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GREEN’S FUNCTION FOR SYMMETRIC LOADING OF
AN ELASTIC SPHERE WITH APPLICATION TO CONTACT PROBLEMS

ALEXEY S. TITOVICH AND ANDREW N. NORRIS

A compact form for the static Green’s function for symmetric loading of an elastic sphere is derived. The
expression captures the singularity in closed form using standard functions and quickly convergent series.
Applications to problems involving contact between elastic spheres are discussed. An exact solution for
a point load on a sphere is presented and subsequently generalized for distributed loads. Examples
for constant and Hertzian-type distributed loads are provided, where the latter is also compared to the
Hertz contact theory for identical spheres. The results show that the form of the loading assumed in
Hertz contact theory is valid for contact angles up to about ten degrees. For larger angles, the actual
displacement is smaller and the contact surface is no longer flat.

1. Introduction

Contact between spheres has intrigued researchers for more than a century, and still no simple closed-
form analytical solution exists. One of the first and most important developments in the field, due to
Heinrich Hertz [1881], is an approximate solution for the normal, frictionless contact of linear elastic
spheres. The major assumption in Hertz’s model was that the contact area is small compared to the radii
of curvature, which has served as a useful engineering approximation in many applications. Ever since
then many have tried to relax this assumption while maintaining a compact, workable solution. The
Green’s function for symmetric loading on a sphere provides the means to find the exact response for
arbitrary loading, a first step towards improving on Hertz’s classic solution. Existing forms of the Green’s
function are however not suitable for fast and ready computation, either due to slow convergence of series
or analytically cumbersome expressions. The goal of the present paper is to provide an alternative form
of the Green’s function suitable for fast computation of solutions under arbitrary loading.

Sternberg and Rosenthal [1952] present an in-depth study of the nature of the singularities on an
elastic sphere loaded by two opposing concentrated point forces. As expected, the dominant inverse
square singularity in the stress components can be removed by subtraction of an appropriate multiple of
Boussinesq’s solution for a point load at the surface of a half space. Sternberg and Rosenthal showed
that the quickly convergent residual field retains a weaker singularity of logarithmic form, a result that is
also evident in the solution developed here. The singular solutions obtained by Sternberg and Rosenthal
were extended to arbitrarily oriented point forces in [Guerrero and Turteltaub 1972]. Our interest here
is in developing an analogous separation of the Green’s function (circular ring loading). In this regard,
a relatively compact form of the Green’s function for the sphere was derived by Bondareva [1969] who
used it to solve the problem of the weighted sphere. In [Bondareva 1971], she formulates an example
with a sphere contacting a rigid surface. This has been used to solve for the rebound of a sphere from a
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surface [Villaggio 1996]. Bondareva’s solution starts with the known series expansion [Lur’e 1955] for
the solution of the elasticity problem of a sphere, and replaces it with finite integrals of known functions.

In this paper we introduce an alternative form for the Green’s function for a sphere, comprised of
analytical functions and a quickly convergent series. No direct integration is required. The methodology
for determining the analytical functions is motivated by the simple example of a point load on a sphere,
for which we derive a solution similar in spirit to that of [Sternberg and Rosenthal 1952], but using
a fundamentally different approach: partial summation of infinite series as compared with a functional
ansatz. The present methods allows us to readily generalize the point-load solution to arbitrary symmetric
normal loading. A typical contact problem involves solving a complicated integral equation for the
contact stress once a displacement is specified. Instead, we will use the derived Green’s function in the
direct sense, solving for the displacements for a given load. This is used to check the validity of Hertz
contact theory through the assumed form of the stress distribution.

The outline of the paper is as follows. The known series solution for symmetric loading on a sphere is
reviewed in Section 2. The proposed method for simplification is first illustrated in Section 3 by deriving
a quickly convergent form of the solution for a point force. The Green’s function for symmetric loading
is then developed in Section 4, and is illustrated by application to different loadings. Conclusions are
given in Section 5.

2. Series solution

Consider a solid sphere of radius R, with surface r = R, 0 ≤ θ ≤ π , in spherical polar coordinates
(r, θ, φ). The sphere is linear elastic with shear modulus G and Poisson’s ratio ν. The surface is subject
to tractions

σrθ = 0, σrφ = 0, σrr = σ(θ) for r = R, 0≤ θ ≤ π, 0≤ φ < 2π. (1)

Using the known properties of Legendre functions, see (45), allows us to express the normal stress as

σ(θ)=
1
2

∞∑
n=0

(2n+ 1)σn Pn(cos θ), (2)

where the Legendre series coefficients are

σn =

∫ π

0
σ(φ)Pn(cosφ) sinφdφ. (3)

The displacements and tractions for the sphere can also be represented in series form [Zhupanska
2011, Equation (5)]:

2Gur =

∞∑
n=0

[(n− 2+ 4ν)Anr + Bnr−1
]rn Pn(cos θ),

2Guθ =
∞∑

n=1

[n(n+ 5− 4ν)Anr + (n+ 1)Bnr−1
]rn P1

n (cos θ)
n(n+ 1)

,
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σrr =

∞∑
n=0

[
[n(n− 1)− 2(1+ ν)]An + (n− 1)Bnr−2]rn Pn(cos θ),

σrθ =

∞∑
n=1

[
n[(n− 1)(n+ 3)+ 2(1+ ν)]An + (n2

− 1)Bnr−2]rn P1
n (cos θ)

n(n+ 1)
,

(4)

with B0 ≡ 0, and where B1 corresponds to a rigid body translation via 2Gu(0, · ) = B1ez . It follows
from (1) that

A0 =
−σ0

2(1+ ν)
, A1 = 0,

An =−
σn

4Rn

(n+ 1)(2n+ 1)
[n(n− 1)+ (2n+ 1)(1+ ν)]

, n ≥ 2,

Bn =
−n

n2− 1
[(n− 1)(n+ 3)+ 2(1+ ν)]R2 An, n ≥ 2.

(5)

Thus, noting that P1
n (cos θ)= d

dθ
Pn(cos θ), we have

ur (R, θ)=
R

4G

(
2(1− 2ν)

1+ ν
σ0+

∞∑
n=2

σn

(2n+1
n−1

)(2(1− ν)n2
+ νn− 1+ 2ν

n2+ (1+ 2ν)n+ 1+ ν

)
Pn(cos θ)

)
,

uθ (R, θ)=
R

4G
d

dθ

∞∑
n=2

σn

(2n+1
n−1

)( (−1+ 2ν)n+ 2− ν
n2+ (1+ 2ν)n+ 1+ ν

)
Pn(cos θ).

(6)

Bondareva [1969], using a different representation, replaced the infinite summation of Legendre func-
tions by a combination of closed form expressions and an integral, each dependent on ν. The integral
term contains a logarithmic singularity which, together with the complex-valued nature of its coefficients,
makes its evaluation indirect. Here we propose an alternative form for the Green’s function in a combi-
nation of closed-form expressions and a standard summation of Legendre functions that is, by design,
quickly convergent.

3. Point force

3.1. Exact solution. In order to illustrate the method, we first consider the simpler problem of the point
force of magnitude F applied at θ = 0 defined by

σ(θ)=
−F

2πR2 lim
ψ↓0

δ(θ −ψ)

sinψ
⇐⇒ σn =

−F
2πR2 , (7)

where we have used the property Pn(1)= 1. The difficulty with the infinite summations (6) is twofold:
first, this is not a suitable form to reproduce the singular nature of the Green’s function; secondly, they
do not converge quickly as a function of the truncated value for n. The idea here is to replace the
summation by closed form expressions plus a summation that is both regular and quickly convergent.
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The fundamental idea behind the present method is to write ur and uθ of (6) in the form

ur (R, θ)=
−F

8πG R

(
4(1− ν)S(θ)+

M∑
j=0

a j (ν)S j (θ)+ f (θ)
)
, (8a)

uθ (R, θ)=
−F

8πG R
d

dθ

( M∑
j=0

b j (ν)S j (θ)+ g(θ)
)
, (8b)

where the functions S(θ) and S j (θ) ( j = 1, . . .M), are closed-form expressions, in this case:

S(θ)=
∞∑

n=0

Pn(cos θ)= 1
2

csc θ
2
, (9a)

S j (θ)=

∞∑
n=0

Pn+ j (cos θ)
n+ 1

, j = 0, 1, . . . , (9b)

and f (θ), g(θ) are regular functions of θ defined by quickly convergent series in n,

f (θ)=
∞∑

n=0

Cn Pn(cos θ), g(θ)=
∞∑

n=0

Dn Pn(cos θ). (10)

The coefficients a0, a1, . . . , aM are defined so that Cn = O
(
n−(M+2)

)
as n→∞. This criterion uniquely

provides the constants a0, a1, . . . , aM as solutions of a system of linear equations. Similarly, b0, b1, . . . ,

bM are uniquely defined by Dn = O
(
n−(M+2)

)
as n→∞.

Here we consider the specific case of M = 2. Other values of M could be treated in the same manner;
however, we will show that M = 2 is adequate for the purpose of improving convergence. In this case
(8) becomes

ur (R, θ)=
−F

8πG R
[4(1− ν)S(θ)+ a0S0(θ)+ a1S1(θ)+ a2S2(θ)+ f (θ)]

=
−F

8πG R

[ ∞∑
n=2

(
4(1− ν)+ a0

n+1
+

a1
n
+

a2
n−1

+Cn

)
Pn(θ)+C0 P0(θ)+C1 P1(θ)

+ 4(1− ν)
(
P0(θ)+ P1(θ)

)
+ a0

(
P0(θ)+

1
2 P1(θ)

)
+ a1 P1(θ)

]
, (11a)

uθ (R, θ)=
−F

8πG R
d

dθ

[
b0S0(θ)+ b1S1(θ)+ b2S2(θ)+ g(θ)

]
=
−F

8πG R
d

dθ

[ ∞∑
n=2

( b0
n+1

+
b1
n
+

b2
n−1

+ Dn

)
Pn(θ)

+ b0
(
P0(θ)+

1
2 P1(θ)

)
+ b1 P1(θ)+ D0 P0(θ)+ D1 P1(θ)

]
, (11b)

where the associated functions S j (θ), j = 0, 1, 2, are (see Appendix B)
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S0(θ)= log
(

1+ csc θ
2

)
, (12a)

S1(θ)=−S0(θ)− 2 log sin θ
2
, (12b)

S2(θ)= S1(θ) cos θ − 2 sin θ
2

(
1− sin θ

2

)
. (12c)

Equations (8), (9a), and (12) indicate the expected Boussinesq-like θ−1 singularity as well as the
weaker log θ singularity first described in [Sternberg and Rosenthal 1952]. The logarithmic singularities
in S j (θ), j = 0, 1, 2, can be compared to the potential functions [D1], [D2], and [D3] in Equation (17)
of that reference, which provide a logarithmic singularity. In the present notation these are, respectively
(using capital 8 so as not to be confused with the angle φ, and making the substitution θ→ π − θ ),

81(θ)= 2 log sin θ
2
, 82(θ)=−R

(
1+ 2 cos θ log sin θ

2

)
,

83(θ)= R2
(

2(1− 3 cos2 θ) log sin θ
2
+ cos2 θ − 3 cos θ − 1

)
.

(13)

These clearly display the same form of the singularity as in equations (12), but are otherwise different.
Define the first two coefficients of f (θ) and g(θ) from (10) as

C0 =
2(1− 2ν)

1+ ν
− 4(1− ν)− a0, C1 =−4(1− ν)− 1

2 a0− a1, (14a)

D0 =−b0, D1 =−
1
2 b0− b1. (14b)

The coefficients an and bn are then found by comparing expression (11) to the series solution in (6),
expanding both expressions for large n, and equating the coefficients of the same order terms. Thus, the
original assumed form of the solution (8) implies

∞∑
n=2

Pn(θ)

n2+ (1+ 2ν)n+ 1+ ν

(2n+1
n−1

)
×

{(
2(1− ν)n2

+ νn− 1+ 2ν
)(

(−1+ 2ν)n+ 2− ν
)

=

∞∑
n=2

Pn(θ)×


(

4(1− ν)+ a0
n+1

+
a1
n
+

a2
n−1

+Cn

)
,( b0

n+1
+

b1
n
+

b2
n−1

+ Dn

)
,

(15)

where
a0 =

1
2 (1+ ν)(1− 2ν)(−16ν2

+ 8ν+ 5),

a1 =−32ν4
+ 16ν3

+ 30ν2
− 16ν− 1,

a2 = 16ν4
− 16ν3

− 5ν2
+

13
2 ν+

1
2 ,

b0 =
1
2 (1+ ν)(16ν2

− 12ν− 1),

b1 =−16ν3
+ 4ν2

+ 13ν− 4,

b2 = 8ν3
− 6ν2

−
5
2 ν+

5
2 .

(16)
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The remaining coefficients Cn and Dn are then determined directly from (15):

Cn =
(1+ ν)

Ln

(
(6− a1− 6a2)n+ a1

)
=−

(1+ ν)
Ln

(
(64ν4

− 80ν3
+ 23ν− 4)n+ (32ν4

− 16ν3
− 30ν2

+ 16ν+ 1)
)
, (17a)

Dn =
(1+ ν)

Ln

(
(6− b1− 6b2)n+ b1

)
=−

(1+ ν)
Ln

(
(32ν3

− 32ν2
− 2ν+ 5)n+ (16ν3

− 4ν2
− 13ν+ 4)

)
, (17b)

where

Ln ≡ n(n2
− 1)

(
n2
+ (1+ 2ν)n+ 1+ ν

)
. (18)

In summary, the new form of the point force solution is given by the displacements in (11) where the
functions and coefficients are given in (12)–(14) and (16)–(18).

3.2. Numerical examples. In the following examples we introduce the integer N as the truncation value
of the series in (10). The Poisson’s ratio was taken to be 0.4. Displacements have been normalized by
the constant coefficient of the series as Ui =−8πG RF−1ui , where i = r, θ . Figure 1 shows the rate of
convergence of the displacements given by (11), whereas Figures 2 and 3 compare the displacements in
(6) with (11).
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Figure 1. Convergence of the proposed expression for Ur (left) and Uθ (right), which
equal (−8πG R/F) times the functions ur and uθ in (11). The inset on the left shows
the Ur graphs around θ = π/2 magnified 11250 times: the difference in the value of Ur

from N = 4 to N = 10 is 4.5259 ·10−4, and from N = 10 to N = 100 it is −1.7059 ·10−5.
The inset on the right shows the Uθ graphs around θ = π/2 magnified 1200 times: the
difference in the value of Uθ from N = 4 to N = 10 is 2.4097 · 10−3, and from N = 10
to N = 100 it is −1.5040 · 10−4.
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Figure 2. Comparison of the convergence of Ur = (−8πG R/F)ur with the truncation
value N for the existing expression ((6), shown in blue) and the expression proposed
herein ((11), shown in red). From left to right: N = 4, 10, 100.
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Figure 3. Comparison of the convergence of Uθ = (−8πG R/F)uθ with the truncation
value N for the existing expression ((6), shown in blue) and the expression proposed
herein ((11), shown in red). From left to right: N = 4, 10, 100.

By design, the proposed expression, (11), converges much faster than the existing expression, (6), as
seen in Figures 2 and 3. Looking at the convergence of the proposed expressions with the truncation
value N , Figure 1, we can suggest that the analytic portion of the expression alone gives close results.
However, it should be noted that one cannot get rid of the first two terms in the series for f (θ) and g(θ)
because of their large magnitudes. As far as the general behavior of the normalized displacements with
θ , we see that they increase asymptotically approaching θ = 0, change sign between 36.7◦ and 108.7◦

for Ur (7.27◦ and 80.83◦ for Uθ ), and have a minimum at 65.5◦ for Ur (24.6◦ for Uθ ). This is difficult
to see in the figures, but due to the symmetry of the loading, the displacement Uθ must have a value of
0 at θ = 0.
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4. Green’s function

4.1. A fast convergent form for the Green’s function. The surface displacements for arbitrary loading
may be written, by analogy with the ansatz (8) for the point force, and generalizing the latter,

ur (R, θ)=
R

4G

∫ π

0

(
4(1− ν)S(θ, φ)+

M∑
j=0

a j (ν)S j (θ, φ)+ f (θ, φ)
)
σ(φ) sinφdφ, (19a)

uθ (R, θ)=
R

4G
d

dθ

∫ π

0

( M∑
j=0

b j (ν)S j (θ, φ)+ g(θ, φ)
)
σ(φ) sinφdφ, (19b)

where S(θ, φ) and S j (θ, φ) ( j = 1, . . .M) are

S(θ, φ)=
∞∑

n=0

Pn(cos θ)Pn(cosφ), (20a)

S j (θ, φ)=

∞∑
n=0

1
n+1

Pn+ j (cos θ)Pn+ j (cosφ), j = 0, 1, . . . , (20b)

and f (θ, φ) and g(θ, φ) are regular functions of θ defined by quickly convergent series in n:

f (θ, φ)=
∞∑

n=0

Cn Pn(cos θ)Pn(cosφ), g(θ, φ)=
∞∑

n=0

Dn Pn(cos θ)Pn(cosφ). (21)

The coefficients a0, a1, . . . , aM are the same as before. The main complication is to find the functions
(20). Thus, S(θ, φ) follows from (52) as

S(θ, φ)=


1
π

csc θ
2

sec φ
2

K
((

cot θ
2

tan φ
2

)2
)
, θ > φ,

1
π

sec θ
2

csc φ
2

K
((

tan θ
2

cot φ
2

)2
)
, θ < φ,

(22)

where K (m) is the complete elliptic integral of the first kind [Abramowitz and Stegun 1964, 17.3.1],
while (50a) implies

S01(θ, φ)≡ S0(θ, φ)+ S1(θ, φ)=


−2 log sin θ

2
cos φ

2
, θ > φ,

−2 log cos θ
2

sin φ
2
, θ < φ.

(23)

The functions S j (θ, φ) can be determined, but their form is overly complicated, and defeats our objective
of simplifying the Green’s function. We therefore restrict the solution to the use of the above two series:
S(θ, φ) and S01(θ, φ).
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We therefore consider the following form of the ansatz (19) using the series S and S01 of (22) and
(23), respectively. Substituting them into (19) yields the identities

ur (R, θ)=
R

4G

∫ π

0

(
4(1− ν)S(θ, φ)+ a01(ν)S01(θ, φ)+ f (θ, φ)

)
σ(φ) sinφdφ

=
R

4G

∫ π

0

[ ∞∑
n=2

(
4(1− ν)+ a01

( 2n+1
n(n+1)

)
+Cn

)
Pn(cos θ)Pn(cosφ)

+4(1− ν)
(
P0(cos θ)P0(cosφ)+ P1(cos θ)P1(cosφ)

)
+ a01

(
P0(cos θ)P0(cosφ)

+
3
2 P1(cos θ)P1(cosφ)

)
+C0 P0(cos θ)P0(cosφ)+C1 P1(cos θ)P1(cosφ)

]
σ(φ) sinφdφ, (24a)

uθ (R, θ)=
R

4G
d

dθ

∫ π

0

(
b01(ν)S01(θ, φ)+ g(θ, φ)

)
σ(φ) sinφdφ

=
R

4G
d

dθ

∫ π

0

[ ∞∑
n=2

(
b01

( 2n+1
n(n+1)

)
+ Dn

)
Pn(cos θ)Pn(cosφ)

+b01
(
P0(cos θ)P0(cosφ)+ 3

2 P1(cos θ)P1(cosφ)
)

+D0 P0(cos θ)P0(cosφ)+ D1 P1(cos θ)P1(cosφ)
]
σ(φ) sinφdφ. (24b)

Once again we define the first two coefficients of f (θ, φ) and g(θ, φ) as

C0 =
2(1− 2ν)

1+ ν
− 4(1− ν)− a01, C1 =−4(1− ν)− 3

2 a01, (25a)

D0 =−b01, D1 =−
3
2 b01, (25b)

which allows us to solve the following expressions for the coefficients a01 and b01:
∞∑

n=2

(2n+1
n−1

)(2(1− ν)n2
+ νn− 1+ 2ν

n2+ (1+ 2ν)n+ 1+ ν

)
Pn(cos θ)Pn(cosφ)

=

∞∑
n=2

(
4(1− ν)+

(2n+ 1)
n(n+ 1)

a01+Cn

)
Pn(cos θ)Pn(cosφ), (26a)

∞∑
n=2

(2n+1
n−1

)( (−1+ 2ν)n+ 2− ν
n2+ (1+ 2ν)n+ 1+ ν

)
Pn(cos θ)Pn(cosφ)

=

∞∑
n=2

(
(2n+ 1)
n(n+ 1)

b01+ Dn

)
Pn(cos θ)Pn(cosφ). (26b)

This is done by expanding (26) for large n and equating same order terms yielding

a01 = (2ν− 1)2, b01 = 2ν− 1. (27)

Using (27), Cn and Dn are found directly from (26) (see also (18)):

Cn =−
1

Ln
[(ν− 1)(4ν− 1)(4ν+ 1)n3

+ (8ν2
− 11ν− 1)n2

+(−12ν3
+ 8ν2

+ 3ν− 5)n− (ν+ 1)(2ν− 1)2], (28a)
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Dn =−
(2n+1)

Ln
[(ν− 1)(4ν+ 1)n2

+ 2(−ν2
+ ν− 1)n− (ν+ 1)(2ν− 1)]. (28b)

In summary,

ui (R, θ)=
R

4G

∫ π

0
Hi (θ, φ)σ (φ) sinφdφ, i = r, θ, (29a)

Hr (θ, φ)= 4(1− ν)S(θ, φ)+ (1− 2ν)2S01(θ, φ)+

∞∑
n=0

Cn Pn(cos θ)Pn(cosφ), (29b)

Hθ (θ, φ)=
d

dθ

(
(2ν− 1)S01(θ, φ)+

∞∑
n=0

Dn Pn(cos θ)Pn(cosφ)
)
, (29c)

where the coefficients Cn and Dn are given in (28). Note that Cn, Dn = O(n−2) as n→∞, ensuring
rapidly convergent series. The Green’s functions of (29) are generally valid for θ ∈ [0, π]. The integrands
Hi (θ, φ) are smooth and bounded functions of φ for φ 6= θ , which is always the case if the displacements
are evaluated at points outside the region of the loading σ(φ). However, for points under the load, the
integration of Hr (θ, φ) involves a logarithmic singularity at φ = θ . A simple means of dealing with this
is described next.

4.1.1. Removing the singularity under the load. The function S(θ, φ) exhibits a logarithmic singularity
by virtue of the asymptotic behavior:

K (m)= log
4

√
1−m

+O(1−m), m ↑ 1. (30)

The integral in (24a) is evaluated by rewriting (24a) in the equivalent form

ur (R, θ)=
R

4G

{∫ φ0

0

[(
a01(ν)S01(θ, φ)+ f (θ, φ)

)
σ(φ)+4(1−ν)

(
S(θ, φ)σ (φ)− Ŝ(θ, φ)σ (θ)

)]
sinφdφ

+ 4(1− ν)σ (θ)
∫ φ0

0
Ŝ(θ, φ) sinφdφ

}
, 0≤ θ ≤ φ0, (31)

where the angle φ0 defines the domain of the loading, which is normally for contact problems, much less
that π . The function Ŝ(θ, φ) has the same singularity as S(θ, φ) and has a relatively simple integral. We
choose

Ŝ(θ, φ)=


−

1
2π

csc θ
2

sec φ
2

log
(

cos2 φ

2
− cos2 θ

2

)
, θ > φ,

−
1

2π
sec θ

2
csc φ

2
log
(

sin2 φ

2
− sin2 θ

2

)
, θ < φ.

(32)

The integrand of the first integral in (31) is now a smoothly varying function with no singularity, and the
second integral is, explicitly,
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0
Ŝ(θ, φ) sinφdφ =−

2
π sin(θ/2)

∫ 1

cos(θ/2)
log
(

x2
− cos2 θ

2

)
dx

−
2

π cos(θ/2)

∫ sin(φ0/2)

sin(θ/2)
log
(

x2
− sin2 θ

2

)
dx

=
G(cos(θ/2), 1)

sin(θ/2)
+

G(sin(θ/2), sin(φ0/2))
cos(θ/2)

, 0≤ θ ≤ φ0,

(33)

where

G(x, y)=− 2
π

(
(y− x) log(y− x)+ (y+ x) log(y+ x)− 2(y− x + x log 2x)

)
. (34)

In summary, the solution for ur with the singularity removed has the following form (see also (29a) for
Hr (θ, φ) and (33) for G(x, y))

ur (R, θ)=
R

4G

{∫ φ0

0
[Hr (θ, φ)σ (φ)− Ĥr (θ, φ)σ (θ)] sinφdφ+ h(θ)

}
,

Ĥr (θ, φ)= 4(1− ν)Ŝ(θ, φ),

h(θ)= 4(1− ν)
[

G(cos(θ/2), 1)
sin(θ/2)

+
G(sin(θ/2), sin(φ0/2))

cos(θ/2)

]
σ(θ).

(35)

4.2. Examples of distributed loads. To check the convergence of the expressions in (24) we will consider
a symmetric constant distributed load σ(φ) of the form

σ(φ)=
−F
πR2

1

sin2 φ0
, 0≤ φ ≤ φ0, (36)

and a symmetric Hertzian-type load of the form

σ(φ)=
−3F
2πR2

√
sin2 φ0− sin2 φ

sin3 φ0
, 0≤ φ ≤ φ0. (37)

Both loads have been normalized such that their resultant forces are −F for all ranges of the angle φ0,
which is equivalent to the point force given by (7). The solution on the interval 0≤ θ ≤ φ0 is obtained
using (35) and for φ0 < θ ≤ π we apply (29) directly.

Firstly, the convergence of the proposed solution, (35), is compared to the series solution for a Hertzian-
type load in Figures 4 and 5. These curves indicate that the convergence of the radial displacement
Ur in the proposed solution is substantially superior to the series solution. Figures 6 and 7 show the
convergence of the displacements with the truncation limit N under both types of loading. Subsequently,
Figures 8 and 9 demonstrate that in the limit as φ0→ 0 the displacements due to the distributed loads
approach those obtained for the point load. Moreover, the normalized radial displacement, Ur , is almost
indistinguishable from the point load for a φ0 as large as ten degrees. A Poisson’s ratio of ν = 0.4 has
been used throughout.

We would also like to investigate how the displacement due to a Hertzian-type load compares with that
from Hertzian contact theory. The dimensionless vertical displacement that we obtain by the methods
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Figure 4. Comparison of the proposed solution ((35), shown in red) and existing series
solutions ((6), shown in blue) for Ur = (−8πG R/F)ur under a Hertzian-type load
distributed up to φ = 10◦. From left to right: N = 4, 10, 100.
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Figure 5. Comparison of the proposed solution ((35), shown in red) and existing series
solutions ((6), shown in blue) for Uθ = (−8πG R/F)uθ under a Hertzian-type load
distributed up to φ = 10◦. From left to right: N = 4, 10, 100.

outlined in this paper has the form

Uz =Ur cos θ −Uθ sin θ = (8πG R)
uz

F
, (38)

where uz is the physical vertical displacement.
Hertz contact theory [Johnson 1985] is formulated in terms of the radius of the contact area a, the

displacements directly under the load δ, and the magnitude of the applied load F . We need to reformulate
these quantities in terms of the contact angle φ0. The radius of the contact area is simply

a = R sinφ0. (39)
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(−8πG R/F)uθ given in (24) with N for a constant distributed load given by (36). The
load was distributed up to φ0 = 10◦.
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Figure 7. Convergence of the expressions for Ur = (−8πG R/F)ur and Uθ =

(−8πG R/F)uθ given in (24) with N for a Hertzian-type distributed load given by (37).
The load was distributed up to φ0 = 10◦.

The maximum vertical displacement is related to a in the following manner:

δ =
a2

R
= R sin2 φ0 = 2uz(0), (40)

where (39) was used and the last equality arises from the fact that the Hertzian solution presented here is
for the contact of two spheres hence we need to halve the total displacement. Furthermore, Hertz contact
theory tells us that the resultant force F is proportional to a3, or, more accurately,

F = 4
3

( G
1−ν

)a3

R
=

4
3

( G
1−ν

)
R2 sin3 φ0. (41)
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truncated at N = 300. The loads were distributed over φ0 = 10◦ (red), 30◦ (green), and
50◦ (blue).
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truncated at N = 300. The loads were distributed over φ0 = 10◦ (red), 30◦ (green), and
50◦ (blue).

This allows us to rewrite (38) for the dimensionless vertical displacement via Hertz contact theory, de-
noted as U H

z (0). Substituting (40) and (41) into (38) yields

U H
z (0)= (8πG R)

(R/2) sin2 φ0

(4/3)(G/(1− ν))R2 sin3 φ0
=

3π(1− ν)
sinφ0

. (42)

Equation (42) gives us a way to compare the presented solution for the Hertzian-type load to the
solution from Hertz contact theory. The numerical results are presented in Figure 10, which compares
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the vertical displacements ((38) with (42)) as a function of the contact angle φ0. Note that along with
Uz(0) and U H

z (0) we also plot 2Uz(φ0), which according to Hertz theory should be equal to Uz(0). The
normalized difference between the displacements is shown in Figure 11. As expected, the solutions
are close for small contact areas and diverge as this area increases. The same can be said about the
relationship between the displacements Uz(0) and 2Uz(φ0).
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the normalized angle θ/φ0. Each curve corresponds to a different contact angle ranging
from φ0 = 5◦ to 40◦ in 5◦ increments.

Comparing the maximum displacements Uz(0) with U H
z (0) does not tell us anything about the shape

of the contact area for a sphere loaded by a Hertzian-type load. Hertz contact theory states that the contact
area between two identical spheres is flat, and thus we can describe it using R(cos θ − cosφ0). Therefore
we define a function s(θ) to determine how close is our calculated displacement to the Hertzian solution as

s(θ)= kUz(θ)− (cos θ − cosφ0), (43)

where k is a constant determined by enforcing s(0)= s(φ0), which results in

s(θ)=
Uz(θ)

Uz(0)−Uz(φ0)
(1− cosφ0)− (cos θ − cosφ0). (44)

The function s(θ) is plotted in Figure 12 for several angles φ0. These results show that the contact area is
flat for small contact angles, but gains curvature for larger angles. According to Hertz theory, for small
contact angles φ0, the function s(θ) behaves as a constant s(θ)≈ φ2

0/2. The angles shown in Figure 12
are too large to see this behavior, however, at φ0 = 5◦ the values are close with s(θ) = 0.00334 and
φ2

0/2= 0.00381.

5. Conclusions

A compact Green’s function for a sphere is presented which uses the fundamental idea of expressing a
slowly convergent series with analytical functions and a quickly convergent series. The increased speed
of convergence is demonstrated for the point force solution, which is also shown to be consistent with
the more general distributed loading in the limit as the contact angle approaches zero. Since the general
Green’s function contains elliptical integrals, an easy method for dealing with the singularity in the
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integrand is presented. Comparing the exact displacement due to a Hertzian-type distributed load to the
displacement given by Hertz contact theory we conclude that Hertz contact theory gives accurate results
for contact angles up to about ten degrees, with a steadily increasing error. For larger contact angles,
Hertz theory overestimates the displacements and cannot account for the shape of the contact area. This
is to say that the stress distribution assumed in Hertz theory results in a curved contact surface for larger
contact angles.

Appendix A: Legendre polynomial formulas

The orthogonality and completeness relations for the Legendre functions are

1
2
(2n+ 1)

∫ π

0
Pm(cos θ)Pn(cos θ) sin θ dθ = δmn, (45a)

∞∑
n=0

1
2
(2n+ 1)Pn(cos θ)Pn(cosφ)=

δ(θ −φ)

sinφ
, (45b)

Starting with the definition for Pn(x),

Pn(cos θ)= 1
π

∫ π

0
(cos θ + i sin θ cosα)n dα, (46)

and using
∞∑

n=0

zn
=

1
1−z

, |z|< 1, the well-known generating function follows:

∞∑
n=0

tn Pn(cos θ)=
1

√
1+ t2− 2t cos θ

, |t | ≤ 1. (47)

Integrating the identity (47) with respect to t implies

∞∑
n=0

tn+1 Pn(cos θ)
n+ 1

= sinh−1(cot θ)+ sinh−1
( t−cos θ

sin θ

)
= log

(
1+ csc θ

2

)
− sinh−1

(
tan θ

2

)
+ sinh−1

( t−cos θ
sin θ

)
, |t | ≤ 1, 0≤ θ ≤π.

(48)

Taking the limit as t → 1 yields (12a). S1(θ) of (12b) follows from a similar result [Prudnikov et al.
1986, Equation 5.10.1.4], while S2(θ) of (12c) follows from the recurrence relation

(n+ 1)Pn+1(x)− (2n+ 1)x Pn(x)+ n Pn−1(x)= 0, (49)

after dividing by n and summing from n = 1 to ∞ (S2 agrees with [Prudnikov et al. 1986, Equa-
tion 5.10.1.6]). The recurrence relation can be used to then find S j (θ) for j = 3, 4, . . . .
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A series of products of Legendre functions is given by Equations 6.11.3.1 and 6.11.3.2 of [Brychkov
2008]:

∞∑
n=1

2n+ 1
n(n+ 1)

Pn(x)Pn(y)=−1− log
(1− x)(1+ y)

4
, (50a)

∞∑
n=1

2n+ 1
n2(n+ 1)2

Pn(x)Pn(y)= 1− log 1+y
2

log
(1− x)(1+ y)

4
+ Li2

(1+x
2

)
− Li2

(1+y
2

)
, (50b)

for −1≤ x < y ≤ 1. Equation (50a) can be derived by operating on both sides by the Legendre differential
operator

L x =
d

dx
(1− x2)

d
dx
,

and using the eigenvalue property L x Pn(x)=−n(n+ 1)Pn(x) to arrive at (8b) (for x < y). At the same
time, the constants in the right member of (50a) follow by considering the formula for x = 0, y = 1, in
which case the sum on the left can be found. Equation (50a) gives S0(θ, φ)+ S1(θ, φ) by noting that

1
n
+

1
n+1

=
2n+ 1

n(n+ 1)
.

The following is a simple consequence of Legendre’s addition formula [Martin 2006, Equation 3.19]:

Pn(cos θ)Pn(cosφ)= 1
π

∫ π

0
Pn(cos θ cosφ− sin θ sinφ cosα)dα. (51)

Multiplying both sides of (51) by tn and summing implies, using (47), the identity [Prudnikov et al. 1986,
Equation 5.10.2.1], for |t |< 1,

∞∑
n=0

tn Pn(cos θ)Pn(cosφ)=
4

π(u++ u−)
K
(

u+− u−
u++ u−

)
, u± =

√
1− 2t cos(θ ±φ)+ t2. (52)

Appendix B: Analytical functions and their derivatives

We require the derivatives with respect to θ of the functions defined in (12). They are

d S0(θ)

dθ
=

sin(θ/2)− 1
sin θ

,

d S1(θ)

dθ
=−

d S0(θ)

dθ
− cot θ

2
,

d S2(θ)

dθ
=

d S1(θ)

dθ
cos θ − S1(θ) sin θ + cos θ

2

(
2 sin θ

2
− 1

)
.

(53)

Similarly, the analytical function used to find uθ , (29), in Section 4 is

S01(θ, φ)= S0(θ, φ)+ S1(θ, φ)=


−2 log sin θ

2
cos φ

2
, θ > φ,

−2 log cos θ
2

sin φ
2
, θ < φ.

(54)
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The derivative of S01(θ, φ) is

∂S01(θ, φ)

∂θ
=

{
− cot θ/2, θ > φ,

tan θ/2, θ < φ.
(55)
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