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SIZE-DEPENDENT FREE VIBRATION ANALYSIS
OF INFINITE NANOTUBES USING ELASTICITY THEORY

JAFAR ESKANDARI JAM, YASER MIRZAEI, BEHNAM GHESHLAGHI AND REZA AVAZMOHAMMADI

Exact elasticity theory is employed to study the (two-dimensional) free vibration of nanoscale cylindrical
tubes in the presence of free surface energy. Use is made of the Gurtin–Murdoch surface elasticity model
to incorporate the surface stress terms into the pertinent boundary conditions. Some numerical examples
are provided to depict the influence of the surface energy, and particularly the inner radius size of the
nanocylinder, on the natural frequencies of the system. The results indicate a stronger influence of
surface effects for both smaller values of the outer to inner radius ratio and higher modes of vibration.

1. Introduction

Due to accelerated miniaturization of components and devices in micro and nanoelectromechanical sys-
tems, there is an increasing demand for understanding of the behaviors of small-sized materials and
structures. Nanostructured devices and materials have become progressively more important both in
fundamental and applied research because of their unique physical properties [Tan and Lim 2006]. When
the characteristic size of materials and devices shrinks to microns or nanometers, surface and interface
effects start to play a considerable or even dominant role in their deformability, performance, and relia-
bility, owing to the increasing ratio of surface/interface area to volume [Wong et al. 1997; Cuenot et al.
2004]. Also, atomic simulations have revealed that a solid surface/interface may be either elastically
softer or stiffer than its bulk counterparts [Benveniste and Miloh 2001; Zhou and Huang 2004].

A continuum model of surface elasticity was first established in [Gurtin and Murdoch 1975] to ac-
count for the effects of surfaces, and further extended in [Gurtin et al. 1998] to incorporate the effects
of interfaces as well. Surface elastic constants can be obtained through atomic calculations [Shenoy
2005]; their direct measurement has been very difficult until now. Investigations of the deformation
of some elementary nanosized devices (for example, beams, tubes, and plates) have demonstrated that
the predictions of Gurtin’s surface/interface elasticity theory agree reasonably well with direct atomic
simulations [Miller and Shenoy 2000; Shenoy 2002].

Although surface elasticity theory has been extensively used to elucidate the effects of various size-
dependent phenomena on elastic fields in nanowires caused by static loadings [Chen et al. 2006; Jing
et al. 2006], to date, however, investigation of surface effects on the dynamic behaviors of long nan-
otubes/nanowires has been comparatively lacking. As a few examples in the context of dynamic loadings
in conjunction with surface elasticity theory, we mention studies regarding the diffraction of plane com-
pressional/shear waves by nanosized inhomogeneities/voids (embedded in an elastic medium) [Wang
2007; Hasheminejad and Avazmohammadi 2009] which demonstrate the considerable importance of the
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surface effects on dynamic stress concentration around the nanoinhomogeneities. He and Lilley [2008]
studied the influence of the surface stress on the resonance frequencies of bending nanowires using Euler–
Bernoulli beam theory and, similarly, the natural frequencies of a microbeam in the presence of surface
effects were estimated in [Abbasion et al. 2009] based on Timoshenko beam theory. Furthermore, in
[Hasheminejad and Gheshlaghi 2010] a dissipative surface stress model was adopted to study the effect of
size-dependent surface dissipation on natural frequencies of vibrating elastic nanowires. Nevertheless, as
far as the authors know, investigation of surface effects on the natural frequencies of nanosized cylindrical
tubes is still lacking. Here, we make use of classical elasticity theory in conjunction with Gurtin–Murdoch
theory to carry out a (exact) two-dimensional natural frequency analysis of long, nanosized cylindrical
tubes (nanotubes) in presence of free surface-energy effects.

2. Formulation

The elastic material of the nanotube (NT) under consideration is assumed to be linear, macroscopically
homogeneous, and isotropic. Its constitutive equation may be written as

σi j = λδi jε j j + 2µεi j , (1)

where δi j is the Kronecker delta, (λ, µ) are the Lamé constants, and σi j and εi j are the stress and the strain
tensors, respectively. The problem can be analyzed by means of the standard methods of elastodynamics.
In the absence of body forces, the displacement field is governed by the classical Navier’s equation [Pao
and Mow 1973]

ρ
∂2u
∂ t2 = µ∇

2u+ (λ+µ)∇(∇ · u), (2)

subjected to appropriate boundary conditions. Here, ρ is the elastic material density and u is the dis-
placement vector that can advantageously be expressed as sum of the gradient of a scalar potential and
the curl of a vector potential:

u =∇ϕ+∇×ψ, (3)

with the condition ∇ ·ψ = 0. The above decomposition enables us to separate the dynamic equation of
motion (2) into the Helmholtz wave equations

c2
p∇

2ϕ = ϕ̈, c2
s∇

2ψ = ψ̈, (4)

where c2
p = (λ+2µ)/ρ and c2

s =µ/ρ are the propagation velocities of compressional and shear waves in
the elastic medium, respectively, and superposed dots stand for the time derivative. Taking the divergence-
free condition of ψ into account, only two of the three components of ψ remain independent. Also,
considering the plane-strain assumption, (4) can be reduced to the following fully uncoupled scalar wave
equations (see [Hasheminejad and Mirzaei 2009, Equations (b-2)]):

c2
p∇

2φ = φ̈, c2
s∇

2ψ = ψ̈. (5)

Furthermore, the relevant displacement components in polar coordinates, (r, θ), in terms of compres-
sional and shear wave potentials may be simply written as [Pao and Mow 1973]

ur =
∂φ

∂r
+

1
r
∂ψ

∂θ
, uθ =

1
r
∂φ

∂θ
−
∂ψ

∂r
. (6)
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Correspondingly, the relevant stress components are

σrr = λ∇
2ϕ+ 2µ

[
∂2ϕ

∂r2 +
∂

∂r

(1
r
∂ψ

∂θ

)]
, σrθ = µ

{
2 ∂
∂r

(1
r
∂ϕ

∂θ

)
+

1
r2

∂2ψ

∂θ2 − r ∂
∂r

(1
r
∂ψ

∂r

)}
. (7)

Consider a long cylindrical NT with inner and outer radii a and b, respectively. The in-plane cross section
of the NT is shown in Figure 1. The field expansions for the standing compressional and shear waves
within the tube (that is, the solutions to the wave equations (5)) with respect to the polar coordinate
system may be written as [Pao and Mow 1973]

ϕ(r, θ, ω)=
∞∑

n=0

[an Jn(αr)+ bnYn(αr)]einθ , ψ(r, θ, ω)=
∞∑

n=0

[cn Jn(βr)+ dnYn(βr)]einθ , (8)

where i =
√
−1, an through dn are unknown modal coefficients, α = ω/cp and β = ω/cs are the

compressional and shear wave numbers, respectively, Jn and Yn are the cylindrical Bessel functions of
the first and second kind, respectively, and ω is the circular frequency. Substituting (8) into (7), the
relevant stress components can be respectively written as

σrr (r, θ, ω)=
∞∑

n=0

(
anT (1)

1n + bnT (2)
1n + cnT (1)

2n + dnT (2)
2n

)
einθ ,

σrθ (r, θ, ω)=
∞∑

n=0

(
anT (1)

3n + bnT (2)
3n + cnT (1)

4n + dnT (2)
4n

)
einθ ,

(9)

in which

T (i)
1n (r, ω)=−2µα

r
`
(i)
n−1(αr)+

[
2µ

n(1+ n)
r2 − (λ+ 2µ)α2

]
`(i)n (αr),

T (i)
2n (r, ω)= 2iµn

[
β

r
`
(i)
n−1(βr)−

(1+ n)
r2 `(i)n (βr)

]
,

T (i)
3n (r, ω)= 2iµn

[
α

r
`
(i)
n−1(αr)−

(1+ n)
r2 `(i)n (αr)

]
,

T (i)
4n (r, ω)= 2µβ

r
`
(i)
n−1(βr)+µ

[
−2

n(1+ n)
r2 +β2

]
`(i)n (βr),

(10)

where i = 1, 2 and

`(i)n =

{
Jn (i = 1),
Yn (i = 2).

According to surface elasticity theory, a surface is considered as a negligibly thin layer adhered to an
abutting bulk material without slipping [Gurtin and Murdoch 1975; Gurtin et al. 1998]. The equilibrium
and constitutive equations in the abutting (bulk) solids are the same as those in classical elasticity theory.
However, the surface has different elastic constants than the solids. Hence, in general, a nonzero surface
stress associated with the (nonzero) surface constants should be taken into account in order to derive the
(localized) equilibrium equations on the surface. Here, for the sake of brevity, we only provide the final
set of pertinent nonclassical boundary conditions (caused by presence of the surface stress) in the polar
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Figure 1. Problem geometry: two-dimensional view of the NT.

coordinate system [Wang et al. 2006]:

σrr (r = a, θ, ω)= 1
a
σ
(s)
θθ (a, θ, ω), σrθ (r = a, θ, ω)=−1

a
∂σ

(s)
θθ (a, θ, ω)
∂θ

, (11a)

σrr (r = b, θ, ω)=−1
b
σ
(s)
θθ (b, θ, ω), σrθ (r = b, θ, ω)= 1

b
∂σ

(s)
θθ (b, θ, ω)
∂θ

, (11b)

where σ (s)θθ (r, θ, ω) is the resultant surface stress at the surface with radius r and is written as

σ
(s)
θθ (a, θ, ω)= τ0+ E sεθθ (r = a, θ, ω), σ

(s)
θθ (b, θ, ω)= τ0+ E sεθθ (r = b, θ, ω), (12)

in which E s is the (Young’s modulus-type) elastic constant of the surface, εθθ = (∂uθ/∂θ)/r and τ0 is
the surface residual stress whose effect is not taken into account here (that is, we assume τ0 = 0). Making
use of (6) and (8), the strain component εθθ may be written as

εθθ (r, θ, ω)=
∞∑

n=0

(
anT (1)

5n + bnT (2)
5n + cnT (1)

6n + dnT (2)
6n

)
einθ , (13)

where

T (i)
5n (r, ω)= rα`(i)n−1(αr)− n(1+ n)`(i)n (αr), T (i)

6n (r, ω)= in
(
−rβ`(i)n−1(βr)+ (1+ n)`(i)n (βr)

)
. (14)

Substitution of (9) and (12), along with (13), into the boundary conditions (11a) and (11b) leads to the
following system of linear algebraic equations:

an
(
T (1)

1n (a, ω)− E s T (1)
5n (a, ω)/a

)
+ bn

(
T (2)

1n (a, ω)− E s T (2)
5n (a, ω)/a

)
+ cn

(
T (1)

2n (a, ω)− E s T (1)
6n (a, ω)/a

)
+ dn

(
T (2)

2n (a, ω)− E s T (2)
6n (a, ω)/a

)
= 0, (15a)

an
(
T (1)

3n (a, ω)+ inE s T (1)
5n (a, ω)/a

)
+ bn

(
T (2)

3n (a, ω)+ inE s T (2)
5n (a, ω)/a

)
+ cn

(
T (1)

4n (a, ω)+ inE s T (1)
6n (a, ω)/a

)
+ dn

(
T (2)

4n (a, ω)+ inE s T (2)
6n (a, ω)/a

)
= 0, (15b)

an
(
T (1)

1n (b, ω)+ E s T (1)
5n (b, ω)/b

)
+ bn

(
T (2)

1n (b, ω)+ E s T (2)
5n (b, ω)/b

)
+ cn

(
T (1)

2n (b, ω)+ E s T (1)
6n (b, ω)/b

)
+ dn

(
T (2)

2n (b, ω)+ E s T (2)
6n (b, ω)/b

)
= 0, (15c)
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an
(
T (1)

3n (b, ω)− inE s T (1)
5n (b, ω)/b

)
+ bn

(
T (2)

3n (b, ω)− inE s T (2)
5n (b, ω)/b

)
+ cn

(
T (1)

4n (b, ω)− inE s T (1)
6n (b, ω)/b

)
+ dn

(
T (2)

4n (b, ω)− inE s T (2)
6n (b, ω)/b

)
= 0. (15d)

This system can be cast in the form
T n dn = 0, (16)

in which dn = [an, bn, cn, dn]
T (n = 0, 1, 2, . . .) is the modal vector multiplied by (4× 4) square ma-

trix T n , containing frequency-dependent coefficients. Setting the determinant of T n equal to zero, the
characteristic equation of the system is obtained which leads to determination of the natural frequencies.
It should be noted that for each frequency number, n, there are infinite numbers of longitudinal modes,
denoted by m. A Mathematica program was written for numerical calculation of the natural frequencies
as a function of the NT inner and outer radii through a simple root finding technique based on the
bisection approach.

3. Numerical examples

To illustrate the influence of the surface stress on the dynamic behavior of the nanotube, some numer-
ical examples are provided in this section. To this end, a NT with an infinite length and of selected
outer to inner radius ratio is considered to be made of isotropic aluminum with the following physical
properties: ρ = 2700 kg/m3, λ = 52.0× 109 N/m2, and µ = 34.7× 109 N/m2. Two different sets of
surface properties corresponding to the crystallographic directions [100] (denoted as surface A (SA)) and
[111] (denoted as surface B (SB)) in aluminum are used in the calculation. The corresponding elastic
constants are [Hasheminejad and Avazmohammadi 2009] E s

=−8.95 N/m for SA and E s
= 6.08 N/m

for SB. Surface C (SC) (with E s
= 0 N/m) refers to a surface with the classical perfect bonding condition.

Furthermore, as mentioned before, we assume τ0 = 0. In the following examples, the natural frequencies
have been normalized by cp/b.

Figure 2 displays the variation of the normalized natural frequency versus the inner radius of the NT,
for the first longitudinal mode (m = 1) and for two selected outer to inner radius ratios (b/a = 1.1, 1.5).
These figures include the results associated with the first two frequencies numbers (n = 0, 1) for three
different surface types, SA, SB, and SC. Some observations are in order. It can be seen that the surface
effect is more evident for lower values of the outer to inner radius ratio, corresponding to thinner NTs.
Also, the frequency values for SA and SB are, respectively, lower and higher than that of the classical SC.
This drop (rise) for SA (SB) is connected to the negative (positive) sign of the associated constant E s .
Moreover, since the absolute value of E s for SA is greater than that of SB, its discrepancy with the classic
solution (SC) is larger. Furthermore, as expected, by increasing the inner radius of NT (specifically, for
a > 15 nm), the surface effect gradually diminishes and the normalized frequencies (associated with SA
and SB) approach the classical (size-independent) limit (we used [Gazis 1958, Equation (17)] to obtain
the classical solution).

Figure 3 displays the variation of the normalized natural frequency, for three types of surfaces, SA,
SB, and SC, versus the frequency number (1≤ n ≤ 8) for a NT with b/a = 3. The results are calculated
for the first three longitudinal modes (that is, 1≤m ≤ 3) at each frequency number, n. It is found that the
surface effects become more evident as the frequency number, n, increases. Similarly, a larger surface
effect is observed at higher longitudinal mode numbers. This may be linked to the fact that the deformed
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Figure 2. Variation of the normalized natural frequency with NT size, for selected radius
ratio, surface type, longitudinal mode (m = 1), and frequency number (n = 0, 1).

shape of the inner/outer surfaces of the NT at higher modes of vibration has more curvature associated
with a larger hoop strain at the surfaces. Hence, based on (12), a stronger surface effect at these modes
is anticipated. Also, the fundamental frequency number ( n = 2) that has the minimum value among all
frequencies remains unchanged despite the presence of the surface effect.
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4. Conclusions

Making use of the Helmholtz wave equations together with the theory of surface elasticity, the influence
of surface stress was investigated on the natural frequencies of a long, nanoscaled, cylindrical tube with a
circular cross-section. As a numerical example, the free vibration of a nanotube (NT) made of aluminum
with two different types of surface constants was studied. In this example, the size-dependence of the
natural frequencies of the NT was analyzed for various natural frequency numbers and longitudinal
modes. It was found that the size dependence is more noticeable at higher modes of vibration. This
observation could be considerable technological interest in the area of designing nanoscaled devices.
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