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BUCKLING AND POSTBUCKLING BEHAVIOR OF FUNCTIONALLY GRADED
TIMOSHENKO MICROBEAMS BASED ON THE STRAIN GRADIENT THEORY

REZA ANSARI, MOSTAFA FAGHIH SHOJAEI, VAHID MOHAMMADI,
RAHEB GHOLAMI AND MOHAMMAD ALI DARABI

Presented herein is a comprehensive study on the buckling and postbuckling analysis of microbeams
made of functionally graded materials (FGMs) based on the modified strain gradient theory. The present
model is developed in the skeleton of the Timoshenko beam theory and the von Karman geometric non-
linearity, and enables one to consider size effects through introducing material length scale parameters.
Also, the current model can be reduced to the modified couple stress and classical models if two or all
material length scale parameters are set equal to zero, respectively. Utilizing a power law function, the
volume fraction of the ceramic and metal phases of the functionally graded microbeam is expressed. The
stability equations and corresponding boundary conditions are derived using Hamilton’s principle and
then solved through the generalized differential quadrature (GDQ) method in conjunction with a direct
approach without linearization. The effects of the length scale parameter, slenderness ratio, material
gradient index and boundary conditions on the buckling and postbuckling behavior of microbeams are
carefully studied. Furthermore, the non-dimensional critical axial load of microbeams predicted by
modified strain gradient and classical theories for the first three postbuckling modes is investigated and it
is observed that the classical theory underestimates the non-dimensional critical axial load, especially at
higher postbuckling modes. In addition, the influence of imperfections on the deflection of microbeams
in prebuckled and postbuckled states is discussed.

1. Introduction

Microstructures made of FGMs are becoming hot research areas, since they pave the way for achieving
highly sensitive and most desired micro-electromechanical systems [Hasanyan et al. 2008; Witvrouw
and Mehta 2005; Fu et al. 2004].

As the size-dependent deformation behavior is detected in the micro-torsion and micro-bending exper-
iments of microbeams, the size effects must be incorporated in the study of FGM microstructures. The
conventional continuum mechanics is not able to capture size effects; hence, developing size-dependent
elasticity theories has become an important issue. In this regard, several non-classical continuum theories
such as the strain gradient elasticity, couple stress elasticity, nonlocal elasticity and the surface elasticity
have been proposed [Aifantis 1999; Mindlin and Tiersten 1962; Eringen 1972; Gurtin et al. 1998]. The
two first size-dependent theories encompass some higher-order stress constituents in addition to the
classical stresses.

Keywords: FGM microbeam, generalized differential quadrature method, strain gradient theory, mechanical buckling,
postbuckling, Timoshenko beam theory.
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One type of the higher-order continuum theories reported in Mindlin and Tiersten 1962; Koiter 1964;
Toupin 1962; 1964] is the couple stress theory which includes two material length scale parameters
in addition to classical material constants for isotropic elastic materials. These two material length
scale parameters are in relation to the underlying microstructure of material and are so complicated to
determine. Yang et al. [2002] proposed the modified couple stress theory (MCST) and facilitated applying
couple stress theory by considering only one material length scale parameter beside two classical material
constants. A variational formulation for the MCST was also presented by Park and Gao [2008]. This
theory has been extensively used to interpret size effects on the vibrational, bending and buckling behavior
of microstructures [Ma et al. 2008; 2010; 2011; Tsiatas 2009; Xia et al. 2010; Park and Gao 2006].

The strain gradient theory proposed by Fleck and Hutchinson [1993] is the extension of Mindlin’s
formulation [Mindlin 1964; 1965; Mindlin and Eshel 1968] which considers only the first derivative of
the strain tensor. In comparison with the couple stress theory, this theory comprises some higher-order
stress constituents beside the classical and couple stresses. Lam et al. [2003] introduced the modified
strain gradient theory (MSGT) through considering three higher-order material constants related to di-
latation gradient, deviatoric gradient and symmetric rotation gradient tensors. It is noted that the MSGT
is also a simplified version of the Mindlin’s general theory [Mindlin 1964; 1965; Mindlin and Eshel
1968] which can be developed by omitting the second-order derivatives of the strain components in
the elastic strain energy. Numerous studies have been accomplished to investigate the size-dependent
static bending and vibrational analysis of microstructures based on the MSGT. The static deformation
and vibrational behavior of an Euler–Bernoulli microbeam was studied by Kong et al. [2009] using the
MSGT. Wang et al. [2012] developed a micro-scaled Timoshenko beam model based on the MSGT
and Hamilton’s principle. They also studied the static bending and free vibration of a simply-supported
Timoshenko microbeam. In another work, Kahrobaiyan et al. [2011], based on the MSGT, proposed a
nonlinear size-dependent Euler–Bernoulli beam model and studied the nonlinear size-dependent static
bending of a hinged-hinged microbeam. In a recent study, based on the MSGT, Ansari et al. [2012a]
developed a nonlinear size-dependent Timoshenko microbeam model and examined the influences of
geometric parameters, Poisson’s ratio and material length scale parameters on the vibrational behavior
of microbeams.

A literature review shows that the majority of studies on microstructures are concerned with the homo-
geneous materials. However, in recent years, several efforts have been tended to study the size-dependent
mechanical behavior of microstructures made of FGMs [Asghari et al. 2010; 2011; Reddy and Jinseok
2012; Mirzavand and Eslami 2011; Ke et al. 2012; Mohammadi-Alasti et al. 2011; Ke and Wang 2011;
Ansari et al. 2012b; 2011]. In this direction, utilizing the MCST, Asghari et al. [2010] studied the static
and vibrational behavior of Euler–Bernoulli FGM microbeams. It was observed that when the ratio of
the beam’s characteristic size to the material length scale parameter is low, the results obtained by the
MCST have a significant difference with those obtained by the classical theory (CT). Ke and Wang [2011]
investigated size-dependent dynamic stability of FGM microbeams based on the MCST and Timoshenko
beam theory. They found that when the thickness of beam is equal to the material length scale parameter,
the size effect on the dynamic stability characteristics is prominent. Ansari et al. [2012b] investigated
the nonlinear free vibration behavior of FGM microbeams based on the MSGT and the Timoshenko
beam theory. They measured the influences of important parameters on the vibrational response of the
microbeams.
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In this paper, based on the MSGT, the buckling and postbuckling of FGM microbeams have been
studied. To this end, the volume fraction of the ceramic and metal phases of FGM microbeams is
expressed by using the power law function. In the framework of nonlinear Timoshenko beam theory, the
stability equations and associated boundary conditions are derived employing Hamilton’s principle. Then,
the higher-order governing differential equations are discretized along with three different boundary
conditions by using the GDQ method in conjunction with a direct approach without linearization. The
current article provides an accurate insight into the effects of length scale parameter, slenderness ratio,
material gradient index, and boundary conditions on the buckling and postbuckling behavior of FGM
microbeams. The present model explicitly considers the net effect of imperfections of FGM microbeams
which is owing to fabrication defects, geometric irregularities, and non-ideal loading. Recognizing the
influence of imperfections is an important matter, since imperfections in structures are inescapable and
may lead to considerable variations in the stability response. By considering imperfections, instead of
sudden bifurcation at a critical axial load, the microbeams show a slight out-of-plane deflection from the
prebuckled state to a postbuckled one.

2. Modified strain gradient theory

Based on the modified strain gradient theory of Lam et al. [2003], the stored strain energy Um in a contin-
uum constructed by a linear elastic material occupying region � undergoing infinitesimal deformations
is given as

Um =
1
2

∫
�

(σi jεi j + piγi + τ
(1)
i jk η

(1)
i jk +ms

i jχ
s
i j ) dv, (1a)

εi j =
1
2(ui, j + u j,i ), (1b)

γi = εmm,i , (1c)

η
(1)
i jk = η

(1)
i jk = η

s
i jk −

1
5(δi jη

s
mmk + δ jkη

s
mmi + δkiη

s
mmj ), ηs

i jk =
1
3(ε jk,i + εki, j + εi j,k), (1d)

χ s
i j =

1
2(θi, j + θ j,i ), θi =

1
2(curl(u))i (1e)

where εi j denotes the strain tensor and ui is the components of displacement vector u. Also, γi , η
(1)
i jk , χ s

i j
are dilatation gradient, deviatoric stretch gradient, and symmetric rotation gradient tensors, respectively
[Lam et al. 2003]. θi stands for the infinitesimal rotation vector θ , and δ is the Kronecker delta.

The constitutive equations corresponding to a linear isotropic elastic material expressed by kinematic
parameters effective on the strain energy density are [Lam et al. 2003; Timoshenko and Goodier 1970]

σi j = λtr(ε)δi j + 2µεi j , pi = 2µl2
0γi , τ

(1)
i jk = 2µl2

1η
(1)
i jk, ms

i j = 2µl2
2χ

s
i j (2)

in which p, τ (1), and ms present the higher-order stresses. Also, l0, l1, l2 stand for three independent mate-
rial length scale parameters related to the dilatation gradients, deviatoric stretch gradients and symmetric
rotation gradients, respectively. Also, in the constitutive equation of the classical stress, λ and µ are two
classical material constants of bulk and shear modules, respectively, and are given as [Timoshenko and
Goodier 1970; Ke et al. 2010]

λ=
Eν

(1+ ν)(1− 2ν)
, µ=

E
2(1+ ν)

. (3)
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Figure 1. Schematic of a Timoshenko beam: kinematic parameters, coordinate system,
geometry and loading.

Accordingly, the theory of [Lam et al. 2003] encompasses higher-order stresses beside the classical stress.
These tensors are specified by three independent material length scale parameters and two classical
material constants.

3. Material properties of FGM microbeams

As shown in Figure 1, consider a FGM microbeam made of a mixture of ceramic and metal with length L
and thickness h undergoing an axial compressive load N 0x . Also, the kinematic parameters and geometry
and loading are demonstrated in this figure. The materials at bottom surface (z =−h/2) and top surface
(z = h/2) of the microbeam are supposed to be metal-rich and ceramic-rich, respectively.

Effective material characteristics of the FGM microbeam such as Young’s modulus (E) and Poisson’s
ratio (ν) can be achieved as the following relations

E(z)= (Ec− Em)V f (z)+ Em, (4)

ν(z)= (νc− νm)V f (z)+ νm, (5)

where the subscripts m and c signify metal and ceramic phases, respectively. Amongst the different
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existing functions to describe the variation of the volume fractions of constituents, herein a simple power
law function is used to explain the volume fraction of the ceramic and metal phases as (see [Fares et al.
2009])

V f (z)=
(1

2
+

z
h

)k
, (6)

where k represents the power law index.

4. Mathematical formulation of stability equations and associated boundary conditions

Based on the Timoshenko beam formulation, by introducing U (x), W (x), Ws(x) and 9(x) as the axial
displacement of the center of sections, lateral deflection of the beam, lateral pre-deformation owing
to imperfection, and the rotation angle of the cross section with respect to the vertical direction, the
kinematics of microbeams are given as

u1 =U (x)− z9(x), u2 = 0, u3 =W (x)−Ws(x). (7)

It is noteworthy to mention that in this study the net imperfection is treated as a pre-deflection of mi-
crobeam in unloaded state. By considering a Timoshenko microbeam under tiny slopes after deflection
and possible finite transverse deflection W , the nonlinear strain-displacement relations are approximated
by the von Karman relation as

ε11=
du1

dx
+

1
2

[(
dW
dx

)2
−

(
dWs

dx

)2 ]
=

dU
dx
−z

d9
dx
+

1
2

[(
dW
dx

)2
−

(
dWs

dx

)2 ]
, ε13=

1
2

(
dW
dx
−

dWs

dx
−9

)
.

(8)
Also, the non-zero constituents of θ , χ s, γ and η(1) can be obtained through introducing (7) and (8) into
(1c)–(1e) as

θ2 =−
1
2

(
9 +

dW
dx
−

dWs

dx

)
, (9a)

χ s
12 = χ

s
21 =−

1
4

(
d9
dx
+

d2W

dx2 −
d2Ws

dx2

)
, (9b)

γ1 =
d2U

dx2 − z
d29

dx2 +
dW
dx
·

d2W

dx2 −
dWs

dx
·

d2Ws

dx2 , γ3 =−
d9
dx
, (9c)

η
(1)
111 =

2
5

(
d2U

dx2 − z
d29

dx2 +
dW
dx
·

d2W

dx2 −
dWs

dx
·

d2Ws

dx2

)
, η

(1)
333 =−

1
5

(
d2W

dx2 −
d2Ws

dx2 − 2
d9
dx

)
,

η
(1)
113 = η

(1)
311 = η

(1)
131 =

4
15

(
d2W

dx2 −
d2Ws

dx2 − 2
d9
dx

)
, (9d)

η
(1)
223 = η

(1)
322 = η

(1)
232 =−

1
15

(
d2W

dx2 −
d2Ws

dx2 − 2
d9
dx

)
,

η
(1)
221 = η

(1)
212 = η

(1)
122 = η

(1)
313 = η

(1)
133 = η

(1)
331 =−

1
5

(
d2U

dx2 − z
d29

dx2 +
dW
dx
·

d2W

dx2 −
dWs

dx
·

d2Ws

dx2

)
.

Finally, by inserting (8) and (9) into (2), the major constituents of the symmetric section of the stress
tensor and nonzero constituents of the higher-order stresses are achieved. The strain energy due to the
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variation of the classical and higher order stresses with respect to the initial configuration 5s can be
written as

5s =
1
2

∫ L

0

{
N1

(
dU
dx
+

1
2

[(
dW
dx

)2
−

(
dWs

dx

)2])
−M1

(
d9
dx

)
+ Q1

(
dW
dx
−

dWs

dx
−9

)
− P3

(
d9
dx

)
+ (P1+ T τ

111)

(
d2U

dx2 +
dW
dx
·

d2W

dx2 −
dWs

dx
·

d2Ws

dx2

)
− (M p

1 +Mτ
111)

(
d29

dx2

)
−

4
3

T τ
333

(
d2W

dx2 −
d2Ws

dx2 − 2
d9
dx

)
−

Y12

2

(
d9
dx
+

d2W

dx2 −
d2Ws

dx2

)}
dx, (10)

in which the normal resultant force N1, shear force Q1, bending moment M1, couple moment Y12 and
other higher-order resultants force and higher order moments in a section attributable to higher-order
stresses acting on the section are introduced as follows:

N1 =

∫
A
σ11 d A = A11

(
dU
dx
+

1
2

[(
dW
dx

)2
−

(
dWs

dx

)2])
−B11

d9
dx
,

M1 =

∫
A
σ11z d A = B11

(
dU
dx
+

1
2

[(
dW
dx

)2
−

(
dWs

dx

)2])
−D11

d9
dx
, (11a)

Q1 =

∫
A
σ13 d A = ks A55

(
dW
dx
−

dWs

dx
−9

)
, Y12 =

∫
A

ms
12 d A =−

l2
2

2
A55

(
d9
dx
+

d2W

dx2 −
d2Ws

dx2

)
,

P1 =

∫
A

p1 d A = 2l2
0

(
A55

[
d2U

dx2 +
dW
dx
·
d2W

dx2 −
dWs

dx
·
d2Ws

dx2

]
−B55

d29

dx2

)
,

P3 =

∫
A

p3 d A =−2A55l2
0

d9
dx
, (11b)

T τ
111 =

∫
A
τ
(1)
111 d A =

4l2
1

5

(
A55

[
d2U

dx2 +
dW
dx
·
d2W

dx2 −
dWs

dx
·
d2Ws

dx2

]
−B55

d29

dx2

)
, (11c)

T τ
333 =

∫
A
τ
(1)
333 d A =−

2l2
1

5
A55

(
d2W

dx2 −
d2Ws

dx2 −2
d9
dx

)
, (11d)

M p
1 =

∫
A

p1z d A = 2l2
0

(
B55

[
d2U

dx2 +
dW
dx
·
d2W

dx2 −
dWs

dx
·
d2Ws

dx2

]
−D55

d29

dx2

)
, (11e)

Mτ
111=

∫
A
τ
(1)
111z d A =

4l2
1

5

(
B55

[
d2U

dx2 +
dW
dx
·
d2W

dx2 −
dWs

dx
·
d2Ws

dx2

]
−D55

d29

dx2

)
(11f)

where A stands for the cross-sectional areas of the microbeam. The symbol ks appearing in shear force
Q1 is a correction factor to consider the non-uniformity of shear strain over the microbeam cross-section
[Ke et al. 2012; Reddy 2007]. Also, the stiffness constituents in these relations are defined as

{A11, B11, D11} =

∫ h/2

−h/2
(λ(z)+2µ(z)){1, z, z2

} dz, {A55, B55, D55} =

∫ h/2

−h/2
µ(z){1, z, z2

} dz. (12)
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The work 5P done by the axial force N 0x can be also written as

5P =
1
2

∫ L

0
N 0x

(
dW
dx

)2
dx . (13)

Using (10) and (13) and implementing the principle of virtual work, the governing stability equations
and corresponding boundary conditions of an FGM Timoshenko microbeam can be obtained as

d N1

dx
−

d2(P1+T τ
111)

dx2 = 0, (14a)

d
dx

{(
N1−N 0x−

d(P1+T τ
111)

dx

)
·
dW
dx

}
+

d Q1

dx
+

4
3

d2T τ
333

dx2 +
1
2

d2Y12

dx2 = 0, (14b)

Q1−
d(M1+P3)

dx
+

d2(M p
1 +Mτ

111)

dx2 +
8
3

dT τ
333

dx
= 0, (14c)(

N1−
d(P1+T τ

111)

dx

)∣∣∣∣
x=0,L

= 0 or δU |x=0,L = 0, (14d)

(
(N1−N 0x)

dW
dx
+Q1−

d(P1+T τ
111)

dx
d2W

dx2 +
4
3

dT τ
333

dx
+

1
2

dY12

dx

)∣∣∣∣
x=0,L

= 0 or δW |x=0,L = 0, (14e)

(
M1+P3−

d(M p
1 +Mτ

111)

dx
−

8
3

T τ
333+

Y12

2

)∣∣∣∣
x=0,L

= 0 or δ9|x=0,L = 0, (14f)

(P1+T τ
111)|x=0,L = 0 or δ

(
dU
dx

)∣∣∣∣
x=0,L

= 0, (14g)

(
−(P1+T τ

111)
dW
dx
+

4
3

T τ
333+

Y12

2

)∣∣∣∣
x=0,L

= 0 or δ

(
dW
dx

)∣∣∣∣
x=0,L

= 0, (14h)

(M p
1 +Mτ

111)|x=0,L = 0 or δ

(
d9
dx

)∣∣∣∣
x=0,L

= 0. (14i)

Accordingly, based on the MSGT, the stability equations and associated boundary conditions of a size-
dependent FGM microbeam are derived. In effect, these relations can be reduced to the stability equations
and associated boundary conditions of a FGM Timoshenko microbeam achieved by the MCST and CT,
if two or three material length scale parameters set to be zero, respectively [Ke et al. 2012].

We introduce the parameters

ξ =
x
L
, η =

L
h
, (u, w,ws)=

(U,W,Ws)

h
, ψ =9, N0 =

N 0x

A110
, (`0, `1, `2)=

(l0, l1, l2)

h
, (15a)

(a11, a55, b11, b55, d11, d55)=

(
A11

A110
,

A55

A110
,

B11

A110h
,

B55

A110h
,

D11

A110h2 ,
D55

A110h2

)
, (15b)

c1 = (2`2
0+

4
5`

2
1), c2 = (

8
15`

2
1+

1
4`

2
2), c3 = (

16
15`

2
1−

1
4`

2
2), c4 = (2`2

0+
32
15`

2
1+

1
4`

2
2) (15c)
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which A110 denotes the value of A11 of a homogeneous metal beam. The stability equations of the FGM
microbeam can be rewritten as

a11
d2u

dξ 2−
a55c1

η2

d4u

dξ 4−b11
d2ψ

dξ 2 +
b55c1

η2

d4ψ

dξ 4 +Z1 = 0, (16a)

ksa55

(
d2w

dξ 2 −
d2ws

dξ 2 −η
dψ
dξ

)
−

a55c2

η2

(
d4w

dξ 4 −
d4ws

dξ 4

)
+

a55c3

η

d3ψ

dξ 3 −N0
d2w

dξ 2 +Z2 = 0, (16b)

ksa55η

(
dw
dξ
−

dws

dξ
−ηψ

)
−b11

d2u

dξ 2+(d11+c4a55)
d2ψ

dξ 2 +
a55c3

η

(
∂3w

dξ 3 −
d3ws

dξ 3

)

+
c1

η2

[
b55

d4u

dξ 4−d55
d4ψ

dξ 4

]
+Z3 = 0, (16c)

where

Z1 =
a11

η

dw
dξ

d2w

dξ 2 −
a55c1

η3

(
dw
dξ

d4w

dξ 4 +3
d2w

dξ 2

d3w

dξ 3

)
−

a11

η

dws

dξ
d2ws

dξ 2

+
a55c1

η3

(
dws

dξ
d4ws

dξ 4 +3
d2ws

dξ 2

d3ws

dξ 3

)
, (17a)

Z2 =
a11

η

[
du
dξ

d2w

dξ 2 +
d2u

dξ 2

dw
∂ξ
+

3
2η

(
dw
dξ

)2 d2w

dξ 2

]
+

b55c1

η3

[
dw
dξ

d4ψ

dξ 4 +
d2w

dξ 2

d3ψ

dξ 3

]

−
a55c1

η3

[
d4u

dξ 4

dw
dξ
+

d3u

dξ 3

d2w

dξ 2 +
1
η

(
d2w

dξ 2

)3

+
4
η

dw
dξ

d2w

dξ 2

d3w

dξ 3 +
1
η

(
dw
dξ

)2 d4w

dξ 4

]

−
b11

η

(
d2w

dξ 2

dψ
dξ
+

dw
dξ

d2ψ

dξ 2

)
−

a11

2η2

(
dws

dξ

)2
∂2w

dξ 2 −
a11

η2

dw
dξ

dws

dξ
d2ws

dξ 2

+
a55c1

η4

(
d2w

dξ 2

dws

dξ
d2ws

dξ 2 +3
d2ws

dξ 2

dw
dξ

d3ws

dξ 3 +

(
d2ws

dξ 2

)2 d2w

dξ 2 +
dw
dξ

dws

dξ
d4ws

dξ 4

)
, (17b)

Z3 =
b55c1

η3

[
3

d2w

dξ 2

d3w

dξ 3 +
dw
dξ

∂4w

dξ 4

]
−

b11

η

dw
dξ

d2w

dξ 2 +
b11

η

dws

dξ
d2ws

dξ 2

−
b55c1

η3

(
dws

dξ
d4ws

dξ 4 +3
d2ws

dξ 2

d3ws

dξ 3

)
. (17c)

Also, depending on the type of end conditions, the boundary conditions of the FGM microbeam can be
as follows:

For clamped (C) end condition

u = w = ψ =
du
dξ
=

dw
dξ
=

dψ
dξ
= 0. (18)
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For simply-supported (SS) end condition

u = w = a55

(
d2u

dξ 2+
1
η

dw
dξ

d2w

dξ 2

)
−b55

d2ψ

dξ 2

= b55

(
d2u

dξ 2+
1
η

dw
dξ

d2w

dξ 2 −
1
η

dws

dξ
d2ws

dξ 2

)
−d55

d2ψ

dξ 2 = 0, (19a)

−c1

(
a55

η3

d2w

dξ 2

(
dw
dξ

)2
−

a55

η3

d2ws

dξ 2

dws

dξ
dw
dξ
+

a55

η2

dw
dξ

d2u

dξ 2−
b55

η2

dw
dξ

d2ψ

dξ 2

)
−

a55c2

η3

d2w

dξ 2 +a55c3
dψ
dξ
= 0, (19b)

b11

(
du
dξ
+

1
2η

(
dw
dξ

)2
−

1
2η

(
dws

dξ

)2)
−d11

dψ
dξ
+

d55c1

η2

d3ψ

dξ 3 +
a55c3

η

d2w

dξ 2 −a55c4
dψ
dξ

+c1

(
−

b55

η2

d3u

dξ 3−
b55

η3

dw
dξ

d3w

dξ 3 +
b55

η3

dws

dξ
d3ws

dξ 3 −
b55

η3

(
d2w

dξ 2

)2
+

b55

η3

(
d2ws

dξ 2

)2)
= 0. (19c)

5. Numerical solution

Various numerical techniques are available to solve the present stability equations and associated bound-
ary conditions. Herein, the GDQ method [Shu 2000] is utilized to discretize the stability equations and
boundary conditions. This technique has exhibited a great potential in solving large partial differential
equations [Ansari et al. 2012a; 2012b]. In this work, for sake of briefness, we avoid presenting the
discretized counterparts of stability equations and corresponding boundary conditions. Substituting the
equations of the boundary conditions into the equations of the system in the boundaries leads to a set of
nonlinear equations of the domain coupled with the boundary as

F : R3n+1
→ R3n, F(v, N0)= 0, v = {uT ,wT ,ψT

}
T (20)

in which n is the number of grid points in the GDQ discritization; v and N0 denote the field variable vector
dictating the buckling deformation and the buckling load, respectively. This nonlinear load-deflection
equation is rather large and can be hardly treated through a linearization scheme. Therefore, another
solution strategy is adopted herein which does not need any linearization. Since the buckling load N0

itself is unknown, the number of unknown variables is one more than the number of the equations
appearing in (20). To rectify this problem, a normalizing equation is added to (20) to convert the present
eigenvalue problem to a set of nonlinear equations of the form

F(v, N0)= 0,

vTv− c = 0.
(21)

Now, the preceding nonlinear equations can be solved by implementing the Newton method, provided
that the initial values are selected appropriately. To this end, the equations are solved first by dropping
the nonlinear terms. Then, the linear response is imparted to the nonlinear equations in Newton’s method
as initial values so as to obtain eigenpairs of the nonlinear model.
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6. Results and discussion

In this section, the buckling and postbuckling analyses of FGM Timoshenko microbeams undergoing
an axial compressive load with different boundary conditions are represented. FGM microbeams made
of a mixture of aluminum (Al) and ceramic (SiC) with material properties of Em = 70 GPa, νm = 0.3,
ρm = 2702 kg/m3 for Al, and Ec = 427 GPa, νc = 0.17, ρc = 3100 kg/m3 for SiC are considered. The
materials at bottom surface and top surface of the microbeam are considered to be metal-rich and ceramic-
rich, respectively.

In order to evaluate the length scale parameters, it is necessary to have experimental data of a homo-
geneous epoxy or FGM microbeam. Lam et al. [2003] experimentally approximated the length scale
parameter of an isotropic homogeneous microbeam as l = 17.6µm. To our best knowledge, there is no
experimental report concerned with FGM microbeams in the literature. To have a quantitative analysis on
the size effect of the FGM microbeams, the values of each length scale parameter are set to be l = 15µm.

In the following subsections, based upon the above-mentioned assumptions, firstly, the size-dependent
buckling behavior of FGM microbeams is described; then the postbuckling analysis of FGM microbeams
is performed. Numerical analyses are accomplished for FGM microbeams with three commonly-used
end conditions including SS-SS, C-SS and C-C boundary conditions.

Buckling analysis. Table 1 reports the first five non-dimensional buckling loads predicted by the MSGT
for C-C, C-SS, and SS-SS microbeams with different material gradient indexes. It is seen that non-
dimensional buckling loads decreases with the rise of material gradient index. Hence, the stability of

Boundary
conditions

Mode Ceramic k = 0.1 k = 1 k = 10 Metal

C-C

1 0.1119 0.107 0.0864 0.067 0.0622
2 0.1756 0.1679 0.1351 0.104 0.0967
3 0.2704 0.2585 0.2075 0.1588 0.1477
4 0.3321 0.3174 0.2544 0.194 0.1805
5 0.4190 0.4004 0.3206 0.2439 0.2269

C-SS

1 0.0651 0.0623 0.0504 0.0393 0.0364
2 0.1477 0.1412 0.1139 0.0879 0.0817
3 0.2292 0.2191 0.1761 0.1351 0.1255
4 0.3035 0.2901 0.2327 0.1777 0.1653
5 0.3786 0.3618 0.2898 0.2207 0.2053

SS-SS

1 0.035 0.0335 0.0273 0.0212 0.0197
2 0.1119 0.107 0.0864 0.067 0.0622
3 0.1939 0.1854 0.1492 0.1148 0.1067
4 0.2704 0.2585 0.2075 0.1588 0.1477
5 0.3441 0.3289 0.2636 0.201 0.1869

Table 1. First five non-dimensional buckling loads for different gradient material in-
dexes (k) of FGM microbeams with C-C, C-SS, and SS-SS end conditions (h/ l = 2,
L/h = 12).
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Boundary
conditions

Mode h/ l = 1 h/ l = 2 h/ l = 3 h/ l = 6 h/ l = 8 h/ l = 16 CT

C-C

1 0.1989 0.0864 0.0525 0.0276 0.0235 0.0194 0.0178
2 0.2891 0.1351 0.0882 0.0497 0.0429 0.0359 0.0331
3 0.4468 0.2075 0.141 0.0837 0.0731 0.0618 0.0573
4 0.583 0.2544 0.1744 0.1075 0.0947 0.081 0.0755
5 0.7831 0.3206 0.2181 0.1363 0.1207 0.1038 0.097

C-SS

1 0.1284 0.0504 0.0294 0.0149 0.0126 0.0103 0.0094
2 0.2479 0.1139 0.0721 0.0392 0.0337 0.028 0.0258
3 0.3727 0.1761 0.1178 0.0682 0.0592 0.0497 0.046
4 0.5158 0.2327 0.1593 0.0966 0.0848 0.0721 0.0671
5 0.6836 0.2898 0.1985 0.1234 0.109 0.0934 0.0872

SS-SS

1 0.0792 0.0273 0.0153 0.0075 0.0063 0.0052 0.0047
2 0.1989 0.0864 0.0526 0.0276 0.0235 0.0194 0.0178
3 0.3159 0.1492 0.0975 0.0548 0.0473 0.0395 0.0364
4 0.4468 0.2075 0.141 0.0837 0.0731 0.0618 0.0573
5 0.6013 0.2636 0.181 0.1113 0.098 0.0837 0.078

Table 2. First five non-dimensional buckling loads for different non-dimensional length
scale parameters (h/ l) of FGM microbeams with C-C, C-SS, and S-SS end conditions
(k = 1, L/h = 12).

fully ceramic microbeams is larger than that of microbeams with lower material gradient indexes. Also,
it is seen that the values of the critical buckling load in microbeams with C-C end conditions are more
than those for SS-SS and C-SS counterparts which signifies that C-C microbeams are more stable than
other counterparts.

Table 2 is represented to highlight the effect of the non-dimensional length scale parameter h/ l on
the first five non-dimensional buckling loads of FGM microbeams with three different boundary con-
ditions. It is seen that the value of non-dimensional buckling load reduces with the increase of the
non-dimensional length scale parameter, in a way that at lower non-dimensional length scale parameters,
this decrement is very considerable, while when the values increases, there is no prominent changes.
Accordingly, the CT underestimates the non-dimensional critical buckling loads, especially at lower non-
dimensional length scale parameters.

Table 3 reveals the first five non-dimensional buckling loads corresponding to different slenderness
ratios L/h of FGM microbeams with three boundary conditions. It is shown that an increase in the
slenderness ratio leads to lower values of non-dimensional buckling loads in a way that this reduction
is more evident in higher buckling modes. Accordingly, the possibility of buckling increases at higher
slenderness ratios and microbeams with lower slenderness ratios can resist more axial compressive loads.

Figure 2 compares the non-dimensional critical buckling loads predicted by the MSGT, MCST and CT
versus the non-dimensional length scale parameterh/ l. The figure is plotted for FGM microbeams with
SS-SS, C-SS and C-C boundary conditions. With an increase in non-dimensional length scale parameter,
the non-dimensional critical buckling load shows a downward trend. Also, it is seen that non-dimensional
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Boundary
conditions

Mode L/h = 8 L/h = 10 L/h = 12 L/h = 16 L/h = 20

C-C

1 0.0992 0.0709 0.0525 0.0316 0.0209
2 0.1476 0.1128 0.0882 0.057 0.0392
3 0.2195 0.1739 0.141 0.0966 0.0691
4 0.2629 0.2108 0.1744 0.1249 0.0928
5 0.3262 0.2613 0.2181 0.1605 0.1225

C-SS

1 0.0597 0.0408 0.0294 0.0171 0.0111
2 0.1271 0.0944 0.0721 0.045 0.0303
3 0.1892 0.1477 0.1178 0.0785 0.055
4 0.2428 0.1941 0.1593 0.1119 0.0816
5 0.297 0.2385 0.1985 0.1443 0.1087

SS-SS

1 0.0331 0.0217 0.0153 0.0086 0.0055
2 0.0992 0.0709 0.0526 0.0317 0.0209
3 0.1633 0.1248 0.0975 0.0629 0.0432
4 0.2195 0.1739 0.141 0.0966 0.0691
5 0.2725 0.2187 0.181 0.1295 0.0961

Table 3. First five non-dimensional buckling loads for different slenderness ratios (L/h)
of FGM microbeams with C-C, C-SS, and SS-SS end conditions (h/ l = 3, k = 1).

critical buckling loads predicted by the CT and MCST are lower than those of the MSGT; in other words,
the CT and MCST underestimate the non-dimensional critical buckling loads. Moreover, the difference
between the values predicted by classical and non-classical theories get really pronounced at small values
of non-dimensional length scale parameter which confirms the importance of using the MSGT theory
at lower non-dimensional length scale parameters. However, it is seen that as the values of the non-
dimensional length scale parameter grow, the difference between the values predicted by classical and
non-classical theories fades. Furthermore, non-dimensional critical buckling loads of the microbeam
with C-C end conditions are significantly more than those for other counterparts.

Postbuckling analysis. Figures 3 to 6 are represented to provide an accurate insight into the postbuckling
behavior of FGM microbeams with C-C, C-SS and SS-SS boundary conditions. All figures illustrate the
non-dimensional deflection of FGM microbeams versus the non-dimensional applied axial load for FGM
microbeams with C-C, C-SS and SS-SS boundary conditions.

Figure 3 is depicted to highlight the influence of the material gradient index k on the postbuckling
behavior of FGM microbeams with C-C, C-SS and SS-SS boundary conditions. As can be seen, the non-
dimensional deflection soars sharply with increasing the applied axial load. An increase in the material
gradient index shifts the graphs to the left-hand side in all types of boundary conditions and induces more
large postbuckled deflections which indicates that the stability decreases. Moreover, when the type of
boundary conditions comes to SS-SS microbeams, the graphs get closer which signify that the effect of
material gradient index is more prominent in microbeams with C-C end conditions. Besides, the slope of
graphs in SS-SS microbeams is much higher than that of microbeams with C-SS and C-C end conditions.
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Figure 2. Non-dimensional critical buckling loads predicted by the MSGT, MCST and
CT versus non-dimensional length scale parameter (h/ l) of FGM microbeams with C-
C, C-SS, and SS-SS end conditions (k = 1, L/h = 12) (a) C-C microbeam, (b) C-SS
microbeam, and (c) SS-SS microbeam.

Effect of the non-dimensional length scale parameter h/ l on the non-dimensional deflection of FGM
microbeams with three types of boundary conditions is investigated in Figure 4. It is observed that a
decrease in the value of non-dimensional length scale parameter shifts the graphs to the right-hand side.
In other words, CT underestimates the non-dimensional critical axial load. Also, by comparing these
three plots, it is seen that the difference between graphs is really significant in C-C microbeams which
signal the necessity of using the MSGT theory in studying postbuckling behavior of microbeams with
C-C end conditions compared to other end conditions.

Figure 5 reveals the influence of slenderness ratio L/h on the postbuckling behavior of FGM mi-
crobeams with C-C, C-SS and SS-SS boundary conditions. With increasing the slenderness ratio of
FGM microbeams, the graphs move to the left-hand side which indicates that the stability declines.
Also, it is observed that at higher slenderness ratios, a small rise in the applied axial load leads to a
sharp increase in the non-dimensional deflection, while at lower slenderness ratios, the non-dimensional
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Figure 3. Non-dimensional deflection versus the non-dimensional axial load for differ-
ent material gradient indexes (k) of FGM microbeams with C-C, C-SS, and SS-SS end
conditions (h/ l = 2, L/h = 12) (a) C-C microbeam, (b) C-SS microbeam, and (c) SS-SS
microbeam.

deflection increases gradually. So, microbeams with lower slenderness ratios are much stronger than
those with larger ones. Furthermore, the graphs are comparatively closer in microbeams with SS-SS end
conditions. Hence, microbeams with C-C boundary conditions are more strongly affected by slenderness
ratio compared to SS-SS and C-SS counterparts.

Figure 6 compares the non-dimensional deflection of FGM microbeams predicted by the MSGT and
CT versus non-dimensional axial load for the first three modes. As it was mentioned earlier, here it
is seen that the CT underestimates the non-dimensional critical axial load, especially at higher modes
which confirms the necessity of using the MSGT theory at higher postbuckling modes.

Figure 7 illustrates the effect of the imperfection on the non-dimensional deflection of the microbeams
versus non-dimensional applied load for first three postbuckling modes of FGM microbeams with dif-
ferent end conditions. Imperfection is treated here by the pre-deformation Ws of the microbeam in its
unstressed state. γ is a small dimensionless parameter proportional to the maximum pre-deformation
W max

s at a certain characteristic length L , i.e., W max
s = γ L . This implies that the magnitude of imper-

fection (the proportionality factor γ ) is reasonably scaled with the structure size. To achieve higher
postbuckling deformation mode, the linear buckling deformation with the maximum amplitude of W max

s
corresponding to that mode is chosen as the pre-deformation. As it is demonstrated in this figure, for
ideal loading and geometry γ = 0, there is no deflection at prebuckling region, while as imperfection



BUCKLING AND POSTBUCKLING OF FUNCTIONALLY GRADED TIMOSHENKO MICROBEAMS 945

(a) (b)

> >�>E >�4 >�4E >�? >�?E
>

>�E

4

4�E

?

?�E

5

#�$�7/7��	�������

I��/�	����	������+	�������

I
�
�
/�
	�
��
�	
�
�
��
��
�"
��
��
	�
�

�

�

>

4

?

I
�
�
/�
	�
��
�	
�
�
��
��
�"
��
��
	�
�

?�E
#�$�22/22��	�

�"
��
��
	�
�

�8��Q�?

�8��Q�5

�8��Q�=

�8��Q�4=

7%

�? >�?E

�

> >�>?E >�>E >�>@E >�4 >�4?E >�4E >�4@E >�?
>

>�E

4

4�E

?

?�E

#�$�7/22��	�������

I��/�	����	������+	�������

I
�
�
/�
	�
��
�	
�
�
��
��
�"
��
��
	�
�

#�$�22/22��	�������

�8��Q�?

�8��Q�5

�8��Q�=

�8��Q�4=

7%

(c)

�

������	(	

I��/�	����	������+	������� I��/�	����	������+	�������

> >�>?E >�>E >�>@E >�4 >�4?E
>

>�E

4

4�E

?

?�E
#�$�22/22��	�������

I��/�	����	������+	�������

I
�
�
/�
	�
��
�	
�
�
��
��
�"
��
��
	�
�

Figure 4. Non-dimensional deflection versus the non-dimensional axial load for differ-
ent non-dimensional length scale parameter (h/ l) of FGM microbeams with C-C, C-SS,
and SS-SS end conditions (k = 1, L/h = 12) (a) C-C microbeam, (b) C-SS microbeam,
and (c) SS-SS microbeam.

grows, the deviation between the ideal microbeam and imperfect counterparts continue to increase. This
deviation even grows at higher modes and considerably affects the buckling deflection, especially at
critical axial loads. In addition, it is evident that the difference between ideal and non-ideal beam is
more prominent at microbeams with C-C end supports which signify that C-C microbeams are more
sensitive to imperfections compared to other counterparts.

7. Conclusion

In this work, the buckling and postbuckling of FGM microbeams were studied based on the MSGT.
By employing the power law function, the volume fraction of the ceramic and metal phases of the
FGM microbeams was described. According to the nonlinear Timoshenko beam theory and Hamilton’s
principle, the higher-order governing differential equations and corresponding boundary conditions were
derived and solved through the GDQ method in conjunction with a direct approach without linearization.
The effect of imperfection on the non-dimensional deflection of microbeams was considered. The effects
of the length scale parameter, slenderness ratio, material gradient index and boundary conditions on
the critical buckling load and postbuckling deflection of FGM Timoshenko microbeams were carefully
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Figure 5. Non-dimensional deflection versus the non-dimensional axial load for dif-
ferent slenderness ratios L/h of FGM microbeams with C-C, C-SS, and SS-SS end
conditions (k = 1, h/ l = 3) (a) C-C microbeam, (b) C-SS microbeam, and (c) SS-SS
microbeam.

investigated. It was observed that with an increase in material gradient index, the non-dimensional
critical buckling loads and postbuckled deflections decreases and increases, respectively. With raising
the non-dimensional length scale parameter, the value of non-dimensional critical buckling load reduces;
hence, the CT and MCST underestimate the non-dimensional critical buckling loads, especially for C-C
microbeams at lower non-dimensional length scale parameters. The larger slenderness ratio, lower values
of non-dimensional critical buckling loads; so, microbeams with lower slenderness ratios can resist more
axial compressive loads. The effects of material gradient index and slenderness ratio are more prominent
in microbeams with C-C end conditions compared to SS-SS and C-SS counterparts. Also, it was seen
that the values of the critical buckling load in microbeams with C-C end conditions are more that those
for SS-SS and C-SS counterparts. In addition, we found that the imperfection considerably affects the
buckling deflection of FGM microbeams, especially at critical axial loads.
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Figure 6. Non-dimensional deflection of FGM microbeams predicted by the MSGT and
CT versus non-dimensional axial load for the first three postbuckling modes of FGM
microbeams with C-C and SS-SS end conditions (k = 1, h/ l = 6, L/h = 12) (a) C-C
microbeam, and (b) SS-SS microbeam.
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Figure 7. Effect of the imperfection on the non-dimensional deflection versus non-
dimensional axial load for first three postbuckling modes of FGM microbeams with
C-C and SS-SS end conditions (L/h = 12, k = 1, h/ l = 2) (a) C-C microbeam, and (b)
SS-SS microbeam.
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