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TWO CASES OF RAPID CONTACT ON AN ELASTIC HALF-SPACE:
SLIDING ELLIPSOIDAL DIE, ROLLING SPHERE

LOUIS MILTON BROCK

In one case a rigid ellipsoidal die translates over the surface of a half-space. Because of friction, both
compression and shear force are required. In the other, a rigid sphere rolls on the surface under a
compressive force. Both motions occur along a straight path at constant subcritical speed. A dynamic
steady state is treated, that is, the contact zone and its traction remain constant in the frame of the die
or sphere. Exact solutions for contact zone traction are derived in analytic form, as well as formulas for
the contact zone shape. Axial symmetry is not required in the solution process. Cartesian coordinates
are used, but a system of quasipolar coordinates is introduced that allows problem reduction to singular
integral equations similar in form to those found in 2D contact.

1. Introduction

Sliding and rolling contact arises in machining, mechanism operation, and vehicle travel [Barwell 1979;
Bayer 1994; Blau 1996]. The literature on the mechanics of contact is vast, for example, [Ahmadi et al.
1983; Barber 1983; Johnson 1985; Kalker 1990; Hills et al. 1993]. An important category — e.g., [Craggs
and Roberts 1967; Churilov 1978; Rahman 1996] — treats indentation of an elastic surface by a rigid die
that also translates over the surface. If speed and resultant forces are constant, then a dynamic steady
state may be achieved. In that instance, contact zone geometry and surface traction do not vary in the
frame of the moving die. For the thermoelastic solid, Brock and Georgiadis [2000] treat sliding contact
opposed by friction and Brock [2004] treats rolling contact without slip by a rigid cylinder. Sliding and
rolling speeds are constant, and robust asymptotic solutions in analytic form are given for the dynamic
steady state in 2D.

The aforementioned studies are adopted here for 3D isothermal problems of sliding by a rigid ellipsoid
and rolling by a rigid sphere. Again sliding is resisted by friction, and rolling without slipping is assumed.
Sliding and rolling speeds are constant and subcritical, that is, below the Rayleigh wave speed. Ignoring
slipping in rolling is an idealization [Johnson 1985], and one that gives rise to rapid oscillations in thin
strips along the contact zone edge. It is noted, however, that strip widths in [Brock 2004] prove to be
orders of magnitude smaller than the contact zone radius.

The solution process is standard, e.g., [Hills et al. 1993]: a solution to the unmixed boundary value
problem of specified surface traction reduces the mixed contact problem to the solution of integral equa-
tions. To this end, the governing equations for the elastic half-space, subjected to a translating zone of
(somewhat) arbitrary traction over its surface, are given in the next section. Translation speed is constant
and subcritical, and zone geometry and traction do not change during translation. Therefore, as in [Brock
and Georgiadis 2000; Brock 2004], a dynamic steady state is assumed. Cartesian coordinates are used,
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and an exact transform solution in the half-space surface spatial variables is obtained. In view of the
3D nature of the problem and the lack of axial symmetry for the ellipsoidal die, quasipolar coordinates,
both in transform and spatial planes, are employed during the inversion process. These are defined by
a polar angle that sweeps through 180◦ (π radians) and a radial coordinate that has both positive and
negative directions. For points in the contact zone, the resulting displacement expressions reduce to
double integrals whose limits are independent of the points. The imposed displacement conditions are
then satisfied by requiring the integrands to be solutions of Cauchy singular integral equations that are
similar in form to those in the 2D studies [Brock and Georgiadis 2000; Brock 2004]. The contact zone
traction is then extracted as analytic functions of the quasipolar coordinates. The normal traction is
required to vanish continuously on the contact zone boundary, and to render the resultant compression
force as a stationary value for a given sliding/rolling speed. These requirements lead to expressions that
define the contact zone geometry.

2. General equations

In terms of Cartesian coordinates x(xk), an undisturbed, linear isotropic, homogeneous half-space occu-
pies region x3 > 0. A traction distribution is then applied to a finite, simply connected area C of the
surface x3 = 0. Boundary contour =(x1, x2) = 0 defines a continuous closed curve, with continuously
varying tangent and normal directions and radius of curvature. The lattermost is always directed to the
interior of C and the x1-direction is an axis of symmetry. Area C is then translated in the positive
x1-direction at constant subcritical speed v. It does not change, and the traction distribution remains
invariant with respect to it. A dynamic steady state ensues for which half-space response is invariant in
the frame of translating C . It is therefore convenient to translate the Cartesian system with C , so that
displacement u(uk) and traction T(σik) vary only with x(xk), where time differentiation becomes −v∂1

and ∂k signifies xk-differentiation. For x3 > 0 the governing equations can be extracted from [Achenbach
1973] and modified for the dynamic steady state as

u= uD +uS, (1)

(∇2
− c2∂2

1 )uS = 0, ∇ ·uS = 0, (2)

(c2
D∇

2
− c2∂2

1 )uD = 0, ∇ ×uD = 0, (3)

1
µ

T= (c2
D − 2)(∇ ·uD)1+ 2(∇u+u∇). (4)

Here (∇, 1,∇2) are the gradient, identity tensor, and Laplacian. Quantities (c, cD) are, respectively, the
contact area speed and dilatational wave speed (v, vD) that are made dimensionless with respect to the
isothermal shear (rotational) wave speed vS , where

cD =
√

m+ 1, m = 1
1−2ν

, vS =

√
µ

ρ
. (5)

Here (ν, µ, ρ) are the Poisson’s ratio, shear modulus, and mass density. The boundary conditions for
x3 = 0 are that surface traction vanishes for (x1, x2) /∈ C , but

σ13 = τ1, σ23 = τ2, σ33 = σ, (x1, x2) ∈ C. (6)
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Here (τ1, τ2, σ ) are bounded and continuous functions of (x1, x2) ∈ C but can be integrably singular on
the contour =(x1, x2)= 0. In addition (u,T) should remain finite for |x| →∞, x3 > 0.

3. General transform solution

After [van der Pol and Bremmer 1950; Sneddon 1972] the double bilateral Laplace transform is defined
as

F̂ =
∫∫

F(x1, x2) exp(−p1x1− p2x2) dx1dx2. (7)

Integration is along the entire Re(x1) and Re(x2)-axes. Application of (7) to (1)–(6) gives for x3 > 0

ûD = (p1, p2,−λ±)D exp(−λ±x3), (8a)

ûS = (S1, S2, S3) exp(−λSx3), λS S3 = p1S1+ p2S2. (8b)

Here coefficients (S1, S2, D) are given by

µQ R S1 =
p2

λS
QN (p2τ̂1− p1τ̂2)− λS(QK τ̂1+ 2p1λDσ̂ ), (9a)

µQ R S2 =
p1

λS
QN (p1τ̂2− p2τ̂1)− λS(QK τ̂2+ 2p2λDσ̂ ), (9b)

µQ R D = QK σ̂ − 2λS(p1τ̂1+ p2τ̂2). (9c)

In (8) and (9) quantities

QN = QK − 2λDλS, Q R = 4(p2
1 + p2

2)λDλS + Q2
K , QK = (c2

− 2)p2
1 − 2p2

2, (10a)

λS =

√
(c2− 1)p2

1 − p2
2, λD =

√
(s2

Dc2− 1)p2
1 − p2

2, sD =
1

cD
. (10b)

Equation (8) is bounded for x3 > 0 only when Re(λS, λD)> 0, so that branch cuts in the (p1, p2)-plane
is required.

4. Inversion scheme

In view of (8)–(10) and [van der Pol and Bremmer 1950; Sneddon 1972], transform inversion for, say
the contribution of σ to u3, involves the operation

−
1

2π i

∫
dp1

1
2π i

∫
dp2

λD

µ1
U
∫∫

dξ1 dξ2 σ exp[p1(x1− ξ1)+ p2(x2− ξ2)]. (11)

In (11), σ = σ(ξ1, ξ2) and U =U (p1, p2), where

U (p1, p2)= 2(p2
1 + p2

2) exp(−λSx3)+ QK exp(−λDx3). (12)

Double integration is over C , and single integration is along the entire Im(p1)- and Im(p2)-axes. This
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suggests definitions and transformations

p1 = p cosψ, p2 = p sinψ, (13a)

x = x1 cosψ + x2 sinψ, y = x2 cosψ − x1 sinψ, (13b)

ξ = ξ1 cosψ + ξ2 sinψ, η = ξ2 cosψ − ξ1 sinψ. (13c)

In (13), Re(p) = 0+, −∞ < [Im(p), x, y, ξ, η, ξ1, ξ2] < ∞ and |ψ | < π/2. Parameters (p, ψ),
(x, ψ; y = 0), and (ξ, ψ; η = 0) constitute quasipolar coordinate systems, that is,

dx1 dx2 = |x | dx dψ, dξ1 dξ2 = |ξ | dξdψ, dp1 dp2 = |p| dp dψ. (14)

Thus (11) can be written as

1
iπ

∫
9

dψ 1
2π i

∫
|p| dp

ωD

µR

√
−p

p
√

p
U (p, ψ)

∫
N

dη
∫
4

dξ σ (ξ, η) exp p(x − ξ), (15a)

U (p, ψ)= 2 exp(−ωSx3
√
−p
√

p )+ K exp(−ωDx3
√
−p
√

p ). (15b)

Integration with respect to p is along the positive side of the entire imaginary axis. Subscripts (9,N, 4)
signify integration over, respectively, the ranges −π/2<ψ <π/2, η−(ψ) < η < η+(ψ), and x−(η, ψ) <
ξ < x+(η, ψ). Limits η±(ψ) are points on the contour =[ξ1(ξ, η), ξ2(ξ, η)] = 0 where dη/dξ = 0, and
limits x±(η, ψ) locate the ends of a line parallel to the ξ -axis that spans C for a given η. The restrictions
on (C,=) imply that (x±, η±) exist and are continuous in ψ . In (15) we also have

ωS =
√

1− c2 cos2 ψ, ωD =
√

1− s2
Dc2 cos2 ψ, (16a)

N = K + 2ωSωD, R = 4ωSωD − K 2, K = c2 cos2 ψ − 2. (16b)

The exponential terms in (15b) are made bounded for x3>0 by requiring that Re(
√
±p)> 0 in the p-plane

with, respectively, branch cuts Im(p) = 0,Re(p) < 0 and Im(p) = 0,Re(p) > 0. The p-integration is
(15a) and can be obtained from Appendix A. The result is that (15a) and counterparts for (τ1, τ2) give
u3 for x3 > 0:

u3 =−
1
π2

∫
9

dψ
ωD

µR

∫
N

dη
∫
4

dξ σ (ξ, η)
K (x − ξ)

(x − ξ)2+ω2
Dx2

3
+

2ωS(x − ξ)
(x − ξ)2+ω2

Sx2
3

−
1
π2

∫
9

dψ
ωS

µR

∫
N

dη
∫
4

dξ [τ1(ξ, η) cosψ + τ2(ξ, η) sinψ]
2ω2

Dx3

(x − ξ)2+ω2
Dx2

3
+

K x3

(x − ξ)2+ω2
Sx2

3
.

(17)

Here x = x1 cosψ + x2 sinψ , and for x3 = 0, (x1, x2) ∈ C , (17) gives (see Appendix A):

u3 =
1
π

∫
9

dψ
µR

∫
N

dη
[

c2ωD cos2 ψ
(vp)
π

∫
4

σ(ξ, η)
dξ
ξ−x

− NT(x, η)
]
, (18a)

T(x, η)= τ1(x, η) cosψ + τ2(x, η) sinψ. (18b)

Here (vp) signifies principal value integration. Similar results can be obtained for (u1, u2). When ψ = 0,
the term R in (16b) is the 2D Rayleigh function. It can be shown that R > 0 (0 6 c2 < c2

R) and R 6 0
(c2

R < c2 < 1), where root c2
R defines the Rayleigh wave speed v = cRvS . Vanishing R can be associated

with critical behavior [Georgiadis and Barber 1993]. Here of course R = 0 when v = vR only for ψ = 0.
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5. Sliding contact with friction

Consider that (σ, τ1, τ2) result from the sliding of a rigid die at subcritical speed v in the positive
x1-direction. The die is an ellipsoid that, when it touches but does not indent the surface x3 = 0, can be
described in the translating x-coordinate by

C1x2
1 +C2x2

2 +C3

(
x3+

1
√

C3

)2

= 1. (19)

Here (C1,C2,C3) are positive constants, their inverses have dimensions of length squared, and (19) is
consistent with the symmetry assumed for C , which of course is now a contact zone. If a rigid body
motion U3 into the surface accompanies translation, indentation occurs. This requires compressive force
F3 in the x3-direction. For small deformations indentation is defined by u3 = uC

3 , (x1, x2) ∈ C , where

uC
3 =U3−

1
2
√

C3
(C1x2

1 +C2x2
2). (20)

It is noted that |x| is now the distance from the surface point in the contact zone that undergoes the largest
normal displacement. That is, the validity of the asymptotic expressions increases with this distance. If
sliding is resisted by friction with kinetic coefficient γ , die translation also requires a shear force F1= γ F3

in the positive x1-direction. It is assumed that die translation and die/surface slip essentially coincide,
that is, (τ2 ≈ 0, τ1 = γ σ). In view of (18) the contact problem must then satisfy for (x1, x2) ∈ C the
equation

1
π

∫
9

dη
∫

N
dη
[

c2ωD cos2 ψ

πµR
(vp)

∫
4

σ(ξ, η)
dξ
ξ−x

−
N
µR

0σ(x, η)
]
= uC

3 , 0 = γ cosψ. (21)

In light of (7), (20), and Appendix A, uC
3 can be written as

uC
3 =−

1
π

∫
9

dη
∫

N
dη
∫
4

dξ d
dx
δ(x − ξ)uC

3 (ξ, η), (22a)

uC
3 (ξ, η)=U3−

C1

2
√

C3
(ξ cosψ − η sinψ)2−

C2

2
√

C3
(η cosψ + ξ sinψ)2. (22b)

Here δ is the Dirac function. Equation (21) thereby reduces to matching the integrands of double inte-
gration in (ψ, η). Parameter ξ in σ(ξ, η) is an integration variable representing parameter x that itself
depends on coordinate (x1, x2) and integration variable ψ . However, as noted in light of (13) for y = 0,
(x1, x2) can be replaced by quasipolar coordinates (x, ψ). Thus traction σ itself can be found by dropping
η, and (21) and (22) are reduced to

−c2ωD cos2 ψ
(vp)
π

∫
4

σ(ξ, ψ)
dξ
ξ−x

+0Nσ(x, ψ)= µRG(x, ψ), (23a)

G(x, ψ)=
−Ax
√

C3
, A = C1 cos2 ψ +C2 sin2 ψ. (23b)

In view of Appendix B we introduce unknowns g(x) and � in the representation

1
µ
σ(x)= g(x) cosπ�+ I(g; x) sinπ� (x− < x < x+). (24)
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Experience [Brock and Georgiadis 2000; Brock 2004] with 2D analysis indicates that � 6= �(x). De-
pendence of (σ, g, �, x±) on ψ is implicit in (25). Use of (25), (B3a), (B3b), and (B4) in (24) gives a
classical [Erdogan 1985] linear relation in (g, I):

[0N sinπ�− c2ωD cos2 ψ cosπ�]I(g; x)+ [0N cosπ�+ c2ωD cos2 ψ sinπ�]g(x)
= RG(x, ψ). (25)

Eigenvalue � is chosen to make the coefficient of I(g; x) vanish, and g(x) follows:

�=−
1
2
+

1
π

tan−1
(
−γ N

c2ωD cosψ

)
, g(x)= R

1

Ax
√

C3
, (26a)

1=

√
02
9N 2+ (c2ωD cos2 ψ)2 = cosψ

√
γ 2 N 2+ (c2ωD cosψ)2, (26b)

sinπ�=−
c2ωD

1
cos2 ψ, cosπ�=−γ N

1
cos2 ψ. (26c)

In (26a), − 1
2 < � < 0 for 0 < v < vS . The polynomial form of g(x) allows the use of (B6) (second

equation) to evaluate (24):

σ(x, ψ)= µR
1

A
√

C3

(
x+− x
x − x−

)�
(x +�L), L = x+− x−(x− < x < x+). (27)

Dependence on ψ is now more explicit. The negative � gives σ an integrable singularity as x → x+.
Signorini conditions for contact [Georgiadis and Barber 1993] prohibit singular gradients at the contact
zone boundary. Therefore (27) leads to

σ(x, ψ)=−
µA
√

C3

R
1
(x+− x)1+�(x − x−)−�, (28a)

x+ =−�L , x− =−(1+�)L . (28b)

For 0 6 v < vR , R > 0 for |ψ |6 π/2, and (28a) satisfies the Signorini condition that nonwelded contact
cannot not involve tensile stress. It is also noted that the (R,1)-ratio in (28a) is finite for |ψ |6 π/2.

6. Contour of C

Equation (28b) defines in part contour = and, because �(−ψ)=�(ψ) and �(±π/2)=−1
2 , does not

violate the symmetry of C . The unknown contact zone span L depends on c and is an even function of ψ .
It is determined by requiring that (τ1, τ2, σ ) be consistent with the resultant force system acting on the
die. Here (x±, σ ) and therefore τ1 are even functions of ψ , and τ2 ≈ 0. Thus the condition that there is
no resultant force in the x2-direction and no resultant torque about the x3-axis is automatically satisfied.
The condition that resultant force in the (x1, x3)-directions is F1 = γ F3 and −F3, respectively, is met if∫

9

dψ
∫
4

σ(ξ, ψ)|ξ | dξ =−F3. (29)

Equation (29) is an integral equation for L(c, ψ). One solution approach is based on the observation
that, for a given value x3 > 0, projection of die (19) onto the x1x2-plane is an elliptical area bounded by
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contour C1x2
1 +C2x2

2 = constant. In terms of (x, ψ), if the span of C along the x1-axis (ψ = 0) is L1,
then the span L for a given |ψ |< π/2 is

L =

√
C1

A1
L1. (30)

A simple assumption is that (30) also holds in (28b) for (C,=), where L1 is an unknown function of
c. Here, however, it is argued that, for a given speed (c), F3 should be stationary with respect to (28a).
That is, ∫

9

dψ
∫
4

δσ (ξ, ψ)|ξ | dξ = 0. (31)

This requirement is satisfied when at every x− < x < x+, |ψ |< π/2,

δσ =
∂σ

∂x
δx + ∂σ

∂ψ
δψ = 0. (32)

Here ψ and x are held constant in the first and second coefficients, respectively, and (δx, δψ) are arbitrary.
Differentiation of (28a) shows that

x =−(1+ 2�)L : ∂σ

∂x
= 0,

∂2σ

∂x2 > 0. (33a)

The second term then vanishes for x =−(1+ 2�)L if

−
∂

∂ψ

(
R A

1
√

C3
QL

)
= 0, Q = (1+�)1+�(−�)−�. (33b)

Separation of variables and integration leads to

L =
C1

A
R11

R11

Q1

Q
L1, Q1 = (1+�1)

1+�1(−�1)
−�1, (34a)

R1 = 4ω1Dω1S − K 2
1 , 11 =

√
γ 2 N 2

1 + (c
2ω1D)2, (34b)

N1 = 2ω1Dω1S + K1, �1 =−
1
2
+

1
π

tan−1
(
−γ N1

c2ω1D

)
, (34c)

ω1S =
√

1− c2, ω1D =

√
1−

c2

c2
D
, K1 = c2

− 2. (34d)

For L = L2, that is, |ψ | = π/2, (34a) and its static (c = 0) and smooth sliding (c 6= 0, γ = 0) limit cases
give, respectively,

L2 =
C1

C2

√
c4

D + γ
2

c2
D − 1

R1 Q1

11
L1, L2 =

C1

C2
L1, L2 =

C1

C2

c2
D

2(c2
D − 1)

R1

c2ω1D
L1. (35)

Equations (30), (34a) and (35) in light of (28b) allow several observations:

(I) Except for a circular projection profile and smooth contact (C1 = C2, γ = 0), the ratio of spans
along the axes of symmetry is not maintained in C .
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γ c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6

0.1 0.9938 0.9712 0.9330 0.8781 0.8034 0.7049
0.2 0.9948 0.9721 0.9339 0.8789 0.8042 0.7055
0.3 0.9963 0.9736 0.9354 0.8803 0.8045 0.7066

Table 1. Values of the dimensionless ratio C2L2/C1L1 for pairs of (γ, c).

(II) In the static case with an elliptic projection profile, the difference between spans is enhanced in C .

(III) Die translation speed (c 6= 0) accentuates this effect.

(IV) Friction leaves C with symmetry only with respect to the x1-axis, whether die translation occurs
(c 6= 0) or not (c = 0).

Results in [Rahman 1996] also exhibit a sliding speed effect on span ratio. Moreover, stationary principles
are features of static smooth contact [Barber 1992]. The effect noted in (III) is illustrated in Table 1 with
values of ratio C2L2/C1L1 for values of (γ, c).

Substituting (28) and (34a) in (29), and applying integration results from Appendix B along with an
integration variable change, gives, finally, an equation for L1 as a function of c:

F3 =

(
R1 Q1

11

)3

(C1L1)
3 µ
√

C3

∫
9

dψ
Q3

(
1

AR

)2
∫
−�

−(1+�)
(−�− t)1+�(t + 1+�)−�|t | dt. (36)

In view of (28b) and the monotonic variation of � with ψ and its range
(
−

1
2 <�< 0

)
, span L does not

cross =.

7. Rolling without slipping

Consider that rolling without slipping by a rigid sphere of radius r0 is what produces the translating C .
Rolling at constant speed requires no force in the x1-direction, but indentation needs a compressive force,
which we call F3, to be imposed. Thus (19) and (20) are replaced by

x2
1 + x2

2 + (x3+ r0)
2
= r2

0 , uC
3 =U3−

1
2r0

(x2
1 + x2

2). (37)

In view of (18) and its counterparts for (u1, u2), the contact problem in this case gives coupled equations:

−c2ωD cos2 ψ
(vp)
π

∫
4

dξ
σ (ξ, ψ)

ξ − x
+ NT(x, ψ)= µRG3(x, ψ), (38a)

−Nσ(x, ψ) cosψ +
(vp)
πωS

∫
4

dξ
ξ − x

[N1τ1(ξ, ψ)+ N12τ2(ξ, ψ)] = µRG1(x, ψ), (38b)

−Nσ(x, ψ) sinψ +
(vp)
πωS

∫
4

dξ
ξ − x

[N12τ1(ξ, ψ)+ N2τ2(ξ, ψ)] = µRG2(x, ψ). (38c)



TWO CASES OF RAPID CONTACT ON AN ELASTIC HALF-SPACE 477

Coefficients (N1, N2, N12) are

(N1, N2)= M(cos2 ψ, sin2 ψ)−M, N12 = M sinψ cosψ, (39a)

M = K + 4ωSωD − 2ω2
S = 2N + c2 cos2 ψ, Gk(x, ψ)=

∂

∂x
uC

k (x, 0). (39b)

Linear analysis [Johnson 1985] of contact surface kinematics and experience with the 2D rolling cylinder
[Brock 2004] suggests in view of (37) that (uC

1 , uC
2 ) are such that

[G1(x, ψ),G2(x, ψ)] = G(x, ψ)(cosψ, sinψ), G3(x, ψ)=−
x
r0
, G(x, ψ)=−V0+

x2

2r2
0
. (40)

In light of Appendix B, we write

1
µ
(σ, τk)= (g, gk) cosπ�+ [I(g; x), I(gk; x)] sinπ�. (41)

Here k = (1, 2) and, as in (26), dependence of (σ, τ1, τ2, �) and (g, g1, g2) on ψ is implicit. Use of
Appendix B then gives the set of equations

K

 I(g; x)
I(g1; x)
I(g2; x)

+M

 g(x)
g1(x)
g2(x)

= R

 G3

G cosψ
G sinψ

 , (42a)

K=


−c2ωD cos2 ψ cosπ� N cosψ sinπ� N sinψ sinπ�

−N cosψ sinπ� N1
ωS

cosπ� N12
ωS

cosπ�

−N sinψ sinπ� N12
ωS

cosπ� N2
ωS

cosπ�

 , (42b)

M=


c2ωD cos2 ψ sinπ� N cosψ cosπ� N sinψ cosπ�

−N cosψ cosπ� −
N1
ωS

sinπ� −
N12
ωS

sinπ�

−N sinψ cosπ� −
N12
ωS

sinπ� −
N2
ωS

sinπ�

 . (42c)

In (42b) |K| vanishes for eigenvalues �= (�±, �0) given by

�± =�0∓ iP, �0 =−
1
2 , (43a)

P= 1
π

ln
√

1+q
1−q

, q =
−N

√
ωSωDc2 cos2 ψ

. (43b)

Quantity q > 0 for |ψ | 6 π/2 when 0 < v < vR , and (�0, �±) is associated with eigenfunction sets
(g0, g±) and (g0

k , g±k ), k = (1, 2). Given that |K| = 0, the first term in (42a) disappears by choosing

g±1 (x)= H±(x) cosψ, g±2 (x)= H±(x) sinψ, (44a)

N sinπ�±H±(x)= c2ωF cos2 ψ cosπ�±g±(x), (44b)

g0
1(x)= g0(x) sinψ, g0

2(x)=−g0(x) cosψ. (44c)
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Substitution into the remaining term in (42a) gives three equations for (g0, g±). From (43) it follows
that

sinπ�± =− coshπP=−
√
ωSωDc2 cos2 ψ
√
(1−ωSωD)R

, cosπ�± =∓i sinhπP=
±i N

√
(1−ωSωD)R

. (45a)

Their use in the three equations then leads to the expressions

g0(x)= 0, g±(x)=

√
R

2
√

1−ωSωD

[√
ωS

ωD
G3(x, ψ)± iG(x, ψ)

]
. (46)

Use of (41) and polynomial integration results from Appendix B lead to closed-form expressions for
(σ, τ1, τ2). In light of (43a) these are singular as x→ x+, and enforcement of the Signorini conditions
leads to requirements [

P L
r0
+

√
ωS

ωD

](
x+−

L
2

)
= 0, L = x+− x−, (47a)

V0+
L
r0

√
ωS

ωD
−

1
2r2

0

[(
x+−

L
2

)2
+

L2

8
(1− 4P2)

]
= 0. (47b)

Expressions for (V0, x+) follow as

V0 =
L
r0

[
L

16r0
(1− 4P2)−P

√
ωS

ωD

]
, x± =±

L
2
. (48)

Use of (48) in the closed-form expressions for (σ, τ1, τ2) gives

σ(x, ψ)= −µBQ
2r0 cos8

√
L2− 4x2 cos

[
P ln L−2x

L+2x
−8

]
, (49a)[

τ1(x, ψ)
τ2(x, ψ)

]
=
−µBQ

2r0 cos8

√
ωD

ωS

[
cosψ
sinψ

]√
L2− 4x2 sin

[
P ln L−2x

L+2x
−8

]
, (49b)

Q =

√
R

√
1−ωSωD

, 8= tan−1 xP
2Br0

, B= PL
2r0
+

√
ωS

ωD
. (49c)

Equation (49) is integrable in x but the rapid oscillatory behavior due to the logarithmic term implies
that compression is guaranteed only in a region |x |< rC < L/2 of C . Under the reasonable assumption
that (L , rC)� r0 it can be shown that

rC =
L
2

1− exp(−π/2P)
1+ exp(−π/2P)

. (50)

For a steel solid (ν = 1/3, µ= 75 GPa) calculations of (43) for various combinations of |ψ |< π/2 and
0< c < cR give exp(−π/2P)≈ O(10−9). As in [Brock 2004], therefore, the boundary strip is orders of
magnitude smaller than the contact zone span L . In (49) (σ, τ1) and τ2 are, respectively, even and odd
functions of ψ . It follows that shear traction on C produces neither resultant force in the (x1, x2)-direction
nor resultant moment about the x3-axis. Compressive force F3 is the resultant of σ so that (29) again
provides an integral equation for span L in (49). Application of the stationary principle in (33) for this
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c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6

0.994 0.9733 0.9384 0.8882 0.8204 0.7318

Table 2. Values of the dimensionless ratio L2/L1 for values of c.

case gives for |ψ |< π/2

x = 0 : ∂σ

∂x
= 0,

∂2σ

∂x2 > 0. (51)

It can then be shown that L is given by

L =
B1 Q1

BQ
L1, Q1 =

√
R1

√
1− (ωSωD)1

, B1 =

√
ω1S

ω1D
+

P1L1

2r0
. (52)

Equation (52) is transcendental in (L , L1), but becomes a linear relation under the assumption that
(L , L1)� r0:

L =
√
ωDω1S

ωSω1D

Q1

Q
L1, (53a)

L2 = L1 (c = 0), L2 =
1
2

√
c2

D + 1
c2

D − 1

√
cDω1S

ω1D
Q1L1 (c 6= 0). (53b)

In light of the same assumption (29) reduces to the relation for unknown span L1 along the x1-axis of C :

1
µr2

0
F3 = 2

[
Q1

√
ω1S

ω1D

L1

2r0

]3 ∫
9

ωD

ωS Q2 dψ
∫ 1

0
t dt

√
1− t2 cos P ln 1−t

1+t
. (54)

Study of (53) shows that in this case, contact zone C does not preserve the circular profile of the projected
die area except in the static limit (c = 0). Values of the span ratio L2/L1 are given in Table 2 for c 6= 0,
and show that increasing speed tends to “squeeze” C onto the x1-axis. Equation (53a) does not define an
ellipse. However, an elliptical approximation for C can use (53b) to define the ratio of semimajor and
semiminor dimensions.

8. Comment on supercritical/subseismic behavior

As noted above sliding contact solutions for speeds vR < v < vS violate Signorini conditions [Georgiadis
and Barber 1993]. In particular, in the sliding die problem here (28a) for normal stress in C still holds
for this speed range, and is still both bounded and continuous on zone boundary =. However, R = 0
along spans defined by |ψ | =9R , and R < 0 for |ψ |<9R , where

9R = tan−1

√
c2

c2
R
− 1. (55)

That is, contact zone traction changes in a continuous fashion from compression in two fan-shaped
regions 9R < |ψ | < π/2 to tension in two fan-shaped regions |ψ | < 9R . The situation for the rolling
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sphere case is more complicated: For |ψ |<9R , R < 0 and eigenvalues are now

�0 =−
1
2
, �± =∓

i
π

ln
√

q+1
q−1

. (56)

Equation (56) and behavior of R show that traction is continuous as |ψ | →9R but, because �± have no
real part, traction on = in fan-shaped regions |ψ |<9R is both oscillatory in nature and not continuous.
These two results suggest that contact actually does not occur for |ψ | < 9R . Such a consideration is
beyond the scope of this paper. Careful study of die/sphere-contact zone separation for |ψ | < 9R is
required. Moreover, 9R→ 21.25◦ as v→ vS for a typical [Achenbach 1973] value cR = 0.932. That is,
separation would involve a substantial portion of the projection area in the subseismic limit.

9. Summary comments

Combining quasipolar coordinates with an analysis defined in terms of Cartesian coordinates produces
solutions that can be seen as awkward hybrids. However, analytical expressions for contact zone traction
in the quasipolar system are readily extracted. In any event, the approach was adopted in order to address
problems without axial symmetry. Indeed no degree of symmetry is required. That imposed on contact
zone C served to guarantee that a simple resultant force system could produce die sliding and rolling
in the specified direction. Rolling contact by a sphere was considered because its 2D counterpart, the
cylinder, is a standard rolling problem.

The assumption that key geometric features of the area projected by the rigid die onto the contact
surface are preserved in the contact zone shape, or that the zone is essentially elliptical, is often accurate
[Johnson 1985; Hills et al. 1993; Bayer 1994; Blau 1996]. It also avoids an iteration process based on,
for example, maintenance of compression everywhere in the zone. Here, in addition to the Signorini
requirement of bounded traction on the zone boundary, a requirement that resultant compressive force
be stationary with respect to the traction was imposed. This gave expressions that defined the contact
zone geometry. These indicated that the contact zone is often a distortion of the projected area. In
particular, sliding/rolling speed tends to “flatten” the contact zone onto the line of travel, see [Rahman
1996]. Friction in sliding destroys any projection area symmetry, save that with respect to the line of
travel. It is hoped that these results afford some insight into problems of 3D dynamic contact.

Appendix A

Consider integrals involving real parameters (X, Y ) over the entire Im(p)-axis P:

1
2π i

∫
P
|p|
(

1,
√
−p
√

p

)
exp[pX − Y

√
−p
√

p ]dp
p

(Y > 0). (A1)

Re(
√
±p ) > 0 in the p-plane with, respectively, branch cuts Im(p) = 0, Re(p) < 0 and Im(p) = 0,

Re(p) > 0. Specifically, for Re(p)= 0+ and, respectively, Im(p)= q > 0 and Im(p)= q < 0:

√
−p =

∣∣∣q2 ∣∣∣1/2(1∓ i),
√

p =
∣∣∣q2 ∣∣∣1/2(1± i). (A2)
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Use of (A2) reduces (A1) to

1
iπ

∫
∞

0
(cos q X, sin q X) exp(−Y q) dq. (A3)

From standard [Peirce and Foster 1956] tables (A3) is evaluated as

1
iπ

(
Y

X2+ Y 2 ,
X

X2+ Y 2

)
. (A4)

It is noted that the X -derivative of (A4) gives the evaluation for integrals

1
2π i

∫
P
|p|
(

1,
√
−p
√

p

)
exp(−pX − Y

√
−p
√

p ) dp (Y > 0). (A5)

It is also noted [Stakgold 1967] that

1
π

Y
X2+ Y 2 → δ(X) (Y → 0). (A6)

Here δ is the Dirac function.

Appendix B

Consider region 4 of the Re(t)-axis defined as x− < t < x+ and function

W (x)=
∫
4

�(t) dt
t − x

, |Re�(t)|< 1. (B1)

For x ∈4, W (x ± i0)= w(x)± iπ�(x), where w(x) is the principal value

w(x)= (vp)
∫
4

�(t) dt
t − x

. (B2)

For a function g(t) that is bounded and piecewise continuous in 4 the following relations hold for x ∈4:

G(x)= g(x) cosπ�(x)+ I(g; x) sinπ�(x), (B3a)

1
π
(vp)

∫
4

G(t)
t − x

dt =−g(x) sinπ�(x)+ I(g; x) cosπ�(x), (B3b)∫
4

G(t) dt =
∫
4

g(t) exp[−w(t)] dt. (B3c)

In (B3a) and (B3b) the functional

I(g; x)= 1
π

expw(x)(vp)
∫
4

g(t)
t − x

exp[−w(t)] dt. (B4)

For x /∈4 (B3b) is replaced with

1
π

∫
4

G(t)
t − x

dt = 1
π

exp W (x)
∫
4

g(t)
t − x

exp[−w(t)] dt . (B5)

For �(t) = � < 0 (constant), polynomial forms of g(t) give explicit results, for example, for g(t) =
(t0, t, t2) the right-hand sides of (B3a) are
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x+− x
x − x−

)�
, (x +�L)

(
x+− x
x − x−

)�
,

[
x2
+�(x + x+)−

�

2
(1−�)L2

]( x+− x
x − x−

)�
. (B6)

Similarly, the right-hand sides of (B5) are, respectively,

1
sinπ�

[(
x − x+
x − x−

)�
− 1

]
, (B7a)

1
sinπ�

[
x
(

x − x+
x − x−

)�
− x −�L

]
, (B7b)

1
sinπ�

[
x2
(

x − x+
x − x−

)�
− x2
−�(x + x+)+

�

2
(1−�)L2

]
. (B7c)

Here L = x+− x− is the width of 4. The results in (B1)–(B7) are standard, and in this case, taken from
[Brock and Georgiadis 2000; Brock 2004].

References

[Achenbach 1973] J. D. Achenbach, Wave propagation in elastic solids, North-Holland Series in Applied Mathematics and
Mechanics 16, North-Holland, Amsterdam, 1973.

[Ahmadi et al. 1983] N. Ahmadi, L. M. Keer, and T. Mura, “Non-Hertzian contact stress analysis for an elastic half-space:
normal and sliding contact”, Int. J. Solids Struct. 19:4 (1983), 357–373.

[Barber 1983] J. R. Barber, “The solution of elasticity problems for the half-space by the method of Green and Collins”, Appl.
Sci. Res. 40:2 (1983), 135–157.

[Barber 1992] J. R. Barber, Elasticity, Solid Mechanics and its Applications 12, Kluwer, Dordrecht, 1992.

[Barwell 1979] F. T. Barwell, Bearing systems: principles and practice, Oxford University Press, Oxford, 1979.

[Bayer 1994] R. G. Bayer, Mechanical wear prediction and prevention, Mechanical Engineering 91, Marcel Dekker, New York,
1994.

[Blau 1996] P. J. Blau, Friction science and technology, Mechanical Engineering 100, Marcel Dekker, New York, 1996.

[Brock 2004] L. M. Brock, “Coupled thermoelastic analysis of perfect rolling contact: solution behavior near yield initiation”,
J. Therm. Stresses 27:5 (2004), 383–403.

[Brock and Georgiadis 2000] L. M. Brock and H. G. Georgiadis, “Siding contact with friction of a thermoelastic solid at
subsonic, transonic and supersonic speeds”, J. Therm. Stresses 23:7 (2000), 629–656.

[Churilov 1978] V. A. Churilov, “Action of an elliptical stamp moving at a constant speed on an elastic half-space”, Prikl. Mat.
Mekh. 42:6 (1978), 1074–1079. In Russian; translated in J. Appl. Math. Mech. 42:6 (1978), 1176–1182.

[Craggs and Roberts 1967] J. W. Craggs and A. M. Roberts, “On the motion of a heavy cylinder over the surface of an elastic
half-space”, J. Appl. Mech. (ASME) 34:1 (1967), 207–209.

[Erdogan 1985] F. Erdogan, “Mixed boundary value problems in mechanics”, pp. 1–86 in Mechanics today, vol. 4, edited by
S. Nemat-Nasser, Pergamon, New York, 1985.

[Georgiadis and Barber 1993] H. G. Georgiadis and J. R. Barber, “On the super-Rayleigh/subseismic elastodynamic indentation
problem”, J. Elasticity 31:3 (1993), 141–161.

[Hills et al. 1993] D. A. Hills, D. Nowell, and A. Sackfield, Mechanics of elastic contacts, Butterworth-Heinemann, Oxford,
1993.

[Johnson 1985] K. L. Johnson, Contact mechanics, Cambridge University Press, Cambridge, 1985.

[Kalker 1990] J. J. Kalker, Three-dimensional bodies in elastic contact, Solid Mechanics and its Applications 2, Kluwer,
Dordrecht, 1990.

[Peirce and Foster 1956] B. O. Peirce and R. M. Foster, A short table of integrals, 4th ed., Ginn, New York, 1956.

http://dx.doi.org/10.1016/0020-7683(83)90032-X
http://dx.doi.org/10.1016/0020-7683(83)90032-X
http://dx.doi.org/10.1007/BF00386216
http://dx.doi.org/10.1007/978-94-011-2454-6
http://dx.doi.org/10.1080/01495730490442756
http://dx.doi.org/10.1080/01495730050130039
http://dx.doi.org/10.1080/01495730050130039
http://dx.doi.org/10.1016/0021-8928(78)90067-9
http://dx.doi.org/10.1115/1.3607626
http://dx.doi.org/10.1115/1.3607626
http://dx.doi.org/10.1007/BF00044967
http://dx.doi.org/10.1007/BF00044967
http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=2685


TWO CASES OF RAPID CONTACT ON AN ELASTIC HALF-SPACE 483

[van der Pol and Bremmer 1950] B. van der Pol and H. Bremmer, Operational calculus: based on the two-sided Laplace
integral, Cambridge University Press, Cambridge, 1950.

[Rahman 1996] M. Rahman, “Hertz problem for a rigid punch moving across the surface of a semi-infinite elastic solid”, Z.
Math. Phys. 47:4 (1996), 601–615.

[Sneddon 1972] I. N. Sneddon, The use of integral transforms, McGraw-Hill, New York, 1972.

[Stakgold 1967] I. S. Stakgold, Boundary value problems in mathematical physics, vol. 1, MacMillan, New York, 1967.
Reprinted in Classics in Applied Mathematics 29, SIAM, Philadelphia, 2000.

Received 6 Mar 2012. Revised 27 Mar 2012. Accepted 30 May 2012.

LOUIS MILTON BROCK: brock@engr.uky.edu
Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506-0503, United States
http://www.engr.uky.edu/me/faculty_staff/brock.html

mathematical sciences publishers msp

http://dx.doi.org/10.1007/BF00914874
http://dx.doi.org/10.1137/1.9780898719888
mailto:brock@engr.uky.edu
http://www.engr.uky.edu/me/faculty_staff/brock.html
http://msp.org


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
jomms.net

Founded by Charles R. Steele and Marie-Louise Steele

EDITORS

CHARLES R. STEELE Stanford University, USA
DAVIDE BIGONI University of Trento, Italy
IWONA JASIUK University of Illinois at Urbana-Champaign, USA

YASUHIDE SHINDO Tohoku University, Japan

EDITORIAL BOARD

H. D. BUI École Polytechnique, France
J. P. CARTER University of Sydney, Australia

R. M. CHRISTENSEN Stanford University, USA
G. M. L. GLADWELL University of Waterloo, Canada

D. H. HODGES Georgia Institute of Technology, USA
J. HUTCHINSON Harvard University, USA

C. HWU National Cheng Kung University, Taiwan
B. L. KARIHALOO University of Wales, UK

Y. Y. KIM Seoul National University, Republic of Korea
Z. MROZ Academy of Science, Poland

D. PAMPLONA Universidade Católica do Rio de Janeiro, Brazil
M. B. RUBIN Technion, Haifa, Israel

A. N. SHUPIKOV Ukrainian Academy of Sciences, Ukraine
T. TARNAI University Budapest, Hungary

F. Y. M. WAN University of California, Irvine, USA
P. WRIGGERS Universität Hannover, Germany

W. YANG Tsinghua University, China
F. ZIEGLER Technische Universität Wien, Austria

PRODUCTION contact@msp.org

SILVIO LEVY Scientific Editor

Cover design: Alex Scorpan Cover photo: Wikimedia Commons

See http://jomms.net for submission guidelines.

JoMMS (ISSN 1559-3959) is published in 10 issues a year. The subscription price for 2012 is US $555/year for the electronic
version, and $735/year (+$60 shipping outside the US) for print and electronic. Subscriptions, requests for back issues, and changes
of address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley,
CA 94720–3840.

JoMMS peer-review and production is managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2012 by Mathematical Sciences Publishers

http://jomms.net/
mailto:contact@msp.org
http://jomms.net/
http://msp.org/
http://msp.org/


Journal of Mechanics of Materials and Structures
Volume 7, No. 5 May 2012

Scale effects on ultrasonic wave dispersion characteristics of monolayer graphene
embedded in an elastic medium

SAGGAM NARENDAR and SRINIVASAN GOPALAKRISHNAN 413
Nonlinear creep response of reinforced concrete beams EHAB HAMED 435
New invariants in the mechanics of deformable solids

VIKTOR V. KUZNETSOV and STANISLAV V. LEVYAKOV 461
Two cases of rapid contact on an elastic half-space: Sliding ellipsoidal die, rolling

sphere LOUIS MILTON BROCK 469
Buckling analysis of nonuniform columns with elastic end restraints

SEVAL PINARBASI 485

JournalofM
echanics

ofM
aterials

and
Structures

2012
V

ol.7,N
o.5

http://dx.doi.org/10.2140/jomms.2012.7.413
http://dx.doi.org/10.2140/jomms.2012.7.413
http://dx.doi.org/10.2140/jomms.2012.7.435
http://dx.doi.org/10.2140/jomms.2012.7.461
http://dx.doi.org/10.2140/jomms.2012.7.485

	1. Introduction
	2. General equations
	3. General transform solution
	4. Inversion scheme
	5. Sliding contact with friction
	6. Contour of C
	7. Rolling without slipping
	8. Comment on supercritical/subseismic behavior
	9. Summary comments
	Appendix A
	Appendix B
	References
	
	

