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REFLECTION OF P AND SV WAVES FROM THE FREE SURFACE
OF A TWO-TEMPERATURE THERMOELASTIC SOLID HALF-SPACE

BALJEET SINGH AND KIRAN BALA

The present paper is concerned with the propagation of plane waves in an isotropic generalized thermoe-
lastic solid half-space with two temperatures. The governing equations are modified in the context of
the Lord–Shulman theory of generalized thermoelasticity and are solved to show the existence of three
plane waves, namely, P , thermal, and SV waves in the x-z plane. The reflection of the P and SV waves
from a thermally insulated free surface is studied to obtain the reflection coefficients in closed form. For
numerical computations of the speeds and reflection coefficients, a particular material is chosen. The
speeds of the plane waves are shown graphically against the two-temperature parameter. The reflection
coefficients are also shown graphically against the angle of incidence for different values of the two-
temperature parameter.

1. Introduction

Lord and Shulman [1967] and Green and Lindsay [1972] extended the classical dynamical coupled theory
of thermoelasticity to generalized thermoelasticity theories. Their theories treat heat propagation as a
wave phenomenon rather than a diffusion phenomenon and predict a finite speed of heat propagation.
Ignaczak and Ostoja-Starzewski [2010] explained these theories in detail. The representative theories in
the range of generalized thermoelasticity are reviewed in [Hetnarski and Ignaczak 1999]. Wave prop-
agation in thermoelasticity has many applications in various engineering fields. Several problems in
wave propagation in coupled or generalized thermoelasticity have been studied by various researchers
[Deresiewicz 1960; Sinha and Sinha 1974; Sinha and Elsibai 1996; 1997; Sharma et al. 2003; Othman
and Song 2007; Singh 2008; 2010].

Gurtin and Williams [1966; 1967] suggested a second law of thermodynamics for continuous bodies
in which the entropy due to heat conduction was governed by one temperature, that of the heat supply
by another. Based on this suggestion, Chen and Gurtin [1968] and Chen et al. [1968; 1969] formulated
a theory of thermoelasticity which depends on two distinct temperatures, the conductive temperature 8
and the thermodynamic temperature T . Two-temperature theory involves a material parameter a∗ > 0.
The limit a∗→ 0 implies that 8→ T and hence classical theory can be recovered from two-temperature
theory. The two-temperature model has been widely used to predict electron and phonon temperature
distributions in ultrashort laser processing of metals.

Warren and Chen [1973] stated that these two temperatures can be equal in time-dependent problems
under certain conditions, whereas 8 and T are generally different in particular problems involving wave
propagation. Following [Boley and Tolins 1962], they studied wave propagation in the two-temperature
theory of coupled thermoelasticity. They showed that the two temperatures T and 8 and the strain are
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represented in the form of a traveling wave plus a response, which occurs instantaneously throughout
the body. Puri and Jordan [2006] discussed the propagation of harmonic plane waves in two-temperature
theory. Quintanilla and Jordan [2009] presented exact solutions of two initial-boundary value problems
in the two-temperature theory with dual-phase-lag delay.

Youssef [2006] formulated a theory of two-temperature generalized thermoelasticity. Kumar and
Mukhopadhyay [2010] extended the work of Puri and Jordan [2006] in the context of the linear theory
of two-temperature generalized thermoelasticity formulated in [Youssef 2006]. Magaña and Quintanilla
[2009] studied the uniqueness and growth of solutions in two-temperature generalized thermoelastic
theories. Youssef [2011] also presented a theory of two-temperature thermoelasticity without energy
dissipation. Ezzat and El-Karamany [2011] developed a two-temperature theory in generalized magne-
tothermoelasticity with two relaxation times.

In the present paper, we have applied the theory of [Youssef 2006] to the study of wave propagation
in an isotropic two-temperature thermoelastic solid. The expressions for the speeds of plane waves are
obtained. The required boundary conditions at a thermally insulated stress-free surface are satisfied by
the appropriate solutions in an isotropic thermoelastic solid half-space to obtain the reflection coefficients
in closed form for a particular incident wave. The speeds and reflection coefficients of plane waves are
computed numerically for a particular model of the half-space to observe the effect of the two-temperature
parameter.

2. Basic equations

Following [Youssef 2006], the governing equations for two-temperature anisotropic generalized thermoe-
lasticity with one relaxation parameter are:

• The stress-strain-temperature relations:

σi j = ci jklekl − γi j (T −80), (1)

• The displacement-strain relation:

ei j =
1
2 (ui, j + u j,i ), (2)

• The equation of motion:

ρü = σ j i, j + ρFi , (3)

• The energy equation:

−qi,i = ρT0 Ṡ, (4)

• The modified Fourier’s law:

−Ki jφ, j = qi + τ0q̇i , (5)

• The entropy-strain-temperature relation:

ρS =
ρcE

T0
θ + γi j ei j . (6)
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Here, γi j are the coupling parameters, T is the mechanical temperature, 80 = T0 is the reference temper-
ature, θ = T − T0 with |θ/T0| � 1, σi j is the stress tensor, ekl is the strain tensor, ci jkl is the tensor of
elastic constants, ρ is the mass density, qi is the heat conduction vector, Ki j is the thermal conductivity
tensor, cE is the specific heat at constant strain, ui are the components of the displacement vector, S is
the entropy per unit mass, τ0 is the thermal relaxation time (which will ensure that the heat conduction
equation will predict finite speeds of heat propagation), and φ is the conductive temperature satisfying
the relation

8− T = a∗8,i i , (7)

where a∗ > 0 is the two-temperature parameter.

3. Formulation and solution of the problem

We consider a homogeneous and isotropic thermoelastic medium of infinite extent, with a Cartesian
coordinate system (x, y, z), which is previously at a uniform temperature. The origin is taken on the
plane surface and the z-axis is taken normally into the medium (z ≥ 0). The surface z = 0 is assumed
stress-free and thermally insulated. The present study is restricted to the plane strain parallel to the x-z
plane, with the displacement vector u= (u1, 0, u3). With the help of (1)–(3), we obtain the following
two components of the equation of motion:

(λ+ 2µ)u1,11+ (λ+µ)u3,13+µu1,33− γ θ,1 = ρü1, (8)

(λ+ 2µ)u3,33+ (λ+µ)u1,13+µu3,11− γ θ,3 = ρü3. (9)

Equations (4)–(6) lead to the following heat conduction equation:

K (8,11+8,33)= ρcE(θ̇ + τ0θ̈ )+ γ T0(u̇1,1+ τ0ü1,1)+ γ T0(u̇3,3+ τ0ü3,3), (10)

and (7) becomes
8− T = a∗(8,11+8,33). (11)

The displacement components u1 and u3 are written in terms of potentials q and ψ as

u1 =
∂q
∂x
−
∂ψ

∂z
, u3 =

∂q
∂z
+
∂ψ

∂x
. (12)

Using (12) in (8)–(11), we obtain

(λ+ 2µ)
(
∂2q
∂x2 +

∂2q
∂z2

)
− γ

[
8− a∗

(
∂28

∂x2 +
∂28

∂z2

)]
= ρ

∂2q
∂t2 , (13)

K (8,11+8,33)= ρcE

(
∂8

∂t
+ τ0

∂28

∂t2

)
− a∗ρcE

(
1+ τ0

∂

∂t

)
∂

∂t

(
∂28

∂x2 +
∂28

∂z2

)
+ γ T0

(
1+ τ0

∂

∂t

)
∂

∂t

(
∂2q
∂x2 +

∂2q
∂z2

)
, (14)

µ

(
∂2ψ

∂x2 +
∂2ψ

∂z2

)
= ρ

∂2ψ

∂t2 . (15)
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Here (15) is uncoupled, whereas (13) and (14) are coupled in q and 8. Solutions (13)–(15) are now
sought in the form of a harmonic traveling wave:

(q,8,ψ)= (A, B,C) exp(ik(x sin θ + z cos θ − vt)), (16)

in which v is the phase speed, k is the wave number, and (sin θ, cos θ) denotes the projection of the wave
normal onto the x-z plane. Inserting (16) into (13)–(15), we obtain the following formulae for the speeds
of the plane waves:

v1 =

√
1

2ρ
[
{(Ka + ε)+ (λ+ 2µ)}+

√
(Ka + ε)2+ (λ+ 2µ)2− 2(Ka − ε)(λ+ 2µ)

]
, (17)

v2 =

√
1

2ρ
[
{(Ka + ε)+ (λ+ 2µ)}−

√
(Ka + ε)2+ (λ+ 2µ)2− 2(Ka − ε)(λ+ 2µ)

]
, (18)

v3 =

√
µ

ρ
, (19)

where ε = (γ 2T0)/(ρcE) is the thermocoupling coefficient and Ka = K/(cEτ
∗(1+ a∗k2)), with τ ∗ =

τ0+ i/ω, ω = kv. The speeds v1, v2, and v3 correspond to the P , thermal, and SV waves, respectively.
From (17)–(19), it is clear that the speeds of the modified P and thermal waves are functions of the
two-temperature parameter a∗. The speed of the SV wave is not affected by a∗.

If we neglect the thermal parameters (that is, Ka = 0, ε = 0), the speed v1 reduces to
√
(λ+ 2µ)/ρ,

the speed of a P wave in an elastic solid. The thermal wave will disappear.

4. Boundary conditions

Let us now consider an incident P or SV wave. The boundary conditions at the stress-free thermally
insulated surface z = 0 are satisfied if the incident P or SV wave gives rise to a reflected shear (SV ) and
two reflected longitudinal waves (P and thermal). The required boundary conditions at the free surface
z = 0 are:
• Vanishing of the normal stress component:

σzz = 0, (20)

• Vanishing of the tangential stress component:

σzx = 0, (21)

• Vanishing of the normal heat flux component:

∂8

∂z
= 0, (22)

where

σzz = λ

(
∂2q
∂x2 +

∂2q
∂z2

)
+ 2µ

(
∂2ψ

∂x∂z

)
+ 2µ

∂2q
∂z2 − γ

[
8− a∗

(
∂28

∂x2 +
∂28

∂z2

)]
, (23)

σzx = µ

[
2
∂2q
∂x∂z

−
∂2ψ

∂z2 +
∂2ψ

∂x2

]
. (24)
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The appropriate displacement potentials ψ , q , and 8 are taken in the form

ψ = C1 exp(ik3(x sin θ0+ z cos θ0− v3t))+C2 exp(ik3(x sin θ3− z cos θ3− v3t)), (25)

q = A1 exp(ik1(x sin θ0+ z cos θ0− v1t))+ A2 exp(ik1(x sin θ1− z cos θ1− v1t))
+ A3 exp(ik2(x sin θ2− z cos θ2− v2t)), (26)

8= η1 A1 exp(ik1(x sin θ0+ z cos θ0− v1t))+ η1 A2 exp(ik1(x sin θ1− z cos θ1− v1t))
+ η2 A3 exp(ik2(x sin θ2− z cos θ2− v2t)), (27)

where the wave normal to the incident P or SV wave makes an angle θ0 with the positive direction of
the z-axis and those of the reflected P , thermal, and SV waves make angles θ1, θ2, and θ3, respectively,
with the same direction, and

η1

k1
2 =

ρv1
2
− (λ+ 2µ)

γ (1+ a∗k1
2)

,
η2

k2
2 =

ρv2
2
− (λ+ 2µ)

γ (1+ a∗k2
2)

. (28)

5. Reflection coefficients

The ratios of the amplitudes of the reflected waves to the amplitude of incident P wave, namely C2/A1,
A2/A1, and A3/A1, are the reflection coefficients (amplitude ratios) of the reflected SV , reflected P , and
reflected thermal waves, respectively. Similarly, for the incident SV wave, C2/C1, A2/C1, and A3/C1

are the reflection coefficients of the reflected SV , reflected P , and reflected thermal waves, respectively.
The wave numbers k1, k2, and k3 and the angles θ0, θ1, θ2, and θ3 are connected by the relation

k1 sin θ0 = k3 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3, (29)

at the surface z = 0. In order to satisfy the boundary conditions (20)–(22), we write (29) as

sin θ0
v1 or v3

=
sin θ1
v1
=

sin θ2
v2
=

sin θ3
v3

. (30)

x

z

Oz = 0

Two-temperature

thermoelastic solid

half-space P

T

SV

P or SV

T
�

T
�

T
�

T
�

Figure 1. Geometry of the problem.
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5.1. Incident P wave. Making use of the potentials given by (25)–(27) in the boundary conditions
(20)–(22), we obtain a system of three nonhomogeneous equations which results in the following ex-
pressions for the reflection coefficients of the SV , P , and thermal waves:

C2
A1
=

D1
D
,

A2
A1
=

D2
D
,

A3
A1
=

D3
D
, (31)

where

D = v1
2

v2v3

[
2µ sin θ0 sin 2θ0(η2− η1)

√
1−

v32

v12 sin2 θ0

√
1−

v22

v12 sin2 θ0

−
v1
v3

(
1− 2

v3
2

v12 sin2 θ0

)
(ρv1

2
− 2µ sin2 θ0)

(
−η2

√
1−

v22

v12 sin2 θ0+ η1
v2
v1

cos θ0

)]
, (32)

D1 =
v1

v2
sin 2θ0(ρv1

2
− 2µ sin2 θ0)(η2− η1)

√
1−

v22

v12 sin2 θ0

(
1+

√
1−

v22

v12 sin2 θ0

)
, (33)

D2 =
v1

2

v2v3

[
2µ sin θ0 sin 2θ0(η2− η1)

√
1−

v32

v12 sin2 θ0

√
1−

v22

v12 sin2 θ0

−
v1
v3

(
1− 2

v3
2

v12 sin2 θ0

)
(ρv1

2
− 2µ sin2 θ0)

(
η2

√
1−

v22

v12 sin2 θ0+ η1
v2
v1

cos θ0

)]
, (34)

D3 = 2η1 cos θ0
v1

2

v32

(
1− 2

v3
2

v12 sin2 θ0

)
(ρv1

2
− 2µ sin2 θ0). (35)

5.2. Incident SV wave. Similarly, making use of the potentials given by (25)–(27) in the boundary
conditions (20)–(22), we obtain the following expressions for the reflection coefficients of the SV , P ,
and thermal waves:

C2

C1
=

D′1
D′
,

A2

C1
=

D′2
D′
,

A3

C1
=

D′3
D′
. (36)

Here,

D′ =− v3
3

v1v2

[
2µ
v12 sin θ0 sin 2θ0(η1− η2)

√
1−

v32

v12 sin2 θ0

√
1−

v22

v12 sin2 θ0

+

(
1− 2

v3
2

v12 sin2 θ0

)
(ρv1

2
− 2µ sin2 θ0)

(
η2

v1

√
1−

v22

v12 sin2 θ0− η1
v2

v12 cos θ0

)]
, (37)

D′1 =−
v3

3

v1v2

[
µ

v1
sin22θ0

√
1−

v22

v12 sin2 θ0(η2− η1)

−
(ρv1

2
− 2µ sin2 θ0)

v1

(
η2 cos 2θ0

√
1−

v22

v12 sin2 θ0−
η1

v1
v2 cos θ0

)]
, (38)
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D′2 = 2µη2
v3
v2

sin θ0

√
1−

v22

v12 sin2 θ0[
v3
v1

cos 2θ0

√
1−

v32

v12 sin2 θ0+ cos θ0(1− 2
v3

2

v12 sin2 θ0)], (39)

D′3 =−2µη1
v3
v1

sin 2θ0[
v3
v1

cos 2θ0

√
1−

v32

v12 sin2 θ0+ cos θ0(1− 2
v3

2

v12 sin2 θ0)]. (40)

6. Numerical results and discussion

To study numerically the effects of the two-temperature parameter on the speeds of propagation and reflec-
tion coefficients, we consider the following physical constants of aluminum as an isotropic thermoelastic
solid half-space:

λ= 7.59× 1010 Nm−2, µ= 1.89× 1010 Nm−2, K = 237 Wm−1deg−1,

Ce = 24.2 Jkg−1deg−1, ρ = 2.7× 103 kgm−3, T0 = 296 K, τ0 = 0.05 s, ω = 20 s−1.

Using the relation V−1
j = v

−1
j − ıω−1q j ( j = 1, . . . , 3), the real values of the propagation speeds of the

P , SV , and thermal waves are computed for the range 0≤ a∗ ≤ 1 of the two-temperature parameter. The
speeds of the P , SV , and thermal waves are shown graphically against the two-temperature parameter
a∗ in Figure 2. The speed of the P wave decreases with an increase in the two-temperature parameter,
whereas the speed of the thermal wave increases. The speed of the SV wave is not affected by change
in the two-temperature parameter.

With the help of (31), the reflection coefficients of the reflected P , SV , and thermal waves are com-
puted for the incidence of a P wave. For the range 0◦ < θ0 ≤ 90◦ of the angle of incidence of the P wave,
the reflection coefficients of the P , thermal, and SV waves are shown graphically in Figure 3, when
a∗ = 0, 0.5, and 1. For a∗ = 1, the reflection coefficient of the P wave decreases from its maximum
value of 1.211 at θ0 = 1◦ to its minimum value of 0.88 at θ0 = 69◦. Thereafter, it increases up to the
grazing incidence. For a∗ = 1, the reflection coefficient of the thermal wave decreases from its maximum

0.0 0.2 0.4 0.6 0.8 1.0

Two-temperature parameter

0.8

1.2

1.6

2.0

S
p

e
e
d

P wave

Thermal wave

SV wave

 
 

Figure 2. Variations of speed of reflected P wave (solid line), thermal wave (dashed
line, and SV wave (dashed line with stars) against the two-temperature parameter.
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value of 0.7132 at θ = 1◦ to its minimum value of zero at θ0= 90◦. For a∗= 1, the reflection coefficient of
SV wave increases from its minimum value of zero at normal incidence to its maximum value of 0.5062
at θ0 = 48◦. Beyond θ0 = 48◦, it decreases to its minimum value of zero at grazing incidence. From
Figure 3, it is observed that the effect of a∗ on the reflection coefficients of the P and thermal waves
is maximal at normal incidence. The effect of the two-temperature parameter on these waves decreases
with increase in the angle of incidence. For grazing incidence, there is no effect of the two-temperature
parameter on these reflected waves. The reflection coefficient of SV is also affected by two-temperature
parameter. For normal and grazing incidences, there is no effect of two-temperature parameter on the
reflected SV wave. The maximal effect of the two-temperature parameter on the reflected SV wave is
observed at θ0 = 45◦.

With the help of (36), the reflection coefficients of the reflected P , SV , and thermal waves are com-
puted for the incidence of a SV wave. For the range 0◦ < θ0 ≤ 27◦ of the angle of incidence of the
SV wave, the reflection coefficients of the P , thermal, and SV waves are shown graphically in Figure 4,
when a∗ = 0, 0.5 and 1. For a∗ = 1, the reflection coefficient of the P wave increases from its minimum
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Figure 3. Variation in the reflection coefficients of the reflected P (top left), thermal
(top right), and SV (bottom) waves against the angle of incidence of the incident P
wave.



REFLECTION OF P AND SV WAVES FROM A TWO-TEMPERATURE THERMOELASTIC SOLID HALF-SPACE 191

value of 0.07 at θ0 = 1◦ to its maximum value of 1.926 at θ0 = 27◦. For a∗ = 1, the reflection coefficient
of the thermal wave increases from its minimum value of 0.02 at θ = 1◦ to its maximum value of 0.3887
at θ0 = 23◦. Thereafter, it decreases up to the angle of incidence θ = 27◦. For a∗ = 1, the reflection
coefficient of the SV wave decreases from its maximum value of one at normal incidence to its minimum
value of 0.5992 at θ0 = 26◦. Thereafter, it increases to a value of 0.6058 at θ0 = 27◦. From Figure 4, it
is observed that the effect of a∗ on the reflection coefficients of the P wave is maximal at angles near
θ0 = 20◦. There is no effect of the two-temperature parameter on this wave at normal incidence. At
normal incidence, the reflected thermal and SV waves are also not affected by a∗. The effect of a∗ on
these reflected waves increases with the increase in the angle of incidence and it becomes maximal at
angles near θ0 = 25◦.
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Figure 4. Variation in the reflection coefficients of the reflected P (top left), thermal
(top right), and SV (bottom) waves against the angle of incidence of the incident SV
wave.
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7. Conclusion

The two-dimensional solution of the governing equations of an isotropic two-temperature thermoelastic
medium indicates the existence of three plane waves, namely the P , thermal, and SV waves. The
expressions for the speeds of the P , thermal, and SV waves are obtained explicitly. The reflection
coefficients of the reflected P , thermal, and SV waves are also obtained in closed form for the incidence
of P and SV waves. The speeds and reflection coefficients of plane waves are computed for a particular
material representing the model. From the theory and numerical results, it is observed that the speeds and
reflection coefficients of the plane waves are significantly affected by the two-temperature parameter.
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