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DISPLACEMENT FIELD IN AN ELASTIC SOLID
WITH MODE-III CRACK AND FIRST-ORDER SURFACE EFFECTS

TAMRAN H. LENGYEL AND PETER SCHIAVONE

We analyze a nonstandard boundary-value problem for Laplace’s equation characterizing the displace-
ment field arising from the antiplane deformations of an infinite elastic solid containing a sharp finite
crack when first-order surface effects are included on the crack faces. The surface effects are incorporated
using the continuum-based surface/interface model of Gurtin and Murdoch. We establish a uniqueness
result for the displacement field and use complex variable methods to reduce the problem to a series of
integral equations which are solved numerically using an efficient, stable, yet convenient finite element
discretization method. Our results demonstrate the effect of the surface on the displacement field and its
implications for the corresponding stress distributions in the vicinity of the crack.

1. Introduction

The incorporation of surface mechanics into mathematical models describing deformation of various
elastic structures has drawn an increasing amount of attention in the literature recently (see, for example,
[Gibbs 1906; Orowan 1970; Gurtin and Murdoch 1975; 1978; Chan and Larché 1982; Benveniste and
Aboudi 1984; Thomson and Chuang 1986; Cammarata 1994; Steigmann and Ogden 1997a; 1997b; Wang
et al. 2007; 2010a; 2010b; Zhu 2008; Altenbach et al. 2009; 2010a; 2010b; 2011] and the references
contained therein). The concept is particularly significant when considering continuum models of defor-
mation at the nanoscale where the high surface-area-to-volume ratio means that the separate contributions
of the surface can no longer be ignored.

In the case of antiplane deformations of a linearly elastic and homogeneous isotropic solid containing
a sharp crack, Kim et al. [2010a; 2010b] have incorporated surface effects on the faces of the crack using
the Gurtin–Murdoch surface elasticity model [Gurtin and Murdoch 1975; 1978; Ru 2010]. The resulting
mathematical model gave rise to a nonstandard boundary-value problem for the (harmonic) antiplane
displacement. Using complex variable methods, Kim et al. presented various conclusions regarding the
stress distributions in the vicinity of the crack and how they are affected by the surface mechanics. A
rigorous analysis of the actual displacement boundary-value problem in terms of uniqueness and deter-
mination of the displacement solution was never conducted. The determination of the displacement field
is important in identifying the deformation of the body; in particular, the change of shape of the crack
faces in response to the presence of surface effects. To this end, it is extremely important to ensure
that the mathematical model being used to describe the displacement field is “correct” or well-posed in
the sense that any solution found by numerical methods is necessarily unique. In fact, as we discuss in
Section 4, the uniqueness result, in particular, has significant implications not only for the determination
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of the displacement field but also for the corresponding stress distributions in the vicinity of the crack
tips.

In this paper we undertake a rigorous formulation and analysis of the displacement boundary-value
problem first mentioned in [Kim et al. 2010a; 2010b]. We establish a uniqueness result for the displace-
ment field and use complex variable methods to reduce the problem to a series of integral equations
which are solved numerically using an efficient and stable, yet straightforward numerical method. Our
results demonstrate the contribution of the mechanics of the crack surfaces on the displacement field and
the implications for the corresponding stress distributions at the crack tips.

2. Formulation

We consider antiplane deformations of a linearly elastic and homogeneous isotropic solid occupying
a cylindrical region in R3 with generators parallel to the x3-axis of a rectangular Cartesian coordinate
system (x1, x2, x3). Suppose that the cylinder contains a single internal finite crack running the length of
the cylinder and occupying the region L = {−a ≤ x1 ≤ a, x2 = 0±} of a typical cross section S. The crack
length 2a is assumed to be much smaller than any characteristic length in S. The faces of the crack are
assumed to have separate elasticities which is described by an adaptation of the Gurtin–Murdoch surface
elasticity model [Ru 2010]. The theory of antiplane elasticity leads to a description of the deformation
of the solid characterized by the unknown antiplane displacement function w(x1, x2) defined in S.

In order to formulate the boundary-value problem for w, we first note that the nature of antiplane
deformations are such that [Milne-Thompson 1962]

w+ =−w− everywhere in S. (2.1)

Here w+ and w− represent the antiplane displacements in the upper and lower half-planes x2 > 0 and
x2 < 0, respectively. Consequently, since we assume that the material remains connected (no tearing),
w = 0 at the crack tips x1 =±a and x2 = 0. Finally, we assume that the crack faces are subjected to a
loading σ23 = P(x1), where P(x1) is a Hölder-continuous function, and that the remote boundaries of
the cross section are free of loading, that is, σ23 = 0 and R2

= x2
1 + x2

2 →∞.
We obtain the following two-dimensional discontinuous boundary-value problem for the Laplace op-

erator 1:

1w(x1, x2)= 0, (x1, x2) ∈ S \ L , (2.2)

∓β
∂2w

∂x2
1
(x1, 0±)+ P(x1)= µ

∂w

∂x2
(x1, 0±), − a < x1 < a. (2.3)

For R =
√

x2
1 + x2

2 →∞, as in the statement of the standard exterior Dirichlet problem for Laplace’s
equation [Kress 1999], it is required that

w(x1, x2)= w∞+ O
( 1

R

)
, (2.4)

uniformly for all directions. Here β is a parameter representing the elasticity of the surface layer and µ is
the shear modulus in the bulk material [Ru 2010]. We note that a variation of the boundary-value problem
(2.2)–(2.4) has been solved numerically in an infinite strip using Fourier transforms and reduction to a
Riemann–Hilbert problem [Antipov and Schiavone 2011].
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It is convenient to introduce the dimensionless transformations

x ≡
x1

a
, y ≡

x2

a
, P̃(x)≡

P(ax)
P0

, γ ≡
β

aµ
, u(x, y)≡ µ

a P0
w(ax, ay), (2.5)

where P0 is the root-mean-squared value of the input stress along the crack face defined by

P0 =

√
1

2a

∫ a

−a
[P(t)]2 dt,

γ is defined as the dimensionless surface parameter, and u is the normalized antiplane displacement field.
The boundary-value problem (2.2)–(2.4) then becomes

1u(x, y)= 0, (x, y) ∈ S \ L , (2.6)

∓γ
∂2u
∂x2 (x, 0±)+ P̃(x)= ∂u

∂y
(x, 0±), − 1< x < 1, (2.7)

u = u∞+ O
(
1/R̃

)
, R̃ =

√
x2
+ y2
→∞, (2.8)

where u∞ is a constant. Finally, the corresponding dimensionless shear stresses τx and τy are defined
using the above transformations as

σ13 = µ
∂w

∂x1
= P0

∂u
∂x
≡ P0τx , σ23 = µ

∂w

∂x2
= P0

∂u
∂y
≡ P0τy,

with the total normalized stress magnitude τ given by

τ 2
≡ (τx)

2
+ (τy)

2.

Note that (2.1) along with the assumption that the material remains connected (no tearing) at the crack
tips implies that

τ+x =−τ
−

x , τ+y = τ
−

y .

3. Uniqueness of solution

We shall prove that the boundary-value problem (2.6)–(2.8) can have at most one solution. Consider
the difference v(x, y) of any two solutions of the boundary-value problem (2.6)–(2.8). We prove that
v(x, y)≡ 0 in S \ L by adapting the methods used in [Knowles and Pucik 1973]. Clearly v satisfies the
corresponding homogeneous boundary-value problem. Referring to Figure 1, we surround the crack by
a smooth curve ∂� of “radius” ε, contained entirely within the area B ⊂ S. The region exterior to ∂� is
denoted by � and the outer boundary of B by ∂B. We decompose ∂� as

∂�=

4⋃
i=1

∂�i ,

where ∂�1 and ∂�2 are the upper (y =+ε) and lower (y =−ε) portions of the straight portion of ∂�,
respectively (∂�1,2 : x ∈ [−1, 1], y =±ε); and ∂�3 (π/2≤ ϕ ≤ 3π/2) and ∂�4 (−π/2≤ ϕ ≤ π/2) are
the left and right curved portions of ∂�, respectively (in cylindrical polar coordinates).
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Figure 1. Crack surrounded by a smooth curve ∂� of “radius” ε, contained entirely
within the area B ⊂ S.

We define the values of v on the boundary of ∂� to be

v±ε ≡ v(x,±ε) on ∂�1,2,

vr ≡ v(∓1+ ε cos(ϕ), ε sin(ϕ)) on ∂�3,4.

Green’s first identity in the bounded domain B yields∫
B
|∇v|2 d A =

∮
∂B
v
∂v

∂n ds−
∮
∂�

v
∂v

∂n ds. (3.1)

As R→∞ the region B→� and further as ε→ 0, the region �→ S \L . As R→∞, the asymptotic
behavior of (2.8) yields for (3.1)∫

�

|∇v|2 d A =−
∮
∂�

v
∂v

∂n ds =−
4∑

i=1

∫
∂�i

v
∂v

∂n ds

=−

∫ 1

−1
v+ε (∇v

+

ε · (−e2))(−dx)−
∫ 1

−1
v−ε (∇v

−

ε · e2)dx − 2ε
∫ π/2

−π/2
vr (∇vr · (−er ))dθ

=−

∫ 1

−1
v+ε
∂vε

∂y

+

dx −
∫ 1

−1
v−ε
∂vε

∂y

−

dx + 2ε
∫ π/2

−π/2
vr
∂vr

∂r
dθ =−I1− I2+ 2ε I3. (3.2)

The integrals I1 and I2 are determined using the boundary condition (2.7) and the smoothness of the
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solution v [Kress 1999]. Noting that v+ =−v− for antiplane displacement, we have, as ε→ 0,

lim
ε→0

I1 = lim
ε→0

∫ 1

−1
v+ε
∂vε

∂y

+

dx =
∫ 1

−1
v+
∂v

∂y

+

dx =−γ
∫ 1

−1
v+
∂2v

∂x2

+

dx ≡ ν,

lim
ε→0

I2 = lim
ε→0

∫ 1

−1
v−ε
∂vε

∂y

−

dx =
∫ 1

−1
v−
∂v

∂y

−

dx = γ
∫ 1

−1
v−
∂2v

∂x2

−

dx =−ν.

Also,

lim
ε→0
|I3| = lim

ε→0

∣∣∣∣∣
∫ π/2

−π/2
vr
∂vr

∂r
dθ

∣∣∣∣∣=
∣∣∣∣∣
∫ π/2

−π/2
v(±1, 0) ∂v

∂n (±1, 0)dθ

∣∣∣∣∣
≤

∫ π/2

−π/2
|v(±1, 0)∇v(±1, 0)|dθ =

∫ π/2

−π/2
V 2

0 dθ = πV 2
0 .

Taking the limit as ε→ 0 on the right-hand side of (3.2) then yields:∫
S\L
|∇v|2 d A = 0.

Note that in the case when ∂v/∂n has a logarithmic singularity at the crack tips, the integral I3 remains
uniformly bounded as ε→ 0+ since the integrand remains weakly singular [Kress 1999].

Hence, v = const. in S\L . However, given that v+ =−v−, −1≤ x ≤ 1, it follows that, at the crack
tips, v(−1, 0)= v(1, 0)= 0, from which it follows that v ≡ 0 (or, u2 = u1) in S \ L . Consequently, as a
result of the linearity of the problem there can be at most one solution of (2.6)–(2.8).

4. Integral equation

Define the complex antiplane displacement potential φ(z), z ≡ x + iy, as

φ(z)≡ u(x, y)+ iv(x, y).

Here u(x, y) is the displacement field from (2.6)–(2.8) with u∞ = 0 and v(x, y) is the conjugate function.
Define the function θ(x) by θ(x)≡ limy→0+ u(x, y). Then θ is the normalized antiplane displacement
on the upper crack face, where

u(x, 0±)=±θ(x), −1≤ x ≤ 1.

Then, the displacement jump across the crack is given by

2θ(t)= [φ(t)]+− [φ(t)]−

and φ(z) can be represented in the form of a Cauchy integral [Muskhelishvili 1963]:

φ(z)= 1
π i

∫
L

θ(t)
t − z

dt,

so that, as a consequence of (2.1),
θ(−1)= θ(1)= 0. (4.1)
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Using the Plemelj formula [Muskhelishvili 1963], after some rearrangement, we obtain the following
integrodifferential equation for the displacement on the crack:

1
π

d
dx

[∫
L

θ(t)
t − x

dt
]
+ γ θ ′′(x)= P̃(x), −1≤ x ≤ 1.

Using integration by parts, we can write this equation as a Fredholm equation of the second kind:

γ θ(x)− 1
π

∫
L
θ(t) ln|t − x |dt = ζ2(x)−C1x −C2, (4.2)

where the function ζ2(x) is defined by

ζ2(x)=
∫ x

0

∫ t

0
P̃(s)dsdt

and C1 and C2 are constants of integration.
The normalized displacement field in the bulk material is then described by

u(x, y)= Reφ(z)= Im
{

1
π

∫
L

θ(t)
t − z

dt
}
.

The corresponding stresses on the crack are then given by

τx(x, 0±)=±θ ′(x) (≡±θx),

τy(x, 0±)= P̃(x)∓ γ θ ′′(x) (≡ θy), −1< x < 1,

where θ ′(x) is given by

γ θ ′(x)− 1
π

∫
L
θ ′(t) ln|t − x |dt = ζ1(x)−C3, (4.3)

C3 is an arbitrary constant, and

ζ1(x)=
∫ x

0
P̃(t)dt.

The constants C1,C2,C3 are determined using the crack-tip conditions (4.1) and the requirement that∫ 1

−1
θ ′(t)dt = 0

which follows from (4.1) as a result of the antiplane nature, (2.1), of the deformations considered here.
Note that (4.3) leads to

γ θ ′′(x)− 1
π

∫
L
θ ′′(t) ln|t − x |dt = P̃(x)−

[ 1
π
θ ′(t) ln|t − x |

]t=1

t=−1
. (4.4)

From (4.4), if the stresses τx (∝ θ ′(±1)) at the crack tips are finite and nonzero, then the stresses τy at
the crack tips (τy ∝ θ

′′(±1)) cannot be finite even for a finite externally applied stress function (P̃). This
result is in agreement with the recent papers [Kim et al. 2013; Walton 2012] where it was noted that by
imposing the further condition θ ′ ≡ 0 at the crack tips (to achieve finite stress [Kim et al. 2010a; 2010b])
we effectively overdetermine the problem so that, contrary to the results reported in these two references,
there can be no solutions of (2.2)–(2.4) with finite stress at the crack tips. In fact, this is clear from the
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uniqueness theorem proved above: once the unique displacement field is determined in the body one
cannot then arbitrarily assign values to the derivatives of the displacement field at the crack tips. This
fact is further reflected in the next section when we actually compute θ and its derivatives.

5. Numerical solution

The displacement and slope on the crack face can be found by solving (4.2) and (4.3), which are accom-
modated by the general form

γ f (x)− 1
π

∫
L

f (t) ln|t − x |dt = ζ(x) (5.1)

for corresponding functions f and ζ . Equation (5.1) is a Fredholm integral equation of the second kind,
which (provided γ is not an eigenvalue for the corresponding integral operator) is well-known to have
a unique continuous solution for each continuous ζ(x) on L . We have approximated the solution for
appropriate values of γ using a discretized (finite-element) residual formulation based on a total of N
linear elements leading to a system of N + 1 linear equations for N + 1 unknowns [Lengyel 2011].

The numerical method can accommodate different input load profiles (P̃(x)). However, if the crack
length is relatively small, it is sufficient to assume a constant input stress (∴ P̃ = ±1). In this way,
the solution to the classical antiplane crack problem with a constant mode-III input load (P̃ = −1 for
convenience) has been solved in [Muskhelishvili 1963; Sih 1965; Broberg 1998], where it is shown that
on the (+) crack face:

θ(x)= u(x, 0+)=
√

1− x2, −1≤ x ≤ 1, (5.2)

θx(x)= τx(x, 0+)=−
x

√
1− x2

, −1< x < 1, (5.3)

θy(x)= τy(x, 0+)=−1, −1< x < 1. (5.4)

Note the singularities in both normalized stress components at the crack tips (when x =±1). Plots of
(5.2) and (5.3) are compared with the numerical model used here (in the case γ = 0) in Figure 2. The
method shows fast and stable convergence to the exact solution in this case. In Figure 3 we plot the
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Figure 2. Plots of (5.2) and (5.3) compared with the numerical model.
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Figure 3. Effects of various surface parameters γ on the displacement of the (+) crack face.

effects of various surface parameters γ on the displacement of the (+) crack face. It is clear that the
displacement is reduced on the crack face with increasing surface effect. We note also from Figure 4,
left, that the stress θx is finite everywhere across the crack face, even at the crack tips. However, the unit
stress θy , plotted on the right in Figure 4, remains singular at the crack tips. This result contradicts that
presented in [Kim et al. 2010a; 2010b] but is not surprising. As mentioned above, the unique solution
of (2.6) and (2.7) determines a priori the values of θx which are clearly never zero at the crack tips for
any meaningful value of γ .

Figure 5 plots θ(0) (≡ θmax) with increasing N (the number of elements) using different values of the
surface parameter (γ ). These approximations demonstrate rapid convergence with less than 50 elements.
Refinement convergence of the slope at the endpoints (θx(−1) ≡ θ ′max) is shown in Figure 6. There is
convergence here, however, more elements are required as the surface parameter decreases in value. This
is not surprising since, as the surface parameter tends to zero (the classical model) the opposing stresses
(τx ∝ θx ) at the crack tips become singular. Figure 7 shows the (decreased) stress in the bulk material
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Figure 4. Stress θx (left) and unit stress θy (right) across the crack face.
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Figure 5. Plot of θ(0) (≡ θmax) with increasing number of elements, N , using different
values of the surface parameter γ .
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eter γ (ξ(x)≡ x − 1, x > 1).
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outside the crack due to an increasing surface parameter γ (ξ(x) ≡ x − 1, x > 1). Full details can be
found in [Lengyel 2011].

5.1. Remark. Finally, we remark that the stability and rapid convergence of our numerical model allows
us to obtain an approximate expression quantifying the effect of γ on the displacement of the crack face
in the case of a constant stress input (relatively small crack length). In fact, using curve-fitting analysis,
our numerical results suggest the following convenient approximation for the displacement field across
the crack face in the case of a constant mode-III load input stress

w(x, 0±)'±a
( P0
µ

)(1− (x1/a)2)(27.67γ+1)/(27.67γ+2)

2γ + 1
, −a ≤ x ≤ a. (5.5)

We find that the expression (5.5) agrees with the corresponding numerical results obtained using the
complete finite element discretization method to an error of less than 5%.

6. Conclusions

The incorporation of surface effects allows for the assumption of energy dispersion on the boundary
which reduces the input shear stress (Figure 4, right). With the exception of the region in the vicinity
of the crack tips, the adjusted input stress magnitude shows a reduction when γ increases. From this
reduction of input shear stress, the displacement (u) and opposing stress (τx ) are reduced and remain finite
across the crack face (including at the crack tips). Figures 3 and 4, left, demonstrate this conclusively
for both displacement (θ ∝ u) and slope (θ ′ ∝ τx ). The displacements and stress magnitudes in the bulk
are also reduced accordingly.

Given the convergence demonstrated in Figures 5 and 6, it is apparent that the function θ(x) (∝ u)
along with it’s derivatives θx(x) (∝ τx ) and θ ′′(x) (∝ τy) are convergent across the crack face. The
function θ ′′(x) does not converge near the crack tips, however all three functions showed a reduction
and convergence across the crack tip when γ increased. Consequently, the incorporation of surface
effects leads to a more stable and convergent numerical model. This additional stability and convergence
is directly related to the effect of γ on the displacement profile. As the solution transitions from a
semicircle (when γ → 0) to a quadratic function (when γ →∞), the stability of the displacement (u)
and stress (τx and τy) increases.
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