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A NONLINEAR TIMOSHENKO BEAM FORMULATION
BASED ON STRAIN GRADIENT THEORY

REZA ANSARI, RAHEB GHOLAMI AND MOHAMMAD ALI DARABI

Developed herein is a comprehensive geometrically nonlinear size-dependent microscale Timoshenko
beam model based on strain gradient and von Kármán theories. The nonlinear governing equations
and the corresponding boundary conditions are derived from employing Hamilton’s principle. A simply
supported microbeam is considered to delineate the nonlinear size-dependent free vibration behavior of
the presented model. Utilizing the harmonic balance method, the solution for free vibration is presented
analytically. The influence of the geometric parameters, Poisson’s ratio, and material length-scale pa-
rameters on the linear frequency and nonlinear frequency ratio are thoroughly investigated. The results
obtained from the present model are compared, in special cases, with those of the linear strain gradient
theory, linear and nonlinear modified couple stress theory, and linear and nonlinear classical models; ex-
cellent agreement is found. It is concluded that the nonlinear natural frequency and nonlinear frequency
ratio predicted by strain gradient theory are more precise than those from the other theories mentioned,
especially for shorter beams.

1. Introduction

Micro- and nanoscale beams are increasingly used in micro- and nanoelectromechanical systems such as
vibration shock sensors [Lun et al. 2006], electrostatically excited microactuators [Moghimi Zand and
Ahmadian 2009; Mojahedi et al. 2010], microswitches [Coutu et al. 2004], and atomic force microscopes
[Mahdavi et al. 2008]. The thickness of microscale beams is on the order of microns and submicrons. The
size-dependent deformation behavior in microscale beams has been detected experimentally [Fleck et al.
1994; Lam et al. 2003]. Moreover, experiments confirm the significance of the effects of nonlinearity
on the behavior of micro and nanomechanical resonators [Turner et al. 1998; Craighead 2000; Scheible
et al. 2002].

Due to the absence of a material length-scale parameter, classical continuum mechanics is not able to
interpret and predict such a size-dependent phenomenon which occurs in micron and submicron-scale
structures. Accordingly, many attempts have been made to develop different size-dependent continuum
theories such as the couple stress elasticity [Mindlin and Tiersten 1962; Toupin 1962], nonlocal elastic-
ity [Eringen 1972], strain gradient elasticity [Aifantis 1999], and surface elasticity [Gurtin et al. 1998]
theories. On the basis of elasticity theory, Yang et al. [2002] proposed a modified couple stress theory
for elasticity in which only one higher-order material constant exists in the constitutive equations. In
recent years, this theory has been applied by many researchers to interpret the size-dependent static and

Keywords: microbeams, strain gradient elasticity, modified couple stress theory, size effect, nonlinear behavior, Timoshenko
beam theory.
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vibration behaviors of microstructures [Lazopoulos 2004; Park and Gao 2006; Kong et al. 2008; Ma et al.
2008; 2010; 2011; Asghari et al. 2010b; 2010a; Lazopoulos and Lazopoulos 2010].

Lazopoulos [2004] was apparently the first to employ the von Kármán kinematic relations in non-
classical analyses of beams and plates. Mindlin [1965] proposed a higher-order gradient theory for
elastic materials by considering the first and second derivatives of the strain tensor effective on the strain
energy density. In [Fleck and Hutchinson 1993; 1997; 2001], Mindlin’s proposition was reformulated
by considering only the first derivative of the strain this was called strain gradient theory. In comparison
to couple stress theory, this theory comprises several higher-order stress components together with the
classical and couple stresses. This means that couple stress theory can be attained via strain gradient
theory by omitting the additional higher-order stress components. In this direction, Lam et al. [2003]
modified strain gradient theory by considering three higher-order material constants in the constitutive
equations. Also, this theory can be regenerated into the modified couple stress theory of [Yang et al.
2002] by setting the two material length-scale parameters equal to zero. In another work, Ma et al.
[2011] developed a nonclassical Mindlin plate model based on modified couple stress theory. Tsepoura
et al. [2002] have investigated the size effect of the Bernoulli–Euler beam model. In [Papargyri-Beskou
et al. 2003b; Park and Gao 2006], based on the gradient elasticity theory with surface energy of [Var-
doulakis and Sulem 1995], a higher-order Bernoulli–Euler beam model was expanded. Also, a cantilever
beam subjected to bending and a cracked bar under stretching have been investigated by using the strain
gradient beam model of [Giannakopoulos and Stamoulis 2007]. Wang et al. [2010], on the basis of
strain gradient elasticity theory, developed a microscale Timoshenko beam model in which the Poisson
effect was incorporated and also investigated the static bending and free vibration of a simply supported
microscale Timoshenko beam to illustrate this model. Kahrobaiyan et al. [2011] developed a nonlinear
size-dependent Euler–Bernoulli beam model based on strain gradient theory.

In the current work, by employing strain gradient theory and Hamilton’s principle, a large-deformation
size-dependent Timoshenko microbeam model is presented. The present model accommodates some
previously published beam models including the linear couple stress [Park and Gao 2006; Kong et al.
2008; Ma et al. 2008], linear strain gradient [Kaneko 1975; Kahrobaiyan et al. 2011], nonlinear couple
stress [Asghari et al. 2010b], nonlinear strain gradient [Kahrobaiyan et al. 2011] theories. Then, utilizing
this model, the nonlinear size-dependent free vibration behavior of simply supported microbeams is
described using the harmonic balance method. The numerical results are illustrated to study the effects
of the geometric parameters, Poisson’s ratio, and material length-scale parameters on the linear frequency
and nonlinear frequency ratio.

2. Preliminaries

In comparison to the modified couple stress theory of [Yang et al. 2002], Lam et al. [2003] has presented
a strain gradient elasticity theory which in addition to the symmetric rotation gradient tensor presents two
additional gradient tensors, the dilatation gradient tensor and the deviatoric stretch gradient tensor. These
tensors are specified by two classical material constants for isotropic linear elastic materials and three
independent material length-scale parameters. The stored strain energy Um in a continuum constructed
by a linear elastic material occupying a region � with infinitesimal deformations is given by

Um =
1
2

∫
�

(
σi jεi j + piγi + τ

(1)
i jk η

(1)
i jk +ms

i jχ
s
i j
)

dv, (1)



A NONLINEAR TIMOSHENKO BEAM FORMULATION. . . 197

in which the components of the strain tensor, the dilatation gradient tensor, the deviatoric stretch gradient
tensor, and the symmetric rotation gradient tensor, respectively represented by εi j , γi , η

(1)
i jk , and χ s

i j [Lam
et al. 2003], are defined as

εi j =
1
2 (ui, j + u j,i ), γi = εmm,i , (2a)

η
(1)
i jk=

1
3 (ε jk,i+εki, j+εi j,k)−

1
15 δi j (εmm,k+2εmk,m)−

1
15 [δ jk(εmm,i+2εmi,m)+δki (εmm, j+2εmj,m)], (2b)

χ s
i j =

1
2 (θi, j + θ j,i ), θi =

1
2 (curl(u))i , (2c)

where ui represents the components of the displacement vector u, θi is the infinitesimal rotation vector
θ , and δ is Kronecker’s delta. For a linear isotropic elastic material, the stresses are explained by the
kinematic parameters effective on the strain energy density which are given in the following constitutive
relations [Lam et al. 2003]:

σi j = λtr(ε)δi j + 2µεi j , pi = 2µl2
0γi , τ

(1)
i jk = 2µl2

1η
(1)
i jk, ms

i j = 2µl2
2χ

s
i j . (3)

The parameters p, τ (1), and ms are called the higher-order stresses. In the constitutive equation of the
classical stress σ , the parameters λ and µ are the bulk and shear modules, respectively, and are given as
[Timoshenko and Goodier 1970]

λ=
Eν

(1+ ν)(1− 2ν)
, µ=

E
2(1+ ν)

. (4)

Also, l0, l1, and l2 appearing in the higher-order stresses represent the additional independent material
length-scale parameters connected with the dilatation gradients, deviatoric stretch gradients, and sym-
metric rotation gradients, respectively. The kinematics of the Timoshenko beam theory can be written
as [Reddy 2007]

u1 = u(x, t)− zψ(x, t), u2 = 0, u3 = w(x, t), (5)

where u(x, t), w(x, t), and ψ(x, t) stand for the axial displacement of the center of sections, the lateral
deflection of the beam, and the rotation angle of the cross section with respect to the vertical direction.

3. Nonlinear formulation of motion and corresponding boundary conditions

As depicted in Figure 1, a straight beam of length L subjected to an initial axial load N0(x) is considered
in which its top and bottom surfaces are perpendicular to the z-direction. The centroid of each section is
assumed to be located on the plane z = 0. The kinematic parameters, boundary conditions, and loading
of a Timoshenko beam modeled based on the strain gradient theory are demonstrated in this figure. In
addition, G(x, t) is related to the axial body force per unit length and F(x, t) denotes the transverse
distributed force intensity per unit length.

Based on Timoshenko beam theory under the assumption of small strains and moderate rotations,
the nonlinear strain-displacement relations of a beam subjected to large-amplitude vibrations can be
approximated by the von Kármán relation as [Reddy 2003; Ma et al. 2008; Asghari et al. 2010b]

ε11 =
∂u1
∂x
+

1
2

(
∂w

∂x

)2
=
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2
, ε13 =

1
2

(
∂w

∂x
−ψ

)
. (6)
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Figure 1. Schematic of a simply supported Timoshenko beam: kinematic parameters,
coordinate system, geometry, and loading.

By inserting (5) and (6) into (2), the following nonzero components of θ , χ s, γ , and η(1) will be achieved:

θ2 =−
1
2

(
ψ +

∂w

∂x

)
, χ s

12 = χ
s
21 =−

1
4

(
∂ψ

∂x
+
∂2w

∂x2

)
, (7a)

γ1 =
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2 , γ3 =−
∂ψ

∂x
, (7b)

η
(1)
111 =

2
5

(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)
, η

(1)
333 =−

1
5

(
∂2w

∂x2 − 2∂ψ
∂x

)
,

η
(1)
113 = η

(1)
311 = η

(1)
131 =

4
15

(
∂2w

∂x2 − 2∂ψ
∂x

)
, η

(1)
223 = η

(1)
322 = η

(1)
232 =−

1
15

(
∂2w

∂x2 − 2∂ψ
∂x

)
,

η
(1)
221 = η

(1)
212 = η

(1)
122 = η

(1)
313 = η

(1)
133 = η

(1)
331 =−

1
5

(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)
.

(7c)

The major components of the symmetric section of the stress tensor can be expressed by the kinematic
parameters as follows:

σ11 = (λ+ 2µ)
(
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2 )
, σ22 = λ

(
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2 )
,

σ33 = λ
(
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2 )
, σ13 = µ

(
∂w

∂x
−ψ

)
.

(8)

Note that σ13 depends only on one direction. Due to taking the nonuniformity of the shear strain over the
beam cross-section into account, a correction factor ks , which depends on the shape of the beam section,
is multiplied into the stress component σ13 as follows [Hutchinson 2001; Wang et al. 2010]:

σ13 = ksµ
(
∂w

∂x
−ψ

)
. (9)

At last, by inserting (6)–(9) into (3), the nonzero components of the higher-order stresses are obtained:
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p1 = 2µl2
0

(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)
, p3 =−2µl2

0
∂ψ

∂x
, (10a)

τ
(1)
111 =

4µl2
1

5

(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)
, τ

(1)
333 =−

2µl2
1

5

(
∂2w

∂x2 − 2∂ψ
∂x

)
, (10b)

τ
(1)
113 = τ

(1)
311 = τ

(1)
131 =

8µl2
1

15

(
∂2w

∂x2 − 2∂ψ
∂x

)
, τ

(1)
223 = τ

(1)
322 = τ

(1)
232 =−

2µl2
1

15

(
∂2w

∂x2 − 2∂ψ
∂x

)
, (10c)

τ
(1)
221 = τ

(1)
212 = τ

(1)
122 = τ

(1)
313 = τ

(1)
133 = τ

(1)
331 =−

2µl2
1

5

(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)
, (10d)

ms
12 = ms

21 =−
µl2

2

2

(
∂ψ

∂x
+
∂2w

∂x2

)
. (10e)

The initial axial stress in the beam, which is uniformly distributed in a section, can be written as σ (0)11 (x)=
N0(x)/A. Accordingly, (6) and (8) for ε11 and σ11 do not express the total values of the strain and the
stress changes with respect to the fully unloaded conditions, but only express them with respect to the
initial configuration.

In the following, the strain energy resulted from the advent of a variation in the classical and higher-
order stresses with respect to the initial configuration denoted by U1, the strain energy due to the presence
of the initial axial stresses and the next imposed stretching denoted by U2, and the beam’s kinetic energy,
T , are expressed as:

U1 =
1
2

∫ L

0

∫
A

(
σi jεi j + piγi + τ

(1)
i jk η

(1)
i jk +ms

i jχ
s
i j
)

dA dx = 1
2

∫ L

0

∫
A

{
(λ+ 2µ)

(
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2 )2

+ ksµ
(
∂w

∂x
−ψ

)2
+ 2µl2

0

(
∂ψ

∂x

)2
+

(
2µl2

0 +
20µl2

1

25

)(
∂2u

∂x2 − z
∂2ψ

∂x2 +
∂w

∂x
·
∂2w

∂x2

)2

+
40µl2

1

75

(
∂2w

∂x2 − 2∂ψ
∂x

)2

+
µl2

2

4

(
∂ψ

∂x
+
∂2w

∂x2

)2 }
dA dx,

U2 =

∫ L

0

N0

A

∫
A

(
∂u
∂x
− z ∂ψ

∂x
+

1
2

(
∂w

∂x

)2 )
dA dx, T = 1

2

∫ L

0

∫
A
ρ

{(
∂u
∂t
− z ∂ψ

∂t

)2
+

(
∂w

∂t

)2
}

dA dx,

where ρ and I are the density and area moments of inertia of sections with respect to the y-axis, respec-
tively, and the latter is given by I =

∫
A z2 dA. Also, note that

∫
A z dA = 0. Hence, for the total potential

energy U =U1+U2 and the kinetic energy we will have

U = 1
2

∫ L

0

{
k1

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )2
+ k2

(
∂ψ

∂x

)2
+ k3

(
∂w

∂x
−ψ

)2
+ k4

(
∂2ψ

∂x2

)2

+ k5

(
∂2u

∂x2 +
∂w

∂x
·
∂2w

∂x2

)2

+ k6

(
∂2w

∂x2 − 2∂ψ
∂x

)2

+ k7

(
∂ψ

∂x
+
∂2w

∂x2

)2

+ N0

(
2∂u
∂x
+

(
∂w

∂x

)2 )}
dx, (11)

T = 1
2

∫ L

0

{
ρA
(
∂u
∂t

)2
+ ρ I

(
∂ψ

∂t

)2
+ ρA

(
∂w

∂t

)2
}

dx, (12)
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where

k1 = (λ+ 2µ)A, k2 = (λ+ 2µ)I + 2µAl2
0, k3 = ksµA, k4 = µI

(
2l2

0 +
4
5 l2

1
)
,

k5 = µA
(
2l2

0 +
4
5 l2

1
)
, k6 =

8
15µAl2

1, k7 =
1
4µAl2

2 .
(13)

The external induced work associated with the body forces, body couples, and boundary surface tractions
is

W ext
=

∫ L

0
(G(x, t)u+ F(x, t)w+C(x, t)θ2) dx

+

(
N̂u+ V̂w+ M̂σψ + M̂M

∂w

∂x
+ P̂

(
∂u
∂x
+

1
2

(
∂w

∂x

)2)
+ Q̂ ∂ψ

∂x

)∣∣∣∣x=L

x=0
, (14)

in which N̂ is the axial resultant force of normal stresses σxx + N0/A, V̂ denotes the transverse resultant
force of the shear stresses and M̂M the resultant moment in a section caused by the classical and higher-
order stress components, and M̂σ is the resultant moment around the y-axis due to the couple stresses
mxy at sections. In addition, the higher-order resultants in a section are denoted by P̂ and Q̂, which are
due to higher-order stresses acting on that section.

By employing the Hamilton principle,

δ

∫ t2

t1
(T −U +W ext) dt = 0, (15)

taking the variation of u, w, and ψ , integrating by parts, and finally the coefficients of δu, δw, and δψ
equal to zero, we obtain the governing equations of motion

∂

∂x

{
N0+ k1

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
− k5

∂2

∂x2

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )}
+G(x, t)= ρA

∂2u

∂t2 , (16a)

∂

∂x

{[
N0+ k1

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
− k5

∂2

∂x2

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )]∂w
∂x

}
+ k3

(
∂2w

∂x2 −
∂ψ

∂x

)
+ (k6− k7)

∂4w

∂x4 − (2k6+ k7)
∂3ψ

∂x3 + F(x, t)+ 1
2
∂C(x, t)
∂x

= ρA
∂2w

∂t2 , (16b)

k2
∂2ψ

∂x2 + k3

(
∂w

∂x
−ψ

)
− k4

∂4ψ

∂x4 + (k7− 2k6)
∂3w

∂x3 + (k7+ 4k6)
∂2ψ

∂x2 −
C(x, t)

2
= ρ I

∂2ψ

∂t2 , (16c)

and the boundary conditions:(
N0+ k1

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
− k5

∂2

∂x2

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
− N̂

)∣∣∣∣
x=0,L

= 0 or δu
∣∣
x=0,L = 0,(

k2
∂ψ

∂x
− k4

∂3ψ

∂x3 + (k7− 2k6)
∂2w

∂x2 + (k7+ 4k6)
∂ψ

∂x
− M̂σ

)∣∣∣∣
x=0,L

= 0 or δψ
∣∣
x=0,L = 0,
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N0+ k1

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
− k5

∂2

∂x2

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 ))∂w
∂x

+ k3

(
∂w

∂x
−ψ

)
− (k6+ k7)

∂3w

∂x3 + (2k6− k7)
∂2ψ

∂x2 +
C(x, t)

2
− V̂

∣∣∣∣
x=0,L

= 0 or δw
∣∣
x=0,L = 0,(

k5
∂

∂x

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
− P̂

)∣∣∣∣
x=0,L

= 0 or δ
(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )∣∣∣∣
x=0,L

= 0,(
k4
∂2ψ

∂x2 − Q̂
)∣∣∣∣

x=0,L
= 0 or δ

(
∂ψ

∂x

)∣∣∣∣
x=0,L

= 0,(
(k6+ k7)

∂2w

∂x2 + (k7− 2k6)
∂ψ

∂x
− M̂M

)∣∣∣∣
x=0,L

= 0 or δ
(
∂w

∂x

)∣∣∣∣
x=0,L

= 0.

Consequently, on the basis of the strain gradient theory the governing equations of motion of a nonlinear
size-dependent Timoshenko beam are achieved. Neglecting the nonlinear terms, body forces, body cou-
ples, and boundary surface tractions in (16b) and (16c), these equations can be reduced to those given
by [Wang et al. 2010]. In the cases associated with a thin beam with a huge aspect ratio, same as in the
classical beam theories, Poisson’s effect is no more effective and can be negligible, that is, ν = 0; but in
other cases it must be considered to get reliable outcomes. Letting the material length-scale parameters
l0, l1, and l2 equal zero, the governing equations and corresponding boundary conditions related to a
nonlinear Timoshenko beam modeled by classical beam theory will be achieved. Moreover, the governing
equations and boundary conditions of a nonlinear Timoshenko beam modeled via the modified couple
stress theory can be achieved if only l0 = l1 = 0 and l2 = l (see [Asghari et al. 2010b]). Additionally,
by neglecting the shear deformation, governing equations and boundary conditions corresponding to the
microscale Euler–Bernoulli beam model based on the strain gradient elasticity theory will be attained
(see [Kahrobaiyan et al. 2011]).

4. Governing equations of motion of a simply supported beam with immovable ends and
corresponding boundary conditions: A specific case

Herein, specifically simply supported beams with immobile ends are considered and the strain gradient
formulation of the earlier section is developed for this case. The relevant boundary conditions are

u(0, t)= u(L , t)= 0 and w(0, t)= w(L , t)= 0. (17)

We assume P̂ , Q̂, M̂σ , and M̂M are zero at the end sections. Accordingly, the other boundary conditions
can be obtained as follows:

∂

∂x

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )∣∣∣∣
x=0,L

= 0, (18a)(
k2
∂ψ

∂x
− k4

∂3ψ

∂x3 + (k7− 2k6)
∂2w

∂x2 + (k7+ 4k6)
∂ψ

∂x

)∣∣∣∣
x=0,L

= 0, (18b)(
(k6+k7)

∂2w

∂x2 + (k7−2k6)
∂ψ

∂x

)∣∣∣∣
x=0,L

= 0,
(
∂ψ

∂x

)∣∣∣∣
x=0,L

= 0. (18c)
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Compared to the inertia term in the transverse direction, the horizontal inertia force can be neglected
[Asghari et al. 2010b]. Considering this assumption and assuming N0 independent of x , in the absence
of axial body forces (that is, G(x, t) = 0), the equation of motion in the axial direction (16a) and the
boundary condition (18a) give

k1

(
∂u
∂x
+

1
2

(
∂w

∂x

)2 )
+ N0 = N (t). (19)

In the case of axially immobile ends (u(0, t)= u(L , t)= 0), integrating (19) between the limits 0 and L
leads to

N (t)= N0+ Ñ (t)= N0+
k1

2L

∫ L

0

(
∂w

∂x

)2
dx . (20)

The axial force variation in the beam with respect to the initial configuration is denoted by Ñ (t) and
is indeed due to the extension resulting from the transverse deformation. Inserting (20) into (16b), the
equations of motion can be rewritten in the following form:

N
∂2w

∂x2 + k3

(
∂2w

∂x2 −
∂ψ

∂x

)
+ (k6− k7)

∂4w

∂x4 − (2k6+ k7)
∂3ψ

∂x3 + F(x, t)+ 1
2
∂C(x, t)
∂x

= ρA
∂2w

∂t2 . (21)

The governing equations of the dynamic behavior of a nonlinear size-dependent Timoshenko beam with
two immobile ends modeled on the basis of strain gradient theory are represented in (16c) and (21)
and the associated boundary conditions are given by w(0, t) = w(L , t) = 0 and by (18b)–(18c). If
the material length-scale parameters l0, l1, and l2 are set to be zero, the governing equations and cor-
responding boundary conditions of a nonlinear Timoshenko beam with immobile supports modeled by
classical beam theory will be attained (see [Ansari and Ramezannezhad 2011]). Furthermore, to achieve
the governing equations and boundary conditions of a nonlinear Timoshenko beam with two immobile
supports modeled by modified couple stress theory, it is enough to let l0 = l1 = 0 and l2 = l.

5. Investigation of the free vibration of a simply supported beam

Herein, as an example, based on strain gradient theory, the free vibration of nonlinear size-dependent
Timoshenko beams with simply supported boundary conditions and immovable ends under the assump-
tion N0 = F = C = 0 are investigated.

For beams with simply supported edges, the solutions of the governing equations can be introduced
as ψ(x, t)=9(t)cos(mπx/L) and w(x, t)=W (t)sin(mπx/L). Inserting these solutions into (16c) and
(21) results in

Ẅ +
π4m4(λ+ 2µ)

4ρL4 W 3
+

(
ksµπ

2m2

ρL2 −
8µl2

1π
4m4

15ρL4 +
µl2

2π
4m4

4ρL4

)
W

+

(
16µl2

1π
3m3

15ρL3 −
ksµmπ
ρL

+
µl2

2π
3m3

ρL3

)
9 = 0, (22a)
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9̈+

(
π2m2(λ+ 2µ)

ρL2 +
2µAπ2m2l2

0

ρ I L2 +
ksµA
ρ I
+

2µl2
0π

4m4

ρL4 +
4µl2

1π
4m4

5ρL4 +
32µAl2

1π
2m2

15ρ I L2 +
µAl2

2π
2m2

4ρ I L2

)
9

+

(
µAl2

2π
3m3

4ρ I L3 −
ksµAmπ
ρ I L

−
16µAl2

1π
3m3

15ρ I L3

)
W = 0. (22b)

The governing equations must be expressed in nondimensional form by using the following nondimen-
sional parameters:

ωl =

√
π2(λ+ 2µ)

ρL2 , ωs =

√
ksµA
ρ I

, ωr =

√
π2ksµ

ρL2 ,

ωm =

√
µπ2

ρL2 , ωn =

√
µA
ρ I
, (α0, α1, α2)=

π2

4L2 (l
2
0, l

2
1, l

2
2), τ = ωt.

(23)

In order to achieve an accurate analytical solution, the nonlinear equations resulting from (22) are solved
utilizing the harmonic balance method. According to this method, the solutions are assumed as a trun-
cated Fourier series of the form [Gao and Lei 2009]

W (τ )= 01 cos τ +01 cos 3τ, 9(τ)=31 cos τ +32 cos 3τ. (24a)

Inserting the given solution into (22), substituting the above Fourier series, ignoring the higher-order
harmonics than ones comprised in the original assumed solutions and setting the coefficients of like
cosine harmonics (such as the cos τ and cos 3τ terms) equal to zero, a set of algebraic equations will be
achieved as follows:

−ω201

L
+

(
m4α2ω

2
m +m2πω2

r −
32m4

15
α1ω

2
m

)01

L
+

(
4m3α2

π
ω2

m +
64α1m3

15π
ω2

m −
mω2

r

π

)
31

+
π2m4ω2

l

4L3

(3
4
03

1 +
3
4
02

102+
3
2
02

201

)
= 0, (25a)

−ω231+

(
m2ω2

l + 8m2α0ω
2
n +ω

2
s + 8m4α0ω

2
m +

16
5

m4α1ω
2
m +

128m2

15
α1ω

2
n +m2α2ω

2
n

)
31

+

(
πm3α2ω

2
n −mπω2

s −
64πm3

15
α1ω

2
n

)01

L
= 0, (25b)

− 9ω202

L
+

(
m4α2ω

2
m +m2πω2

r −
32m4

15
α1ω

2
m

)02

L
+

(
4m3α2

π
ω2

m +
64α1m3

15π
ω2

m −
mω2

r

π

)
32

+
π2m4ω2

l

4L3

(1
4
03

1 +
3
2
02

102+
3
4
03

2

)
= 0, (25c)

− 9ω231+

(
m2ω2

l + 8m2α0ω
2
n +ω

2
s + 8m4α0ω

2
m +

16
5

m4α1ω
2
m +

128m2

15
α1ω

2
n +m2α2ω

2
n

)
32

+

(
πm3α2ω

2
n −mπω2

s −
64πm3

15
α1ω

2
n

)02

L
= 0. (25d)

Utilizing the Newton–Raphson method, these nonlinear equations can be solved for ω, 31, 32, and 02

by choosing 01 as a determined parameter.
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A microbeam made of epoxy with mechanical properties E = 1.44 GPa and ρ = 1.22× 103 kg/m3

[Maneschy et al. 1986] is considered under the assumption l0 = l1 = l2 = l = 17.6µm [Ma et al. 2008;
Kong et al. 2009]. The shear coefficient ks is given as (5+ 5ν)/(6+ 5ν) which is assessed as the most
efficient description for a rectangular cross-section beam [Ke et al. 2012].

As was mentioned, if the material length-scale parameters are set as l0 = l1 = 0 and l2 = l and the
nonlinearity is neglected, the linear free vibration of the homogeneous microbeams presented in [Ma et al.
2008] can be degenerated. To check the validity and accuracy of the present analysis, the first four natural
frequencies of a simply supported Timoshenko microbeam with E = 1.44 GPa, ρ = 1.22× 103 kg/m3,
L/h= 10, and l = 17.6µm obtained from the present analysis are compared with those of Ma et al., given
in Table 1. As can be seen from the table, a good agreement has been achieved. The small difference
between our results and those of Ma et al. is due to considering the Poisson effect. We observe that these
differences become really significant at lower l/h and higher modes.

Table 2 compares the results obtained with the present method, based on classical, modified couple
stress, and strain gradient theories, with those reported in [Ansari et al. 2011] for the same theories.
As in that paper, we report the dimensionless natural frequencies, �= ωL

√
ρm/(λm + 2µm), of simply

supported homogeneous metal (Al) and ceramic (SiC) microbeams with material properties Em = 70 GPa,
νm = 0.3, and ρm = 2702 kg/m3 for Al and Ec = 427 GPa, νc = 0.17, and ρc = 3100 kg/m3 for SiC. The
other parameters used are L/h = 10, h/ l = 2, and l = 15µm. Excellent agreement can be observed
between the present results and the earlier ones.

Table 3 gives the nonlinear frequency ratios for simply supported homogeneous microbeams with the
material properties E = 70 GPa, ρ = 2702 kg/m3, and ν = 0.3 [Ke et al. 2012] based on modified couple
stress theory. The results of Ke et al. are also provided for comparison. The other parameters used in the
example are L/h = 12, h/ l = 2, and l = 15µm [Ke et al. 2012]. Excellent agreement can be observed

Mode h/ l = 1 h/ l = 3 h/ l = 10
present Ma et al. present Ma et al. present Ma et al.

1 0.6733 0.6723 0.1393 0.1391 0.0377 0.0377
2 2.4643 2.4530 0.5182 0.5163 0.1402 0.1396
3 4.9741 4.9368 1.0588 1.0519 0.2858 0.2838
4 7.9372 7.8606 1.6966 1.6814 0.4557 0.4514

Table 1. Comparison of the first four linear natural frequencies (in MHz) of microbeams
with consideration of size effect. Literature results are from [Ma et al. 2008].

Theory Ceramic Metal
present previous present previous

Classical 0.5778 0.5776 0.2810 0.2854
Modified couple stress 0.8541 0.8538 0.3820 0.3863

Strain gradient 1.2705 1.2608 0.5471 0.5430

Table 2. Comparison of the dimensionless natural frequencies of microbeams corre-
sponding to different beam models. “Previous” refers to results from [Ansari et al. 2011].
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�Linear = ωL
√
ρ/E Nonlinear frequency ratio

wmax/h = 0.2 wmax/h = 0.4 wmax/h = 0.6
present 0.3187 1.0338 1.1259 1.2654

[Ke et al. 2012] 0.3186 1.0340 1.1265 1.2671

Table 3. Comparison of the dimensionless natural frequency and nonlinear frequency
ratios of microbeams.
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Figure 2. Effect of the length-to-thickness ratio (L/h) on the nonlinear frequency ratio,
for h = l and b = 2h.

between our results and those of Ke et al.
The nonlinear free vibration of a simply supported beam is investigated in Figures 2–6. The linear

fundamental frequencies (ωL ) are also given in Figures 2–5. Figure 2 illustrates the nonlinear frequency
ratio versus the vibration amplitude for different length-to-thickness ratios for the geometric parameters
h = l, b = 2h. It is seen that the beam exhibits a typical hard-spring behavior, that is, the nonlinear
frequency ratio increases as the vibration amplitude increases. The length-to-thickness ratio has a signifi-
cant effect on the nonlinear vibration behavior. At a given vibration amplitude, both the linear frequency
and nonlinear frequency ratios decrease with the increase of the length-to-thickness ratio.

The effect of the ratio of the beam thickness to the material length-scale parameter (h/ l) on the
nonlinear frequency ratio is investigated in Figure 3. This figure is illustrated for the geometric parameters
b = 2h and L = 20h and reveals that as the ratio h/ l increases, unlike for the linear frequency, the
nonlinear frequency ratio gets bigger. At higher amplitudes, the discrepancy between the curves becomes
more prominent.

Figure 4 depicts the Poisson’s ratio’s influence on the linear and nonlinear frequencies for two different
geometric parameters. For the case of h = l, b = 2h, and L = 30h, an increase in the Poisson’s ratio
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Figure 3. Effect of the ratio of the beam thickness to the material length scale parameter
(h/ l) on the nonlinear frequency ratio, for b = 2h and L = 20h.

leads to lower linear frequencies while the nonlinear frequency ratio becomes higher. In addition, for the
geometric parameters h = 3l, b = 2h, and L = 20h, an increase in the Poisson’s ratio results in higher
nonlinear frequency ratios but results in unpredictable behavior of the linear frequency. This indicates
that the size effect plays a key role in the investigation of the effect of Poisson’s ratio on the natural
frequency of microbeams.

Figure 5 illustrates the influences of additional material parameters on the nonlinear frequency ratio.
The figure is plotted for the nonlinear frequency ratio versus the nondimensional amplitude for h = 2l,
b = 2h, L = 10h, and ν = 0.38. As the figure indicates, the value of the nonlinear frequency ratio
predicted by classical beam theory is more than that of the nonclassical beam theories. Also, according
to the figure, strain gradient beam theory predicts the lowest nonlinear frequency ratio. In other words,
the modified couple stress and classical beam theories tend to overestimate the nonlinear frequency ratio,
especially when the amplitude gets higher. Furthermore, as the amplitude rises, the deviation between
the theories becomes more prominent.

Another comparison between the classical and nonclassical beam theories is illustrated in Figure 6, but
this time the figure shows the natural frequency of a microbeam assessed by the nonclassical and classical
theories for two different Poisson’s ratios. The trends are illustrated for a nondimensional vibrational
amplitude (wmax/

√
I/A) equal to 3. This figure indicates that the natural frequencies obtained by the

nonclassical Timoshenko beam models are higher than the ones predicted by the classical model for both
Poisson’s ratios. The natural frequencies predicted by the strain gradient model are higher than those
from the modified couple stress model. In other words, apart from strain gradient theory, the theories
mentioned tend to underestimate the natural frequency. In addition, as can be deduced from this figure,
for the classical beam model, the natural frequency with ν = 0 is always lower than that with ν = 0.38.
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(a):  D = H  , > = 2D , . = 30D  
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(b): D = 3H  , > = 2D , . = 20D  
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Figure 4. Influence of the Poisson’s ratio on the nonlinear frequency ratio for the given
values of h, b, and L .

However, for the nonclassical beam theories, this is not true at low h/ l. At low and high h/ l, with
an increase of the Poisson’s ratio, the microbeam natural frequency corresponding to the nonclassical
beam models decreases and increases, respectively. According to this figure, it can be concluded that
the Poisson effect is more prominent at low thickness ratios. Hence, the reliability of the beam theories
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which neglect the Poisson effect is questionable, so in order to obtain more accurate results, this effect
must be incorporated.
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6. Conclusion

Based on strain gradient theory and using Hamilton’s principle, a comprehensive geometrically nonlinear
size-dependent Timoshenko beam model incorporating the Poisson effect was developed. The model con-
tains the nonlinear governing partial differential equations of motions and the corresponding classical and
nonclassical boundary conditions. The current nonclassical Timoshenko beam model encompasses the
available modified couple stress and classical models and recovers the nonclassical Euler–Bernoulli beam
model when ψ = ∂w/∂x . As a specific case, the governing equations and the corresponding boundary
conditions were solved by the use of the harmonic balance method to describe the large-amplitude size-
dependent vibration behavior of simply supported microbeams. The numerical results obtained from the
present model were compared with previously published results, from the linear strain gradient and the
nonlinear and linear modified couple stress theories, as well as linear and nonlinear classical models,
showing good agreement.
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