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BUCKLING ANALYSIS OF NONUNIFORM COLUMNS
WITH ELASTIC END RESTRAINTS

SEVAL PINARBASI

Since compression members, such as columns in a multistory building, are mostly the key elements
in a structure, even a small decrease in their load carrying capacity can lead to catastrophic failure of
the structure. A compression member has to be designed to satisfy not only the strength and service-
ability requirements, but also the stability requirements. In fact, the behavior of a slender column is
mostly governed by the stability limit states. In an attempt to construct ever-stronger and ever-lighter
structures, many engineers currently design slender high strength columns with variable cross sections
and various end conditions. Even though buckling behavior of uniform columns with ideal boundary
conditions have extensively been studied, there are limited studies in the literature on buckling analysis
of nonuniform columns with elastic end restraints since such an analysis requires the solution of more
complex differential equations for which it is usually impractical or sometimes even impossible to obtain
exact solutions. This paper shows that variational iteration method (VIM) can successfully be used for
this purpose. VIM results obtained for columns of constant cross sections, for which exact results are
available in the literature, agree with the exact results perfectly, verifying the efficiency of VIM in the
analysis of this special type of buckling problem. It is also shown that unlike exact solution procedures,
variational iteration algorithms can easily be used even when the variation of column stiffness along its
length and/or the end conditions are rather complex.

1. Introduction

Compression members subjected to uniform axial loads are commonly used in many engineering appli-
cations. Columns in a multistory building, for example, are the key structural elements which support
the heavy weight of the structure. Even a small decrease in their load carrying capacity can lead to
catastrophic failure of the structure. Compression members differ from tension members in that the
design of the former has to consider not only the strength and serviceability requirements but also the
stability requirements. In fact, the behavior of a slender column is mostly governed by the stability limit
states. For this reason, many international design specifications include specific provisions on stability
of compression members.

Since 1744, when the Swiss mathematician Leonhard Euler published his famous buckling formula,
research on stability of slender columns has increasingly continued. This continuous interest on stability
problems is based mainly on the desire of constructing “ever-stronger” and “ever-lighter” structures. This
“optimum structure” approach has led most engineers to design columns with higher strength and lighter
weight. Unfortunately, design engineers are lack of sufficient guidance on design of nonuniform columns
since most of the provisions on compression members are developed for uniform columns.
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Elastic buckling behavior of uniform columns has extensively been investigated by many researchers.
For fully developed buckling theory and the related exact solutions, one can refer to one of the classical
textbooks on structural stability (e.g., [Timoshenko 1961; Chajes 1974; Wang et al. 2005; Simitses and
Hodges 2006]). On the other hand, there are very few studies in the literature on columns with variable
flexural stiffness since such an analysis requires the solution of more complex differential equations. In
many cases, it is impractical and sometimes even impossible to obtain closed-form solutions to these
problems.

When the buckling studies in the literature are examined, it is also seen that most of the studies on
column buckling assume ideal end conditions. Such ideal boundary conditions can realistically model
the real end conditions in some special structures, such as columns in one-story buildings, vertical and
diagonal elements in truss structures and bracing elements in braced frames. However, in a general
multistory building, the ends of the columns are neither hinged nor fully fixed or free. Instead, they
are commonly connected to beams and the restraining effect of the beams on the column ends strongly
depends on the type of the beam-to-column connection. In addition, the behavior of a column in a frame
is significantly influenced from the existence and amount of the bracing members in the frame. For this
reason, the buckling solutions obtained for columns of ideal end conditions cannot always be safely used
for columns with elastic end restraints.

However, as in the case of buckling analysis of nonuniform columns, buckling analysis of columns
with elastic end restraints is difficult to handle due to the complex boundary conditions and studies in
the literature on this subject are also very limited (e.g., [Eisenberger and Clastornik 1987; Li 2000; 2001;
2003; Ozturk and Sabuncu 2005; Atanackovic and Novakovic 2006; Tan and Yuan 2008; Singh and
Li 2009; Atanackovic et al. 2010]). For this reason, most design specifications offer engineers design
charts, instead of design formulas, for the design of such framed columns. These “alignment” charts are
drawn from the buckling (characteristic) equation derived for uniform columns with elastic end springs,
which needs special techniques to solve due to its high nonlinearity, by making some assumptions on
the stiffnesses of the restraints (e.g., the assumption of identical slopes at the ends of the beam). Thus,
even these charts do not provide exact values. Moreover, they are applicable only to uniform columns.
However, as mentioned previously, due to economical and esthetic issues, nowadays, many columns are
designed with variable stiffness.

Consequently, there is a need for a practical tool to solve buckling problems of nonuniform columns
with elastic end restraints. In recent years, many analytical approaches; such as, variational iteration
method (VIM), homotopy perturbation method (HPM), differential quadrature method (DQM) are pro-
posed for the solution of nonlinear equations and many researchers (e.g., [Arbabi and Li 1991; Du et al.
1996; Rosa and Franciosi 1996; Cailo and Elishakoff 2004; Civalek 2004; Aydogdu 2008; Malekzadeh
and Karami 2008; Atay 2009; Coşkun 2009; 2010; Huang and Luo 2011; Ozturk and Coşkun 2011; Serna
et al. 2011; Yuan and Wang 2011]) have shown that complex engineering problems, such as buckling and
vibration problems, can easily be solved using these techniques. A kind of nonlinear analytical technique
which was proposed by He [1999], variational iteration method (VIM) has many successful applications
to various kinds of nonlinear engineering problems [Abulwafa et al. 2007; Batiha et al. 2007; Coşkun
and Atay 2007; Ganji and Sadighi 2007; Ganji et al. 2007; 2008; Sweilam and Khader 2007; Coşkun
and Atay 2008; Miansari et al. 2008; Shou and He 2008; Ozturk 2009; Liu and Gurram 2009; Atay
2010; Coşkun et al. 2011; Geng 2011; Yang and Chen 2011]. As shown in [Coşkun and Atay 2009;
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Atay and Coşkun 2009; Okay et al. 2010; Pinarbasi 2011], VIM is an effective and powerful technique
that can successfully be used in the analysis of elastic stability of compression and flexural members
with variable cross sections under different loading and boundary conditions. In this paper, this powerful
technique is used to determine the buckling loads of slender columns with elastic end restraints. To
the best knowledge of authors, exact solutions to this problem are available only for some particular
cases of uniform columns. For this reason, before analyzing the columns with variable cross sections,
the buckling loads of columns with constant cross sections are determined using classical variational
iteration algorithm and VIM results are compared with the exact results. After verifying the efficiency of
VIM in the analysis of this special type of buckling problem, stability of columns with variable flexural
stiffness is studied. In the analyses, columns with two different types of stiffness variations along their
lengths; linear and exponential variations, and with various end conditions are considered. Buckling loads
obtained for these nonuniform columns are computed using classical variational iteration algorithm and
compared with those obtained for uniform columns.

2. Elastic buckling of columns with elastic end restraints

General buckling equation and related boundary conditions. Consider an axially loaded column of
variable flexural rigidity E I along its length L with elastic end restraints as shown in Figure 1, left.
Assume that the lateral displacement and rotation of the top end of the column are restrained, respectively,
by an extensional spring with elastic spring constant α0 and a rotational spring with elastic spring constant
β0. Further assume that similar springs with spring constants αL and βL restrain the bottom end of the
column.

Figure 1, middle, shows the buckled shape of such a column under a uniaxial load of P . In the figure,
MA, MB and V show support reactions. As can be seen from that figure, the origin of x-y coordinate
system is located at the top end of the column. The equilibrium equation at an arbitrary section of the
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Figure 1. An axially loaded column with elastic end restraints. Left: undeformed shape.
Middle: deformed (buckled) shape. Right: free body diagram for internal forces.
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column can be written from the free body diagram shown in Figure 1, right as

M(x)+ Pw(x)− V x −MA = 0, (1)

where w(x), or simply w, is the displacement component in y direction. Using the well-known moment-
curvature relation

M(x)= E I (x)
d2w

dx2 , (2)

Equation (1) can be rewritten as

E I (x)
d2w

dx2 + Pw = V x +MA. (3)

Differentiation of (3) with respect to x gives shear force in the column at any section:

V = E I (x)
d3w

dx3 +
d[E I (x)]

dx
d2w

dx2 + P
dw
dx
. (4)

Further differentiation of (4) with respect to x yields the governing equation of the buckling problem:

d4w

dx4 +
2

E I (x)
d[E I (x)]

dx
d3w

dx3 +
1

E I (x)

(
P +

d2
[E I (x)]
dx2

)
d2w

dx2 = 0. (5)

It is to be noted that the governing equation (5) is applicable to all columns regardless of their end
conditions.

Using (2) and (3), the boundary conditions at the top and bottom end of the column can be written as

at x = 0; β0
dw
dx
= E I (x)

d2w

dx2 and α0w =−

(
E I (x)

d3w

dx3 +
d[E I (x)]

dx
d2w

dx2 + P
dw
dx

)
(6)

and

at x = L; βL
dw
dx
=−E I (x)

d2w

dx2 and αLw = E I (x)
d3w

dx3 +
d[E I (x)]

dx
d2w

dx2 + P
dw
dx
. (7)

Columns with constant stiffness. When flexural stiffness of the column does not change along its length,
in other words, when E I (x)= E I , the governing equation (5) and the related boundary conditions (6)
and (7) reduce to the simpler forms

d4w

dx4 +
P

E I
d2w

dx2 = 0 (8)

with
d2w

dx2 −
β0

E I
dw
dx
= 0 and

d3w

dx3 +
P

E I
dw
dx
+
α0

E I
w = 0 at x = 0, (9)

and
d2w

dx2 +
βL

E I
dw
dx
= 0 and

d3w

dx3 +
P

E I
dw
dx
−
αL

E I
w = 0 at x = L . (10)

For easier computations, these equations can be written in nondimensional form as

(w̄)′′′′+ λ(w̄)′′ = 0 (11)
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with
(w̄)′′− β̄0(w̄)

′
= 0 and (w̄)′′′+ λ(w̄)′+ ᾱ0w̄ = 0 at x̄ = 0, (12)

(w̄)′′+ β̄L(w̄)
′
= 0 and (w̄)′′′+ λ(w̄)′− ᾱLw̄ = 0 at x̄ = 1, (13)

where w̄ = w/L and x̄ = x/L , primes denote differentiation with respect to x̄ , the normalized spring
stiffnesses are

β̄0 =
β0L
E I

, β̄L =
βL L
E I

, ᾱ0 =
α0L3

E I
and ᾱL =

αL L3

E I
(14)

and the normalized critical load is

λ=
P L2

E I
. (15)

Since exact solutions are available in the literature for uniform columns and since these solutions cor-
respond to limiting conditions for variable stiffness cases, before studying the buckling problems of
nonuniform columns, the buckling loads of uniform columns are to be determined and compared with
the exact solutions available in the literature.

Columns with variable stiffness.

Columns with linearly varying stiffness. When flexural stiffness of the column decrease along its length
linearly, i.e., when

E I (x)= E I (1− b x
L ), (16)

where b is a constant determining the “sharpness” of the stiffness change along the column length, the
governing equation becomes

d4w

dx4 −
2b/L

(1− bx/L)
d3w

dx3 +
P

E I (1− bx/L)
d2w

dx2 = 0, (17)

which can be written in nondimensionalized form as follows:

(w̄)′′′′−
2b

(1− bx̄)
(w̄)′′′+

λ

(1− bx̄)
(w̄)′′ = 0. (18)

Similarly, the related boundary conditions can be expressed in nondimensional form:

at x̄ = 0; (w̄)′′− β̄0(w̄)
′
= 0, (w̄)′′′− b(w̄)′′+ λ(w̄)′+ ᾱ0w̄ = 0, (19)

at x̄ = 1; (w̄)′′+
β̄L

(1− b)
(w̄)′ = 0, (w̄)′′′−

b
(1− b)

(w̄)′′+
λ

(1− b)
(w̄)′−

ᾱL

(1− b)
w̄= 0. (20)

Columns with exponentially varying stiffness. If the bending stiffness of the column changes exponen-
tially along its length, i.e., if

E I (x)= E I e−a(x/L), (21)

where a is a positive constant determining the “sharpness” of the stiffness change, the governing equation
becomes

d4w

dx4 −
2a
L

d3w

dx3 +

(
P

E I e−a(x/L) +
a2

L2

)
d2w

dx2 = 0, (22)
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which, when written in nondimensionalized form, becomes

(w̄)′′′′− 2a(w̄)′′′+ (λeax̄
+ a2)(w̄)′′ = 0. (23)

Similarly, the related boundary conditions can be expressed in nondimensional form as

(w̄)′′− β̄0(w̄)
′
= 0 and (w̄)′′′− a(w̄)′′+ λ(w̄)′+ ᾱ0w̄ = 0, at x̄ = 0, (24)

(w̄)′′+ β̄Lea(w̄)′ = 0 and (w̄)′′′− a(w̄)′′+ λea(w̄)′− ᾱLeaw̄ = 0 at x̄ = 1. (25)

3. VIM formulations for the studied buckling problems

According to the variational iteration method (VIM) [He 1999], a general homogeneous nonlinear dif-
ferential equation can be written in the form

Lw(x)+ Nw(x)= 0, (26)

where L is a linear operator and N is a nonlinear operator, and the “correction functional” is

wn+1(x)= wn(x)+
∫ x

0
λ(ξ)

(
Lwn(ξ)+ N w̃n(ξ)

)
dξ. (27)

In (27), λ(ξ) is a general Lagrange multiplier that can be identified optimally via variational theory, wn

is the n-th approximate solution and w̃n denotes a restricted variation, i.e., δw̃n = 0. As summarized in
[He et al. 2010] for a fourth order differential equation such as the equations of the problem considered
in this paper, λ(ξ) equals to

λ(ξ)=
(ξ − x)3

6
. (28)

The original variational iteration algorithm proposed in [He 1999] has the iteration formula

wn+1(x)= wn(x)+
∫ x

0
λ(ξ)

(
Lwn(ξ)+ Nwn(ξ)

)
dξ. (29)

In a recent paper, He et al. [2010] proposed two additional variational iteration algorithms for solving
various types of differential equations. These algorithms can be expressed as follows:

wn+1(x)= w0(x)+
∫ x

0
λ(ξ)

(
Nwn(ξ)

)
dξ, (30)

wn+2(x)= wn+1(x)+
∫ x

0
λ(ξ)

(
Nwn+1(ξ)− Nwn(ξ)

)
dξ. (31)

Thus, the three VIM iteration algorithms for (18), as an example, can be written as

w̄n+1(x)= w̄n(x) +

∫ x

0

(ξ − x)3

6

(
w̄′′′′n (ξ)−

2b
1−bξ

w̄′′′n (ξ)+
λ

1−bξ
w̄′′n(ξ)

)
dξ,

w̄n+1(x)= w̄0(x) +

∫ x

0

(ξ − x)3

6

(
−

2b
1−bξ

w̄′′′n (ξ)+
λ

1−bξ
w̄′′n(ξ)

)
dξ,

w̄n+2(x)= w̄n+1(x) +
∫ x

0

(ξ − x)3

6

(
−

2b
1−bξ

(w̄′′′n+1(ξ)− w̄
′′′

n (ξ))+
λ

1−bξ
(w̄′′n+1(ξ)− w̄

′′

n(ξ))

)
dξ.
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Similar algorithms can easily be written for (11) and (23). In order to determine the most effective VIM
algorithm to be used in the current study, one single case of a buckling equation (linearly varying stiffness
case with b = 0.3) is solved using all three algorithms. Parallel to the findings of Pinarbasi [2011], all
iteration algorithms yield exactly the same results. For this reason, the classical VIM algorithm is decided
to be used throughout the study.

4. Buckling loads for columns with elastic restraints

The general buckling problems formulated in Section 2 are specialized to three different end conditions
shown in Figure 2. In Case I (left), the bottom end of the column which is free to rotate (βL →0)
is laterally restrained with an extensional spring (with αL ) while the top end of the column is fixed
(α0 → ∞, β0 → ∞). Such a column can exist in a single story frame where the beam-to-column
connections are simple shear connections. Case II (Figure 2, middle) investigates an interior column in a
multistory building whose lateral stiffness is provided by laterally stiff elements such as lateral bracings
or reinforced concrete walls. In such a “sway-prevented structure”, the relative lateral displacement of
one end of the column with respect to the other end is so small that it is neglected. For this reason, in
Case II, the stiffnesses of linear springs are assumed to approach infinity (α0→∞, αL →∞) while
rotational spring stiffnesses (β0 and βL ) are let have any value. In Case III (Figure 2, right), the relative
lateral displacement of one end of the column with respect to the other end is not small so it cannot be
neglected. Such columns can be seen in a “sway-permitted” structure whose lateral stiffness is provided
only by flexural stiffnesses of frame members. For simplicity, the lateral stiffness of the extensional
spring at the top end of the column is taken zero, while rotational spring stiffnesses (β0 and βL ) can have
any value.

Columns with constant stiffness. The exact solution to the differential equation (11) has the form

w̄ = C1 sin
√
λx̄ +C2 cos

√
λx̄ +C3 x̄ +C4, (32)

Case I Case II Case III   
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Figure 2. The three cases (boundary conditions) studied in the paper. Case I: α0→∞,
β0→∞, βL → 0. Case II: α0→∞, αL →∞. Case III: α0→ 0, αL →∞.
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Figure 3. Case I — columns with constant stiffness — variation of normalized buckling
load with normalized linear spring stiffness.

where Ci (i=1,2,3,4) are evaluated from the related boundary conditions. In Case I, the boundary condi-
tions are

[(w̄)′]x̄=0 = 0, [w̄]x̄=0 = 0, [(w̄)′′]x̄=1 = 0 and [(w̄)′′′+ λ(w̄)′− ᾱLw̄]x̄=1 = 0. (33)

By substituting (32) into these boundary conditions, four homogeneous equations are obtained. These
equations can be put into matrix form:

[M(λ)]{C} = {0}, (34)

where {C} = {C1 C2 C3 C4}
T . Thus, the problem reduces to an eigenvalue problem. For a nontrivial

solution, the determinant of the coefficient matrix has to be zero. The smallest possible real root of the
characteristic equation, which is obtained by equating the determinant of the coefficient matrix to zero,
gives the nondimensional buckling load in the first buckling mode. For some particular values of αL , the
exact values are calculated and plotted in Figure 3, in a semilogarithmic scale.

Even though the differential equation to be solved in this case is relatively simple, when the exact
solution is tried to be obtained, finding the smallest root of the resulting characteristic equation which
contains trigonometric functions can be somewhat difficult. It is observed that the result is very sensitive
to the initial guess. So, one should be aware of that a couple of trials may be required to find the correct
root of the characteristic equation.

The same problem is also studied using VIM. The initial approximation is selected as a third degree
polynomial with four unknown coefficients Ai (i=1,2,3,4):

w̄0 = A1(x̄)3+ A2(x̄)2+ A3 x̄ + A4. (35)

Using the first iteration algorithm and conducting nine iterations, w̄9 is obtained. Through substitution
in the boundary conditions (33), four homogeneous equations are obtained. Similar to the exact solution
procedure, by making the determinant of the coefficient matrix of these equations equal to zero, the char-
acteristic equation for the related bucking problem is obtained. The roots of the characteristic equation
give the normalized buckling loads. Since the characteristic equation is a polynomial, one can easily
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λ

β0L/E I βL = β0 βL = 0 βL →∞

Exact VIM VIM Exact VIM VIM Exact VIM VIM
(9 iter) (17 iter) (9 iter) (17 iter) (9 iter) (17 iter)

0 9.870 9.8696 9.8696 9.870 9.8696 9.8696 20.191 20.1907 20.1907
0.5 11.772 11.7719 11.7719 10.798 10.7978 10.7978 21.659 21.6594 21.6594
1 13.492 13.4924 13.4924 11.598 11.5982 11.5982 22.969 22.9688 22.9688
2 16.463 16.4634 16.4634 12.894 12.8944 12.8944 25.182 25.1822 25.1822
4 20.957 20.9568 20.9568 14.660 14.6602 14.6602 28.397 28.3971 28.3969
10 28.168 28.1683 28.1677 17.076 17.0763 17.0763 33.153 33.1546 33.1532
20 30.355 32.7846 32.7819 18.417 18.4173 18.4173 35.902 35.9059 35.9019
∞ 39.478 39.4916 39.4784 20.191 20.1908 20.1907 39.478 39.4916 39.4784

Table 1. Case II — columns with constant stiffness — comparison of VIM solutions
with exact solutions [Wang et al. 2005].

λ

β0L/E I βL = β0 βL = 0 βL →∞

Exact VIM VIM Exact VIM VIM Exact VIM VIM
(9 iter) (17 iter) (9 iter) (17 iter) (9 iter) (17 iter)

0 0.000 0.0000 0.0000 0.000 0.0000 0.0000 2.4674 2.46740 2.46740
0.5 0.922 0.9220 0.9220 0.4268 0.42676 0.42676 3.3731 3.37309 3.37309
1 1.7071 1.7071 1.7071 0.7402 0.74017 0.74017 4.1159 4.11586 4.11586
2 2.9607 2.9607 2.9607 1.1597 1.15966 1.15966 5.2392 5.23920 5.23920
4 4.6386 4.6386 4.6386 1.5992 1.59919 1.59919 6.6071 6.60712 6.60712
10 6.9047 6.9047 6.9047 2.0517 2.04167 2.04167 8.1955 8.19547 8.19547
20 8.1667 8.1667 8.1667 2.2384 2.23840 2.23840 8.9583 8.95831 8.95831
∞ 9.8696 9.8696 9.8696 2.4674 2.46740 2.46740 9.8696 9.86960 9.86960

Table 2. Case III — columns with constant stiffness — comparison of VIM solutions
with exact solutions [Wang et al. 2005].

compute its all roots. Selecting the smallest root is no more tedious. For comparison, VIM results are
also plotted in Figure 3, which shows perfect agreement with the exact results.

For Case II and Case III, the characteristic equations of the buckling problems were derived by Wang
et al. [2005]. They also tabulated exact results for some particular values of spring stiffnesses. In order
to evaluate the efficiency of VIM, approximate solutions are obtained for the same values of spring
stiffnesses using classical iteration algorithm and VIM results are compared with the exact results given
in [Wang et al. 2005] in Tables 1 and 2. The same initial approximation chosen in Case I, namely,
Equation (35), is used also in these two cases. Normalized buckling loads are computed for two different
number of iterations; nine and seventeen.
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From (12) and (13), for uniform columns, the boundary conditions for Case II become

[(w̄)′′− β̄0(w̄)
′
]x̄=0 = 0, [w̄]x̄=0 = 0, [(w̄)′′+ β̄L(w̄)

′
]x̄=1 = 0 and [w̄]x̄=1 = 0 (36)

and the boundary conditions for Case III become

[(w̄)′′− β̄0(w̄)
′
]x̄=0 = 0, [(w̄)′′′+ λ(w̄)′]x̄=0 = 0, [(w̄)′′+ β̄L(w̄)

′
]x̄=1 = 0, [w̄]x̄=1 = 0. (37)

From Tables 1 and 2, it can be seen that even the VIM results obtained with nine iterations are sufficiently
close to the exact results. Still, by increasing the number of iterations, the exact results can be obtained
even when spring stiffnesses converge infinity. One can see that only one result in Table 1, shown in bold,
does not match. This corresponds to the case when β0= βL= 20. Considering that all other results match
perfectly, this discrepancy may be due to a misprint in the reference. A similar, but smaller, mismatch
occurs in Table 2, when β0= 10 and βL= 0.

Figure 3 and Tables 1 and 2 clearly show that VIM is a powerful technique in predicting buckling
loads of uniform columns with elastic restraints. The excellent match of VIM solutions with exact results
also encourages the use of this practical technique in buckling problems of nonuniform columns, whose
exact solutions are impractical or sometimes even impossible to derive.

Columns with variable stiffness. Although it is somewhat easy to derive closed form solutions for buck-
ling problems of uniform columns, which has a fourth order homogenous differential equation with
constant coefficients, it may be relatively difficult to obtain exact results for buckling of nonuniform
columns. To the best knowledge of author, there are no such solutions available in the literature. For
this reason, in this section of the paper, only the VIM results obtained using the classical VIM iteration
algorithm will be presented.

Similar to the constant stiffness cases studied in the previous section, the iterations in variable stiffness
cases are initiated with the simple approximation given in (35). To simplify the integration processes, the
variable coefficients in the iteration integrals are expanded in series using nine terms and the normalized
buckling loads are obtained from ninth approximate solution.

For each case illustrated in Figure 2, the normalized buckling loads of columns with variable (lin-
early/exponentially varying) stiffness are computed using classical VIM iteration algorithm for various
values of normalized spring stiffness(es) (i.e., for various values of αL for Case I and of β0 and βL for
Case II and Case III) and for various degrees of stiffness changes (i.e., for various values of b or a).
The numerical results are presented in Tables 3 and 4 for Case I, Tables 5–10 for Case II, and Tables
11–16 for Case III. The tabulated results can be used directly by structural engineers designing columns
with linearly or exponentially varying stiffness along their lengths restrained with nonclassical elastic
end supports.

It can be valuable to investigate the effect of the degree of stiffness nonlinearity on buckling loads
of nonuniform columns by plotting some representative graphs from the above tabulated results. In
the following plots, four particular cases of linear (b={0, 0.3, 0.5, 0.7}) and exponential (a={0, 0.5, 1.0,
2.0}) stiffness changes are studied for each end conditions illustrated in Figure 2. As can be inferred from
Figure 4, whose two parts plot the variation of bending stiffness of a column with the selected stiffness
changes through its length, the cases for b=0 and a=0 actually correspond to the uniform stiffness cases.
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αL L3/E I
b 0 0.1 0.25 0.5 1 2.5 5 10 100

0.0 2.4674 2.5484 2.6698 2.8716 3.2735 4.4644 6.3921 9.9563 19.7035
0.1 2.3928 2.4734 2.5940 2.7946 3.1940 4.3761 6.2843 9.7821 18.7228
0.2 2.3155 2.3956 2.5154 2.7147 3.1112 4.2835 6.1696 9.5904 17.7134
0.3 2.2351 2.3145 2.4335 2.6313 3.0246 4.1857 6.0464 9.3767 16.6704
0.4 2.1511 2.2299 2.3479 2.5440 2.9337 4.0819 5.9128 9.1353 15.5871
0.5 2.0643 2.1424 2.2593 2.4534 2.8389 3.9723 5.7681 8.8606 14.4553
0.6 1.9801 2.0574 2.1730 2.3650 2.7460 3.8630 5.6184 8.5544 13.2674
0.7 1.9170 1.9936 2.1083 2.2985 2.6757 3.7777 5.4922 8.2475 12.0251
0.8 1.8623 1.9384 2.0522 2.2410 2.6147 3.7020 5.3692 7.8866 10.6673

Table 3. Case I — columns with linearly varying stiffness.

αL L3/E I
a 0 0.1 0.25 0.5 1 2.5 5 10 100

0.00 2.4674 2.5484 2.6698 2.8716 3.2735 4.4644 6.3921 9.9563 19.7035
0.25 2.2868 2.3667 2.4863 2.6851 3.0807 4.2499 6.1288 9.5241 17.4010
0.50 2.1121 2.1121 2.3085 2.5041 2.8929 4.0380 5.8616 9.0572 15.3231
0.75 1.9438 2.0211 2.1369 2.3290 2.7104 3.8290 5.5895 8.5514 13.4555
1.00 1.7821 1.8581 1.9717 2.1601 2.5335 3.6230 5.3114 8.0046 11.7834
1.50 1.4803 1.5532 1.6622 1.8424 2.1980 3.2199 4.7329 6.8056 8.9663
2.00 1.2105 1.2800 1.3837 1.5546 1.8894 2.8285 4.1188 5.5513 6.7559
2.50 0.9780 1.0435 1.1409 1.3005 1.6097 2.4465 3.4737 4.3719 5.0448
3.00 0.7850 0.8451 0.9340 1.0789 1.3559 2.0716 2.8276 3.3552 3.7360

Table 4. Case I — columns with exponentially varying stiffness.

β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 9.8696 10.0666 10.3511 10.7978 11.5982 12.8944 14.6602 17.0763 19.7970
0.1 9.3716 9.5634 9.8402 10.2741 11.0493 12.2985 13.9866 16.2690 18.8042
0.2 8.8635 9.0498 9.3183 9.7384 10.4868 11.6860 13.2922 15.4364 17.7834
0.3 8.3434 8.5237 8.7832 9.1885 9.9079 11.0537 12.5733 14.5737 16.7298
0.4 7.8087 7.9824 8.2321 8.6213 9.3093 10.3974 11.8247 13.6751 15.6365
0.5 7.2560 7.4224 7.6614 8.0327 8.6863 9.7116 11.0399 12.7326 14.4948
0.6 6.6812 6.8396 7.0665 7.4180 8.0334 8.9897 10.2107 11.7371 13.2950
0.7 6.0825 6.2318 6.4451 6.7745 7.3475 8.2278 9.3329 10.6842 12.0333
0.8 5.4696 5.6090 5.8077 6.1131 6.6402 7.4393 8.4228 9.5952 10.7371

Table 5. Case II — columns with linearly varying stiffness, βL=0.
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β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 9.8696 10.2656 10.8447 11.7719 13.4924 16.4634 20.9568 28.1683 37.9572
0.1 9.3716 9.7676 10.3458 11.2696 12.9768 15.9024 20.2681 27.1131 36.0973
0.2 8.8635 9.2599 9.8377 10.7582 12.4511 15.3254 19.5477 25.9988 34.1762
0.3 8.3434 8.7407 9.3187 10.2362 11.9131 14.7283 20.2726 24.8132 32.1791
0.4 7.8087 8.2078 8.7867 9.7015 11.3601 14.1053 17.9768 23.5401 30.0877
0.5 7.2560 7.6579 8.2386 9.1507 10.7869 13.4462 17.0968 22.1551 27.8773
0.6 6.6812 7.0870 7.6700 8.5778 10.1829 12.7305 16.1153 20.6196 25.5111
0.7 6.0825 6.4914 7.0740 7.9702 9.5239 11.9159 14.9736 18.8703 22.9324
0.8 5.4696 5.8740 6.4438 7.3060 8.7630 10.9259 13.5782 16.8166 20.0636

Table 6. Case II — columns with linearly varying stiffness, βL = β0.

β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 20.1907 20.4982 20.9462 21.6594 22.9688 25.1822 28.3971 33.1546 38.7118
0.1 19.1685 19.4679 19.9039 20.5971 21.8669 24.0044 27.0859 31.5885 36.7606
0.2 18.1179 18.4087 18.8318 19.5035 20.7310 22.7876 25.7281 29.9663 34.7519
0.3 17.0330 17.3144 17.7236 18.3722 19.5541 21.5237 24.3143 28.2765 32.6709
0.4 15.9057 16.1770 16.5709 17.1942 18.3265 20.2020 22.8317 26.5041 30.4993
0.5 14.7245 14.9845 15.3615 15.9569 17.0343 18.8066 21.2619 24.6272 28.2130
0.6 13.4714 13.7186 14.0766 14.6405 15.6564 17.3134 19.5769 22.6134 25.7757
0.7 12.1185 12.3509 12.6868 13.2143 14.1593 15.6846 17.7327 20.4122 23.1324
0.8 10.6238 10.8384 11.1478 11.6318 12.4924 13.8631 15.6644 17.9511 20.2078

Table 7. Case II — columns with linearly varying stiffness, βL →∞.

β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 9.8696 10.0666 10.3511 10.7978 11.5982 12.8944 14.6602 17.0763 19.7970
0.25 8.6951 8.8800 9.1463 9.5628 10.3039 11.4894 13.0723 15.1763 17.4678
0.50 7.6345 7.8078 8.0570 8.4449 9.1301 10.2115 11.6253 13.4490 15.3706
0.75 6.6807 6.8432 7.0761 7.4371 8.0696 9.0535 10.3113 11.8848 13.4891
1.00 5.8266 5.9789 6.1965 6.5322 7.1152 8.0080 9.1226 10.4735 11.8071
1.50 4.3885 4.5224 4.7123 5.0019 5.4948 6.2237 7.0879 8.0690 8.9779
2.00 3.2634 3.3813 3.5470 3.7962 4.2104 4.7983 5.4560 6.1537 6.7615
2.50 2.3955 2.4998 2.6448 2.8592 3.2054 3.6734 4.1640 4.6491 5.0474
3.00 1.7329 1.8261 1.9540 2.1391 2.4273 2.7948 3.1528 3.4818 3.7373

Table 8. Case II — columns with exponentially varying stiffness, βL=0.
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β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 9.8696 10.2656 10.8447 11.7719 13.4924 16.4634 20.9568 28.1683 37.9572
0.25 8.6951 9.0912 9.6684 10.5871 12.2742 15.1312 19.3093 25.6463 33.6012
0.50 7.6345 8.0318 8.6080 9.5184 11.1681 13.8959 17.7352 23.2317 29.6633
0.75 6.6807 7.0803 7.6563 8.5575 10.1638 12.7453 16.2284 20.9375 26.1113
1.00 5.8266 6.2294 6.8054 7.6958 9.2507 11.6682 14.7864 18.7760 22.9202
1.50 4.3885 4.8003 5.3753 6.2343 7.6558 9.6994 12.1029 14.8873 17.5178
2.00 3.2634 3.6860 4.2546 5.0617 6.3049 7.9434 9.7142 11.6021 13.2518
2.50 2.3955 2.8297 3.3810 4.1094 5.1398 6.3912 7.6528 8.9047 9.9273
3.00 1.7329 2.1777 2.6960 3.3199 4.1300 5.0524 5.9299 6.7435 7.3689

Table 9. Case II — columns with exponentially varying stiffness, βL = β0.

β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 20.1907 20.4982 20.9462 21.6594 22.9688 25.1822 28.3971 33.1546 38.7118
0.25 17.7938 18.0823 18.5020 19.1681 20.3842 22.4186 25.3196 29.4819 34.1545
0.50 15.6379 15.9085 16.3014 16.9228 18.0507 19.9163 22.5250 26.1504 30.0674
0.75 13.7046 13.9583 14.3258 14.9051 15.9497 17.6565 19.9937 23.1361 26.4052
1.00 11.9763 12.2141 12.5577 13.0972 14.0633 15.6210 17.7068 20.4171 23.1330
1.50 9.0679 9.2767 9.5767 10.0436 10.8665 12.1541 13.7950 15.7797 17.6281
2.00 6.7879 6.9712 7.2329 7.6360 8.3327 9.3851 10.6528 12.0744 13.3081
2.50 5.0249 5.1861 5.4144 5.7615 6.3477 7.1965 8.1554 9.1490 9.9556
3.00 3.6800 3.8224 4.0220 4.3206 4.8104 5.4843 6.1918 6.8675 7.3829

Table 10. Case II — columns with exponentially varying stiffness, βL →∞.

β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 0.0000 0.0968 0.2305 0.4268 0.7402 1.1597 1.5992 2.0417 2.4188
0.1 0.0000 0.0967 0.2300 0.4250 0.7347 1.1453 1.5703 1.9922 2.3473
0.2 0.0000 0.0966 0.2295 0.4232 0.7288 1.1300 1.5395 1.9403 2.2732
0.3 0.0000 0.0965 0.2289 0.4211 0.7224 1.1133 1.5067 1.8856 2.1959
0.4 0.0000 0.0964 0.2283 0.4189 0.7153 1.0953 1.4714 1.8276 2.1148
0.5 0.0000 0.0963 0.2276 0.4164 0.7075 1.0754 1.4331 1.7655 2.0293
0.6 0.0000 0.0961 0.2268 0.4136 0.6987 1.0534 1.3912 1.6987 1.9384
0.7 0.0000 0.0960 0.2260 0.4106 0.6891 1.0291 1.3455 1.6269 1.8420
0.8 0.0000 0.0961 0.2255 0.4079 0.6795 1.0041 1.2981 1.5528 1.7433

Table 11. Case III — columns with linearly varying stiffness, βL=0.
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β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 0.0000 0.1967 0.4798 0.9220 1.7071 2.9607 4.6386 6.9047 9.4865
0.1 0.0000 0.1965 0.4788 0.9180 1.6933 2.9182 4.5311 6.6604 9.0232
0.2 0.0000 0.1963 0.4775 0.9134 1.6773 2.8698 4.4121 6.3987 8.5430
0.3 0.0000 0.1961 0.4760 0.9078 1.6585 2.8142 4.2791 6.1165 8.0429
0.4 0.0000 0.1957 0.4741 0.9010 1.6358 2.7492 4.1288 5.8099 7.5185
0.5 0.0000 0.1952 0.4715 0.8921 1.6075 2.6713 3.9561 5.4726 6.9637
0.6 0.0000 0.1942 0.4673 0.8791 1.5695 2.5738 3.7520 5.0946 6.3687
0.7 0.0000 0.1916 0.4587 0.8569 1.5131 2.4437 3.5003 4.6591 5.7178
0.8 0.0000 0.1845 0.4392 0.8142 1.4207 2.2575 3.1740 4.1383 4.9853

Table 12. Case III — columns with linearly varying stiffness, βL = β0.

β0L/E I
b 0 0.1 0.25 0.5 1 2 4 10 100

0.0 2.4674 2.6634 2.9430 3.3731 4.1159 5.2392 6.6071 8.1955 9.6752
0.1 2.2928 2.4857 2.7604 3.1821 3.9076 4.9969 6.3089 7.8103 9.1890
0.2 2.1154 2.3048 2.5743 2.9869 3.6937 4.7466 5.9993 7.4106 8.6869
0.3 1.9346 2.1203 2.3839 2.7866 3.4729 4.4864 5.6760 6.9935 8.1658
0.4 1.7495 1.9310 2.1883 2.5800 3.2437 4.2140 5.3359 6.5553 7.6214
0.5 1.5589 1.7357 1.9857 2.3650 3.0036 3.9262 4.9746 6.0903 7.0476
0.6 1.3608 1.5323 1.7740 2.1390 2.7488 3.6176 4.5850 5.5902 6.4348
0.7 1.1522 1.3172 1.5490 1.8972 2.4732 3.2797 4.1559 5.0413 5.7679
0.8 0.9276 1.0846 1.3042 1.6316 2.1661 2.8978 3.6682 4.4207 5.0217

Table 13. Case III — columns with linearly varying stiffness, βL →∞.

β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 0.0000 0.0968 0.2305 0.4268 0.7402 1.1597 1.5992 2.0417 2.4188
0.25 0.0000 0.0965 0.2293 0.4224 0.7265 1.1240 1.5278 1.9208 2.2456
0.50 0.0000 0.0963 0.2279 0.4177 0.7117 1.0862 1.4542 1.8001 2.0774
0.75 0.0000 0.0961 0.2265 0.4125 0.6957 1.0462 1.3787 1.6803 1.9148
1.00 0.0000 0.0958 0.2248 0.4068 0.6783 1.0041 1.3015 1.5617 1.7582
1.50 0.0000 0.0951 0.2210 0.3936 0.6392 0.9132 1.1436 1.3307 1.4644
2.00 0.0000 0.0943 0.2162 0.3775 0.5934 0.8141 0.9835 1.1115 1.1986
2.50 0.0000 0.0931 0.2098 0.3569 0.5390 0.7067 0.8237 0.9064 0.9603
3.00 0.0000 0.0908 0.1999 0.3285 0.4722 0.5896 0.6643 0.7142 0.7457

Table 14. Case III — columns with exponentially varying stiffness, βL=0.
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β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 0.0000 0.1967 0.4798 0.9220 1.7071 2.9607 4.6386 6.9047 9.4865
0.25 0.0000 0.1963 0.4772 0.9120 1.6727 2.8559 4.3782 6.3250 8.4094
0.50 0.0000 0.1957 0.4740 0.9004 1.6335 2.7421 4.1111 5.7711 7.4488
0.75 0.0000 0.1951 0.4701 0.8867 1.5895 2.6202 3.8410 5.2466 6.5926
1.00 0.0000 0.1943 0.4656 0.8709 1.5404 2.4917 3.5716 4.7537 5.8301
1.50 0.0000 0.1921 0.4538 0.8323 1.4289 2.2214 3.0468 3.8658 4.5463
2.00 0.0000 0.1892 0.4382 0.7845 1.3033 1.9450 2.5555 3.1061 3.5282
2.50 0.0000 0.1852 0.4184 0.7288 1.1695 1.6731 2.1077 2.4651 2.7204
3.00 0.0000 0.1799 0.3942 0.6669 1.0314 1.4111 1.7059 1.9282 2.0780

Table 15. Case III — columns with exponentially varying stiffness, βL = β0.

β0L/E I
a 0 0.1 0.25 0.5 1 2 4 10 100

0.00 2.4674 2.6634 2.9430 3.3731 4.1159 5.2392 6.6071 8.1955 9.6752
0.25 2.0666 2.2553 2.5237 2.9344 3.6366 4.6801 5.9165 7.3018 8.5478
0.50 1.7254 1.9076 2.1656 2.5580 3.2220 4.1898 5.3033 6.5057 7.5498
0.75 1.4364 1.6124 1.8608 2.2361 2.8638 3.7595 4.7581 5.7959 6.6662
1.00 1.1924 1.3628 1.6022 1.9614 2.5545 3.3812 4.2723 5.1623 5.8834
1.50 0.8153 0.9759 1.1990 1.5284 2.0559 2.7527 3.4489 4.0890 4.5742
2.00 0.5525 0.7047 0.9134 1.2152 1.6803 2.2555 2.7820 3.2263 3.5426
2.50 0.3722 0.5171 0.7127 0.9880 1.3919 1.8521 2.2336 2.5290 2.7278
3.00 0.2507 0.3891 0.5720 0.8203 1.1621 1.5137 1.7751 1.9618 2.0818

Table 16. Case III — columns with exponentially varying stiffness, βL →∞.
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Figure 4. Stiffness variations studied in the paper in more detail. Left: linear variation
in stiffness. Right: exponential variation in stiffness.
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Figure 5. Case I — columns with variable stiffness: variation of normalized buckling
load with normalized linear spring stiffness. Left: linear variation in stiffness. Right:
exponential variation in stiffness.

Figure 5 shows the variation of normalized buckling load with normalized linear spring stiffness for
columns of variable stiffness with the end conditions considered in Case I. Recalling that the cases for
b=0 and a=0 correspond to uniform columns, it can be seen from these graphs that as the sharpness of the
stiffness variation (a or b) increases, the buckling load of the column decreases considerably especially
if the spring stiffness is large. Figure 5 also shows that there is no need to increase the spring stiffness
beyond a critical value because further increases will result in no change in buckling load. For a particular
case, this “critical” value of the spring stiffness can easily be determined using VIM.

Figures 6 and 7 show the variation of normalized buckling load with normalized rotational spring
stiffnesses for columns of, respectively, linearly and exponentially variable flexural stiffness with the
boundary conditions considered in Case II. Similarly, Figures 8 and 9 show the effect of rotational
spring stiffnesses on normalized buckling load for columns of, respectively, linearly and exponentially
variable flexural stiffness with the boundary conditions considered in Case III. Comparison of the graphs
presented in Figures 6 and 7 with those given in Figures 8 and 9 clearly shows the importance of the
lateral bracing of the columns. Case II columns with lateral bracing have much larger elastic buckling
loads compared to Case III columns which are free to displace in lateral direction.

5. Conclusions

In an attempt to construct ever-stronger and ever-lighter structures, many engineers currently design
slender high strength columns with variable cross sections and various end conditions. Even though
buckling behavior of uniform columns with ideal boundary conditions are extensively studied, there are
limited studies in the literature on buckling analysis of nonuniform columns with elastic end restraints.
This is due to the fact that such an analysis requires the solution of more complex differential equations
for which it is usually impractical or sometimes even impossible to obtain exact solutions.
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Figure 7. Case II — variation of normalized buckling load with normalized rotational
spring stiffnesses for columns with exponentially varying stiffness.
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Figure 8. Case III — variation of normalized buckling load with normalized rotational
spring stiffnesses for columns with linearly varying stiffness.
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Figure 9. Case III — variation of normalized buckling load with normalized rotational
spring stiffnesses for columns with exponentially varying stiffness.
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This paper shows that the variational iteration method (VIM) can successfully be used to determine
the buckling loads of slender columns with elastic end restraints. To the best knowledge of author, exact
solutions to this problem are available only for some particular cases of uniform columns. For this reason,
before analyzing the columns with variable cross sections, the buckling loads of columns with constant
cross sections are determined using classical variational iteration algorithm and VIM results are compared
to the exact results, which show perfect match. After verifying the efficiency of VIM in the analysis of
this special type of buckling problem, the columns with variable flexural stiffness are analyzed using this
practical technique. It is shown that unlike exact solution procedures, variational iteration algorithms can
easily be used even when the column stiffness change along its length exponentially or linearly and/or
the end conditions are rather complex.
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[Coşkun and Atay 2007] S. B. Coşkun and M. T. Atay, “Analysis of convective straight and radial fins with temperature-
dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis”,
Math. Probl. Eng. (2007), Art. ID 42072, 15.

http://dx.doi.org/10.1016/j.chaos.2005.11.050
http://dx.doi.org/10.1016/j.chaos.2005.11.050
http://dx.doi.org/10.1061/(ASCE)0733-9445(1991)117:8(2426)
http://dx.doi.org/10.1016/j.euromechsol.2005.06.008
http://dx.doi.org/10.1016/j.euromechsol.2005.06.008
http://dx.doi.org/10.1016/j.euromechsol.2009.08.003
http://dx.doi.org/10.1016/j.euromechsol.2009.08.003
http://dx.doi.org/10.1016/j.camwa.2009.03.051
http://dx.doi.org/10.1016/j.camwa.2009.03.051
http://dx.doi.org/10.1177/0731684407081369
http://dx.doi.org/10.1016/j.physleta.2007.04.069
http://dx.doi.org/10.1016/j.physleta.2007.04.069
http://dx.doi.org/10.1081/SME-200028002
http://dx.doi.org/10.1081/SME-200028002
http://dx.doi.org/10.1016/j.engstruct.2003.09.005
http://dx.doi.org/10.1016/j.engstruct.2003.09.005
http://dx.doi.org/10.1016/j.applthermaleng.2008.01.012
http://dx.doi.org/10.1016/j.applthermaleng.2008.01.012
http://dx.doi.org/10.3846/1392-6292.2010.15.275-286
http://dx.doi.org/10.3846/1392-6292.2010.15.275-286
http://dx.doi.org/10.1155/2007/42072
http://dx.doi.org/10.1155/2007/42072


506 SEVAL PINARBASI
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