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THE IMPLICIT COROTATIONAL METHOD AND ITS USE
IN THE DERIVATION OF NONLINEAR STRUCTURAL

MODELS FOR BEAMS AND PLATES

GIOVANNI GARCEA, ANTONIO MADEO AND RAFFAELE CASCIARO

What we call the implicit corotational method is proposed as a tool to obtain geometrically exact nonlin-
ear models for structural elements, such as beams or shells, undergoing finite rotations and small strains,
starting from the basic solutions for the three-dimensional Cauchy continuum used in the corresponding
linear modelings.

The idea is to use a local corotational description to decompose the deformation gradient in a stretch
part followed by a finite rigid rotation. Referring to this corotational frame we can derive, from the linear
stress tensor and the deformation gradient provided by linear elasticity, an accurate approximation for
the nonlinear stress and strain tensors which implicitly assure frame invariance. The stress and strain
fields recovered in this way as functions of generalized stress and strain resultants are then used within
a mixed variational formulation allowing us to recover an objective nonlinear modeling directly suitable
for FEM implementations through a black-box process which maintains the full details of the linear
solutions, such as shear warping and other subtle effects.

The method is applied to the construction of three-dimensional beam and plate nonlinear models start-
ing from the Saint-Venant rod and Kirchhoff and Mindlin–Reissner plate linear theories, respectively.

1. Introduction

Nonlinear analysis of slender elastic structures requires sound nonlinear modeling to achieve reliable
and accurate solutions. The use of a frame-invariant (or objective) structural model, where stress and
strain fields are unaffected by finite rigid motions of the body, is a necessary requirement for the analysis
[Malvern 1969; Ibrahimbegovic and Taylor 2002]. While it is quite easy to satisfy frame-invariance for
three-dimensional bodies using the Cauchy continuum, it can be difficult to obtain a coherent, simple
enough modeling for slender structural elements, such as beams or shells, which are more conveniently
described as one or two-dimensional fibred continua characterized by three-dimensional displacements
and rotations.

In the last few years great efforts have been made to develop nonlinear models of beams, plates, and
shells and their finite element implementations. The number of papers on this topic is formidable and this
is due, in the authors’ opinion, to the complexity of the nonlinear modeling process and to the sometimes
unsatisfactory results obtained by FEM discretizations.

This paper has been developed within the national joint research project “Performance-based modeling and analysis of nonlinear
structures,” supported by the Italian Ministry of University Scientific and Technology Research (MIUR). We would like to thank
all the participants in the project for their comments and suggestions.
Keywords: geometrically exact beam and shell theories, corotational description, postbuckling analysis.
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The great majority of beam and shell models are based on geometric exact theories such as those
developed in [Cosserat and Cosserat 1909; Reissner 1972; Simo 1986; Wriggers and Gruttmann 1993;
Antman 1995; Auricchio et al. 2008]. Models so generated are geometrically exact, that is, exactly frame-
independent, but, being based on simplified assumptions in the constitutive laws relating strain and stress
resultants, are generally unable to describe important details already present in the corresponding linear
models. This is evident, for example, in the classical Antman–Simo nonlinear beam model where the as-
sumed simplified constitutive law lacks the shear/torsional coupling manifested by the three-dimensional
Saint-Venant linear solution [de Saint-Venant 1855] and more subtle nonlinear couplings associated with
the section warping, such as the axial-torsional second-order coupling recognized in [Wagner 1936].

Models derived as Ritz–Galerkin approximations by introducing a three-dimensional displacement
field in a variational principle allow for more detailed modeling, at least in principle. This approach
was followed, for instance, in [Pai and Nayfeh 1994; Pai et al. 1998; Petrov and Géradin 1998a; 1998b;
Nayfeh and Pai 2004; Pi et al. 2005; Kim et al. 2005; Chen et al. 2006]. However, extending to finite
kinematics the three-dimensional displacement provided by the linear theory, like the nonlinear beam
model of [Petrov and Géradin 1998a; 1998b], appears somewhat overcomplex and also requires ad hoc
simplifications in order to eliminate spurious locking. Models obtained by the use of problem-dependent
engineering nonlinear strain measures, like the beam and shell models of Nayfeh and Pai (see [Nayfeh
and Pai 2004]), are only aimed at an essential simplified modeling.

On the other hand the availability of linear structural models for fibred continua derived, using a small
displacements hypothesis, from three-dimensional Cauchy equations through appropriate assumptions
on the statics and kinematics of the body is notable. Its use, as a basis to generate a corresponding
nonlinear model, is then attractive due to the possibility of recovering all the effort spent in developing
linear theories in a simplified context. The aim of this paper is to exploit this possibility through the
use, in the continuum description, of the corotational approach initially proposed in a FEM context in
[Wemper 1969; Belytschko and Glaum 1979; Rankin 1986; Nour-Omid and Rankin 1991] and used to
construct a nonlinear finite element starting from a linear one.

In this paper we show that, by transferring this idea from the element to the continuum, we can derive
a standard methodology to obtain a frame-indifferent nonlinear modeling which maintains all the details
of the embedded linear solution. We call the proposed method the implicit corotational method (ICM).

The main idea is to associate a corotational frame (observer) to each point of the three-dimensional
continuum so allowing the motion in the neighbor of the point to be split in a pure stretch followed
by a pure rotation, according to the decomposition theorem [Malvern 1969; Bonet and Wood 1997]. It
will be shown that, using the small strain hypothesis and rotation algebra, the linear stress and linear
strain solution fields, when viewed in this corotational frame, can provide accurate approximations for
the Biot nonlinear stress and strain tensor fields. Once the corotational rotation is appropriately defined,
the local statics and kinematics of the model are recovered from the linear solution as a function of the
stress/displacement resultants. Stress and strain fields are then introduced within a mixed variational prin-
ciple in order to obtain the constitutive laws directly in terms of stress/strain resultants. This completes
the ICM definition of the nonlinear model.

The thus-obtained nonlinear model retains all the details of the three-dimensional linear solution,
including torsion/shear warping, while its objectivity is ensured implicitly. Furthermore, the use of the
mixed formulation and the greater accuracy with which ICM recovers the stress field allow an accurate
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description of the constitutive laws in terms of resultants. The proposed approach does not require any
ad hoc assumptions about the structural model at hand, nor does it depend on any particular parametriza-
tion of the rotation tensor, but rather it actually behaves as a black-box tool able to translate known
linear models into the corresponding nonlinear ones. Moreover, the direct use of a mixed (stress/strain)
description provides an automatic and implicitly coherent methodology for generating models free of
nonlinear locking effects [Garcea et al. 1998; 1999; 2002; 2005] in a format directly suitable for use in
FEM implementations.

To better illustrate the features of ICM and to show its potential, the method will be implemented here
in order to obtain a nonlinear three-dimensional beam model, derived from the general Saint-Venant linear
rod theory, and two nonlinear plate models, derived from the Kirchhoff and Mindlin plate theories. We
will also show that from these new structural models, through simplifying assumptions, models already
available in the literature can be derived.

The paper is organized as follows: Section 2 introduces the variational framing used in our proposal.
Section 3 gives a general overview of ICM and provides the main algebra which is involved in the
proposed method. Section 4 presents and discusses some tutorial implementations to underline its main
features and to show its effectiveness and reliability in recovering known noteworthy results from the
literature. Sections 5 and 6 develop a nonlinear three-dimensional beam model and two nonlinear plate
models, and also compare these with similar proposals available in the literature. Section 7 contains
some comments and further insights. A summary of the results obtained and possible extensions are
given in the concluding section.

The FEM implementation of the ICM models presented here, together with the derivation of nonlinear
beam and plate finite elements and their validation through numerical testing, will be discussed in detail
in our subsequent, related paper [Garcea et al. 2012].

2. Nonlinear analysis

Nonlinear analysis usually refers to a structure subjected to an assigned loading path p[λ], λ being a load
parameter controlling the loading process. The structural behavior is governed by the stationarity condi-
tion of its total potential energy 5[u, λ], associated with the external load p and with the configuration
u of the structure, with respect to all admissible changes in configuration δu. Using compact notation
this condition is expressed by

5′[u, λ]δu = 0, u ∈U, δu ∈ T, (1)

where U is the manifold of the admissible configurations, T its tangent space, and the prime stands
for Frechèt differentiation with respect to u. Usually (and conveniently) the configuration is described
making U a linear manifold, so T becomes independent from u. This choice, always possible with an
opportune definition of the configuration variables, noticeably simplifies the variations algebra and also
is well suited for FEM implementation, where it simplifies the interelement continuity conditions (see
[Casciaro 2005]). Condition (1) states a relationship between λ and u describing a curve in {u, λ} space.
The goal of the analysis is to determine this curve, the equilibrium path, with particular accuracy in the
evaluation of the maximum value λc of the load multiplier.
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The potential energy can be split into two separate terms, the first expressing the internal strain energy
and the second the external load work, that, for the sake of simplicity and without loss of generality, can
be assumed as linear in u, as usual in FEM formulation:

5[u, λ] :=8[u] − p[λ]u. (2)

We also know (see [Garcea et al. 1998; 1999; 2002; 2005]) that, with an appropriate choice of config-
uration variables u := {σ, d} and the corresponding choice p := {ε̄, q}, these terms could be written in
mixed form as

8[u] := −9[σ ] + σε[d], p[λ]u := q[λ]d + ε̄[λ]σ, (3)

σ and d being the stress and displacement fields, q and ε̄ the external forces and distortions, ε[d] the
compatible strain field associated with d through kinematics, and 9[σ ] the complementary strain energy
which is usually assumed as quadratic in σ :

9[σ ] := 1
2 Cσ 2, (4)

with C being the positive definite bilinear compliance operator. The ε[d] function plays an important
role in the analysis. Assuming the ε[d] relationship is linear, we obtain a linear formulation. So we can
translate from a linear to a geometrically nonlinear formulation simply by referring to a proper nonlinear
expression for the geometrical relation ε[d], which also implicitly defines the stress σ as work-associated
with ε.

The invariance from superposed rigid body motions, that is, objectivity, is an essential prerequisite for
the function ε[d]. This requirement is easily satisfied if referring to a three-dimensional Cauchy body,
simply by taking d as the displacement field and ε as the Green–Lagrange strain tensor field (by this
choice, σ will be the second Piola–Kirchhoff stress tensor field).

In many cases of practical relevance, such as for beams and plates, the three-dimensional behavior can
be conveniently described using generalized quantities defined over a one-dimensional (the beam axis) or
two-dimensional (the median plane of the plate) domain. In this way, the three-dimensional continuum
is converted to a coherently derived one or two-dimensional model, which can more easily be treated.
This modeling approach is really convenient and extensively used in linear analysis, but its extension to
nonlinear analysis is not so obvious.

Equations (1)–(4) offer a convenient variational framing for the setup of a nonlinear model that only
requires as ingredients suitable separate choices for the displacement and stress fields u and σ . When
using a material description, stresses are unaffected by a change in observer, so the use of a separate
evaluation is extremely convenient in nonlinear modeling. Furthermore we will show that, as usual, we
have a better estimate of the stress than that of the displacements.

3. The implicit corotational method

The goal of the implicit corotational method (ICM) is to fully reuse, in a nonlinear context, the results of
linear theories in order to obtain objective structural models in a format suitable for FEM implementations.
It is shown that, at least in the presence of smooth small strains, an appropriate representation of the
strains and stresses (making use of the Biot tensors) together with an appropriate choice of the local
frame (through a corotational formulation) is the key to exploiting the linear solution in a nonlinear
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setting. This can be achieved by standard methodology, without the need for ad hoc assumptions related
to the particular problem at hand, as in [Nayfeh and Pai 2004].

3.1. Kinematics preliminaries. Material points X ∈ E3 of the reference configuration occupy position
x in the current configuration. Rigid-body motions (see [Malvern 1969]) can be described in terms of
translations and rotations. We denote by the vector v the translations and by R the rotations, where R
belongs to the space of proper-orthogonal tensors, R ∈ SO(3). A rigid-body motion characterized by a
translation v and rotation R can also be viewed as a change of observer which suffers the inverse rotation
Q = RT and the opposite translation c=−v (T indicates the transpose).

If the positions viewed by the original observer and by the moved observer are denoted by x̄ and x,
respectively, the relationships between them are

x̄ = QT (x− c), x = Qx̄+ c.

The displacements viewed by the two observers are denoted by ū and u, respectively, and will be related
by

ū = QT (X + u− c)− X, (5a)

while the rotations are related by
R = QT R. (5b)

By assuming a fixed reference frame with origin O and basis vectors {e1, e2, e3} in E3, both translations
and rotations can be defined in terms of three scalar parameters. While the translations are described
conveniently by their (covariant) components, the rotations are expressed by the exponential mapping
according to

R := I +ω[w], ω[w] :=

∞∑
n=1

1
n!

Wn, (5c)

where W is the following skew-symmetric matrix, whose associated axial vector is w = wi ei :

W :=

 · −w3 w2

w3 · −w1

−w2 w1 ·

 . (6)

3.2. Kinematics of a three-dimensional Cauchy body. Consider a Cauchy body (see [Malvern 1969])
referred to the fixed Cartesian frame (O, {e1, e2, e3}) and let the reference configuration be stress-free.
The deformation gradient is F = I +∇u where I is the identity tensor and ∇( · ) := ∂( · )/∂X is the
material gradient.

By the polar decomposition theorem (see [Malvern 1969])

F = RU, (7)

where R[X] is the rotation tensor and U[X] is the (symmetric, positive-definite) stretching tensor.
Recalling (5b), the rotation can be reduced to the identity (R = QT R = I) simply by a change in

the observer, making Q = R. An objective description requires that the strain measure be independent
from R. This requirement is not satisfied, in general, by the so-called infinitesimal strain tensor, denoted
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by εL , which is obtained by expressing the deformation gradient ∇u in its symmetric and skew-symmetric
parts

εL := E = 1
2 (∇u+∇uT ), W := 1

2 (∇u−∇uT ). (8)

Possible objective strain measures are expressed in the form ε(n) := (1/n)(Un
− I) which, for n = 1

and n = 2 respectively, provides the Biot strain tensor εb and the Green–Lagrange strain tensor εg:

εb := RT F− I, εg :=
1
2 (F

T F− I). (9)

The latter can be easily evaluated from ∇u through a simple quadratic expression:

εg = E+ 1
2∇uT

∇u. (10)

However, its identification in terms of linear strain, that is, εg ≈ εL , requires ‖∇u‖� 1 which implies
too restrictive hypotheses about the expected solutions to be used in practice.

The Biot strain εb seems to be a better candidate for that purpose. In fact, expressing R in the form
(5c) we obtain the relation

εb = E+ 1
2 (ω

T
∇u+∇uTω−ωTω), (11)

which implies that εb≈ εL when ω≈ 0, obtained by an appropriate change of local observer. If we assume
that εb and ω are small enough (so that ω ∼W ), εb can be expressed by its second-order approximation

εb ≈ ε̃b := E+ 1
2 (EW −W E−W2). (12)

Note that by (9), it is
εb = εg −

1
2 ε

2
b = ε̃b−

1
2 (ε

2
b − E2),

so the resulting error in using (12) can be evaluated as (ε2
b − E2)/2≈ O[‖ε2

bω‖+‖εbω
2
‖+‖ω4

‖].
In our treatment, we deal with problems characterized by large displacements but small strains, so that

we can assume ‖εb‖� 1. The key of our approach is to use a suitable change of observer so as to make
at the same time the rotation residual as small as possible (ω ≈ 0). That is, we set up the formulation so
as to make ω small enough to allow εb to be evaluated through (12).

From now on R will always denote the polar decomposition rotation in (7) and Q the change of
observer rotation in (5a).

3.3. Constitutive equation for a three-dimensional Cauchy body. Stress and strain are work conjugated,
thus the selection of a strain measure among εL , εg, and εb implies the choice of the work-conjugate
stress tensor, that is, σL , σg, and σb. Here σL is the linear stress tensor, σg is the second Piola–Kirchhoff
stress tensor, and the Biot stress tensor σb is defined by σb :=

1
2 (Uσg + σgU).

As discussed above, by referring to an appropriate corotational frame such that ω ≈ 0, we can recover
εb using (12) from the displacement gradient ∇u with great accuracy. To complete the recovery we also
need to relate the nonlinear stress and strain tensors, namely σb and εb, through constitutive equations.

Within the mixed formulation followed in Section 2, constitutive equations are obtained by zeroing
the variation with respect to the stress field of the mixed form (3) of the strain energy. Denoting by σ
and ε any work conjugate strain and stress tensors, we can rewrite (3) as

8 :=

∫
B
(σ · ε−ψ[σ ]) dV, (13)
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B being the reference body volume.
The linear solution is characterized by the complementary energy ψL [σL ] :=

1
2 σL ·CLσL , CL being

the elastic compliance tensor. Taking the variation with respect to σL , we have

εL [σL ] := CLσL . (14)

So, assuming the same relationship between σb and εb, that is,

εb[σb] := Cbσb, Cb ≈ CL , (15)

the identification σb ≈ σL , with σL defined by (14) and εb by (12), will imply a local compatibility error

εb−Cbσb ≈
1
2 (EW −W E−W2)= O(‖εbω‖+‖ω

2
‖), (16)

which can be considered negligible for small ω.
This is a key result of our approach since it proves that the choice of the Biot tensors allows us to extend

the constitutive laws of linear elasticity to the nonlinear range. On the contrary, if the Green–Lagrange
strain tensor is adopted, the assumption

εg[σg] := Cgσg, Cg ≈ CL ,

implies
εg − εg[σg] ≈ O(‖ε2

b‖),

even in the most favorable case of ω ≈ 0, which can hardly be accepted.

3.4. Use of linear solutions to set up a nonlinear model. The previous considerations have shown that,
when viewed by a local corotational observer rotating with the material neighborhood ( Q ≈ R), both
the kinematic and constitutive equations of linear theory correspond to those of the nonlinear problem
expressed in terms of the Biot (corotational) tensors, at least within our assumption of small strains.

We need to obtain sufficient information about the stress and strain fields in order to obtain an accurate
Galerkin approximation of the nonlinear solution through the use of the variational formulation (1)–(4).
So the possibility of relating the nonlinear solution, written in terms of corotational quantities, to the
results of a linear theory is an important point in the setup of a general methodology for deriving nonlinear
structural models from the available linear ones. This has great potential because the literature on linear
theory is very vast and well consolidated and so the possibility of reusing linear results in a nonlinear
context provides a real advantage.

Linear theory, during its long history, has yielded a rich variety of complex and elegant solutions for the
Cauchy problem obtained with the assumption that displacements (rotations), besides their gradients, are
small enough that the deformed configuration can be taken to coalesce into the undeformed configuration
when enforcing balance laws. So their derivation implies the use of an appropriate frame (observer),
suitable for filtering out rigid rotations in order to minimize this difference. Therefore, the corotational
idea is in some way implicit in linear theories.

To better explain this concept, we consider, as an example, the Saint-Venant theory of elastic cylinders.
The solution, expressed in terms of the stress field over the cross section domain and the out-of-plane
warping of the section, is naturally referred to a local Cartesian system {x, y, z}, such that the x-axis



516 GIOVANNI GARCEA, ANTONIO MADEO AND RAFFAELE CASCIARO

is orthogonal to the (average) section plane and the y and z-axes are aligned with its principal direc-
tions, that is, with an observer fixed to the cross section. Actually, besides the disturbance produced by
the section warping, which is somewhat small being related only to the distortion of the longitudinal
fibers due to torsion and shear, all quantities involved in the Saint-Venant solution can be identified as
corotational.

The Saint-Venant stress solution σL can thus be quite naturally identified as a first-order approximation
of the nonlinear solution in terms of Biot stresses σb[y, z]. In the same way, the displacement solution
∇uL [y, z] can be identified as a first-order approximation of the corresponding nonlinear solution. The
identification εb[y, z] ≈ εL [y, z] requires ω[y, z] ≈ 0 to obtain full geometrical consistency. Actually,
this condition cannot be satisfied exactly, because of the pointwise differences in rotation due to the
section warping, but we can generally assume a small enough ω to allow the Biot strains to be obtained
from (12), by introducing the expressions for E and W directly provided by ∇uL [y, z].

The previous discussion can easily be generalized for the nonlinear modeling of fibred continua such
as beams or shells, whose description is obtained by splitting the original three-dimensional material
reference X into a two or one-dimensional abscissa z lying on a fiber (the cross section, in the case of
beams, or the transverse fiber, in the case of shells) and a one or two-dimensional abscissa s lying on
its support (the line axis or the middle surface, respectively), depending on the model considered. The
linear modeling defines both stress and displacement fields in terms of the generalized stress t[s] and
displacement (translation/rotation) d[s] parameters:

σL [z, s] := σL [z, t], ∇uL [z, s] := ∇uL [z, d]. (17)

The nonlinear model is then generated, by identifying the linear solution as the Biot stress field, tak-
ing σb[z, s] ≈ σL [z, t], and by rewriting the second relation, through the use of an appropriate local
corotational change from d[s] to d̄[s] such that the Biot strains could also be recovered by introducing
∇ ūL = ∇uL [z, d̄] into (12). We can introduce these fields into the expression of the potential energy
(2)–(4), so completing the modeling.

This process is described in greater detail in the following section. We only note here that, besides the
use of the quadratic formula (12), all of the nonlinearity of the formulation reduces to the transformation
rules relating the kinematic parameters d[s] and d̄[s], which are governed by purely geometric laws (see
Section 3.1). It is straightforward to treat the rotation Q[s] of the observer as a finite rotation, without
introducing any further approximations. In this way we can obtain a nonlinear modeling which is able
to both exploit the full details of the corresponding three-dimensional linear solution and to satisfy the
objectivity requirements with respect to the rigid motion of the fiber exactly.

3.5. Basic elements of ICM. The basic elements and assumptions of ICM are summarized schematically
here:

(1) Setup of the corotational observer. By assuming that a linear solution is known in advance, in the
form (17), we define for each point of the support an appropriate change in the observer Q[s] suitable
to make as small as possible the rotation residual ω[z, s] on the corresponding fiber S[s]. This change is
governed by a relationship between the two sets of kinematical parameters d[s] and d̄[s], as viewed by
the fixed and corotational observers. Usually d[s] collects both displacement derivatives u,s and rotation
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derivatives R,s , and these are transformed according to

ū,s := QT (X,s +u,s )− X,s , R,s := QT R,s . (18a)

From now on we denote the derivative with a comma.

(2) Recovering the stress and displacement fields by the linear solution. When referring the linear solution
to the corotational frame, we obtain an explicit expression for the linear tensors ∇ ūL and σL in S[s]:

∇ ūL := ∇ ūL [d̄[s]], σL := σL [t[s]]. (18b)

The corotational (Biot) stress and strain tensors are then identified as

σb := σL , εb := E+ 1
2 (EW −W E−W2). (18c)

The latter can reduce to εb := E, if we can assume W to be sufficiently small.

(3) Constitutive equations. The constitutive equations, in terms of the fiber generalized parameters t[s]
and d̄[s], are recovered by entering the corotational tensors into the mixed form of the strain energy (3).
When writing the strain work σε and the complementary energy 9 in the form

σε :=

∫
W[s] ds, 9 :=

∫
ψ[s] ds, (18d)

the local strain work W[s] and the local complementary energy ψ[s] will be defined as

W[s] :=
∫

S[s]
σb[t] · εb[d]dS, (18e)

ψ[s] := 1
2

∫
S[s]

σb[t] ·Cbσb[t] dS, (18f)

where Cb is the compliance tensor that ICM assumes as defined by linear theory as Cb ≈ CL . Performing
the integration, the previous equations can be rewritten in terms of generalized parameters t and d̄ as:

W[s] = tT%[d̄], ψ[s] = 1
2 tT H t, (18g)

%[d̄] being the generalized strain, work-conjugate with t , and H a generalized compliance operator. The
local constitutive law is then obtained directly from (1) and (18g), by differentiating with respect to t:

%[d̄] = H t. (18h)

(4) Change of observer. To complete the nonlinear modeling we only need to express the generalized
strain %[s], obtained in Step (3) as a function of the corotational displacement parameters d̄[s], in terms
of d[s]. As these are related by the change of observer relationships (18a), the frame independence is
assured by definition.

The nonlinear model so obtained will satisfy the objectivity requirements with respect to rigid rotations
of the fiber exactly, while exploiting the full details of the linear solution, including the nonlinear effects
due to the fiber warping which are kept by (12) within second-order accuracy.

Note also that, being based on the mixed variational condition (1) through a separate description for the
stress and displacement fields, the model provides in general a mixed approximate solution. Apart from
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the simplified assumptions already contained in the linear theory, the error is, however, only produced
by the pointwise differences (16) in the strain as evaluated from the displacement field or from the stress
field, which is only related to the rotation residual ω[s] due to warping. Moreover, its effect is further
zeroed on average by the use of the integral formulation (18e)–(18h), so it can be considered as negligible.

Obviously, accepting less accuracy, a series of variants of the method are possible, such as the use of
a linear approximation for εb (εb := E), by making ω ≈ 0. Some of these variants will be discussed in
the following section.

4. Some tutorial implementations of ICM

To better illustrate our proposal, it is convenient to consider the implementation of ICM in some simple
tutorial contexts. This gives us the opportunity to clarify the details of the method, check its accuracy in
practical cases, and also examine the effects of different approximations.

4.1. Planar beam with rectangular cross section. Consider the planar beam in Figure 1, with a rectangu-
lar cross section of dimensions h and b� h. Assuming as reference its straight undeformed configuration,
the beam is referred through a Cartesian material system X := {s, y}, s being aligned with the barycentric
axis and y with the cross section.

Obtaining a linear solution. A linear solution is provided in this case by Saint-Venant–Jourasky theory
[Timoshenko 1955]. By referring to an appropriate (corotational) spatial system x̄ := {x̄1, x̄2}, aligned
with the current section S := S[s] as shown in Figure 1, and denoting with σL [s, y] and τL [s, y] the
normal and tangential components of the stress field, these are locally (that is, on S) given by:

σL :=
1
A

N [s] − y
J

M[s], τL :=
ζ,y [y]

A
T [s], (19a)

where, according to the usual notation, A = bh and J = bh3/12 are the area and inertia of the section,
respectively, ζ [y] is the so-called stress function expressed in our case by

ζ :=
3h2 y− 4y3

2h2 ,

∫
S
ζ d A = 0,

∫
S
ζ,y d A = A, (19b)

and N [s], T [s], and M[s] are the axial, shear and flexural strengths, respectively, defined, as usual, by

N :=
∫

S
σL [s, y] d A, T :=

∫
S
τL [s, y] d A, M :=

∫
S

yσL [s, y] d A. (19c)

Furthermore, denoting with ū1[s, y] and ū2[s, y] the components of the displacement field in the
spatial system {x̄1, x̄2}, these are locally (that is, in a neighborhood of S) given by

ū1[s+ ds, y] = ū[s+ ds] − ϕ̄[s+ ds]y+ γL [s]w[y],

ū2[s+ ds, y] = v̄[s+ ds],
(20a)

where
ū[s+ ds] := εL [s] ds and v̄[s+ ds] := (θ [s] + γL [s]) ds+O(ds2), (20b)

are the average translations of the section in the x̄1 and x̄2 directions,

ϕ̄[s+ ds] := θ [s] +χL [s] ds+O(ds2) (20c)
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Q[s]s

y

x1

x2

S[s]
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Figure 1. Planar beam with thin rectangular cross section.

is its average rotation, and w[y] is the so-called warping function defined by

w := ζ/k− y, k := 1
A

∫
S
ζ,2y d A = 6/5, (20d)

k being the so-called shear factor and θ a rotation parameter which defines the orientation of the local
frame chosen in order to maximize accuracy: for θ = 0 (that is, ϕ̄[s] = 0) the frame is locally aligned
with the section and for θ =−γL (that is, v̄,s [s] = 0) it is aligned with the axis line.

The previous expressions allow the recovery of the displacement gradient field ∇u[y] = E[y]+W [y]
on the current section S. We obtain

E =
[
εL −χL y γLζ,y /2k

sym. 0

]
, W =

[
0 γL(ζ,y /2k− 1)− θ

skew 0

]
. (20e)

From the previous equations, we have

εL := ū,s [s], γL := v̄,s [s] − ϕ̄[s], χL := ϕ̄,s [s], (20f)

so, apart from the alignment parameter θ , the local kinematics E[S] and W [S] are completely defined
by the local derivatives ū,s , v̄,s , and ϕ̄,s of the translations ū[s] and v̄[s] and the rotation ϕ̄[s] associated
with the section. It is also convenient to introduce the quantities

ᾱ[s+ ds] := ϕ̄[s+ ds] − θ [s]. (20g)

Obviously we have ᾱ[s] = 0 and ᾱ,s = ϕ̄,s . These conditions implicitly define the alignment of the local
corotational observer associated with the section s. In fact assuming α[s] to be a finite rotation angle
associated with the fiber S, as viewed by a fixed observer, and ᾱ its value viewed by a local observer,
this implies a relative alignment angle ᾱ[s]−α[s] = −α[s] between the two observers and defines the
rotation matrix

Q[s] :=
[

cosα −sinα
sinα cosα

]
, (20h)

relating the two observers.
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Recovering nonlinear stresses, strains, and constitutive equations. As stated in the previous section, we
assume that the Biot stress field σb is directly described by (19a), its relevant components being defined
by σ11 = σL and σ12 = τL . By substitution into (18f), we obtain

ψ[s] := 1
2

∫
S

(
σ 2

11

E
+
σ 2

12

G

)
d A = 1

2

( N 2

E A
+

kT 2

G A
+

M2

E J

)
, (21a)

E and G being the normal and shear elastic moduli of the material. Conversely, the Biot strain field will
be obtained by substituting (20e) into (12). The evaluation of internal work (18e) provides

W[s] :=
∫

S
(σ11ε11+ 2σ12ε12) d A = Nε+ T γ +Mχ, (21b)

where the strain parameters ε, γ , and χ are defined by:

ε := εL +
19
48 γ

2
L + θγL +

1
2 θ

2, γ := γL − εL(θ +
1
2 γL), χ := χL ,

that is, recalling (20f) and (20g),

ε := ū,s + 19
48 v̄,

2
s +

10
48 θv̄,s −

5
48 θ

2, γ := v̄,s −θ −
1
2 ū,s (v̄,s +θ), χ := ᾱ,s . (21c)

By relating (21a) and (21b) through the Clapeyron equivalence 28c =W, we also obtain

N = E Aε, T = kG Aγ, M = E Jχ, (21d)

which provides the elastic laws for the nonlinear model.

Applying corotational kinematics. Equations (21a)–(21d) provide the explicit expressions for the local
energy terms needed for the use of the variational condition (1)–(3). In order to complete the ICM
nonlinear modeling, we need to relate the displacements ū[s] and v̄[s] and the rotation ϕ̄[s] associated
with the section S[s], defined by reference to the local corotational frame {x̄1, x̄2}, with the corresponding
u[s], v[s], and ϕ[s] referred to a global fixed frame x1, x2. The relationship is governed by (18a). The
two systems are related by the rotation matrix (20h), so we have

ū,s [s] = (u,s +1) cosα+ v,s sinα− 1, v̄,s [s] = v,s cosα− (u,s +1) sinα, ᾱ,s [s] = α,s . (22)

This relationship, when coupled with (21c), provides the nonlinear relationships between the generalized
strain %[d] = {ε, γ, χ} and the generalized displacement d = {u,s , v,s , ϕ,s }, which completes the defi-
nition of the nonlinear model. Note that, in order to obtain an explicit expression for ε and γ , we need to
set the alignment parameter θ in (21c). The ICM accuracy being related to the smallness of the rotation
residual ω, an appropriate choice could be that of the zeroing tensor W in weighted average, that is,∫

S
ζ,y (θ − (1−ψ,y /2k)) d A = 0,

which provides θ =−γL/2, and corresponds to an average alignment between the section and the axis
line. By this choice we obtain

ε := ū,s + 1
12 v̄,

2
s , γ := 2v̄,s , χ := ᾱ,s . (23)
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However, other choices are also possible, for example, the choice θ = 0 (aligned with the section) or
θ =−γL (aligned with the line axis). Different choices only reflect how the alignment of the corotational
frame treats the average rotation 1

2 γL due to warping; it is accounted for exactly through (22) by the
choice θ =−γL/2 and only to second-order accuracy by the other choices, while the use of corotational
algebra (22) always assures, by definition, frame independence with respect to a rigid rotation of the
section. Different choices only produce a small O3(εL , γL) difference in the final expression of %[d], so
they can be considered as equivalent, within our assumption of small strains, and the actual choice could
be suggested by practical convenience.

Further insights. Some further comments and remarks are useful.

(1) With regard to slender structures, we can expect T [s] will be much smaller than N [s] in practical
contexts and then assume γ � ε. So, the quadratic term v̄,2s /12= γ 2

L/48 in (23) will be really very
small and can be considered as irrelevant. If obliged we obtain, through (22),

ε = (1+ u,s ) cosα+ v,s sinα− 1, γ = 2(v,s cosα− (1+ u,s ) sinα), χ = α,s . (24a)

Note that this approximation corresponds to making ζ,y /k ≈ 0 in (20e), that is, because of (20d),
assuming a linear warping γ̄ w[y] ≈ −γ̄ y in the evaluation W [s].

(2) The effect of warping, being related to the shear strain γ [s], can be considered so small as to be
neglected in most practical cases. Making w[y] ≈ 0, W [s] will be zeroed by the choice θ = 0 and
consequently εb ≈ E. We also have ᾱ[s] = ϕ̄[s], so the ICM kinematics reduce to the well known
Antman beam kinematics [Antman 1995]:

ε = (1+ u,s ) cosϕ+ v,s sinϕ− 1, γ = v,s cosϕ− (1+ u,s ) sinϕ, χ = ϕ,s . (24b)

(3) By neglecting the shear strain everywhere, that is, assuming γ̄ ≈ 0, we can use the condition γ = 0
in the second part of (24b) for relating ϕ to u,s and v,s . With some algebra, (24b) becomes

ε =

√
(1+ u,s )2+ v,2s − 1, χ =

v,ss +v,ss u,s −v,s u,ss√
(1+ u,s )2+ v,2s

, (24c)

which coincide with the kinematic relationships developed in [Nayfeh and Pai 2004]. When assum-
ing ε� 1, the previous equations can be simplified into

ε ≈ ε+ 1
2 ε

2
= u,s + 1

2 (u,
2
s +v,

2
s ), χ ≈ (1+ ε)χ = v,ss +v,ss u,s −u,ss v,s . (24d)

(4) All previous variants only differ in the treatment of shear and axial strains in the expression of
W [s]. When, as generally happens for slender beams, γ � 1 and ε� 1, their differences become
negligible. To give an example, we can refer to a simply supported Euler beam of length L , subjected
to a compressive axial force F[λ] := λπ2 E J/L2. The analytical solution for the postbuckling path
coming from the use of (24b) can be found in [Salerno and Lanzo 1997] in the form

λ= λb+
1
2 λ̈bξ

2
+ · · · ,
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where ξ is the end-section rotation angle and, introducing stiffness ratios βs := E J/G AL2, βa :=

E J/E AL2, and β := βs −βa , the buckling load λb and postbuckling curvature λ̈b are defined by

λb+ λ
2
bβ = 1, λ̈b =

λb

4

(
1+ 4λbβ

1+ 2λbβ

)
.

The same expressions can also be obtained from (24a), if β := 2βs − βa , and from (24c) and
(24d), assuming βs ≈ 0 and βs ≈ βa , respectively (the solutions can be recovered using algebraic
manipulators, so their details are omitted here). We generally have βs� 1 and βa� 1, so all possible
choices give essentially the same result (λb ≈ 1, λ̈b ≈ 1/4) and can be considered as equivalent for
practical purposes. We can also mention that usually βa < βs , so the simpler expressions (24d)
could be considered better than (24c).

(5) Finally, for a better understanding of the role of (12) in our proposal, it is convenient to refer to the
limit case where the local and fixed frames coincide, that is, ū,s = u,s , v̄,s = v,s . Making γL ≈ 0
and ε̄� 1 into (21c), we obtain

ε = u,s +1
2 v,

2
s , χ = v,ss , (25)

which correspond to the standard second-order kinematics used in simplified (technical) modelings.
Obviously, this equation satisfies objectivity only to a second-order accuracy, and then requires some
external tool in FEM management to obtain frame invariance at the element level (see [Garcea et al.
2009]).

4.2. Thin walled beam under axial force and torsion. Consider a spatial beam with a thin-walled cross-
shaped section and subjected to axial force and torsion, as shown in Figure 2, the section thickness t being
small when compared with its size h. Assuming as reference its straight undeformed configuration the
beam will be referred to through a Cartesian material system X := {s, y, z}, s being aligned with the
barycentric axis and y and z lying in the cross section.

Obtaining a linear solution. A linear solution is provided in this case by the simplified Saint-Venant
torsion theory for thin-walled beams [de Saint-Venant 1855]. By referring to an appropriate spatial

y

z

x2

x3

h

t

Q[s]y

z

s

S[s] S[s]

Figure 2. Cross-shaped beam under axial force and torsion.
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system x̄ := {x̄1, x̄2, x̄3}, aligned with the current section S := S[s] as shown in Figure 1, and denoting
with σxx [s, y, z], τxy[s, y, z], and τxz[s, y, z] the normal and tangential components of the stress field,
these are locally (that is, on S) given by:

σxx = N [s]/A, τxy = (w[y, z],y −z)Mt [s]/Jt , τxz = (w[y, z],z +y)Mt [s]/Jt , (26a)

where w[y, z] is an auxiliary warping which, in the case considered, can be evaluated as

w[y, z] ≈

{
yz if − t/2≤ y ≤ t/2,

−yz if − t/2≤ z ≤ t/2.
(26b)

A ≈ 2bt is the area of the section, Jt is its torsional inertia, defined by

Jt :=

∫
S
{(w[y, z],y −z)2+ (w[y, z],z +y)2} d A ≈ 2

3 t3h, (26c)

and N and M are the strength resultants

N :=
∫

S
σxx d A, M :=

∫
S
(τxz y− τxyz) d A. (26d)

Furthermore, denoting with ū1[s, y, z], ū2[s, y, z], and ū3[s, y, z] the components of the displacement
field in the corotational frame, these are locally given by:

ū1[s+ ds, y, z] = ū[s+ ds] +χL [s]w[y, z],

ū2[s+ ds, y, z] = −zϕ̄[s+ ds],

ū3[s+ ds, y, z] = yϕ̄[s+ ds],

(27a)

where ū and ϕ̄ are the average axial displacement and the torsional rotation of the section:

ū[s+ ds] := εL [s] ds, ϕ̄[s+ ds] := χL [s] ds, (27b)

The previous expressions allow the recovery of the displacement gradient ∇u[y, z]= E[y, z]+W [y, z]
field on the current section S[s]. We obtain

E =

 εL
1
2 (w,y −z)χL

1
2 (w,z +y)χL

1
2 (w,y −z)χL 0 0
1
2 (w,z −y)χL 0 0

 ,

W =

 0 1
2 (w,y +z)χL

1
2 (w,z −y)χL

−
1
2 (w,y +z)χL 0 0

−
1
2 (w,z −y)χL 0 0

 .
From previous equations, we have

εL [s] = ū,s [s], χL [s] := ϕ̄,s [s], (27c)

so the local kinematic E[y, z]+W [y, z] is completely defined by the local derivatives of the displacement
ū[s] and the rotation ϕ̄[s] associated with the section.
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Recovering nonlinear stresses, strains, and constitutive equations. Assuming that the Biot stress field σb

is defined by the linear solution (26a), its relevant components being defined by σ11 := σxx , σ12 := τxy ,
and σ13 := τxz , the complementary energy (18f) and the strain work (18e) become

ψ[s] := 1
2

∫
A

{
σ 2

11

E
+
σ 2

12+ σ
2
13

G

}
d A = 1

2

( N
E A
+

Mt
G Jt

)
, (28a)

W=

∫
A
{σ11ε11+ 2τ12ε12+ 2τ13ε13} d A = Nε[s] +Mχ [s], (28b)

where, introducing the polar inertia

J1 :=

∫
S
(y2
+ z2) d A ≈ 1

6 tb3, (28c)

the strain generalized parameters ε and χ are expressed by

ε[s] = ū,s +
(4J1− Jt)

8A
ϕ̄,2s , χ[s] = ϕ̄,s − 1

2 ū,s ϕ̄,s , (28d)

where use is made of (27c).
By relating (28a) and (28b) through Clapeyron’s equivalence, we also obtain the elastic laws

N = E Aε, M = G Jχ, (28e)

so completing the modeling, in the corotational reference frame.

Applying corotational kinematics. To complete the ICM modeling, we need to relate the generalized
displacement derivatives ūs and ϕ̄,s , referring the corotational frame to the corresponding one referring
to the fixed frame. As the relative rotation Q between the two systems is, in our case, described by a
rotation vector aligned with the x1 axis, we simply have ū,s = u,s , ϕ̄,s = ϕ,s , and so we finally obtain

ε[s] = u,s +
(4J1− Jt)

8A
ϕ,2s , χ[s] =

(
1− 1

2 u,s
)
ϕ,s , (29a)

which defines the nonlinear beam kinematics and, together with (28a) and (28b) completes the definition
of the ICM modeling.

Note that terms J1 and Jt appearing in the first section of (28d) take into account the rotations due
to the helicoid distortion of longitudinal fibers and those due to shear strains, respectively. So we have
Jt � J1 in general (actually we have Jt =

2
3 bt3 and J1 =

1
6 tb3). So, neglecting the small term 1

2 u,s ,
(29a) can be simplified into

ε[s] := ū,s +
1
2

J1
A
ϕ,2s , χ[s] := ϕ,s , (30)

which coincides with that derived by Wagner [1936] in his study of beams in torsion.
It is also worth mentioning that the term 1

2 ϕ,
2
s J1/A in the expression of ε implies a nonlinear coupling

between axial elongation and torsional curvature which comes from warping and is generally neglected
in approaches based on rigid motion kinematics of the section. This coupling, which we call the Wagner
effect, can however play an important role in activating flexural/torsional buckling of slender thin-walled
beams, as we will show in our subsequent, related paper [Garcea et al. 2012], so generally it cannot be
ignored.
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5. Nonlinear beam model based on Saint-Venant general rod theory

ICM is now applied to recover a nonlinear three-dimensional beam model based on the Saint-Venant
(SV) general rod theory [de Saint-Venant 1855]. For full details of the SV problem we refer readers to
classic works such as [Timoshenko 1955; Fichera 1977] while a numerical solution of the problem can
be found in [Petrolo and Casciaro 2004]. Interesting, also for comparison with the model presented here,
is [Petrov and Géradin 1998a; 1998b].

We use the same notation introduced in the tutorial section and also assume the beam is straight in its
reference configuration and is referred to by a Cartesian material system X := {s, y, z}, s being aligned
with the barycentric axis and y and z with the principal direction of the cross section. We will denote
with A the area and with

J1 :=

∫
S
(y2
+ z2) d A, J2 :=

∫
S

z2 d A, J3 :=

∫
S

y2 d A,

the polar and flexural inertia of the section. The linear solution is referred to a corotational spatial system
x̄ := {x̄1, x̄2, x̄3}, aligned with the current section S :=S[s], as shown in Figure 3, Q[s] being the rotation
matrix relating the two systems.

5.1. Obtaining the SV linear solution: statics. ICM assumes that the Biot stress tensor components in
the material frame are coincident with the stress components recovered by the linear SV solution in the
corotational frame. From now on, we express the Biot stress directly as obtained by the Saint-Venant
solution obtaining

σb =

[
σ τ T

τ 0

]
,

where σ := σ11 is the normal stress and τ := [σ12, σ13]
T collects in a single vector the tangential stresses.

Introducing the force and moment resultants N = {N1, N2, N3} and M = {M1,M2,M3} over the
section, as usual defined by

N1 =

∫
S
σ11 d A, N2 =

∫
S
σ12 d A, N3 =

∫
S
σ13 d A,

M1 =

∫
S
(yσ13− zσ12) d A, M2 =

∫
S

zσ11 d A, M3 =−

∫
S

yσ11 d A,
(31a)

x3

2

x1

y

z

Q[s]

Figure 3. SV three-dimensional beam, material, and corotational frames.
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and collecting them into the strength vectors

tσ :=

N1

M2

M3

 , tτ :=

M1

N2

N3

 , (31b)

the stress solution can be expressed as:

σ = Dσ [y, z]tσ , τ = Dτ [y, z]tτ , (31c)

where

Dσ [y, z] :=
[ 1

A
,

z
J2
,−

y
J3

]
, Dτ [y, z] :=

[
dT

2 [y, z]

dT
3 [y, z]

]
, (31d)

and vectorial stress functions d2[y, z] and d3[y, z] are defined by a Laplace/Neumann differential problem
whose numerical solution can be easily obtained through a finite element discretization of the section as,
for instance, performed in [Petrolo and Casciaro 2004]. Also as in that reference, the interpolation (31c)
allows us to obtain the expression of the complementary energy ψ[s] associated with the current section
S[s] in terms of the strength vectors tσ and tτ :

ψ[s] := 1
2

( 1
E

tT
σ Hσ tσ +

1
G

tT
τ Hτ tτ

)
, (32a)

where
Hσ :=

∫
S

DT
σ Dσ d A, Hτ :=

∫
S

DT
τ Dτ d A. (32b)

Matrix Hσ , gives the contribution of normal stresses over the section and, being the corotational local
frame aligned with the principal frame of the section, it is simply obtained as a diagonal matrix

Hσ = diag
[

1
A

1
J2

1
J3

]
.

Matrix Hτ gives the contribution of tangential stresses and generally results in a full symmetric matrix
which can however be obtained as a by-product of the FEM solution process which provides the stress
functions d2[y, z] and d3[y, z] (see [Petrolo and Casciaro 2004] for details). It is convenient to introduce
the vector quantities

t =
[

N
M

]
(32c)

in order to arrange (32a) in the more compact form

ψ[s] := 1
2 tT H t. (32d)

5.2. Obtaining the SV linear solution: kinematics. As the in-plane deformation of the section must be
inessential coming from the Poisson effect, the SV displacement solution, in a neighbor of S[s], can be
expressed as

ū1[s+ ds, y, z] = ds(εL1− yχL3+ zχL2)+w[y, z],

ū2[s+ ds, y, z] = ds(εL2− zχL1)+O(ds2),

ū3[s+ ds, y, z] = ds(εL3+ yχL1)+O(ds2),

(33)
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where the out-of-plane warping function w[y, z], which can be assumed without loss of generality to
satisfy the conditions ∫

A
w[y, z] d A =

∫
A

yw[y, z] d A =
∫

A
zw[y, z] d A = 0, (34)

is related to stress functions d2[y, z] and d3[y, z], as we will show in the sequel, and εLk and χLk are
strain parameters to be related to the stress parameters Nk and Mk through the section constitutive law.
Therefore, the displacement gradient ∇ ū assumes in S the following expression:

∇ ū =
[
εL ∇w

T

θ 0

]
, (35a)

where

εL := εL1− yχL3+ zχL2, θ :=

[
εL2− zχL1

εL3+ yχL1

]
, ∇w :=

[
w,y

w,z

]
, (35b)

and its symmetric and skew-symmetric parts become

E :=

[
εL

1
2 (θ +∇w)

T

1
2 (θ +∇w) 0

]
, W :=

[
0 −

1
2 (θ −∇w)

T

1
2 (θ −∇w) 0

]
. (35c)

By collecting the six strain constants εL1, εL2, εL3, χL1, χL2, and χL3 into the vectors

d̄σ :=

εL1

χL2

χL3

 , d̄τ :=

χL1

εL2

εL3

 , (35d)

we can express all the strain quantities in (35b) using the following interpolation defined as a solution of
the linear SV problem:

εL := Dε[y, z]d̄σ , θ := Dθ [y, z]d̄τ , ∇w := Dw[y, z]d̄τ , (35e)

Dε and Dθ being the interpolation matrices directly defined by

Dε :=
[
1 z −y

]
, Dθ :=

[
−z 1 0
y 0 1

]
, (35f)

while Dw[y, z] is related to the stress interpolation (31c) through the elastic laws σ12 = Gε12 and σ13 =

Gε13. Using (31c) and (32b), we obtain

γL := θ +∇w = Dγ [y, z]dτ , Dγ := Dτ H−1
τ , (35g)

and therefore

Dw := Dγ [y, z] − Dθ . (35h)
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Linear evaluation for Biot strains. We have already shown that in some cases (for example, for compact
sections), the effects of warping can be ignored. That is, we can assume W ≈ 0 in the Biot strain
expression (12), without introducing appreciable errors. From this assumption we obtain εb = E and the
internal work becomes the same as in the linear elastic case

W := tT
σ %σ + tT

τ %τ , %σ := d̄σ , %τ := d̄τ . (36a)

So, by rearranging the strain parameters in a single vector

% := dL =

[
εL

χL

]
, εL :=

εL1

εL2

εL3

 , χL :=

χL1

χL2

χL3

 , (36b)

and recalling (32d), the stationarity of the section strain energy ψ[t] −W[t,ωL ] with respect to stress
vector t directly provides the constitutive law

t = H−1%. (36c)

Quadratic evaluation for Biot strains. More generally, the effect of warping cannot be ignored, even if
we can assume W [y, z] is small enough to allow εb to be evaluated by the quadratic formula (12). Using
(35c) we obtain εb[y, z] in the form

εb =

[
ε γ T /2
γ /2 0

]
, (37a)

where its relevant components ε[y, z] and γ [y, z] are defined by

ε = εL +
1
2 θ

T θ − 1
8 γ

T
L γL , γ = γL +

1
2 εLγL − εLθ , (37b)

and 2× 2 matrix 0 is inessential in our treatment, being multiplied by zero stresses when evaluating the
strain work W.

Using (31c) and (37b) and introducing the strain parameter vectors

%σ :=

εb1

χb2

χb3

 , %τ :=

χb1

εb2

εb3

 , (37c)

we have

W :=

∫
S
(σε+ τ T γ ) d A = tT

σ %σ + tT
τ %τ , (37d)

where

%σ =


εL1+

1
2

( J1
A
χ2

L1+ ε
2
L2+ ε

2
L3

)
−

1
8

d̄T
τ H−1

τ d̄τ

χL2−χL1εL2+
1

2J2
χ2

L1 J2r −
1

8J2
d̄T
τ A3 d̄τ

χL3−χL1εL3−
1

2J3
χ2

L1 J3r +
1

8J3
d̄T
τ A2 d̄τ

 , (37e)

%τ =
(
1− 1

2 εL1
)
d̄τ + 1

2 (χL2 B3−χL3 B2)d̄τ , (37f)
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hte matrices A2, A3, B2, and B3 being defined by

A2 :=

∫
A

y DT
γ Dγ d A, A3 :=

∫
A

z DT
γ Dγ d A

B2 :=

∫
A

y DT
τ (Dγ − 2Dθ ) d A, B3 :=

∫
A

z DT
τ (Dγ − 2Dθ ) d A,

(37g)

and

J2r :=

∫
S

z(y2
+ z2) d A, J3r :=

∫
S

y(y2
+ z2) d A. (37h)

Rearranging the strain parameters in a single vector

%[d̄L ] :=

[
ε

χ

]
, ε =

εb1

εb2

εb3

 , χ =

χb1

χb2

χb3

 , (38)

and combining (37c) and (32c) we finally obtain the constitutive law in the form

t = H−1%[d̄L ]. (39)

Simplified quadratic evaluation for Biot strains. The previous equations simplify if the contribution of
shear strain ∇w + θ is ignored in the expression of W . As shown in the tutorial section its effect is
generally very small and can be neglected without introducing appreciable errors. With this assumption
we obtain

εb[y, z] ≈ εL +
1
2 θ

T θ , γb[y, z] ≈ γL − εLθ , (40a)

which provides

%σ ≈

εL1

χL2

χL3

+ 1
2


J1
A
χ2

L1+ ε
2
L2+ ε

2
L3

−2χL1εL2+
1
J2
χ2

L1 J2r

−2χL1εL3−
1
J3
χ2

L1 J3r

 , (40b)

%τ ≈ (1− εL1)d̄τ − (χL2C3−χL3C2)d̄τ , (40c)

where

C2 :=

∫
A

y DT
τ Dθ d A, C3 :=

∫
A

z DT
τ Dθ d A, (40d)

These expressions can be further simplified if neglecting nonlinear terms related to the shear strain in the
case of a symmetric section. We obtain

%σ ≈

εL1+
1
2

J1

A
χ2

L1

χL2

χL3

 , %τ ≈

χL1

εL2

εL3

 . (41)
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Note that the remaining nonlinear term 1
2 χ

2
L1 J1/A takes into account the so-called Wagner axial/torsional

coupling.

5.3. Applying corotational kinematics. Note that the strain parameters εk in (33) correspond to the
derivatives, with respect to s, of the components ūk[s, 0, 0] of the average displacement ū[s] of the
section. Analogously, χk correspond to the derivatives, with respect to s, of the components ϕ̄k of the
average rotation vector ϕ̄[s] associated with the section S. So the SV kinematical solution is completely
defined by the generalized strain parameters

ū,s [s] = εL , ϕ̄,s [s] = χL , (42a)

the first ū,s being a derivative of a displacement and the second a derivative of a rotation vector. Recalling
that ϕ̄[s] = 0, the latter can be related to a derivative of a rotation matrix R[s] through (6) and (5c):

R,s [s] := spin(ϕ̄,s )=

 · −ϕ̄3,s ϕ̄2,s

ϕ̄3,s · −ϕ̄1,s

−ϕ̄2,s ϕ̄1,s ·

 . (42b)

Displacements ū[s] and rotations R[s], defined by reference to the local corotational frame {x̄1, x̄2, x̄3},
are related to the corresponding ones u[s] and R[s], referring to a global fixed frame through a change
in the observer characterized by a relative rotation Q[s] = R[s]R[s]T . As R = I , we have Q = R, and
therefore from (18a) we obtain

ū,s [s] = R[s]T (u,s +e1)− e1, R,s [s] = RT R,s . (42c)

Note that, if using a linear evaluation for the Biot strain, that is, if referring to (36), we recover the
Antman–Simo nonlinear beam model kinematics (see [Simo 1986; Antman 1995]). We also recover
appropriate constitutive laws directly derived from the Saint-Venant theory without the need for ad hoc
assumptions. With the use of the complete quadratic evaluation (37) for Biot strains, we also recover the
full subtle effects due to the section warping. When using the simplified quadratic evaluation (40) we
obtain a quite simple expression which still however takes into account the nonlinear Wagner coupling
due to torsional distortion. A FEM implementation of this model is given in our subsequent, related
paper [Garcea et al. 2012], and its results also show the strong influence of Wagner coupling in cases of
flexural/torsional buckling.

6. Nonlinear plate model based on Mindlin–Reissner plate theory

ICM is further applied in this section for recovering nonlinear plate models based on the Mindlin–
Reissner and Kirchhoff plate theories. The aim is to obtain objective models suitable for the nonlinear
analysis of thin walled structures, such as those already analyzed in [Lanzo et al. 1995; Lanzo and Garcea
1996; Casciaro et al. 1998; Garcea 2001].

We assume the plate to be planar in its reference configuration and refer to a material system X =
{x1, x2, x3} where x1 and x2 lie in the middle plane, as shown in Figure 4, and −h/2≤ x3 ≤ h/2, h being
the plate thickness, moves along the transverse fiber S = S(s), s := {x1, x2} being a two-dimensional
abscissa moving in the middle plane. The linear solution applies to a neighbor of S and will be referred
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Q [s]

x1

x2
x3

x1

x2
3

S[s]

s

Figure 4. Plate model: kinematics.

to a corotational spatial frame x̄ = {x̄1, x̄2, x̄3} aligned with the fiber, Q[s] being the rotation matrix
relating the fixed and corotational frames.

6.1. Obtaining a linear solution: Statics. The stress solution in linear Mindlin–Reissner plate theory
corresponding to fiber S[x1, x2], identified as Biot strains, can be described by

σ :=
1
h

 N11 N12 ζ,3 T1

· N22 ζ,3 T2

sym. · 0

+ z
J

M11 M12 0
· M22 0

sym. · 0

 , (43a)

where J := h3/12 is the flexural inertia of the plate, ζ [x3] is the stress function defined by (see also (19b))

ζ :=
3h2x3− 4x3

3

2h2 ,

∫ h/2

−h/2
ζ dx3 = 0,

∫ h/2

−h/2
ζ,3 dx3 = h, (43b)

and, making i, j = 1, 2,

Ni j [s] :=
∫ h/2

−h/2
σi j dx3, Ti [s] :=

∫ h/2

−h/2
σi3 dx3, Mi j [s] :=

∫ h/2

−h/2
zσi j dx3, (43c)

are the plate strengths we collect into the in-plane strength N := {N11, N12, N22}, the shear strength
T := {T1, T2}, and the bending moment M := [M11,M22,M12].

Obtaining a linear solution: kinematics. The displacement field is provided by Mindlin–Reissner theory
and can be expressed, in a neighbor of S[s], in the form

ū1[s+ ds, x3] := ū01[s+ ds] + x3ϕ̄2[s+ ds] +w[x3]ū03,1 [s],
ū2[s+ ds, x3] := ū02[s+ ds] − x3ϕ̄1[s+ ds] +w[x3]ū03,2 [s],
ū3[s+ ds, x3] := ū03[s+ ds],

(44a)

where
ū0i [s+ ds] := ū0i ,1 [s] dx1+ ū0i ,2 [s] dx2, i = 1, 2, 3,

ϕ̄i [s+ ds] := ϕ̄i ,1 [s] dx1+ ϕ̄i ,2 [s] dx2, i = 1, 2,
(44b)
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are the components of mean displacement and rotation vectors of the fiber S[s], and w[x3] the warping
function defined by

w := ζ/k− x3, k := 1
A

∫
S
ζ,23 d A = 6/5. (44c)

Note that assumption (44b) provides ϕ̄1[s] = ϕ̄2[s] = 0, where the alignment of the x̄1 and x̄2 axes is
implicitly set to be orthogonal to the fiber. To complete the alignment we need to fix their in-plane
drilling orientation by correspondence to ϕ̄3[s] = 0. We assume that it is set such that

ū01,2= ū02,1 . (44d)

The expression for the displacement gradient consequently becomes

∇ ū :=

ū01,1+ϕ̄2,1 x3 ū02,1+ϕ̄2,2 x3 ū03,1w,3

ū02,1−ϕ̄1,1 x3 ū02,2−ϕ̄1,2 x3 ū03,2w,3

ū03,1 ū03,2 0

 . (44e)

6.2. Recovering nonlinear strains and constitutive equations. Starting from the stress interpolation
(43a), the complementary energy is obtained in the standard form

ψ[s] := 1
2 {N

T Cn N + T T Ct T +MT Cm M}, (45a)

where Cn , Ct , and Cm are the standard matrices of elastic moduli

Cn :=
hE

1− ν2

1 ν 0
ν 1 0
0 0 (1− ν)/2

 , Ct :=
5Gh

6

[
1 0
0 1

]
, Cm :=

J
h

Cn. (45b)

Collecting the stress parameters in a single vector t := {N, T , M}, (45a) can be written in compact form
as

ψ[s] = 1
2 tT H t. (45c)

The generalized strain parameters can be obtained by comparing the previous equation with the ex-
pression of strain work

W[s] =
∫ h/2

x3=−h/2
σb · εb dx3,

where the Biot stress σb is directly identified with the linear solution (43a) and the corresponding strain εb

with the displacement solution (44e) given by the quadratic approximation (12). Performing integration,
we obtain

W[s] = tT% ⇒ % = H t, (46)

the generalized strain parameter vector % being defined by

% :=

εγ
χ

= %L + %Q, %L =

εL

γL

χL

 , %Q =

εQ

γQ

χQ

 , (47a)
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where

εL :=

 ū01,1

ū02,2

ū01,2+ū02,1

 , γL :=

[
ū03,1

ū03,2

]
, χL :=

 ϕ̄2,1

−ϕ̄1,2

ϕ̄2,2−ϕ̄1,1

 , (47b)

and

εQ :=


19
48

ū2
03,1+

J
8h
(2ϕ̄2,2 ϕ̄1,1−ϕ̄

2
2,2+3ϕ̄2

1,1 )

19
48

ū2
03,2+

J
8h
(2ϕ̄2,2 ϕ̄1,1−ϕ̄

2
1,1+3ϕ̄2

2,2 )

19
24

ū03,1 ū03,2+
J

2h
(ϕ̄1,1+ϕ̄2,2 )(ϕ̄1,2+ϕ̄2,1 )

 ,

γQ := −
1
2

[
ū03,2 ū02,1+ū03,1 ū01,1

ū03,1 ū02,1+ū03,2 ū02,2

]
,

χQ :=
1
2

 −ū02,1 ϕ̄1,1−ū02,1 ϕ̄2,2

ū02,1 ϕ̄1,1+ū02,1 ϕ̄2,2

(ū01,1+ū02,2 )ϕ̄2,2−(ū02,2−ū01,1 )ϕ̄1,1

 .

(47c)

6.3. Applying corotational kinematics. The plate kinematics are completely defined by the generalized
displacements ū0,1 [s], ū0,2 [s], ϕ̄,1 [s], and ϕ̄,2 [s], which correspond to the derivatives of the average
displacement and rotation vectors associated with the fiber S[s] and referred to the corotational system
x. We have ϕ̄[s] = 0, so the latter can be related to a derivative of a rotation matrix R[s] through (6) and
(5c). We obtain

R[s] = I, R,1 [s] = spin(ϕ̄,1 [s]), R,2 [s] = spin(ϕ̄,2 [s]). (48a)

In order to complete the nonlinear modeling we only need to relate this local description, in the coro-
tational frame, to the corresponding description in a fixed global frame through changing the observer
algebra (18a). Condition Q[s]T R[s] = I furnishes Q[s] = R[s] and so, from (18a), with i = 1, 2,

ū0,i [s] = RT (u0,i +ei )− ei , R,i [s] = RT R,i . (48b)

6.4. Relation with nonlinear plate modeling by Simo. By denoting with {i1, i2, i3} and {e1, e2, e3} the
versors of the local frame x̄ and the global frame x, we can express R[s] in the form

R = [i1, i2, i3]. (49a)

Moreover, by introducing the plate directors ai defined by

ai := ei + u0,i , i = 1, 2, (49b)

(48b) can be rewritten as

ū0,i =

i1 · ai

i2 · ai

i3 · ai

− ei , ϕ̄,i =

 i3 · i2,i

−i3 · i1,i

−i1 · i2,i

 , (49c)
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and, consequently, obliging the quadratic contribution %Q in (47), that is, accepting a linear approximation
for the strain parameters, we obtain

εL ≈

 i1 · a1− 1
i2 · a2− 1

i1 · a2+ i2 · a1

 , γL ≈

[
i3 · a1

i3 · a2

]
, χL ≈

 i3 · i1,1

i3 · i2,2

i3 · (i1,2+i2,1 )

 , (49d)

which coincides with what is derived in [Simo et al. 1990].

6.5. Rotation-free modeling for Kirchhoff thin plate. In some cases, for very thin plates, the effect of
out-of-plane shear strain will become irrelevant, so we can assume the Kirchhoff hypotheses γL ≈ 0,
T T Ct T ≈ 0, that is

i3 · a1 = 0

i3 · a2 = 0
⇒ i3 =

a1 ∧ a2

|a1 ∧ a2|
. (50a)

We can also assume the in-plane strain ε is sufficiently small to be neglected in comparison with unity.
Under this assumption, we obtain

ai · a j ≈ ii · a j + i j · ai , (a1 ∧ a2) · ai , j ≈ i3 · ii , j , i, j = 1, 2, (50b)

so (49c) simplifies into

εL =
1
2

a1 · a1− 1
a2 · a2− 1

2a1 · a2

 , χL =

 (a1 ∧ a2) · a1,1

(a1 ∧ a2) · a2,2

(a1 ∧ a2) · (a1,2+a2,1 )

 . (50c)

This formulation does not make explicit reference to rotation matrices and could be convenient in FEM
discretizations which do not make use of nodal rotations, such as those based on spline interpolations
(for example, see [Garcea 2001]). A FEM implementation of this modeling will be discussed in our
subsequent, related paper [Garcea et al. 2012].

7. Further comments and remarks

Some further comments are useful for a better understanding of the proposed method and of its possible
extensions.

7.1. Linear or quadratic recovery of Biot strains. The quadratic terms in the local expression of the
strain (12), due to warping, are usually very small and, at least some of them, can be ignored without
introducing appreciable errors. In many cases a direct identification of the linear strain, such as the Biot
strain, could be sufficient for practical purposes.

This is actually true in the two implementation examples previously discussed. Warping has a negligi-
ble effect on the plate modeling discussed in Section 6, generally allowing the linearized formula (47) for
the strain evaluation. In the absence of torsional distortions, the warping could also be neglected in the
beam model discussed in Section 5, the only relevant contribution of warping being the Wagner coupling.
Note however that warping can have a noticeable effect in other possible implementations such as, for
instance, cases of laminated plates and beams.
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7.2. Errors inherited from linear theory. In the implementation examples described before, the parent
linear solutions have been derived from standard theories for beams and plates. The nonlinear ICM
models obtained will obviously inherit all the approximations contained in these theories. More refined
models can be obtained, by the same procedure, using more sophisticated theories, such as the thin-
walled beam theory of Vlasov, the so-called generalized beam theories [Goncalves et al. 2009], and the
anisotropic theories for plates [Nayfeh and Pai 2004].

7.3. Linear assumptions in nonlinear analysis. The initial assumption in ICM is that the nonlinear so-
lution could be locally described by the linear one, at least qualitatively. However we must consider that,
in some cases, a nonlinear solution can differ noticeably from the linear one, because of the activation of
local buckling phenomena characterized by deformation patterns which play a negligible role in the linear
solution and so are taken out in the linear modeling. Thin-walled beams or stiffened panels, for example,
can be modeled as one-dimensional fibred continua or as equivalent orthotropic plates through homog-
enization criteria; this can be sufficient in linear analysis but is unable to deal with complex coupled
buckling behaviors which can be better described by more detailed modeling like plates assemblage (for
example, see [Lanzo and Garcea 1996; Casciaro et al. 1998]). A certain care is then always needed in se-
lecting the appropriate parent linear theory in order to obtain a reliable and accurate nonlinear modeling.

7.4. Mixed versus compatible formulation. The mixed format, used for recovering constitutive laws
in terms of generalized stress and strain parameters, plays an important role in the ICM approach. It
corresponds to a better use of the first-order information achieved from linear theory. In fact, it allows
the use of information on both the displacement field uL and the stress field σL , which define the linear
solution.

We can derive the constitutive laws in an alternative way, that is, by using a compatible formulation
where the strain energy is defined only in terms of εb[u]:

8c :=
1
2

∫
εb ·C−1εb dV . (51a)

This expression can also be rewritten in the form

8c :=

∫ (
εb · σ −

1
2σ ·Cσ

)
dV, σ := C−1εb, (51b)

which looks very similar to the mixed expression

8m :=

∫ (
εb · σb−

1
2σb ·Cσb

)
dV . (51c)

Note however that the two expressions differ in the definition of the stress field which is obtained from
εb, through the constitutive relation σ = C−1εb in (51b), or directly recovered as σb ≈ σL from the linear
solution in (51c). These two evaluations do not coincide as already discussed in Section 3.3.

The stresses are an important part of the linear solution, whose main goal is their accurate recovery.
To assume that σb is directly recovered as σL can then be generally considered a more reliable evaluation
than that obtained from the displacements in a more elaborate way, which also includes differentiations.
Actually, compatible formulations tend to generate spurious third and fourth-order terms in (51a) which
can produce some locking in the resulting nonlinear modeling. Generally they need some ad hoc treat-
ment to avoid this problem.
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7.5. Obtaining more than quadratic local accuracy. Note that the possibility of obtaining an accurate
recovery of nonlinear kinematics is strictly related to the occurrence of two circumstances: the fact that
the strain can be considered small enough that the local motion is governed by its rigid part, and the fact
that a rigid rotation R can be completely defined, through expansion (5c), by its first-order estimate W .
We actually made use of these properties when deriving the second-order recovery relation (12).

We can obtain more accurate expressions by setting further terms in the expansion (5c) of the rotation.
This could allow, at least in principle, full kinematical coherence in the recovery of rotations. However
great care has to be taken in the appropriate definition of the kinematical quantities involved and a more
precise evaluation of the stretch part of the motion could be required, such as, for instance, that obtained
by extending the linear solution by perturbation procedures [Nayfeh 1981]. Even if the use of (12) is
generally sufficient for practical applications, research in this direction could be interesting.

8. Conclusion

In the current state of the art in structural mechanics there is a lack of a suitable nonlinear models for use
in nonlinear FEM analysis, in comparison with the amounts of those available for linear analysis. The
purpose of this paper was reducing this gap by developing a general tool able to exploit information from
existing linear models for fibered continua, such as beams or plate, to set up corresponding nonlinear
models.

We proposed a general procedure, called the implicit corotational method (ICM), which consists of
two logical steps. In the first, we exploit the stress and displacement fields provided by the linear theory to
derive appropriate expressions for the nonlinear fields as viewed by a moving local corotational observer;
in the second we transfer this description to a fixed global frame directly exploiting the change in observer
algebra, so completing the nonlinear modeling and assuring frame invariance, by definition.

The former step only needs a linear solution be available. The recovery of the nonlinear fields is
straightforward through a standard procedure: the stress field is directly taken from the linear field and
the strain field is obtained from the linear displacements by the quadratic formula (12). The latter step
introduces the geometrical nonlinearities due to the finite motion of the fiber in the modeling, simply by
exploiting the objectivity requirements in a constructive way. Only the simple standard algebra defined
by (18a) is involved in this step and its implementation is straightforward and does not require any ad
hoc adaptation to fit the particular problem at hand.

ICM was implemented in two special, but still technically relevant, contexts: that of three-dimensional
beams, according to Saint-Venant general rod theory, and plates, according to Mindlin–Reissner and
Kirchhoff plate theories, a homogeneous isotropic material being assumed in both cases. We discussed
these cases in detail and have shown that the resulting models can actually recover all the richness
of the underlying linear solutions. We also indicated the effect of different simplification choices and
have shown that, by appropriate simplifying assumptions, we can recover existing nonlinear models (for
example, the beam and plate models of [Simo 1986; Antman 1995]). The method could however easily
be generalized to anisotropic materials and also applied in different contexts, such as, for instance, Vlasov
thin-walled beam theory, generalized beam theories [Goncalves et al. 2009], or laminated plate theory
[Nayfeh and Pai 2004]. In all cases the advantage is that it provides fully objective nonlinear models by
a black-box procedure which only needs the corresponding linear model to be already available.
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In the our subsequent, related paper [Garcea et al. 2012] we also show that nonlinear models derived
through ICM are directly suitable for numerical implementations through the use of a standard FEM tech-
nology. Numerical results will also show their accuracy and robustness in different technically relevant
contexts.
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