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SPECTRAL ELEMENT MODEL FOR THE VIBRATION
OF A SPINNING TIMOSHENKO SHAFT

USIK LEE AND INJOON JANG

A spectral element model for a spinning uniform shaft is developed. The spinning shaft supported by
bearings is represented by the uniform Timoshenko beam model and the bearing-supports are represented
by equivalent springs. The variational approach is used to formulate the spectral element model by using
the frequency-dependent shape functions derived from exact wave solutions on the frequency-domain
governing differential equations. The conventional finite element model is also formulated for evaluating
the accuracy of the present spectral element model through some example problems.

1. Introduction

Spinning shafts have been extensively used in diverse engineering applications such as motors, engines,
turbines, and machine tools. In general, the rotating machines consist of multiple spinning shafts and
disks (or blades) which are connected to each other to form rotor systems supported by multiple bearings.
As it is very important to predict the dynamic characteristics of the rotor systems accurately in the early
design phase, there have been extensive studies on the modeling and analysis of such rotor systems in
past decades [Nelson 2003].

In previous studies, the dynamics of spinning shafts were represented by various models. When the
diameter of a shaft is large relative to its length and when vibration occurs at high frequencies, deflections
due to transverse shear and rotary inertia become important. Thus, many researchers have used the
Timoshenko beam models for spinning shafts [Eshleman and Eubanks 1969; Nelson 1980; Ehrich 1992;
Zu and Han 1992; Ghoneim and Lawrie 2007; Chen 2010]. In this study, we adopt the Timoshenko
beam model used by [Ehrich 1992; Zu and Han 1992].

The early methods used to determine the critical speed of a rotor are Rayleigh’s method, Dunkerley’s
formula, Holzer’s method, and the transfer matrix method [Lund 1974]. As the size of the transfer
matrix generated to represent a rotor system is not large, the transfer matrix method is very efficient for
the analysis of one-dimensional (1D) systems such as rotor systems. However, as the transfer matrix
method provides dynamic responses only at the endpoints of a 1D system, postprocessing is necessary
to compute the dynamic responses at the interim positions of the system. [Ruhl and Booker 1972] and
[Nelson 1980] used FEM to investigate the stability and dynamics of rotor systems. In general, a large
number of degrees of freedom (DOFs) are required for an FEM model of a large flexible rotor system,
which may result in an increase in the computational cost as well as a widely spread frequency spectrum
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which may include many insignificant vibration modes. To cope with these problems, reduced-order
modeling techniques have been introduced [Kane and Torby 1991]. Though reduced-order modeling
techniques are useful for reducing the size of FEM models, they are known to degrade the accuracy of
FEM solutions.

Thus, as an alternative analysis method, this paper adopts the spectral element method (SEM) for the
dynamic analysis of the flexible spinning shafts of a rotor system. SEM may meet two requirements:
high accuracy up to the frequency range of interest and the use of a minimum number of DOFs [Doyle
1997; Lee et al. 2000; Vinod et al. 2007; Lee 2009]. Thus, SEM has apparent advantages over the
other solution methods such as the transfer matrix method and FEM, especially when it is applied to 1D
structural dynamic problems such as rotor systems as well as to structural health monitoring problems.
However, though SEM can be also used for nonlinear analysis by using an iterative approach [Lee 2009],
conventional FEM can be more efficiently used for nonlinear analysis.

Thus, the purposes of this paper are:
• to develop a spectral element model for the spinning Timoshenko shaft (T-shaft) and

• to apply the spectral element model to investigate the natural frequencies and critical speeds of
example spinning shafts.

The results obtained by using the spectral element model are then compared with the results obtained
by using the conventional finite element model and the analytical theories available in the literature to
verify the accuracy of the spectral element model.

2. Governing equations

Consider a spinning flexible uniform shaft subjected to transverse vibrations and represent it as a spinning
uniform T-shaft. The equations of motion and relevant boundary conditions for the spinning uniform T-
shaft can be derived by using Hamilton’s principle [Meirovitch 1980]:∫ t2

t1
(δT − δU + δW ) dt = 0, (1)

where T is the kinetic energy, U is the potential energy, and δW is the virtual work done by external
forces and moments. As shown in Figure 1, the uniform T-shaft of circular cross-section is spinning about
the central axis x at a constant speed of � radians/s and it has length L , bending rigidity E I , transverse
shear rigidity κG A, mass per length ρA, mass moment of inertia about the y or z-axes ρ I , and polar
mass moment of inertia about the x-axis ρ J . In Figure 1a, v(x, t) is the transverse displacement in the
y-direction, w(x, t) is the transverse displacement in the z-direction, φ(x, t) is the rotation angle about
the y-axis, and ψ(x, t) is the rotation angle about the z-axis.

Assuming that the uniform T-shaft takes small amplitude transverse vibrations in the y and z-directions,
the kinetic and potential energies can be obtained as [Nelson 1980; Ehrich 1992]

T = 1
2

∫ L

0
ρA(v̇2

+ ẇ2) dx + 1
2

∫ L

0
ρ I (φ̇2

+ ψ̇2) dx + 1
2

∫ L

0
ρ J (�−φψ̇)2 dx, (2)

U = 1
2

∫ L

0
E I (φ′2+ψ ′2) dx + 1

2

∫ L

0
κG A[(v′−ψ)2+ (w′+φ)2] dx +

2∑
i=1

1
2
vT

i Ksupport(i)vi , (3)
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Figure 1. A spinning uniform shaft: (a) displacement fields and the boundary forces
and moments and (b) bearing-supports.

where

vi =

{
vi

wi

}
, Ksupport(i) =

[
K yyi K yzi

Kzyi Kzzi

]
(i = 1, 2). (4)

The matrices Ksupport(1) and Ksupport(2) represent the stiffnesses of bearing-supports 1 and 2, as shown in
Figure 1b, and the vectors v1 and v2 represent the transverse displacements at bearing-supports 1 and
2. The dot ( ˙ ) and prime ( ′ ) denote the derivatives with respect to the time t and axial coordinate
x , respectively. In (2), the first integral represents the translational kinetic energy and the other two
integrals the rotational kinetic energies. In (3), the first integral represents the strain energy for the
transverse bending deformations, the second integral for the transverse shear deformations, and the last
term for the bearing-support deformations. The virtual work δW is given by

δW =
∫ L

0
(pyδv+ pzδw+ τyδφ+ τzδψ) dx + Q y1δv1+ Q y2δv2+ Qz1δw1+ Qz2δw2

+My1δφ1+My2δφ2+Mz1δψ1+Mz2δψ2− fv̇1δv1− fẇ1δw1− fv̇2δv2− fẇ2δw2, (5)

where Q yi , Qzi , Myi , and Mzi (i = 1, 2) are the transverse shear forces and bending moments applied
at the two ends of the T-shaft as shown in Figure 1a. The forces and bending moments distributed along
the x-axis are py , pz , τy , and τz . The viscous damping forces generated by bearing-supports 1 and 2 are
fv̇i and fẇi (i = 1, 2), and they can be computed from

fv̇i =
∂R
∂v̇i

, fẇi =
∂R
∂ẇi

(i = 1, 2). (6)
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The Rayleigh’s dissipation function R is given by

R =
2∑

i=1

1
2
v̇T

i Csupport(i)v̇i , (7)

where

Csupport(i) =

[
Cyyi Cyzi

Czyi Czzi

]
(i = 1, 2), (8)

where Cabi (a, b = y, z) are viscous damping coefficients of the bearing-supports as shown in Figure 1b.
Substituting (2), (3), and (6) into (1) and then applying the integral by parts, we can obtain the differ-

ential equations of motion as

ρAv̈− κG A(v′′−ψ ′)= py, ρ I ψ̈ −ρ J�φ̇− E Iψ ′′− κG A(v′−ψ)+ρ J (2φφ̇ψ̇+φ2ψ̈)= τz,

ρAẅ− κG A(w′′+φ′)= pz, ρ I φ̈+ρ J�ψ̇ − E Iφ′′+ κG A(w′+φ)−ρ Jφψ̇2
= τy,

(9)

and the natural boundary conditions as

Q y(0, t)= K yy1v1+
1
2 (K yz1+ Kzy1)w1+Cyy1v̇1+

1
2 (Cyz1+Czy1)ẇ1− Q y1,

Q y(L , t)=−K yy2v2−
1
2 (K yz2+ Kzy2)w2−Cyy2v̇2−

1
2 (Cyz2+Czy2)ẇ2+ Q y2,

Qz(0, t)= Kzz1w1+
1
2 (K yz1+ Kzy1)v1+Czz1ẇ1+

1
2 (Cyz1+Czy1)v̇1− Qz1,

Qz(L , t)=−Kzz2w2−
1
2 (K yz2+ Kzy2)v2−Czz2ẇ2−

1
2 (Cyz2+Czy2)v̇2+ Qz2,

My(0, t)=−My1, My(L , t)= My2,

Mz(0, t)=−Mz1, Mz(L , t)= Mz2.

(10)

The force-displacement relations are defined by

Q y(x, t)= κG A(v′−ψ), My(x, t)= E Iφ′,

Qz(x, t)= κG A(w′+φ), Mz(x, t)= E Iψ ′.
(11)

By neglecting small nonlinear terms from (9), we can obtain

ρAv̈− κG A(v′′−ψ ′)= py, ρ I ψ̈ − ρ J�φ̇− E Iψ ′′− κG A(v′−ψ)= τz,

ρAẅ− κG A(w′′+φ′)= pz, ρ I φ̈+ ρ J�ψ̇ − E Iφ′′+ κG A(w′+φ)= τy .
(12)

Equations (12) are identical to the governing equations introduced in [Ehrich 1992; Zu and Han 1992].
Equations (12) will be used herein for developing a spectral element model for spinning T-shafts.

3. Spectral element modeling

The spectral element model for the spinning uniform T-shaft is derived from the differential equations of
motion given by (12). To formulate the spectral element, we represent the solutions of (12), the external
forces, and the resultant forces and moments in spectral forms as [Lee 2009]

{
v(x, t) w(x, t) ψ(x, t) φ(x, t)

}
=

1
N

N−1∑
n=0

{
Vn(x;ωn) Wn(x;ωn) ψn(x;ωn) φn(x;ωn)

}
eiωn t , (13)



SPECTRAL ELEMENT MODEL FOR THE VIBRATION OF A SPINNING TIMOSHENKO SHAFT 149

{
py(x, t) pz(x, t) τy(x, t) τz(x, t)

}
=

1
N

N−1∑
n=0

{
Pyn(x;ωn) Pzn(x;ωn) Tyn(x;ωn) Tzn(x;ωn)

}
eiωn t ,

(14){
Q y(x, t) Qz(x, t) My(x, t) Mz(x, t)

}
=

1
N

N−1∑
n=0

{
Q yn(x;ωn) Qzn(x;ωn) Myn(x;ωn) Mzn(x;ωn)

}
eiωn t . (15)

Substituting (13) and (14) into (12) gives

κG A(V ′′−ψ ′)+ ρAω2V + Py = 0, E Iψ ′′+ iω�ρ J8+ κG A(V ′−ψ)+ ρ Iω2ψ + Tz = 0,

κG A(W ′′+8′)+ ρAω2W + Pz = 0, E I8′′− iω�ρ Jψ − κG A(W ′+8)+ ρ Iω28+ Ty = 0,
(16)

where the subscripts n are omitted for brevity. Similarly, substituting (13) and (15) into (11) gives

Q y(x)= κG A(V ′−ψ), My(x)= E I8′,

Qz(x)= κG A(W ′+8), Mz(x)= E Iψ ′.
(17)

Consider the homogeneous equations reduced from (16) as

κG A(V ′′−ψ ′)+ ρAω2V = 0, E Iψ ′′+ iω�ρ J8+ κG A(V ′−ψ)+ ρ Iω2ψ = 0,

κG A(W ′′+8′)+ ρAω2W = 0, E Iφ′′− iω�ρ Jψ − κG A(W ′+8)+ ρ Iω28= 0.
(18)

Assume the homogeneous solutions of (18) as

V (x)= ae−ikx , W (x)= tae−ikx , ψ(x)= rae−ikx , 8(x)= tr̂ae−ikx . (19)

Substitution of (19) into (18) yields an eigenvalue problem as
σ1 −σ3 0 0
σ3 σ2 0 −σ4

0 0 σ1 σ3

0 σ4 −σ3 σ2




1
r
t
tr̂

=


0
0
0
0

 , (20)

where

σ1 = k2κG A−ω2ρA, σ2 = k2 E I + κG A−ω2ρ I, σ3 = ikκG A, σ4 = iω�ρ J. (21)

From (20), we can get a dispersion equation as

k8
− 2(η1k4

F + k4
G)k

6
+ (η2

1k8
F + 4η1k4

Gk4
F + k8

G − 2k4
F − η

−2
2 η2

3�
2ω2)k4

+ (−2η2
1k4

Gk8
F − 2η1k8

Gk4
F + 2η1k8

F + 2k4
F k4

G + 2k4
Fη
−1
2 η2

3�
2ω2)k2

+ η2
1k8

Gk8
F − 2η1k4

Gk8
F + (1− η

2
3�

2ω2)k8
F = 0, (22)

where

kF =
√
ω
(
ρA
E I

)1/4
, kG =

√
ω
(
ρA
κG A

)1/4
, η1 =

ρ I
ρA

, η2 =
E I
κG A

, η3 =
ρ J
κG A

. (23)



150 USIK LEE AND INJOON JANG

Eight wavenumbers ki (i = 1, 2, . . . , 8) can be computed from (22). By substituting each wavenumber
into (20), we can obtain

r j = ik−1
j (k

4
G − k2

j ), r̂ j =−r j ,

t j =−(iη3�ω)
−1r−1

j [ik j + (η2k2
j − η1k4

G)r j ]
( j = 1, 2, . . . , 8). (24)

By using the eight wavenumbers computed from (22), the homogeneous solutions of (18) can be obtained
as

V (x)= Nv(x;ω)d, W (x)= Nw(x;ω)d, ψ(x)= Nψ(x;ω)d, 8(x)= Nφ(x;ω)d. (25)

where

d =
{

V1 ψ1 W1 81 V2 ψ2 W2 82
}T
≡
{

V (0) ψ(0) W (0) 8(0) V (L) ψ(L) W (L) 8(L)
}T

(26)

and
Nv(x;ω)= ev(x)H−1

B , Nw(x;ω)= ew(x)H−1
B ,

Nψ(x;ω)= eψ(x)H−1
B , Nφ(x;ω)= eφ(x)H−1

B ,
(27)

with the use of the following definitions:

ev(x)=
[
e−ik1x eik1x e−ik3x eik3x e−ik5x eik5x e−ik7x eik7x

]
,

eψ(x)= ev(x)R, ew(x)= ev(x)T , eφ(x)=−ev(x)T R,

HB =

[
eT
v (0) eT

ψ(0) eT
w(0) eT

φ (0) eT
v (L) eT

ψ(L) eT
w(L) eT

φ (L)
]T
,

(28)

where
R = diag[r j ], T = diag[t j ] ( j = 1, 2, . . . , 8). (29)

Nv , Nψ , Nw, and Nφ are the frequency-dependent dynamic shape function matrices and d is the spectral
nodal DOFs vector for the transverse bending vibrations of the spinning shaft.

To formulate the spectral element equation, the weak form of (16) are obtained in the form∫ L

0
[E I (8′δ8′+ψ ′δψ ′)+ κG A(V ′δV ′+W ′δW ′)− κG A(ψδV ′+ V ′δψ)

+ κG A(8δW ′+W ′δ8)+ κG A(8δ8+ψδψ)] dx

+

∫ L

0
iω�ρ J (ψδ8−8δψ) dx −

∫ L

0
ω2
[ρA(V δV +WδW )+ ρ I (8δ8+ψδψ)] dx

=

∫ L

0
(PyδV + Tzδψ + PzδW + Tyδφ) dx + Q yδV

∣∣L
0 +Mzδψ

∣∣L
0 + QzδW

∣∣L
0 +Myδ8

∣∣L
0 . (30)

Substituting (25) into (30) and applying the associated boundary conditions, we can get

S(ω)d = fc+ fd , (31)

where S(ω) is the spectral element matrix given by

S(ω)= H−T DH−1
+ Ksupport+ iωCsupport, (32)
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where

D(ω)=−E I (RT K E K T R+ RK E K R)− κG A(K E K + T K E K T )+ iκG A(K E R+ RE K )

+ iκG A(T K ET R+ RT E K T )+ κG A(RT ET R+ RE R)−ω2ρA(E+ T ET )

−ω2ρ I (RT ET R+ RE R)− iω�ρ J (RT E R− RET R), (33)

Ksupport =

[
K1 0
0 K2

]
, Csupport =

[
C1 0
0 C2

]
, (34)

with the use of following definitions:

E(ω)=
∫ L

0
eT
v ev dx ≡ [Elm] =


i

kl + km
[e−i(kl+km)L − 1] if kl + km 6= 0,

L if kl + km = 0,
(35)

K = diag[k j ] ( j = 1, 2, . . . , 8), (36)

Ki =


K yyi 0 1

2 (K yzi + Kzyi ) 0
0 0 0 0

1
2 (K yzi + Kzyi ) 0 Kzzi 0

0 0 0 0

 (i = 1, 2), (37)

Ci =


Cyyi 0 1

2 (Cyzi +Czyi ) 0
0 0 0 0

1
2 (Cyzi +Czyi ) 0 Czzi 0

0 0 0 0

 (i = 1, 2). (38)

In (31), fc represents the spectral nodal forces and moments due to the concentrated forces and moments,
while fd represents the ones due to the distributed forces and moments. They are defined by

fc =
{

Q y1 Mz1 Qz1 My1 Q y2 Mz2 Qz2 My2
}T
,

fd =

∫ L

0
[Py(x)NT

v (x)+ Tz(x)NT
ψ (x)+ Pz(x)NT

w (x)+ Ty(x)NT
φ (x)] dx

=
{

Fv1 Fψ1 Fw1 Fφ1 Fv2 Fψ2 Fw2 Fφ2
}T
.

(39)

The last term of (33) is skew symmetric and represents the gyroscopic effect.

4. Spectral element analysis

The spectral element (31) can be assembled in an analogous way as in conventional FEM. After imposing
the relevant boundary conditions, a global dynamic stiffness matrix equation can be obtained in the form

Sg(ω)dg = fcg + fdg = fg, (40)
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where the subscripts g denote the quantities for the assembled global spinning shaft system. As the
spectral element matrix S(ω) is formulated by using exact wave solutions to the frequency-domain gov-
erning differential equations, only one element will suffice for modeling a regular shaft of any length in
the absence of any discontinuity or irregularity in the geometrical and material properties.

The natural frequencies ωNAT of a global system can be computed from the condition that the deter-
minant of the global dynamic stiffness matrix vanishes at ωNAT. That is

det Sg(ωNAT)= 0. (41)

To compute the roots (that is, natural frequencies ωNAT) of (41), we can use a proper root-searching
algorithm in conjunction with the Wittrick–William algorithm [Wittrick and Williams 1971] not to miss
any roots within a frequency range specified during the root search. The spectral nodal DOFs can be
exactly computed from (40) as

dg = Sg(ω)
−1, fg = Tg(ω) fg, (42)

where Tg(ω) = Sg(ω)
−1 is the system transfer matrix (or frequency response function). Thus, (42)

implies that the spectral nodal DOFs can be computed by convolving the system transfer matrix with
the spectral nodal forces and moments. Once the spectral nodal DOFs are computed from (42), one can
readily use the inverse FFT to compute the time history of the dynamic responses.

5. Numerical examples

5.1. Simply supported uniform shaft. Consider a simply supported uniform shaft as shown in Figure 2.
The geometric and material properties of the uniform shaft are given as follows: length 2L = 2 m, radius
r = 0.02 m, mass density ρ = 7700 kg/m3, Young’s modulus E = 207 GPa, shear modulus 77.6 GPa, and
shear correction factor for the circular cross-section κ = 0.9.

To verify the accuracy of the present spectral element model, the natural frequencies of the stationary
(nonspinning) uniform shaft obtained by using the present spectral element model are compared in Table 1
with those obtained by using the finite element model (see the Appendix) as well as with those obtained
by using the analytical formula given by [Blevins 1979] as

fn = f̄nαn

√
βn −

√
β2

n − η
−1
1 η−1

2 Hz, (43)

where f̄n are the natural frequencies of the simply supported, stationary uniform Bernoulli–Euler beam
and

αn =
L

nπ
, βn =

1
2
[η−1

1 + (1+α
2
nη
−1
1 )η−1

2 ]. (44)

 

2L 

2r 
:

Figure 2. A simply supported uniform shaft, where � is the spinning speed.
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FEM (n)
Mode n = 2 n = 10 n = 30 n = 50 n = 100 SEM (1) [Blevins 1979]

1st 20.43 20.35 20.35 20.35 20.35 20.35 20.35
2nd 90.35 81.23 81.29 81.29 81.29 81.29 81.29
3rd 226.9 182.6 182.5 182.5 182.5 182.5 182.5
4th 414.1 324.0 323.3 323.3 323.3 323.3 323.3
5th - 505.8 503.1 503.0 502.9 502.9 502.9

10th - 2232 1952 1947 1945 1945 1945
15th - 5521 4228 4182 4166 4160 4160
20th - 10261 7260 7058 6982 6956 6956

Table 1. Natural frequencies (in Hz) of the simply supported stationary uniform shaft
(�= 0 rpm), with n the total number of finite elements used in the analysis.

For the spectral element analysis, the whole uniform shaft is represented by using a single element, that
is, a one-element model. On the other hand, for the finite element analysis, the total number of finite
elements used in the analysis is increased step by step until the FEM results converge to the exact analyt-
ical results. Table 1 shows that the SEM results are indeed identical to those obtained by the analytical
formula (43), while the FEM results converge to the SEM results (or the exact results) as the total number
of finite elements used in the finite element analysis is increased. For instance, Table 1 shows, for the
present example problem, that more than 100 finite elements must be used for the finite element analysis
to satisfy an accuracy of five significant figures for the fifth and higher natural frequencies while the one-
element model suffices for the spectral element analysis. The maximum number of natural frequencies
which can be obtained by finite element analysis is certainly limited by the total number of finite elements
used in the analysis (for example, four natural frequencies when two finite elements are used, as shown in
Table 1), while the present spectral element analysis provides an infinite number of natural frequencies.

The natural frequencies of the spinning uniform shaft are compared in Table 2. It is assumed that the
uniform shaft is spinning at a constant speed of 3600 rpm. The SEM results are compared with those
obtained by using the finite element model as well as with those obtained from the analytical formula
given by [Zu and Han 1992] as

sin
(

L
√

2

√
χ1η5+

√
χ2

1η
2
5− 4χ2

)
= 0, (45)

where
χ1 =−η6�ω+ (η1+ η2)ω

2,

χ2 =−ω− η3�ω
3
+ η4ω

4,
η4 =

ρ I
κG A

, η5 =
ρA
E I
, η6 =

ρ J
ρA

. (46)

Table 2 also shows that the natural frequencies for both forward and backward whirling modes obtained
by using the spectral element model (the one-element model) are very close to the results obtained by
using the analytical formula (45), while those obtained by using the finite element model converge to
the SEM results as the total number of finite elements used in the finite element analysis is increased.
Figure 3 shows the spinning speed �-dependence of the first and second natural frequencies, all computed
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FEM (n)
Mode n = 2 n = 10 n = 30 n = 50 n = 100 SEM (1) Z&H

1st
forward 20.45 20.37 20.37 20.37 20.37 20.37 20.37
backward 20.42 20.34 20.34 20.34 20.34 20.34

2nd
forward 90.41 81.36 81.34 81.34 81.34 81.34 81.34
backward 90.29 81.24 81.23 81.23 81.23 81.23

3rd
forward 227.1 182.7 182.6 182.6 182.6 182.6 182.6
backward 226.8 182.5 182.3 182.3 182.3 182.3

4th
forward 414.4 324.3 323.5 323.5 323.5 323.5 323.5
backward 413.9 323.8 323.1 323.0 323.0 323.0

5th
forward - 506.1 503.4 503.3 503.3 503.3 503.3
backward - 505.4 502.7 502.6 502.6 502.6

10th
forward - 2234 1953 1948 1947 1946 1946
backward - 2231 1951 1946 1944 1943

15th
forward - 5524 4231 4185 4168 4163 4163
backward - 5518 4225 4180 4163 4158

20th
forward - 10267 7264 7061 6985 6961 6961
backward - 10255 7257 7054 6978 6954

Table 2. Natural frequencies (in Hz) of the simply supported spinning uniform shaft
(� = 3600 rpm), with n the total number of finite elements used in the analysis, and
where Z&H indicates data from [Zu and Han 1992].

by using the present spectral element model. Figure 3 shows that both forward and backward whirling
modes appear when the uniform shaft starts spinning.

Spinning speed : (×10
3
 rpm)

N
a

tu
ra

l 
fr

e
q

u
e
n

c
ie

s
 (

H
z
) 

0 10 20 30

80 

85 

90  

Forward whirling

Backward whirling

20 

25 

1st Mode

2nd Mode

Figure 3. Natural frequencies versus spinning speed � of the simply supported uniform shaft.
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FEM (n)
Mode n = 2 n = 10 n = 30 n = 50 n = 100 SEM (1) E&E

1st
forward 20.44 20.36 20.36 20.36 20.36 20.36 20.36
backward 20.43 20.35 20.35 20.35 20.35 20.35 20.35

2nd
forward 90.44 81.38 81.37 81.36 81.36 81.36 81.36
backward 90.26 81.22 81.21 81.21 81.21 81.21 81.21

3rd
forward 227.5 183.0 182.9 182.8 182.8 182.8 182.8
backward 226.4 182.2 182.1 182.0 182.0 182.0 182.0

4th
forward 415.9 325.3 324.6 324.5 324.5 324.5 324.5
backward 412.4 322.8 322.1 322.0 322.0 322.0 322.0

5th
forward - 508.8 506.1 506.0 506.0 506.0 506.0
backward - 502.8 500.1 500.0 500.0 500.0 499.9

10th
forward - 2289 2001 1995 1994 1989 1989
backward - 2180 1912 1907 1906 1901 1901

15th
forward - 5835 4413 4360 4341 4350 4350
backward - 5252 4063 4022 4007 3971 3971

20th
forward - 11449 7770 7548 7465 7454 7454
backward - 10971 6752 6563 6489 6462 6462

Table 3. Critical speeds (in Hz) of the simply supported spinning uniform shaft, with n
the total number of finite elements used in the analysis, and where E&E indicates data
from [Eshleman and Eubanks 1969].

The critical speeds of the uniform shaft are compared in Table 3. The critical speeds of a spinning
shaft are defined by the spinning speeds which are identical to the natural frequencies of the shaft. As
the gyroscopic effect will change the effective compliance of the shaft to raise or lower the natural
frequencies, one critical speed is raised (forward whirling mode) while one is lowered (backward whirling
mode). The critical speeds obtained by using the present spectral element model are compared with the
results obtained by using the finite element model and the analytical formula given by [Eshleman and
Eubanks 1969] as

�n =


f̄n

√
α2

n

α2
n + η2− η1

(Hz) (forward whirling),

f̄n

√
α2

n

α2
n + η2+ 3η1

(Hz) (backward whirling).

(47)

It is also obvious from Table 3 that the critical speeds of the present spectral element model (the one-
element model) are very close to the results of the analytical formula (47), while the FEM results certainly
converge to the SEM results as the total number of finite elements used in the finite element analysis is
increased.
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Figure 4. Dispersion curves of the simply supported uniform shaft.

In summary, the results displayed in Tables 1, 2, and 3 confirm the accuracy of the present spectral
element model when compared with the conventional finite element model which is provided in the
Appendix.

Lastly, Figure 4 compares the dispersion curves when the shaft is stationary and rotating at a constant
speed of 3600 rpm. In the last graph, the group velocities are nondimensionalized with respect to c0 =
√

E I/ρA. Figure 4 shows that the group velocity of the bending (flexural) wave mode decreases as the
shaft rotates. For the shear wave mode, the cutoff frequency shifts to a lower frequency as the shaft
rotates and its group velocity also decreases at higher frequencies than the cutoff frequency.

5.2. Bearing-supported uniform shaft. To investigate the effect of the stiffness and damping of the
bearing-supports on the natural and critical speeds of a spinning shaft, we consider a bearing-supported
uniform shaft as shown in Figure 5 as the second example problem. The geometric and material properties
for the bearing-supported uniform shaft are exactly same as those for the previous simply supported

2r 

K C K C

2L 

:

Figure 5. A bearing-supported uniform shaft, where � is the spinning speed.
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uniform shaft. It is assumed that the stiffness and damping properties of the left bearing-support are
identical to those of the right. For the stiffness and damping properties of the bearing-supports, we
consider three cases:

• Case A: K yy = Kzz = 1.0× 106 N/m, K yz = Kzy = 0 N/m, Cyy = Czz = 400 Ns/m, and Cyz =

Czy = 0 Ns/m;

• Case B: K yy = Kzz = 1.0× 108 N/m, K yz = Kzy = 0 N/m, Cyy = Czz = 400 Ns/m, and Cyz =

Czy = 0 Ns/m;

• Case C: K yy = Kzz = 1.0× 106 N/m, K yz = Kzy = 0 N/m, Cyy = Czz = 800 Ns/m, and Cyz =

Czy = 0 Ns/m.

Compared to Case A, Case B has higher stiffness, while Case C has lower damping.
For these three cases of bearing-supported uniform shaft problems, exact solutions are not available

from the literature. Thus, as shown in Tables 4, 5, and 6, the FEM results are also provided as refer-
ence solutions to evaluate the present SEM results. The one-element model suffices for accurate SEM
results. On the other hand, a sufficient number of finite elements (100 finite elements) are used to obtain
sufficiently converged accurate FEM results.

Table 4 shows the lowest three natural frequencies for uniform shafts which are not spinning, while
Table 5 shows the forward and backward natural frequencies of the lowest three modes for uniform shafts
which are spinning at �= 3600 rpm. Lastly Table 6 shows the forward and backward critical speeds of

Case A Case B Case C
Mode SEM (1) FEM (100) SEM (1) FEM (100) SEM (1) FEM (100)

1st 19.13 19.13 20.34 20.34 19.14 19.14
2nd 63.61 63.61 81.08 81.08 64.19 64.19
3rd 110.6 110.6 181.4 181.4 111.5 111.5

Table 4. Natural frequencies (in Hz) of the simply supported stationary stepped shafts
(�= 0 rpm), with the number in parentheses being the total number of finite elements
used in the analysis.

Case A Case B Case C
Mode SEM (1) FEM (100) SEM (1) FEM (100) SEM (1) FEM (100)

1st
forward 19.14 19.14 20.35 20.35 19.15 19.15
backward 19.12 19.12 20.32 20.32 19.13 19.13

2nd
forward 63.64 63.64 81.14 81.14 64.22 64.22
backward 63.59 63.59 81.02 81.02 64.17 64.17

3rd
forward 110.7 110.7 181.5 181.5 111.6 111.6
backward 110.6 110.6 181.3 181.3 111.5 111.5

Table 5. Natural frequencies (in Hz) of the simply supported spinning stepped shafts
(�= 3600 rpm), with the number in parentheses being the total number of finite elements
used in the analysis.
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Case A Case B Case C
Mode SEM (1) FEM (100) SEM (1) FEM (100) SEM (1) FEM (100)

1st
forward 19.14 19.14 20.34 20.34 19.143 19.143
backward 19.13 19.13 20.33 20.33 19.136 19.136

2nd
forward 63.64 63.64 81.16 81.16 64.22 64.22
backward 63.59 63.59 81.00 81.00 64.17 64.17

3rd
forward 110.7 110.7 181.8 181.8 111.6 111.6
backward 110.5 110.5 181.0 181.0 111.4 111.4

Table 6. Critical speeds (in Hz) of the simply supported spinning stepped shafts, with
the number in parentheses being the total number of finite elements used in the analysis.

the lowest three modes. The effects of the stiffness and damping of the bearing-supports on the natural
frequencies and critical speeds can be observed in Tables 4, 5, and 6. When compared with Case A,
both Cases B, with bearing-supports of higher stiffness, and C, with bearing-supports of higher damping,
have higher natural frequencies and critical speeds.

5.3. Bearing-supported stepped shaft. As the third example problem, consider a bearing-supported
stepped shaft which consists of two uniform shafts of equal length L = 1 m as shown in Figure 6. The
material properties for the two uniform shafts are identical to those used the previous two example
problems. The spring constants and viscous damping coefficients for the left and right bearing-supports
are identical, and they are assumed to be identical to those for Case A of the previous bearing-supported
uniform shaft problem. For the radii of the two equal-length uniform shafts, we consider three cases:

• Case I: r1 = r2 = 0.02 m;

• Case II: r1 = 0.02 m, r2 = 0.01 m;

• Case III: r1 = 0.02 m, r2 = 0.03 m.

Exact solutions are not available from the literature for these three cases of bearing-supported stepped
shaft problems. Thus, as shown in Tables 7, 8, and 9, the FEM results are also provided as the reference
solutions to evaluate the present SEM results. A sufficient number of finite elements (100 finite elements)
is used to obtain sufficiently converged accurate FEM results. For the SEM results, a one-element model
is used for Case I, while two-element models are used for Cases II and III due to the existence of a single
geometric discontinuity at the middle of the stepped shafts.

Table 7 displays the lowest three natural frequencies when the stepped shafts are not spinning, while
Table 8 displays the forward and backward natural frequencies of the lowest three modes when the
stepped shafts are spinning at �= 3600 rpm. Lastly Table 9 displays the forward and backward critical

K C K C

L L

2r2 2r1 

:

Figure 6. A bearing-supported stepped shaft, where � is the spinning speed.
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speeds of the lowest three modes. The natural frequencies and critical speeds for Case III are shown to
be higher than for Cases I and II for the first mode. However, for the second and third modes, the values
for Case I are higher than for Cases II and III. In addition, the natural frequencies and critical speeds
given in Tables 7, 8, and 9 for the bearing-supported uniform shaft (Case I) are shown to be lower than
the values given in Tables 1, 2, and 3 for the simply supported uniform shaft.

Figure 7 shows the first three normalized modes of the transverse displacement v(x, t) when the
stepped shafts are spinning at � = 0 rpm and � = 3600 rpm. The mode shapes for the stepped shafts

Case I Case II Case III
Mode SEM (1) FEM (100) SEM (2) FEM (100) SEM (2) FEM (100)

1st 19.13 19.13 9.563 9.563 19.28 19.28
2nd 63.61 63.61 56.32 56.32 58.46 58.46
3rd 110.6 110.6 93.15 93.15 103.2 103.2

Table 7. Natural frequencies (in Hz) of the bearing-supported stationary stepped shafts
(�= 0 rpm), with the number in parentheses being the total number of finite elements
used in the analysis.

Case I Case II Case III
Mode SEM (1) FEM (100) SEM (2) FEM (100) SEM (2) FEM (100)

1st
forward 19.14 19.14 9.578 9.578 19.29 19.29
backward 19.12 19.12 9.551 9.551 19.26 19.26

2nd
forward 63.64 63.64 56.34 56.34 58.51 58.51
backward 63.59 63.59 56.30 56.30 58.42 58.42

3rd
forward 110.7 110.7 93.20 93.20 103.3 103.3
backward 110.6 110.6 93.10 93.10 103.1 103.1

Table 8. Natural frequencies (in Hz) of the bearing-supported spinning stepped shafts
(�= 3600 rpm), with the number in parentheses being the total number of finite elements
used in the analysis.

Case I Case II Case III
Mode SEM (1) FEM (100) SEM (2) FEM (100) SEM (2) FEM (100)

1st
forward 19.14 19.14 9.565 9.565 19.28 19.28
backward 19.13 19.13 9.561 9.561 19.27 19.27

2nd
forward 63.64 63.64 56.34 56.34 58.51 58.51
backward 63.59 63.59 56.30 56.30 58.42 58.42

3rd
forward 110.7 110.7 93.23 93.23 103.4 103.4
backward 110.5 110.5 93.07 93.07 103.1 103.1

Table 9. Critical speeds (in Hz) of the bearing-supported spinning stepped shafts, with
the number in parentheses being the total number of finite elements used in the analysis.
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Figure 7. The first three normalized modes of the bearing-supported stepped shafts.

(Cases II and III) are shown to deviate significantly from those for the uniform shaft (Case I) at both
�= 0 rpm and �= 3600 rpm. Though the mode shapes are dependent on the spinning speed, Figure 7
shows that the change of mode shapes at � = 3600 rpm is not so significant for the example shafts
considered herein.

6. Conclusions

This paper develops a spectral element model for a spinning uniform shaft. The spinning uniform shaft
is represented by a spinning uniform Timoshenko beam model and its bearing-supports are represented
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by two translational springs and two rotational springs. The spectral element model is then used to inves-
tigate the natural frequencies and critical speeds of the simply supported and bearing-supported spinning
uniform shafts and the results are compared with the results obtained by using the conventional finite
element model and the analytical theories available in existing references. It is numerically shown that
the present spectral element model provides extremely accurate results by using only a small number of
finite elements when compared with the conventional finite element model. In addition, some numerical
investigation is also conducted for the bearing-supported stepped shafts.

Appendix: Finite element model

The equations of motion for the transverse bending vibration are given by (10) and the corresponding
weak form can be derived in the form∫ L

0
[E I (φ′δφ′+ψ ′δψ ′)+ κG A(v′δv′+w′δw′)− κG A(ψδv′+ v′δψ)+ κG A(φδw′+w′δφ)

+ κG A(φδφ+ψδψ)] dx +
∫ L

0
�ρ J (ψ̇δφ− φ̇δψ) dx +

∫ L

0
[ρA(v̈δv+ ẅδw)+ ρ I (φ̈δφ+ ψ̈δψ)] dx

=

∫ L

0
(pyδv+ τzδψ + pzδw+ τyδφ) dx + Q yδv

∣∣L
0 +Mzδψ

∣∣L
0 + Qzδw

∣∣L
0 +Myδφ

∣∣L
0 . (A.1)

The displacement fields v(x, t), w(x, t), φ(x, t), and ψ(x, t) are represented by

v = Nv(x)d(t), w = Nw(x)d(t), φ = Nφ(x)d(t), ψ = Nψ(x)d(t), (A.2)

where

d(t)=
{

d1(t) d2(t)
}T
, d j (t)=

{
v j (t) ψ j (t) w j (t) φ j (t)

}T
( j = 1, 2), (A.3)

and

Nv(x)= [(1− ξ)(2− ξ − ξ 2
+ 6r)(R/4) L(1− ξ 2)(1− ξ + 3r)(R/8) 0 0

(1+ ξ)(2+ ξ − ξ 2
+ 6r)(R/4) −L(1− ξ 2)(1+ ξ + 3r)(R/8) 0 0],

Nw(x)= [0 0 (1− ξ)(2− ξ − ξ 2
+ 6r)(R/4) −L(1− ξ 2)(1− ξ + 3r)(R/8)

0 0 (1+ ξ)(2+ ξ − ξ 2
+ 6r)(R/4) L(1− ξ 2)(1+ ξ + 3r)(R/8)],

Nφ(x)= [0 0 3(1− ξ 2)(R/2L) −(1− ξ)(1+ 3ξ − 6r)(R/4)

0 0 −3(1− ξ 2)(R/2L) −(1+ ξ)(1− 3ξ − 6r)(R/4)],

Nψ(x)= [−3(1− ξ 2)(R/2L) −(1− ξ)(1+ 3ξ − 6r)(R/4) 0 0

3(1− ξ 2)(R/2L) −(1+ ξ)(1− 3ξ − 6r)(R/4) 0 0],

(A.4)

with

ξ = 2
( x

L

)
− 1 (0≤ x ≤ L), r =

4E I
κG AL2 , R = 1

1+3r
. (A.5)
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Substitution of (A.2) into (A.1) gives the finite element equation in the form

Md̈(t)+Gḋ(t)+ K d(t)= f (t), (A.6)

where

M = [mi j ] =

∫ L

0
[ρA(NT

v Nv + NT
w Nw)+ ρ I (NT

φ Nφ + NT
ψ Nψ)] dx,

G = [gi j ] =

∫ L

0
�ρ J (NT

φ Nψ − NT
ψ Nφ) dx,

K = [ki j ] =

∫ L

0
[E I (N ′φ

T N ′φ + N ′ψ
T N ′ψ)+ κG A(N ′v

T N ′v + N ′w
T N ′w + NT

φ Nφ

+ NT
ψ Nψ + N ′w

T Nφ + NT
φ N ′w − N ′v

T Nψ − NT
ψ N ′v)] dx,

(A.7)

and

f (t)= fc(t)+ fd(t)≡
{

f1(t) f2(t)
}T
,

fc(t)=
{

Q y1(t) Mz1(t) Qz1(t) My1(t) Q y2(t) Mz2(t) Qz2(t) My2(t)
}T
,

fd(t)=
∫ L

0
(NT

v py + NT
w pz + NT

φ τy + NT
ψ τz) dx,

fi (t)=
{

fvi (t) fψi (t) fwi (t) fφi (t)
}T

(i = 1, 2).

(A.8)

M and K are the 8×8 symmetric matrices and G is the 8×8 skew symmetric matrix. Their components
are given by

m11 = m33 = m55 = m77 = 12α1(26+ 147r + 210r2)+ 36α2,

m12 =−m34 =−m56 = m78 = α1L(44+ 231r + 315r2)+ 3α2L(1− 15r),

m15 = m37 = 36α1(3+ 21r + 35r2)− 36α2,

m16 =−m25 =−m38 = m47 =−α1L(26+ 189r + 315r2)+ 3α2L(1− 15r),

m22 = m44 = m66 = m88 = α1L2(8+ 42r + 63r2)+α2L2(4+ 15r + 90r2),

m26 = m48 =−3α1L2(2+ 14r + 21r2)−α2L2(1+ 15r − 45r2),

(A.9)

and other mi j = 0,

g13 =−g17 = g35 = g57 = 36η,

g14 = g18 =−g23 = g27 = g36 = g45 =−g58 = g67 =−3ηL(1− 15r),

g24 = g68 =−ηL2(4+ 15r + 90r2),

g28 =−g46 = ηL2(1+ 15r − 45r2),

(A.10)
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and other gi j = 0, and

k11 =−k15 = k33 =−k37 = k55 = k77 = 12β1+ 540β2r2,

k12 =−k25 =−k34 = k47 = 6β1L + 270β2Lr2,

k16 =−k38 =−k56 = k78 = 6β1L + 90β2Lr(1+ 3r),

k22 = k44 = β1L2(4+ 6r + 9r2)+ 135β2L2r2,

k26 = k48 = β1L2(2− 6r − 9r2)+ 45β2L2r(1+ 3r),

k66 = k88 = β1L2(4+ 6r + 9r2)+β2L2(47+ 210r + 315r2),

(A.11)

and other ki j = 0, where

α1 =
R2

840
ρAL , β1 =

R2

L3 E I,

α2 =
R2

30L
ρ I, β2 =

R2

60L
κG A,

η =
R2

30L
ρ J�. (A.12)
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