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MICROMECHANICAL ANALYSIS OF UNIDIRECTIONAL COMPOSITES
USING A LEAST-SQUARES-BASED DIFFERENTIAL

QUADRATURE ELEMENT METHOD

MOHAMMAD BAYAT AND MOHAMMAD MOHAMMADI AGHDAM

A generalized plane strain micromechanical model is developed to predict the stress and strain fields
and overall elastic properties of a unidirectional fiber-reinforced composite subjected to various axial
and transverse normal loading conditions using a least-squares-based differential quadrature element
method (DQEM). The representative volume element (RVE) of the composite consists of a quarter of
the fiber surrounded by matrix to represent the real composite with a repeating square array of fibers.
The cubic serendipity shape functions are used to convert the solution domain to a proper rectangular
domain and the new versions of the governing equations and boundary conditions are also derived. The
fully bonded fiber-matrix interface condition is considered and the displacement continuity and traction
reciprocity are imposed on the fiber-matrix interface. Application of DQEM to the problem leads to
an overdetermined system of linear equations mainly due to the particular periodic boundary conditions
of the RVE. A least-squares differential quadrature element method is used to obtain solutions for the
governing partial differential equations of the problem. The numerical results are in excellent agreement
with the available analytical and finite element studies. Moreover, the results of this study reveal that the
presented model can provide highly accurate results with a very small number of elements and grid points
within each element. In addition, the model shows advantages over conventional analytical models for
fewer simplifying assumptions related to the geometry of the RVE.

1. Introduction

Effective and proper use of composites relies on how these materials behave under various types of
loading. Both numerical [Adams and Doner 1967; Adams 1970; Eischen and Torquato 1993; Nedele
and Wisnom 1994; Sun and Vaidya 1996; Aghdam et al. 2000; 2001; Ahmadi and Aghdam 2010]
and analytical [Eshelby 1957; Hashin and Rosen 1964; Hill 1965; Uemura et al. 1979; Mikata and Taya
1985; Nairn 1985; Aboudi 1987; 1989; Nimmer 1990; Robertson and Mall 1993; Aghdam and Dezhestan
2005] micromechanical models have been used to predict the elastic, plastic, and thermal properties of
composite materials and their responses to different thermal and mechanical loading conditions.

Numerical models include finite difference [Adams and Doner 1967], finite element [Adams 1970;
Nedele and Wisnom 1994; Sun and Vaidya 1996; Aghdam et al. 2000; 2001], boundary element [Eischen
and Torquato 1993], and, more recently, meshless [Ahmadi and Aghdam 2010] methods. Among the
earliest finite element models, one can refer to [Adams 1970], covering the inelastic behavior of compos-
ites subjected to transverse normal loading using a plane strain finite element approach. Other studies
on the finite element micromechanical modeling of composites for obtaining overall properties include
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various simple uniaxial loading conditions such as longitudinal and transverse normal or shear loading
[Sun and Vaidya 1996], combined axial shear and thermal loading [Nedele and Wisnom 1994] and off-
axis loading of composites [Aghdam et al. 2001], and yielding and collapse behavior of unidirectional
(UD) composites [Aghdam et al. 2000]. The boundary element method [Eischen and Torquato 1993] is
also used to study the elastic behavior of composite materials.

Various analytical micromechanical models have also been proposed to evaluate the behavior of het-
erogeneous materials based on constituent properties, volume fractions, and their interactions. Among
the first analytical approaches to model composite behavior were the model presented in [Eshelby 1957]
and the self-consistent model of [Hill 1965]. Analytical models based on the variational principles of
the theory of elasticity [Hashin and Rosen 1964] have also been employed to obtain upper and lower
bounds of the overall elastic properties of composite materials. In these models, while the minimum
complementary energy method yields the lower bounds, the minimum potential energy principle results
in the upper bounds.

There is another class of analytical models in which a small area of the composite is considered as a
representative volume element (RVE) of the composite. These types of models can be categorized into
various groups based on the simplifying assumptions made about the geometry of the composite. The
two major groups are composite cylinder models (CCM) and unit cell models (UCM). The geometry
of the RVE in CCM consists of a circular fiber surrounded by a circular matrix [Uemura et al. 1979].
In some cases, more than two concentric cylinders were considered to study the effects of the interface
[Nairn 1985] and fiber coating [Mikata and Taya 1985]. In UCM however, the cross section of the RVE
includes a rectangular fiber surrounded by several rectangular blocks of matrix. One of the well-known
micromechanical models in the category of UCM is the method of cells (MC), which was developed
in [Aboudi 1987; 1989]. This model has several advantages compared with other similar models while
also being mathematically rigorous. More UCM types of models can be found elsewhere [Nimmer 1990;
Robertson and Mall 1993; Aghdam and Dezhestan 2005].

Analytical models normally require more rigorous mathematical procedures [Aboudi 1987; 1989]
while normally involving more simplifying assumptions [Aboudi 1987; 1989; Nimmer 1990; Robertson
and Mall 1993; Aghdam and Dezhestan 2005]. Furthermore, most analytical models are not able to
provide a nonuniform distribution of stress and strain fields within the RVE, though their predictions for
overall properties are reasonably accurate. In numerical techniques, however, there are fewer simplifying
assumptions, and accuracy depends on the number of elements or grid points. For instance, in order to
obtain more accurate results in finite element analysis, the geometry of the RVE should be divided into
a few hundred small elements.

In the past decade, the differential quadrature element method (DQEM) has been used to study the
behavior of different structural elements [Wang et al. 1996; Wang and Gu 1997; Karami and Malekzadeh
2002; Chen 2003]. However, apart from applications of the differential quadrature (DQ) method in fluid
mechanics, all the studies in the literature have been restricted to various 2D elasticity problems of
isotropic and laminated plates and shells; the method has not been used in micromechanics of heteroge-
neous materials. These studies revealed that the method offers a good convergence rate and accuracy with
a relatively small number of grid points. However, implementation of boundary conditions is a challeng-
ing and time-consuming procedure in DQEM. This is mainly due to the resultant overdetermined system
of algebraic equations in most DQEM problems. In order to prevent formation of overdetermined system
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of equations after implementation of multiboundary conditions, several approaches have been presented
in the literature. For example, some DQ equations at inner nodes can be replaced by the additional
boundary conditions. However, it has been found that the accuracy of the results may vary depending
on which DQ equations at the inner grids are replaced by the boundary conditions [Zong and Zhang
2009]. Jang et al. [1989] proposed the so-called δ-technique wherein, adjacent to the boundary points
of the differential quadrature grid, points are chosen at a small distance δ ∼= 10−5 (as a dimensionless
value). Then the DQ analog of the two conditions at a boundary are written for the boundary points and
their adjacent δ-points. Wang and Bert [1993] introduced an approach where the boundary conditions
are formed during formulation of the weighting coefficients for higher-order derivatives. Malik and Bert
[1996] tried to employ this approach for all boundary conditions. Wang et al. [1996; Wang and Gu 1997]
introduced another method in which multiboundary conditions are imposed by assigning two degrees
of freedom to each end point for a fourth-order differential equation. Wu and Liu [2000] proposed
a generalized differential quadrature rule, introducing multiple degrees of freedom at boundary points.
Recently, Karami and Malekzadeh [2002] proposed a method of applying the multiboundary conditions.
In formulations of the weighting coefficients of third and fourth-order derivatives, the second derivatives
at the boundary points are viewed as additional independent variables.

Briefly, in order to adjust the number of equations and unknowns, researchers normally eliminate
some of the equations [Wang 2001] or add extra unknowns to the problem [Karami and Malekzadeh
2002; Wu and Liu 2000]. However, in this study all of the governing equations and boundary conditions
are considered and, therefore, the resultant overdetermined system of equations is solved using a least-
squares technique.

In this study, a two-dimensional generalized plane strain micromechanical model is presented to pre-
dict the behavior of a UD composite system using DQEM. The geometry of the RVE is divided into
three elements, as shown in Figure 1, which are then mapped to a rectangular domain using the cubic
serendipity shape functions (see Figure 2). The fully bonded fiber-matrix interface condition is consid-
ered and the displacement continuity and traction reciprocity are imposed on the fiber-matrix interface.
The new version of the governing partial differential equations of the problem and their boundary and
interface conditions are obtained. Application of DQEM to the problem leads to an overdetermined
system of linear equations mainly due to the particular periodic boundary conditions of the RVE. A least-
squares differential quadrature element method (LSDQEM) is used to obtain solutions for the governing
partial differential equations of the problem. The results of this study show excellent agreement with the
finite element analysis for various stress and displacement components of a SiC/Ti composite system.
The predicted overall properties of the same SiC/Ti system also show excellent agreement with other
analytical and finite element analyses.

2. Analysis

2.1. Geometry of the model. In a real UD fiber-reinforced composite, the fibers are likely to be arranged
in a random array. It is difficult, if not impossible, to model the composite behavior with the real
constituent geometry. Apart from some approximate bounds found for a random array of fibers and
arbitrary phase geometry using a variational method [Hill 1965], the actual cross section of the composite
has to be idealized as a regular array of fibers. In most analytical, finite element, and numerical models,
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Figure 1. Geometry of the RVE and selected elements.
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Figure 2. Mapping of the cubic serendipity element from the physical domain (left) to
the computational domain (right).

the cross section of the composite is simplified as periodic arrays of fibers, either in a square or hexagonal
array packing, as shown in Figure 3. In this study, the fibers are assumed to be arranged in square arrays.
The second step is to choose the smallest informative and repeating area of the geometry for the whole
cross section as the RVE. It is assumed that all the effective characteristics and global behavior of the
composite are similar to those of the RVE. Hence, special care should be taken to select the correct
RVE and to apply the correct boundary conditions to model the real loading conditions on the composite.
Commonly, a quarter of the fiber and the corresponding matrix, as shown in Figure 1, are sufficient to
model various loading conditions.
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Figure 3. Left: schematic diagram of a real UD composite. Middle: unit cell and RVE
of hexagonal array. Right: unit cell and RVE of square array.
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2.2. Governing equations. Assuming a generalized plane strain condition which can provide more re-
alistic predictions, the displacement fields within the RVE can be considered as

u = u(x, y), v = v(x, y), w = εz0 · z, (1)

where u, v, and w are displacements in the x , y, and z directions, respectively, and εz0 is an unknown
constant strain in the fiber direction to be determined. Based on the theory of elasticity, the strain-
displacement relations within the RVE are

εx = u,x , εy = v,y, εz = w,z, γxy = v,x + u,y, γxz = w,x + u,z, γyz = w,y + v,z, (2)

in which ( ),x ≡ ∂( )/∂x . The generalized plane strain condition for displacements requires vanishing
shear strains γxz = γyz = 0 and consequently zero shear stresses τxz = τyz = 0. Furthermore, assuming
linear elastic behavior for both constituents, stress-strain relations for each phase of the RVE can be
written as

σx = B(u,x +Cv,y +Cε0z), σy = B(Cu,x + v,y +Cε0z),

σz = B(Cu,x +Cv,y + ε0z), τxy = G(v,x + u,y),
(3)

where constants B and C are

B =
E(1− ν)

(1+ ν)(1− 2ν)
, C = ν

1−ν
, (4)

in which E and ν are the elasticity modulus and the Poisson’s ratio of the constituents, respectively.
Finally, the governing equilibrium equations of the problem in the absence of body forces can be written
in terms of displacement components as

αu,xx +βv,xy + u,yy = 0, αv,yy +βu,xy + v,xx = 0, (5)

where α = 2(1− ν)/(1− 2ν) and β = 1/(1− 2ν).

2.3. Mapping the geometry of the RVE. In this study, a RVE corresponding to a square array of fibers
is considered. In order to apply DQEM to solve the governing equations, the RVE is divided into three
irregular regions/elements, as shown in Figure 1. Using geometric natural-to-Cartesian mappings, an
irregular quadrilateral physical domain (x, y), as shown in Figure 2, can be mapped into a normalized
computational domain (ξ, η) based on the following cubic serendipity shape function:

x =
12∑

i=1

Ni (ξ, η) · xi , y =
12∑

i=1

Ni (ξ, η) · yi (−1≤ ξ, η ≤ 1), (6)

where Ni (ξ, η) is the cubic serendipity shape function defined by

Ni (ξ, η)=
1
32 (1+ ξξi )(1+ ηηi )[9(ξ 2

+ η2)− 10], i = 1, 2, 3, 4,

Ni (ξ, η)=
9
32 (1− ξ

2)(1+ ηηi )(1+ 9ξξi ), i = 5, 6, 7, 8,

Ni (ξ, η)=
9
32 (1+ ξξi )(1− η2)(1+ 9ηηi ), i = 9, 10, 11, 12,

(7)
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in which ξi and ηi are the coordinates of the node i in the ξ -η domain. In order to obtain the new version
of the governing equations in the computational square element, the Jacobian of transformation matrix,

[J ] =
[

x,ξ y,ξ
x,η y,η

]
,

is inverted:

[J ]−1
=

[
ξ,x η,x

ξ,y η,y

]
=

1
|J |

[
y,η −y,ξ
−x,η x,ξ

]
, |J | = x,ξ y,η− x,ηy,ξ , (8)

where |J | is the determinant of the Jacobian matrix. Thus, the transformation of the first-order derivatives
is {

u,x
u,y

}
= [J ]−1

{
u,ξ
u,η

}
. (9)

To include second-order derivatives, the transformation may be written in matrix form as
u,ξ
u,η
u,ξη
u,ξξ
u,ηη

=


x,ξ y,ξ 0 0 0
x,η y,η 0 0 0
x,ξη y,ξη x,ξ y,η+ x,ηy,ξ x,ξ x,η y,ηy,ξ
x,ξξ y,ξξ 2x,ξ y,ξ x2

,ξ y2
,ξ

x2
,η y2

,η 2x,ηy,η x2
,η y2

,η




u,x
u,y
u,xy

u,xx

u,yy

 . (10)

The inverse transformation can be expressed as explicit functions of (ξ, η), similar to (9). Implementation
of the DQ method on the computational square domain is straightforward.

2.4. DQ method. The quadrature rules for a function 9 =9(x, y) on a rectangular domain (0≤ x ≤ a,
0≤ y ≤ b), can be written as follows [Bert and Malik 1996]:

∂r9

∂xr

∣∣∣∣
x=x i

=

Nx∑
k=1

A(r)ik 9k j , i = 1, 2, . . . , Nx ,
∂s9

∂ys

∣∣∣∣
y=y j

=

Ny∑
l=1

B(s)jl 9il, j = 1, 2, . . . , Ny, (11)

∫ a

x=0
9(x, y j )dx =

Nx∑
k=1

Ck9k j ,

∫ b

y=0
9(xi , y)dy =

Ny∑
l=1

Cl9il,

∫ a

x=0

∫ b

y=0
9(x, y)dxdy =

Nx∑
k=1

Ck

Ny∑
l=1

Dl9kl,
∂(r+s)9

∂xr∂ys

∣∣∣∣
xi ,y j

=
∂r

∂xr

(
∂s9

∂ys

)∣∣∣∣
xi ,y j

=

Nx∑
k=1

A(r)ik

Ny∑
l=1

B(s)jl 9kl,

where Nx and Ny are the numbers of grid points in the x and y directions, respectively, ψi j = ψ(xi , y j ),
and A(r)i j , B(s)i j , Ci , and Di are weighting coefficients. For example, in order to determine the weighting

coefficients A(r)ik , the Lagrange interpolation basic functions [Shu and Richards 1992b; Bert et al. 1993]
are used as test functions and, therefore, explicit formulas for computing the weighting coefficients of
the first-order derivative can be obtained as follows [Shu and Richards 1992a]:

A(1)ik =

∏
(xi )

(xi − xk)
∏
(xk)

for i, k = 1, 2, . . . , Nx and k 6= i,
∏
(xi )=

Nx∏
ν=1,ν 6=k

(xi − xν). (12)
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For higher-order derivatives, one can use the following relations iteratively:

A(r)ik = r
[

A(r−1)
i i A(1)ik −

A(r−1)
ik

xi − xk

]
for i, k = 1, 2, . . . , Nx and k 6= i, 2≤ r ≤ (Nx − 1),

A(r)i i =−

Nx∑
ν=1,ν 6=i

A(r)iν for i = 1, 2, . . . , Nx , 1≤ r ≤ (Nx − 1).
(13)

The next step is the discretization of the domain to Nξ × Nη grid points. It is shown [Shu et al. 2001]
that one of the best options for obtaining grid points is zeros of the well-known Chebyshev polynomials:

ξi= − 1+ cos
[
(i − 1)π
Nξ − 1

]
, i=1, 2, . . . , Nξ , η j= − 1+ cos

[
( j − 1)π
Nη− 1

]
, j=1, 2, . . . , Nη. (14)

In DQEM, the procedure of the DQ method should be repeated for the governing equation within each
element. Therefore, the governing equations (5) can be written in the computational domain as

(αξ 2
,x + ξ

2
,y)

Nξ∑
k=1

A(2)ik uk j + (αη
2
,x + η

2
,y)

Nη∑
l=1

B(2)jl uil + (αξ,xx + ξ,yy)

Nξ∑
k=1

A(1)ik uk j

+ (αη,xx + η,yy)

Nη∑
l=1

B(1)jl uil + (2αξ,xη,x + 2ξ,yη,y)
Nξ∑

k=1

A(1)ik

Nη∑
l=1

B(1)jl ukl

+ (βξ,xξ,y)

Nξ∑
k=1

A(2)ik vk j + (βη,xη,y)

Nη∑
l=1

B(2)jl vil + (βξ ,xy)

Nξ∑
k=1

A(1)ik vk j

+(βη,xy)

Nη∑
l=1

B(1)jl vil +β(ξ,xη,y + ξ,yη,x)

Nξ∑
k=1

A(1)ik

Nη∑
l=1

B(1)jl vkl = 0,

(ξ 2
,x +αξ

2
,y)

Nξ∑
k=1

A(2)ik vk j + (η
2
,x +αη

2
,y)

Nη∑
l=1

B(2)jl vil + (ξ,xx +αξ,yy)

Nξ∑
k=1

A(1)ik vk j

+ (η,xx +αη,yy)

Nη∑
l=1

B(1)jl vil + (2ξ,xη,x + 2αξ,yη,y)
Nξ∑

k=1

A(1)ik

Nη∑
l=1

B(1)jl vkl

+ (βξ,xξ,y)

Nξ∑
k=1

A(2)ik uk j + (βη,xη,y)

Nη∑
l=1

B(2)jl uil + (βξ ,xy)

Nξ∑
k=1

A(1)ik uk j

+(βη,xy)

Nη∑
l=1

B(1)jl uil +β(ξ,xη,y + ξ,yη,x)

Nξ∑
k=1

A(1)ik

Nη∑
l=1

B(1)jl ukl = 0.

2.5. Compatibility, loading, and boundary conditions. Assuming a perfectly bonded interface between
the fiber and matrix, the following displacement continuity and traction reciprocity conditions should be
satisfied at the common nodes of the two adjacent elements:

ua
= ub, va

= vb, σ a
x ·n1+τ

a
xy ·n2 = σ

b
x ·n1+τ

b
xy ·n2, τ a

xy ·n1+σ
a
y ·n2 = τ

b
xy ·n1+σ

b
y ·n2, (15)
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where a and b refer to two adjacent elements and n= (n1, n2) is unit normal to the interface. Furthermore,
appropriate loading and boundary conditions for the normal loading of the RVE in the transverse and
axial directions are (Figure 1):

u = τxy = 0 on x = 0,

v = τxy = 0 on y = 0,

u = const., τxy = 0,
∫ L2

0
σx dy = σx0L2 on x = L1,

v = const., τxy = 0,
∫ L1

0
σy dx = σy0L1 on y = L2,

εz0 = const.,
∫ L1

0

∫ L2

0
σz dxdy = σz0L1L2 on the RVE,

(16)

in which σx0, σy0, and σz0 are the applied macrostress components on the RVE in the x , y, and z directions,
respectively. The compatibility conditions at the element interface and the boundary conditions have a
dominant influence on the accuracy of the results and, therefore, (15) and (16) should be mapped to the
computational domain and discretized carefully.

Application of DQEM to the problem together with the boundary and compatibility conditions leads
to an overdetermined system of algebraic linear equations Ax = b, that is, A is a rectangular matrix of
size m× n, n < m. In order to solve the nonsymmetric linear system Ax = b, one may use an equivalent
system,

AT Ax = AT b, (17)

which is symmetric positive definite. This system is known as the system of the normal equations
associated with the following least-squares problem:

minimize ‖b− Ax‖2, (18)

in which ‖b− Ax‖2 ≡ (
∑m

i=1 [bi −
∑n

j=1 Ai j x j ]
2
)1/2. It can be shown that minimizing (18), which is a

least-squares solution for the nonsymmetric linear system Ax = b, leads to the symmetric system (17);
see, for instance, [Saad 2003] for more details.

Finally, it is interesting to note that application of DQEM leads to a compatible overdetermined system
of equations, and therefore, the above-mentioned least-squares technique results in accurate predictions.

3. Numerical results and discussion

The procedure explained in the previous sections is used to obtain stress and displacement components
within the fiber and matrix of a SiC/Ti metal matrix composite with a 40% fiber volume fraction (FVF).
The composite is subjected to normal loading in the axial and transverse directions. Various overall
properties of the composite system can also be determined by applying uniaxial loads. The mechanical
properties of the constituents of the SiC/Ti system are as follows (see [Aghdam et al. 2000]):

SiC (fiber): E = 409 GPa ν = 0.2

Ti (matrix): E = 107 GPa ν = 0.3
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Figure 4. Convergence of transverse normal stress σx at point A, with εx0 = 0.001.

3.1. Convergence study and CPU time. In this section, the convergence rate and CPU time of the pre-
sented method are compared with those of ANSYS and a mesh-free method for two examples. In the first
example, a UD SiC/Ti metal matrix composite with a 40% FVF is considered. The RVE is subjected to
a uniform strain of εx0 = 0.001 in the x direction on the right-hand side, while all other stress and strain
components are zero. Figure 4 represents the convergence of the transverse normal stress σx at point A
of the RVE. The figure also includes convergence of the same results obtained by the commercial finite
element code ANSYS [ANSYS 2008]. The geometry of the RVE in the ANSYS simulation is modeled
by two-dimensional generalized plane strain PLANE183 elements with eight nodes. The results suggest
that very good convergence can be achieved by using about 100 nodes in LSDQEM while FEM analysis
requires more than 1000 nodes for the same level of convergence.

The efficiency of the presented method is examined in another example in which a boron/aluminum
metal matrix composite with a 47% FVF is considered. The material properties of the constituents are
as follows:

Boron (fiber) E = 379.3 GPa ν = 0.2

Aluminum (matrix) E = 68.3 GPa ν = 0.3

The overall transverse Young’s modulus of the boron/aluminum composite (Ec
T ) is calculated using

three different methods including the presented LSDQEM, FEM (ANSYS), and meshless method [Ah-
madi and Aghdam 2010]. The CPU times for these methods are tabulated in Table 1. Again, it can be

Method Number of nodes CPU time (s) Ec
T (GPa)

LSDQEM 108 6 143.92
FEM (ANSYS) 1200 ∼15 143.96
Meshless method [Ahmadi and Aghdam 2010] 350 14.9 144.31

Table 1. Comparison of the CPU time for LSDQEM and other methods (FVF= 0.47).
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seen that the number of nodes and the CPU time for LSDQEM are significantly less than for the other
two methods which implies efficiency for the presented method. The predictions of the presented model
for the transverse Young’s modulus (Ec

T ) are also in excellent agreement with the predictions of ANSYS.

3.2. Stress analysis.

Transverse normal loading. In this section, the SiC/Ti composite system with a 40% FVF subjected to a
transverse strain of εx0 = 0.001 in the x direction is considered. The RVE is assumed to be square, that
is, L1 = L2. In order to examine the validity of the results, another analysis was also carried out using the
finite element code ANSYS [ANSYS 2008]. All the predicted stress and displacement components show
excellent agreement with the finite element results for the entire domain of the problem. For example, the
comparison of the normal stress σx is presented in Figure 5. The stresses and displacements within the
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Figure 5. Contours of normal stress σx (in MPa) in the RVE of (a) DQEM and (b) ANSYS.
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Figure 7. Comparison of normal stress σx along the y-axis, with εx0 = 0.001.

RVE are compared with the finite element results in Figures 6–8. As expected, it can be seen in Figures
6–8 that εy and σy are continuous along the y-axis while σx and σz are discontinuous at the fiber-matrix
interface. Furthermore the SiC/Ti composite is subjected to a uniaxial transverse normal load in the x
direction, σx = 100 MPa. The dimensionless stress σ ∗ is defined as the ratio of the microstress σ to the
applied macrostress σ = 100 MPa, that is, σ ∗ = σ/100. The distribution of the dimensionless normal
and effective von Mises σ ∗e stresses on the x and y axes of the RVE are shown in Figures 9 and 10. It
is seen that on the x-axis the microstress σ ∗x is greater than the applied macrostress. The coefficient of
stress concentration for transverse loading is σx max/σx = 1.4. As expected, it can also be seen that σx

along the x-axis (Figure 9) and σy along the y-axis (Figure 11) are continuous, while the other stresses
are discontinuous at the fiber-matrix interface.

Axial normal stress loading. The uniaxial axial normal load in the z direction, σz = 100 MPa, is applied
to a SiC/Ti composite system. The resultant dimensionless normal and effective von Mises σ ∗e stresses
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Figure 10. Comparison of normalized stresses along the y-axis, with σx = 100 MPa.



MICROMECHANICAL ANALYSIS OF UNIDIRECTIONAL COMPOSITES USING DIFFERENTIAL QUADRATURE 131

y/L1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 st
re

ss
es

−0.5

0

0.5

1

1.5

2

(     )
(     )
(     )
(     )
(     )
(     )
(     )
(     )

σ
σ
σ
σ
σ
σ
σ
σ

LSDQEM *
*
*
*
*
*
*
*

ANSYS
LSDQEM
ANSYS

x
x
y
y

LSDQEM
ANSYS
LSDQEM
ANSYS

z
z
e
e

Figure 11. Comparison of normalized stresses along the y-axis, with σz = 100 MPa.

x/L1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 st
re

ss
es

−1

−0.5

0

0.5

1

1.5

2

2.5

(     )
(     )
(     )
(     )
(     )
(     )
(     )
(     )

σ
σ
σ
σ
σ
σ
σ
σ

LSDQEM *
*
*
*
*
*
*
*

ANSYS
LSDQEM
ANSYS

x
x
y
y

LSDQEM
ANSYS
LSDQEM
ANSYS

z
z
e
e

Figure 12. Comparison of normalized stresses along the x-axis, with σx = −50 MPa,
σz = 100 MPa.

on the y-axis of the RVE are shown in Figure 11. It is seen that the microstress σ ∗z within the fiber
is greater than the applied macrostress. The coefficient of stress concentration for the axial loading is
σz max/σz = 1.79. As expected, σz is nearly constant within the fiber and matrix with larger a value in
the fiber which results from the generalized plane strain assumption and all other stress components are
nearly zero.

Biaxial normal stress loading. In the next example, the SiC/Ti composite system subjected to a biaxial
normal stress of σx =−50 MPa, σz = 100 MPa is studied. The dimensionless normal and effective von
Mises σ ∗e stresses on the x axis of the RVE are shown in Figure 12. It can be seen that σx along the
x-axis, Figure 12, is continuous while the other stresses are discontinuous at the fiber-matrix interface.
Furthermore σz is nearly constant within the fiber and matrix.
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Figure 13. Comparison of normalized stresses along the x-axis, with σx = −50 MPa,
σy = 80 MPa, σz = 100 MPa.

Triaxial normal stress loading. Finally, the SiC/Ti composite system subjected to a triaxial normal stress
of σx = −50 MPa, σy = 80 MPa, σz = 100 MPa is considered. The distribution of the dimensionless
stresses on the x-axis of the RVE is shown in Figure 13. All the predicted stress components show
excellent agreement with the finite element results.

3.3. Elastic properties. In order to obtain the overall mechanical properties of the composite system, the
square RVE is analyzed using uniaxial loadings in the transverse and longitudinal directions. For instance,
the RVE is subjected to a uniform stress in the x direction (σx0) while the other stress components
(σy0, σz0) are zero. Then, the overall strain of the RVE in the x and y directions (εx0, εy0) can be
determined. The transverse Young’s modulus and Poisson’s ratio can be calculated using

Ec
T = σx0/εx0, νc

T = |εy0/εx0|, (19)

in which the superscript c refers to the overall composite property. A similar procedure can be used
to obtain the axial properties of the composite system. Predictions for the overall transverse Young’s
modulus, Ec

T , of the SiC/Ti are shown in Table 1. It should be noted that three elements with 8× 8
grid points are considered in the presented DQEM while more elements are used in the finite element
analysis.

Included in Table 2 are also results from finite element analysis [Aghdam et al. 2000] and the method
of cells (MC) [Aboudi 1987]. As can be seen in Table 2, all the predictions are in close agreement with
each other. It should be noted that due to geometrical restrictions for the square array fiber assumption,
the maximum fiber volume fraction (FVF) for both the finite element method and DQEM is 0.785. The
predictions for the overall transverse Poisson’s ratio, νc

T , for the same material are shown in Table 2.
Again, excellent agreement can be seen between the DQEM and finite element results while the results
of MC shows an overestimate for the entire range of the FVF. The predictions for the overall longitudinal
Young’s modulus, Ec

L , and Poisson’s ratio, νc
L , of the SiC/Ti composite system are depicted in Table 2.
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FVF Solution method Ec
L (GPa) νc

L Ec
T (GPa) νc

T

20% LSDQEM 167.63 0.2766 136.66 0.3103
ANSYS 167.62 0.2766 136.74 0.3099
FEM 168.80 0.2612 136.91 0.3102
MC 167.93 0.2637 135.18 0.323

40% LSDQEM 228.13 0.2550 177.86 0.2820
ANSYS 228.12 0.2550 177.93 0.2818
FEM 228.61 0.2252 177.75 0.2822
MC 227.75 0.2274 169.5 0.3130

60% LSDQEM 288.56 0.2348 234.46 0.2450
ANSYS 288.54 0.2348 234.35 0.2455
FEM 289.30 0.1913 243.23 0.2458
MC 288.86 0.1929 217.29 0.2885

Table 2. Comparison of the longitudinal (axial) and transverse Young’s moduli and
Poisson’s ratios for various fiber volume fractions (FVF). The FEM values are from
[Aghdam et al. 2000] and the method of cells (MC) values from [Aboudi 1987].

The predictions of the MC and finite element analysis are also included in the table. The MC predictions
can be obtained by the closed form solutions given in [Aboudi 1987].

4. Concluding remarks

A micromechanical model is developed to predict the behavior of a unidirectional (UD) fiber-reinforced
composite subjected to various axial and transverse normal loading conditions using the differential
quadrature element method (DQEM). The theory of elasticity is used to derive the governing partial
differential equations of the problem. The geometry of the representative volume element (RVE) is then
divided into three elements and mapping is used to convert the solution domain to a computational square
domain. The new versions of the governing equations and boundary conditions are derived.

The application of DQEM for this problem leads to an overdetermined system of linear equations
since the RVE has particular boundary conditions. The least-squares approximation is used to solve
the resultant system of equations. It is demonstrated that the least-squares differential quadrature ele-
ment method (LSDQEM) is a simple and fast approach to imposing the various boundary conditions
of the problem. It can be seen that the number of nodes and the CPU time for LSDQEM are signif-
icantly less than for the mesh-free method and FEM. Comparison of the predicted results for various
stress and displacement components shows excellent agreement with the finite element method. More-
over, results for overall the mechanical properties of the UD composites also show excellent agreement
with other published analytical and finite element models. In addition, the model has the advantage
over conventional analytical models of making fewer simplifying assumptions on the geometry of the
RVE.
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