{b a}$ and $D_{a b}^{\prime}$ from A, we obtain

$$
\delta \sigma_{b a}=\left(2 \mu D_{a b}+P \delta_{a b}\right)+\left(v_{a, c}-D_{a c}\right) T_{c b}-T_{a c} D_{c b}
$$

where $D_{a b}=0.5\left(v_{a, b}+v_{b, a}\right), v_{a}$ is the increment displacement component and $D_{\theta \theta}=v_{2} / x_{2}$. There are two configurations in our work. The configuration of the body after deformation is the current configuration. That before deformation can be the reference configuration.

Appendix B. Derivation of (11) and (13)

$$
\begin{gathered}
\delta \sigma_{22,2}+\left(\delta \sigma_{22}-\delta \sigma_{\theta \theta}\right) / x_{2}+\delta \sigma_{21,1}=0 \\
2 \mu v_{2,22}+2 \mu^{2} S v_{1,12}+P_{, 2}+\left(1 / x_{2}\right) 2 \mu\left(v_{2,2}-v_{2} / x_{2}\right)+(2 \mu-T)\left(v_{2,11}+v_{1,12}\right) / 2+T v_{2,11}=0 \\
2 \mu v_{2,221}+2 \mu^{2} S v_{1,121}+P_{, 21}+\left(1 / x_{2}\right) 2 \mu\left(v_{2,21}-v_{2,1} / x_{2}\right)+(2 \mu-T)\left(v_{2,111}+v_{1,121}\right) / 2+T v_{2,111}=0 \\
\delta \sigma_{11,1}+\delta \sigma_{12,2}+\delta \sigma_{12} / x_{2}=0 \\
\left(2 \mu-4 \mu^{2} S-T\right) v_{1,11}+P_{, 1}+(2 \mu-T)\left(v_{2,12}+v_{1,22}\right) / 2+(2 \mu-T)\left(v_{2,1}+v_{1,2}\right) / 2 x_{2}=0
\end{gathered}
$$

In order to consider the incompressible equation $v_{1,1}+v_{2,2}+v_{2} / x_{2}=0$, which can become $v_{1,11}+v_{2,12}+$ $v_{2,1} / x_{2}=0$, we have

$$
\begin{align*}
\left(2 \mu-8 \mu^{2} S-T\right) v_{1,11} / 2+P_{, 1}+(2 \mu-T)\left[\left(v_{2,12}+v_{1,11}+v_{1,22}\right) / 2+\left(v_{2,1}+v_{1,2}\right) / 2 x_{2}\right] & =0 \tag{34}\\
\left(2 \mu-8 \mu^{2} S-T\right) v_{1,11} / 2+P_{, 1}+(2 \mu-T)\left(v_{1,22}+v_{1,2} / x_{2}\right) / 2 & =0 \tag{35}\\
\left(2 \mu-8 \mu^{2} S-T\right) v_{1,112} / 2+P_{, 12}+(2 \mu-T)\left(v_{1,222}+v_{1,22} / x_{2}-v_{1,2} / x_{2}^{2}\right) / 2 & =0 \tag{36}
\end{align*}
$$

Appendix C. Derivation of (16), $\delta \sigma_{11}$ and $\boldsymbol{v}_{\mathbf{1}}$

Letting $v_{2}=F_{11}$, from the incompressible equation $v_{1,1}+v_{2,2}+v_{2} / x_{2}=0$, we have

$$
\begin{gather*}
v_{1,1}=\left(-v_{2,2}-v_{2} / x_{2}\right)=\left(-F_{2}-F / x_{2}\right)_{, 11}, \quad v_{1}=-\left(F_{2}+F / x_{2}\right)_{, 1} \\
v_{1,2}=\left(-F_{2}-F / x_{2}\right)_{, 12}=-\left(F_{22}+F_{2} / x_{2}-F / x_{2}^{2}\right)_{, 1}=-L(F)_{, 1}, \quad v_{1,12}=-L(F)_{, 11} \tag{37}\\
v_{1,112}=-L\left(v_{2}\right)_{1}=-L(F)_{111}
\end{gather*}
$$

We have

$$
\begin{gathered}
2 \mu L(F)_{, 111}-6 \mu^{2} S L(F)_{111}+(2 \mu+T) F_{, 11111} / 2+(2 \mu-T) L^{2}(F)_{, 1} / 2=0 \\
\left(4 \mu-12 \mu^{2} S\right) L(F)_{11}+(2 \mu+T) F_{1111}+(2 \mu-T) L^{2}(F)=0 \\
\delta \sigma_{21}=(2 \mu-T)\left(v_{1,2}+v_{2,1}\right) / 2+T v_{2,1}=(2 \mu-T)\left[-\left(F, 12+F, 1 / x_{2}\right)_{, 2}+F, 111\right] / 2+T F_{, 111} \\
=(2 \mu-T)\left[F_{, 111}-L(F)_{1}\right] / 2+T F, 111=\left[(2 \mu+T) F_{, 111}-(2 \mu-T) L(F)_{1}\right] / 2
\end{gathered}
$$

Considering $G\left(s, x_{1}\right)=N_{1}(s) e^{-r_{1} s x_{1}}+N_{2}(s) e^{-r_{2} s x_{1}}$ and $\int_{0}^{\infty} x_{2} L(F) J_{1}\left(s x_{2}\right) d x_{2}=-s^{2} G\left(s, x_{1}\right)$, one obtains

$$
\begin{gathered}
\int_{0}^{\infty} x_{2} \delta \sigma_{21} J_{1}\left(s x_{2}\right) d x_{2}=(2 \mu+T) G\left(s, x_{1}\right)_{, 111} / 2+(2 \mu-T) s^{2} G\left(s, x_{1}\right)_{, 1} / 2 \\
\delta \sigma_{21}=[(2 \mu+T) / 2] \int_{0}^{\infty} s\left\{G\left(s, x_{1}\right)_{111}+[(2 \mu-T) /(2 \mu+T)] s^{2} G\left(s, x_{1}\right)_{1}\right\} J_{1}\left(s x_{2}\right) d s
\end{gathered}
$$

Considering $G\left(s, x_{1}\right)=N_{1}(s) e^{-r_{1} s x_{1}}+N_{2}(s) e^{-r_{2} s x_{1}}, G\left(s, x_{1}\right)_{1}=-\left[N_{1}(s) r_{1} s e^{-r_{1} s x_{1}}+N_{2}(s) r_{2} s e^{-r_{2} s x_{1}}\right]$, $G\left(s, x_{1}\right)_{11}=N_{1}(s) r_{1}^{2} s^{2} e^{-r_{1} s x_{1}}+N_{2}(s) r_{2}^{2} s^{2} e^{-r_{2} s x_{1}}, G\left(s, x_{1}\right)_{111}=-\left[N_{1}(s) r_{1}^{3} s^{3} e^{-r_{1} s x_{1}}+N_{2}(s) r_{2}^{3} s^{3} e^{-r_{2} s x_{1}}\right]$, one has

$$
\begin{array}{r}
\delta \sigma_{21}=-[(2 \mu+T) / 2] \int_{0}^{\infty} s\left\{N_{1}(s) r_{1}^{3} s^{3} e^{-r_{1} s x_{1}}+N_{2}(s) r_{2}^{3} s^{3} e^{-r_{2} s x_{1}}+[(2 \mu-T) /(2 \mu+T)]\right. \\
\left.s^{2}\left[N_{1}(s) r_{1} s e^{-r_{1} s x_{1}}+N_{2}(s) r_{2} s e^{-r_{2} s x_{1}}\right]\right\} J_{1}\left(s x_{2}\right) d s \tag{38}
\end{array}
$$

If $x_{1}=0$, we get from (38)
$\delta \sigma_{21}^{=}-[(2 \mu+T) / 2]$

$$
\times \int_{0}^{\infty} s\left\{N_{1}(s) r_{1}^{3} s^{3}+N_{2}(s) r_{2}^{3} s^{3}+[(2 \mu-T) /(2 \mu+T)] s^{2}\left[N_{1}(s) r_{1} s+N_{2}(s) r_{2} s\right]\right\} J_{1}\left(s x_{2}\right) d s
$$

Considering $x_{1}=0, \delta \sigma_{21}=0$, one has

$$
\begin{gathered}
\left.N_{1}(s) r_{1}^{3}+N_{2}(s) r_{2}^{3}+[(2 \mu-T) /(2 \mu+T)]\left[N_{1}(s) r_{1}+N_{2}(s) r_{2}\right]\right\}=0 \\
N_{1}(s) r_{1}^{3}+[(2 \mu-T) /(2 \mu+T)] N_{1}(s) r_{1}+N_{2}(s) r_{2}^{3}+[(2 \mu-T) /(2 \mu+T)] N_{2}(s) r_{2}=0 \\
N_{1}(s)\left[r_{1}^{3}+(2 \mu-T) /(2 \mu+T) r_{1}\right]+N_{2}(s)\left[r_{2}^{3}+(2 \mu-T) /(2 \mu+T) r_{2}\right]=0 \\
N_{2}(s)=-N_{1}(s)\left[r_{1}^{3}+(2 \mu-T) /(2 \mu+T) r_{1}\right] /\left[r_{2}^{3}+(2 \mu-T) /(2 \mu+T) r_{2}\right] \\
G\left(s, x_{1}\right)=N_{1}(s)\left\{e^{-r_{1} s x_{1}}-e^{-r_{2} s x_{1}}\left[r_{1}^{3}+(2 \mu-T) /(2 \mu+T) r_{1}\right] /\left[r_{2}^{3}+(2 \mu-T) /(2 \mu+T) r_{2}\right]\right\} \\
G\left(s, x_{1}\right)=N_{1}(s)\left(e^{-r_{1} s x_{1}}-U e^{-r_{2} s x_{1}}\right)
\end{gathered}
$$

where

$$
\begin{equation*}
U=\frac{r_{1}^{3}+(2 \mu-T) /(2 \mu+T) r_{1}}{r_{2}^{3}+(2 \mu-T) /(2 \mu+T) r_{2}}=\left(r_{1} / r_{2}\right) \frac{r_{1}^{2}+(2 \mu-T) /(2 \mu+T)}{r_{2}^{2}+(2 \mu-T) /(2 \mu+T)}=\left(r_{1} / r_{2}\right) \frac{r_{1}^{2}+\beta}{r_{2}^{2}+\beta} \tag{39}
\end{equation*}
$$

and $\beta=(2 \mu-T) /(2 \mu+T)=r_{2}^{2} r_{1}^{2}$.
In view of (35), one has $\left(2 \mu-8 \mu^{2} S-T\right) v_{1,11} / 2+P_{, 1}+(2 \mu-T)\left(v_{1,22}+v_{1,2} / r\right) / 2=0$. Considering $v_{1}=-\left(F_{, 2}+F / x_{2}\right)_{, 1}$, one obtains

$$
\begin{gathered}
-\left(2 \mu-8 \mu^{2} S-T\right)\left(F_{, 2}+F / x_{2}\right)_{, 111} / 2+P_{, 1}-(2 \mu-T)\left[\left(F_{, 2}+F / x_{2}\right)_{, 221}+\left(F_{, 2}+F / x_{2}\right)_{, 21} / x_{2}\right] / 2=0 \\
P=\left(2 \mu-8 \mu^{2} S-T\right)\left(F_{, 2}+F / x_{2}\right)_{, 11} / 2+(2 \mu-T)\left[\left(F_{, 2}+F / x_{2}\right)_{, 22}+\left(F_{, 2}+F / x_{2}\right)_{, 2} / x_{2}\right] / 2 \\
P=\left(2 \mu-8 \mu^{2} S-T\right)\left(F_{, 2}+F / x_{2}\right)_{, 11} / 2+(2 \mu-T)\left[L(F)_{, 2}+L(F) / x_{2}\right] / 2
\end{gathered}
$$

In view of the (6), one has

$$
\begin{aligned}
\delta \sigma_{11}= & \left(2 \mu-4 \mu^{2} S-T\right)_{v_{1,1}}+P \\
= & -\left(2 \mu-4 \mu^{2} S-T\right)\left(F_{, 2}+F / x_{2}\right)_{, 11}+\left(2 \mu-8 \mu^{2} S-T\right)\left(F{ }_{, 2}+F / x_{2}\right)_{, 11} / 2 \\
& \quad+(2 \mu-T)\left[L(F)_{, 2}+L(F) / r\right] / 2 \\
= & -(2 \mu-T)\left(F, 2+F / x_{2}\right)_{, 11} / 2+(2 \mu-T)\left[L(F)_{, 2}+L(F) / r\right] / 2 \\
= & (2 \mu-T)\left[-\left(F_{, 2}+F / x_{2}\right)_{, 11}+L(F)_{, 2}+L(F) / x_{2}\right] / 2 \\
\delta \sigma_{11,2}= & (2 \mu-T)\left[-\left(F, 2+F / x_{2}\right)_{, 211}+L(F)_{, 22}+L(F)_{, 2} / x_{2}-L(F) / x_{2}^{2}\right] / 2 \\
= & (2 \mu-T)\left[-L(F)_{, 11} / 2+L^{2}(F)\right] / 2
\end{aligned}
$$

Now, we discuss the order-one Hankel transform of the preceding quantity.

$$
\begin{aligned}
& \int_{0}^{\infty} x_{2} J_{1}\left(s x_{2}\right) \delta \sigma_{11,2} d x_{2} \\
&=(2 \mu-T) \int_{0}^{\infty} x_{2} J_{1}\left(s x_{2}\right)\left[-L(F)_{, 11} / 2+L^{2}(F)\right] / 2 d x_{2} \\
&=(2 \mu-T) \frac{1}{2}\left[-\int_{0}^{\infty} x_{2} J_{1}\left(s x_{2}\right) L(F)_{, 11} d x_{2}+\int_{0}^{\infty} x_{2} J_{1}\left(s x_{2}\right) L^{2}(F) d x_{2}\right] \\
&=(2 \mu-T)\left[s^{2} G_{11}+s^{4} G\right] / 2=(2 \mu-T) s^{4} N_{1}(s)\left[\left(r_{1}^{2}+1\right) e^{-r_{1} s x_{1}}-U\left(r_{2}^{2}+1\right) e^{-r_{2} s x_{1}}\right]
\end{aligned}
$$

Its Hankel retransform is

$$
\begin{equation*}
\delta \sigma_{11,2}=(2 \mu-T) \int_{0}^{\infty} s J_{1}\left(s x_{2}\right) s^{4} N_{1}(s)\left[\left(r_{1}^{2}+1\right) e^{-r_{1} s x_{1}}-U\left(r_{2}^{2}+1\right) e^{-r_{2} s x_{1}}\right] d s / 2 \tag{40}
\end{equation*}
$$

For $x_{1}=0$, from (40), one has

$$
\begin{aligned}
\delta \sigma_{11,2} & =(2 \mu-T)\left[\left(r_{1}^{2}+1\right)-U\left(r_{2}^{2}+1\right)\right] \int_{0}^{\infty} s J_{1}\left(s x_{2}\right) s^{4} N_{1}(s) d s / 2 \\
\delta \sigma_{11} & =(2 \mu-T)\left[\left(r_{1}^{2}+1\right)-U\left(r_{2}^{2}+1\right)\right] \int_{0}^{\infty} s \int J_{1}\left(s x_{2}\right) d x_{2} s^{4} N_{1}(s) d s / 2
\end{aligned}
$$

Considering $d J_{0}(u) / d u=-J_{1}(u)$, one has

$$
\delta \sigma_{11}=(2 \mu-T)\left[U\left(r_{2}^{2}+1\right)-\left(r_{1}^{2}+1\right)\right] \int_{0}^{\infty} s J_{0}\left(s x_{2}\right) s^{3} N_{1}(s) d s / 2
$$

According to (37), one has

$$
\begin{gather*}
v_{1,2}=-\left(F, 2+F / x_{2}\right)_{, 12}=-L(F)_{, 1} \tag{41}\\
\int_{0}^{\infty} x_{2} J_{1}\left(\xi x_{2}\right) v_{1,2} d x_{2}=-\int_{0}^{\infty} x_{2} J_{1}\left(\xi x_{2}\right) L(F)_{, 1} d x_{2}=s^{2}\left[\int_{0}^{\infty} x_{2} J_{1}\left(\xi x_{2}\right) F d x_{2}\right]_{, 1}=s^{2} G_{, 1} \tag{42}\\
v_{1,2}=-\int_{0}^{\infty} s J_{1}\left(s x_{2}\right) s^{3} N_{1}(s)\left(r_{1} e^{-r_{1} s x_{1}}-U r_{2} e^{-r_{2} s x_{1}}\right) d s \tag{43}\\
v_{1,2}=-\int_{0}^{\infty} s J_{1}\left(s x_{2}\right) s^{3} N_{1}(s)\left(r_{1}-U r_{2}\right) d s \quad v_{1}=-\int_{0}^{\infty} s \int J_{1}\left(s x_{2}\right) d x_{2} s^{3} N_{1}(s)\left(r_{1}-U r_{2}\right) d s \tag{44}\\
v_{1}=\left(r_{1}-U r_{2}\right) \int_{0}^{\infty} s J_{0}\left(s x_{2}\right) s^{2} N_{1}(s) d s \tag{45}
\end{gather*}
$$

Appendix D. The circular cone

Letting $a^{4}\left[v_{1}\left(x_{2}\right)\right]_{x_{1}=0}=a^{4}[b+a \cot \alpha(1-\rho)]=\left(r_{1}-U r_{2}\right) g(\rho)=\left(r_{1}-U r_{2}\right)\left(A_{0}+A_{1} \rho\right)$, one has

$$
A_{0}=(b+a \cot \alpha) a^{4} /\left(r_{1}-U r_{2}\right), \quad A_{1}=-a^{5} \cot \alpha /\left(r_{1}-U r_{2}\right) \quad \rho=x_{2} / a
$$

where α is the angle of the circular cone (the angle between the axis of symmetry and the generatrix).
Considering (29), one obtains from [Gradshteyn and Ryzhik 1965]

$$
f(p)=2\left(A_{0} / \pi+A_{1} / 2\right) \sin p / p+A_{1}(\cos p-1) / p^{2}
$$

As $p^{3} N_{1}=f(p)$ and $(s a)=p$, one has

$$
\begin{gather*}
p^{3} N_{1}=2\left(A_{0} / \pi+A_{1} / 2\right) \sin p / p+A_{1}(\cos p-1) / p^{2} \tag{46}\\
\delta \sigma_{11}=(2 \mu-T)\left[U\left(r_{2}^{2}+1\right)-\left(r_{1}^{2}+1\right)\right] \int_{0}^{\infty} s J_{0}\left(s x_{2}\right) s^{3} N_{1}(s) d s / 2 \tag{47}\\
\delta \sigma_{11}=(2 \mu-T)\left[U\left(r_{2}^{2}+1\right)-\left(r_{1}^{2}+1\right)\right] \int_{0}^{\infty} s J_{0}\left(s x_{2}\right)\left[\left(2 A_{0} / \pi+A_{1}\right) \frac{\sin (s a)}{s a}+A_{1} \frac{\cos (s a)-1}{(s a)^{2}}\right] d s / 2 \tag{48}
\end{gather*}
$$

As the integral $\int_{0}^{\infty} J_{0}(p) \sin p d p$ is divergence, for the finiteness of stress component $\delta \sigma_{11}$ at the edge of the punch, we have $\left(2 A_{0} / \pi+A_{1}\right)=0$, that is, $b=a \cot \alpha(\pi / 2-1)$. Hence

$$
v\left(x_{2}\right)_{x_{1}=x_{2}=0}=b+a \cot \alpha=0.5 \pi a \cot \alpha
$$

Because $\int_{0}^{\infty} J_{0}(p p)(\cos p-1) / p d p=-\cosh ^{-1}(1 / \rho)$, one has

$$
\begin{align*}
& \delta \sigma_{11}=(2 \mu-T)\left[U\left(r_{2}^{2}+1\right)-\left(r_{1}^{2}+1\right)\right] A_{1} a^{-5} \int_{0}^{\infty} s a J_{0}\left(s a x_{2} / a\right)\left[(\cos (s a)-1) /(s a)^{2}\right] d s a / 2 \tag{49}\\
& \delta \sigma_{11}=-(2 \mu-T)\left[U\left(r_{2}^{2}+1\right)-\left(r_{1}^{2}+1\right)\right] a^{-5} A_{1} \cosh ^{-1}\left(a / x_{2}\right) / 2 \tag{50}
\end{align*}
$$

As $\int_{0}^{a}\left[\cosh ^{-1}\left(a / x_{2}\right) x_{2}\right] d x_{2}=0.5 a^{2}$ and $A_{1}=-a^{5} \cot \alpha /\left(r_{1}-U r_{2}\right)$, one obtains for the compressive force R on the cone

$$
\begin{aligned}
R & =-2 \pi \int_{0}^{a}\left[\delta \sigma_{11}\right]_{x_{1}=o} x_{2} d x_{2}=2 \pi(2 \mu-T)\left[U\left(r_{2}^{2}+1\right)-\left(r_{1}^{2}+1\right)\right] a^{-5} A_{1} \int_{0}^{a}\left[\cosh ^{-1}\left(a / x_{2}\right) x_{2}\right] d x_{2} / 2 \\
& =\pi(2 \mu-T)\left[U\left(r_{2}^{2}+1\right)-\left(r_{1}^{2}+1\right)\right] a^{-3} A_{1} / 2=\pi(2 \mu-T)\left[\left(r_{1}^{2}+1\right)-U\left(r_{2}^{2}+1\right)\right] a^{2} \frac{\cot \alpha}{2 r_{1}-2 U r_{2}}
\end{aligned}
$$

From (39), we know that $U=\left(r_{1} / r_{2}\right) \frac{r_{1}^{2}+\beta}{r_{2}^{2}+\beta}$, where $\beta=(2 \mu-T) /(2 \mu+T)=r_{2}^{2} r_{1}^{2}$. Then, one has

$$
\begin{equation*}
\left(r_{1}-U r_{2}\right)=r_{1}\left\{1-\left[r_{1}^{2}+r_{2}^{2} r_{1}^{2}\right] /\left[r_{2}^{2}+r_{2}^{2} r_{1}^{2}\right]\right\}=r_{1}\left\{r_{2}^{2}-r_{1}^{2}\right\} /\left[r_{2}^{2}+r_{2}^{2} r_{1}^{2}\right] \tag{51}
\end{equation*}
$$

and

$$
\begin{align*}
\left(r_{1}^{2}+1-U r_{2}^{2}-U\right) & =\left\{r_{1}^{2}+1-\left(r_{1} r_{2}\right)\left[r_{1}^{2}+r_{2}^{2} r_{1}^{2}\right] /\left[r_{2}^{2}+r_{2}^{2} r_{1}^{2}\right]-\left(r_{1} / r_{2}\right)\left[r_{1}^{2}+r_{2}^{2} r_{1}^{2}\right] /\left[r_{2}^{2}+r_{2}^{2} r_{1}^{2}\right]\right\} \\
& =\frac{\left(r_{1}^{2}+1\right)\left[r_{2}^{2}+r_{2}^{2} r_{1}^{2}\right]-\left(r_{1} r_{2}\right)\left[r_{1}^{2}+r_{2}^{2} r_{1}^{2}\right]-\left(r_{1} / r_{2}\right)\left[r_{1}^{2}+r_{2}^{2} r_{1}^{2}\right]}{r_{2}^{2}+r_{2}^{2} r_{1}^{2}} \\
& =\frac{r_{1}^{2} r_{2}^{2}+r_{2}^{2} r_{1}^{2}-\left(r_{1} r_{2}\right)\left[r_{1}^{2}+r_{2}^{2} r_{1}^{2}\right]}{r_{2}^{2}+r_{2}^{2} r_{1}^{2}}+\frac{\left[r_{2}^{2}+r_{2}^{2} r_{1}^{2}\right]-\left(r_{1} / r_{2}\right)\left[r_{1}^{2}+r_{2}^{2} r_{1}^{2}\right]}{r_{2}^{2}+r_{2}^{2} r_{1}^{2}} \\
& =\frac{r_{1}\left[r_{1} r_{2}\left(r_{2}-r_{1}\right)+\left(r_{1}-r_{2}\right) r_{2}^{2} r_{1}^{2}\right]+\left[r_{2}^{2}-\left(r_{1} / r_{2}\right) r_{1}^{2}\right]+r_{2}^{2} r_{1}^{2}-\left(r_{1} / r_{2}\right) r_{2}^{2} r_{1}^{2}}{r_{2}^{2}+r_{2}^{2} r_{1}^{2}} \\
& =\left(r_{2}-r_{1}\right)\left\{r_{1}\left[r_{1} r_{2}-r_{2}^{2} r_{1}^{2}\right]+\left[r_{2}^{2}+r_{1} r_{2}+r_{1}^{2}\right] / r_{2}+r_{2}^{2} r_{1}^{2} / r_{2}\right\} /\left[r_{2}^{2}+r_{2}^{2} r_{1}^{2}\right] \\
& \left.=\left(r_{2}-r_{1}\right) r_{2} r_{1} r_{1} r_{2}-r_{2}^{2} r_{1}^{2}+\left[r_{2}^{2}+r_{1} r_{2}+r_{1}^{2}\right]+r_{2}^{2} r_{1}^{2}\right\} /\left[\left(r_{2}^{2}+r_{2}^{2} r_{1}^{2}\right) r_{2}\right] \tag{52}
\end{align*}
$$

Considering the equations (51) and (52), one knows

$$
\begin{aligned}
\frac{\left(r_{1}^{2}+1\right)-U\left(r_{2}^{2}+1\right)}{r_{1}-U r_{2}} & =\frac{\left(r_{2}-r_{1}\right)\left[r_{2} r_{1}\left(r_{1} r_{2}-r_{2}^{2} r_{1}^{2}\right)+\left(r_{2}^{2}+r_{1} r_{2}+r_{1}^{2}\right)+r_{2}^{2} r_{1}^{2}\right] /\left[\left(r_{2}^{2}+r_{2}^{2} r_{1}^{2}\right) r_{2}\right]}{r_{1}\left\{r_{2}^{2}-r_{1}^{2}\right\} /\left(r_{2}^{2}+r_{2}^{2} r_{1}^{2}\right)} \\
& =\left\{-r_{2}^{3} r_{1}^{3}+\left(r_{2}^{2}+r_{1} r_{2}+r_{1}^{2}\right)+2 r_{2}^{2} r_{1}^{2}\right\} / r_{2} r_{1}\left(r_{2}+r_{1}\right) \\
& =\left\{-r_{2}^{3} r_{1}^{3}+\left[r_{2}^{2}+r_{1} r_{2}+r_{1}^{2}\right]+2 r_{2}^{2} r_{1}^{2}\right\} /\left[r_{2} r_{1}\left(r_{2}^{2}+2 r_{1} r_{2}+r_{1}^{2}\right)^{1 / 2}\right]
\end{aligned}
$$

Considering r_{1} and r_{2} are the two positive roots of the equation $p_{1}+p_{2} m^{2} / s^{2}+p_{3} m^{4} / s^{4}=0$, where $p_{3}=(1+Q), p_{2}=-(2-6 \mu S), p_{1}=(1-Q)$ and $Q=T / 2 \mu$, one has

$$
\begin{aligned}
r_{2} r_{1} & =\left(p_{1} / p_{3}\right)^{1 / 2}=(1-Q)^{1 / 2} /(1+Q)^{1 / 2}=(2 \mu-T)^{1 / 2} /(2 \mu+T)^{1 / 2} \\
r_{2}^{2}+r_{1}^{2} & =-p_{2} / p_{3}=(2-6 \mu S) /(1+Q)=\left(2 \mu-6 \mu^{2} S\right) /(2 \mu+T)
\end{aligned}
$$

where S can be found from (3). Then, one obtains (30). The contact radius a is then given by (31) and the penetration depth by (32). Finally, from the expression for a and the values $\left(r_{2}^{2}+r_{1}^{2}\right)=-p_{2} / p_{3}$, $r_{1} r_{2}=\left(p_{1} / p_{3}\right)^{1 / 2}, \beta=\left(p_{1} / p_{3}\right)$ and $T / 2 \mu=Q$, one obtains

$$
\begin{align*}
\pi a^{2}=(R / 2 \mu)\left\{\left(p_{1} / p_{3}\right)^{1 / 2}\right. & {\left.\left[2\left(p_{1} / p_{3}\right)^{1 / 2}-p_{2} / p_{3}\right]^{1 / 2}\right\} } \\
& /\left\{(1-Q)\left[\left(p_{1} / p_{3}-p_{1}^{3 / 2} / p_{3}^{3 / 2}\right)+\left(p_{1} / p_{3}\right)^{1 / 2}-p_{2} / p_{3}+p_{1} / p_{3}\right] \cot \alpha\right\} \tag{53}
\end{align*}
$$

Substituting $-p_{2} / p_{3}=+2(1-3 \mu S) /(1+Q),\left(p_{1} / p_{3}\right)=(1-Q) /(1+Q),\left(p_{1} / p_{3}\right)^{1 / 2}=(1-Q)^{1 / 2} /(1+$ $Q)^{1 / 2}$ into (53), one has

$$
\begin{align*}
& \pi a^{2}=(R / 2 \mu) \operatorname{tg} \alpha\left\{\left[1 /\left(1-Q^{2}\right)^{1 / 2}\right]\left[2(1-Q)^{1 / 2} /(1+Q)^{1 / 2}+2(1-3 \mu S) /(1+Q)\right]^{1 / 2}\right\} \\
& /\left\{(1-Q)^{1 / 2} /(1+Q)^{1 / 2}\left[(1-Q)^{1 / 2} /(1+Q)^{1 / 2}-(1-Q) /(1+Q)\right]\right. \\
&+ {\left.\left[(1-Q)^{1 / 2} /(1+Q)^{1 / 2}+2(1-3 \mu S) /(1+Q)\right]+(1-Q) /(1+Q)\right\} } \tag{54}
\end{align*}
$$

References

[Dorris and Nemat-Nasser 1980] J. F. Dorris and S. Nemat-Nasser, "Instability of a layer on a half space", J. Appl. Mech. (ASME) 47 (1980), 304-312.
[Gradshteyn and Ryzhik 1965] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products, Scripta Technica, Academic Press, New York, 1965.
[Hao 2006] T. H. Hao, "Axially symmetrical contact problem of finite elasticity and its application to estimating residual stresses by cone indentation", J. Mech. Mater. Struct. 1:8 (2006), 1367-1384.
[Hao and Shen 1994] T. H. Hao and Z. Y. Shen, "A new electric boundary condition of electric fracture mechanics and its application", Eng. Fract. Mech. 47:6 (1994), 793-802.
[Sneddon 1951] I. N. Sneddon, Fourier transforms, McGraw-Hill, New York, 1951.
[Suresh and Giannakopoulos 1998] S. Suresh and A. E. Giannakopoulos, "A new method for estimating residual stresses by instrumented sharp indentation", Acta Mater. 46 (1998), 5755-5767.

Received 19 Sep 2011. Revised 5 Oct 2012. Accepted 16 Oct 2012.
Tian-HU HaO: haoth0000@yahoo.com.cn
State Key Lab for Modification of Polymer Materials and Chemical Fibers, Donghua University, P.O. Box 220,
Shanghai, 200051, China

JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES

msp.org/jomms

Founded by Charles R. Steele and Marie-Louise Steele
\section*{EDITORS}
Charles R. Steele
Davide Bigoni Iwona Jasiuk
Yasuhide Shindo
Stanford University, USA
University of Trento, Italy
University of Illinois at Urbana-Champaign, USA
Tohoku University, Japan

EDITORIAL BOARD

H. D. Bui École Polytechnique, France
J. P. CARTER University of Sydney, Australia
R. M. Christensen Stanford University, USA
G. M. L. Gladwell University of Waterloo, Canada
D. H. Hodges Georgia Institute of Technology, USA
J. Hutchinson Harvard University, USA
C. Hwu National Cheng Kung University, Taiwan
B. L. Karihaloo University of Wales, UK
Y. Y. Kim Seoul National University, Republic of Korea
Z. Mroz Academy of Science, Poland
D. Pamplona Universidade Católica do Rio de Janeiro, Brazil
M. B. Rubin Technion, Haifa, Israel
A. N. Shupikov Ukrainian Academy of Sciences, Ukraine
T. TARNAI University Budapest, Hungary
F. Y. M. WAn University of California, Irvine, USA
P. Wriggers Universität Hannover, Germany
W. Yang Tsinghua University, China
F. Ziegler Technische Universität Wien, Austria

PRODUCTION production@msp.org
Silvio Levy Scientific Editor

See msp.org/jomms for submission guidelines.
JoMMS (ISSN 1559-3959) at Mathematical Sciences Publishers, 798 Evans Hall \#6840, c/o University of California, Berkeley, CA 94720-3840, is published in 10 issues a year. The subscription price for 2012 is US $\$ 555 /$ year for the electronic version, and $\$ 735 /$ year ($+\$ 60$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues, and changes of address should be sent to MSP.

JoMMS peer-review and production is managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers nonprofit scientific publishing
http://msp.org/
© 2012 Mathematical Sciences Publishers

Journal of Mechanics of Materials and Structures

Volume 7, No. 10
 December 2012

Indentation and residual stress in the axially symmetric elastoplastic contact problem Tian-hu Hao 887
Form finding of tensegrity structures using finite elements and mathematical programming
Katalin K. Klinka, Vinicius F. Arcaro and Dario Gasparini 899
Experimental and analytical investigation of the behavior of diaphragm-through joints of concrete-filled tubular columns Rong Bin, Chen Zhinua, Zhang Ruoyu, Apostolos Fafitis and Yang Nan 909
Buckling and postbuckling behavior of functionally graded Timoshenko microbeams based on the strain gradient theory Reza ansari, Mostara Faghih Shojaei, Vahid Mohammadi, Raheb Gholami and Mohammad ali Darabi 931
Measurement of elastic properties of AISI 52100 alloy steel by ultrasonic nondestructive methods
Mohammad Hamidnia and Farhang Honarvar 951
Boundary integral equation for notch problems in an elastic half-plane based on Green's function method Y. Z. CHEN 963
Internal structures and internal variables in solids
Jüri Engelbrecht and Arkadi Berezovski 983
The inverse problem of seismic fault determination using part time measurements Huy Duong Bui, Andrei Constantinescu and Hubert Maigre 997

[^0]: The author thanks Prof. Ziyuan Shen for valuable help in writing the paper in English.
 Keywords: elastoplastic contact problem, unloading, residual plastic deformation.

