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EDGE STIFFNESS EFFECTS ON THIN-FILM LAMINATED DOUBLE GLAZING
SYSTEM DYNAMICAL BEHAVIOR BY THE OPERATIONAL MODAL ANALYSIS

ALI AKROUT, MARIEM MILADI CHAABANE, LOTFI HAMMAMI AND MOHAMED HADDAR

We apply operational modal analysis (OMA) to determine the eigenfrequencies and the eigenmode
shapes of a thin-film laminated double glazing system. For this purpose, the dynamic behaviors of
both a laminate alone and a coupled system (double-wall structure) for specific boundary conditions are
investigated. Here, the laminated plate which is composed of two elastic skins joined with an adhesive
ultra-thin film is bonded by an elastic joint. Thus, two configurations of the thin-film laminated glass
plate elastic boundary conditions are considered. The first one assumes that the structure is bonded
by a translational stiffness (linear springs). In the second one, besides the translational stiffness, a ro-
tational stiffness (angular springs) is introduced in order to improve the developed model. The modal
recombination results of a thin-film laminated glass plate as well as those of the thin-film laminated
double glazing system are presented and compared to the estimated modes achieved by OMA. Since
a good agreement is obtained, the OMA technique can be used to determine the modal parameters by
considering the experimental vibratory responses of the studied system. In addition, the vibration’s
amplitude of two laminated glass plates linked from edge to edge with both linear and angular springs
can be much reduced compared to the one of the same structure bonded only by linear springs.

1. Introduction

In recent years, several structural damping calculations have been carried out in order to control vibration
amplitudes and sound transmissions through windows. Thus, as presented in works such as [Antonio
et al. 2003] and [Cheng et al. 2005], double panel systems offers improved vibro-acoustic behaviors and
can be used in building constructions, medication equipments, automobiles and aeronautical industries.
In fact, to calculate the dynamic responses of a fluid-structure coupled problem, some mathematical
models can be mixed. In this context, Bouhioui [1993] combined a finite element model with an integral
equation formulation in order to determine the sound transmission loss through an elastic double glazing
system. This model is recently improved by Basten et al. [2001] who developed an acousto-elastic model
for a double elastic panel in which the viscothermal fluid cavity effects are taken into account. Besides,
in [Akrout et al. 2008b; 2009; 2010], a structural damping model of simple and laminated plates is
coupled to the viscothermal fluid model developed by Basten et al. in order to obtain a new configuration
of fluid-structure coupled system. In this case, the classical modal analysis is mixed with an iterative
procedure in order to calculate the vibro-acoustic modes.

Furthermore, the lamination effects give more damping to a considered vibrating panel excited by
mechanical force and/or acoustical pressure; see for example [Zenkert 1995; Reddy 1997; Khdeir and

Keywords: thin-film laminated double glazing, rotational stiffness, translational stiffness, operational modal analysis, blind
source separation, eigenmodes.

837



838 ALI AKROUT, MARIEM MILADI CHAABANE, LOTFI HAMMAMI AND MOHAMED HADDAR

Reddy 1999; Carrera 2004]. In this context, Assaf [1991] analyzed the dynamic effects of a viscoelastic
core on standard sandwich plate vibratory behavior by taking into account essentially the shearing work
in the core and the coupling between membranous and bending effects. In the same context, Abdennadher
et al. [2005b] developed a dynamic model in order to characterize the modal damping induced by a double
sandwich panels. Recently, Akrout et al. [2008a] showed that the lamination process based on ultra-thin
film at the skin’s interface let’s to provide reduced plate’s deflection amplitudes. Additionally, stiffness
boundary conditions have considerable effects on dynamic responses of plates. In fact, the study of a
double panel system dynamic behavior for various boundary conditions have been carried out by many
researchers; see for example [Abbès et al. 2011; Abdennadher et al. 2005a]. Then, if a damping and/or
a stiffness of plate edge is considered, the vibro-acoustic responses amplitude can be much reduced. For
this purpose, Park et al. [2003] examined the effect of viscoelastic supports at the level of plate’s edges.
It has been shown that the plate’s velocity and the sound energy are effectively affected by the damping
on the level of the edges inducing reduced vibration amplitudes. Also, Vallaban et al. [1997] considered
a structural joint at the level of a glass panel edges. It has been concluded that the dynamic behavior of
the plate-joint can be improved by increasing the stress in the joint produced by the shearing forces on
the level of the edges.

As a resolution method, we can use especially the Operational Modal Analysis (OMA) formulation
which has been previously established by many researchers in neuroscience and signal processing; see
for example [Hérault and Ans 1984; 1985; Nguyen et al. 1994]. In this context, independent compo-
nent analysis, one of the major techniques of the BSS method, can be exploited in order to solve BSS
problems in the case of linear or nonlinear convolutive mixtures as presented in [Zarzoso and Comon
2008; Antoni et al. 2004; 2005]. This method needs to know only the sensor’s measurement or the FE
vibratory responses in order to estimate the eigenfrequencies of a studied structure. It’s defined by a
separation procedure applied on independent linear mixture signal by using only the measured vibratory
response of the system. Poncelet et al. [2007] used ICA in order to exploit the virtual source theory by
studying an output-only modal analysis. Kerschen et al. [2007] used the modal assurance criterion to
establish the relation between exact and estimated modes. In this work, the OMA method is presented and
exploited in order to extract the eigenmodes of a thin-film laminated double glazing system with elastic
boundary conditions. In this case, both translational and rotational stiffness are considered at the level
of the plate’s edges. The model validation is obtained by comparing the exact (numerical) and estimated
eigenfrequencies of a thin-film laminated glass plate for two cases of elastic boundary conditions: the
first model assumes that the laminated plate is fixed only by a linear springs. In the second one, the same
structure is fixed by both linear and angular springs. Moreover, the dynamic responses of each case
are presented and discussed. Also, the exact and estimated eigenmodes shapes of a thin-film laminated
double glazing system are presented and compared. Thus, the influence of the system’s edge stiffness
can be analyzed.

2. Mathematical formulation

2.1. The OMA method. As presented in [Hérault and Ans 1984; 1985; Nguyen et al. 1994], the op-
erational modal analysis (OMA) method is based on independent component analysis (ICA), a recent
approach used in signal treatment. We briefly describe the setup. Consider Ns source signals emitted
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Figure 1. Separation procedure: ICA concept.

through a dynamic system modeled by a mixture matrix of dimension Ns × Nc and received by Nc

sensors. Then, the model equation can be expressed as (see [Abbès et al. 2011; Zarzoso and Comon
2008; Poncelet et al. 2007])

xi =

Ns∑
j=1

hi j s j + bi , i = 1, . . . , Nc. (1)

Equation (1) can be written in matrix form as

{x} = [H ]{s}+ {b}, (2)

where {x} = 〈x1, . . . , xNc〉
T represents the Nc observations vector, {s} = 〈s1, . . . , sNs 〉

T represents the
Ns signals sources vector, [H ] = [{h1}, . . . , {hNs}] is the mixture matrix of dimension Nc× Ns , {h j } =

〈h1 j , . . . , hNcj 〉
T , j = 1, . . . , Ns , is the j-th column vector of the mixture matrix [H ], {b} is a possible

additive noise.
When ICA is applied in OMA, the structure physical responses defined as virtual sources with different

spectral contents can be interpreted. In this case, ICA provides the mixing matrix and the modal response
of the structure (Figure 1).

The dynamic response of a given mechanical system can be obtained by the modal recombination
method as (see [Akrout et al. 2008a; Abbès et al. 2011])

{x} = [9]{y}, (3)

where {x} is the measured nodal vector, [9] represents the modal matrix and {y} is the vector containing
the modal responses. Then, by using only the output signal {x}, OMA is carried out in order to determine
the eigenmode shapes existing in the modal matrix [9] and the eigenfrequencies contained in the modal
response vector {y}.

2.2. Thin-film laminated plate dynamic model. As presented in Figure 2, the kinematical behavior of
the laminate is based on the theory that introduce a specific behavior law for an ultra-thin adhesive film
of stiffness kfilm confined at the interface of two skin plies of thicknesses (h1, h2) which satisfy for the
Kirchhoff plate’s theory. In this case, `x and `y are the half dimensions of the laminate with respect to
directions x and y.

Then, the vibratory behavior of the laminated glass plate is described by both dynamics of skins and
the ultra-thin adhesive film.
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Figure 2. In plane (x, z) thin-film laminate kinematic model.

Consequently, the displacement field in the thin-film laminated glass plate can be expressed as follows
[Akrout et al. 2008a]:

x-direction :

{
u1 = um +

[uτ ]
2 + (z− zm)βx

u2 = um −
[uτ ]

2 + (z− zm)βx
(4)

y-direction :

{
v1 = vm +

[vτ ]
2 + (z− zm)βy

v2 = vm −
[vτ ]

2 + (z− zm)βy
(5)

z-direction : w(x, y, z)= w(x, y) (6)

The dynamic of the ultra-thin film can be written as a function of the shear interfacial displacements with
respect to directions x and y ([uτ ] = u1|z=0− u2|z=0 and [vτ ] = v1|z=0− v2|z=0) as follows:

τx = kfilm[uτ ]

τy = kfilm[vτ ]
(7)

where (τx , τy) are the shear interfacial stresses [Akrout et al. 2008a].
Consequently, we can use the stress-strain relations in order to determine the energy functional of the

laminate as follows:

ϑL = (Estr.+ Ekin.)skins+ Efilm (8)

where (Estr.)skins, Efilm and (Ekin.)skins are respectively the skin’s strain energy, the film strain energy and
the skin’s kinetic energy (by neglecting inertial terms of rotations) calculated as follows [Akrout et al.
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Figure 3. Laminate quadrilateral FE.

2008a]:

(Estr.)skins =
1
2

∫
6

( ∫ 0

−h2

〈σ 〉2{ε}2 dz+
∫ h1

0
〈σ 〉1{ε}1 dz

)
d6 (9)

Efilm =
1
2

∫
6

〈[uτ ][vτ ]〉
[

kfilm 0
0 kfilm

]{
[uτ ]
[vτ ]

}
d6 (10)

Ekin. =
1
2

2∑
i=1

∫
6

( ∫ h1

−h2

ρi (u̇2
i + v̇

2
i + ẇ

2) dz
)

d6 (11)

The homogenous energy functional of the laminated glass plate can be obtained by integrating (9) and
(11) with respect to z.

As sketched in Figure 3, the homogenous laminate energy functional is discretized by a four nodes
linear quadrilateral finite element (FE). In this case, the laminate nodal vector at node ‘i’ contain seven
degrees of freedom:{U }node ‘i’ = 〈um,vm, [uτ ], [vτ ], w, βx , βy〉

T
node ‘i’.

The FE discretization of the thin-film laminated plate energy functional gives after minimization the
following eigenmodes symmetrical matrix system:

([KL ] −ω
2
[ML ]){UL} = {0} (12)

where [KL ] and [ML ] are respectively the stiffness and mass matrices of the thin-film laminated plate.
{UL} is the laminate nodal displacement vector.

2.3. Elastic joint model. As discussed in [Vallaban et al. 1997; Park et al. 2003; Abbès et al. 2011], the
modal characteristics of a given structure (beams or plates) are strongly affected by specified boundary
conditions. Then, an elastic joint model can be considered in order to confer better vibratory behavior to
the thin-film laminate. So, the dynamic model developed in this work is based on both translational and
rotational stiffness modeled by both linear and angular springs at the level of its edge (see Figure 4).

By taking into account the stiffness effects introduced above, the dynamic behavior law of the elastic
joint can be defined via the relation between the force and displacements (translation w and rotations
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Figure 4. Thin-film laminate elastic boundary conditions.

(βx , βy)) at node ‘Ni ’ of the laminate edge as follows:

FT z·Ni = kT zwNi

FRx ·Ni = kRxβx ·Ni

FRy·Ni = kRyβy·Ni

(13)

Relations (13) can be written in matrix form as follows:

{FNi } = [K Je]{UNi } (14)

where {UNi }=〈wNi βx ·Ni βy·Ni 〉
T is the transversal displacement and deflection rotations vector. {FNi }=

〈FT z·Ni FRx ·Ni FRy·Ni 〉
T represents the force vector applied by the joint on the plate boundary. [K Je]

is an elementary elastic joint matrix written as follows:

[K Je] =

kT z 0 0
0 kRx 0
0 0 kRy

 (15)

Thus, when the laminate edge contains Nn nodes, a global matrix [K J ] of the elastic joint effect at the
edge of the laminate can be derived as follows:

[K J ] =



[
[0]4×4 [0]4×3

[0]3×4 [K Je]

]
nodeN1

[0]7×7 · · · · · · [0]7×7

[0]7×7

[
[0]4×4 [0]4×3

[0]3×4 [K Je]

]
nodeN2

[0]7×7 · · · [0]7×7

... [0]7×7
. . .

...
...

...
. . . [0]7×7

[0]7×7 [0]7×7 · · · [0]7×7

[
[0]4×4 [0]4×3

[0]3×4 [K Je]

]
nodeNn


(16)

The developed model of the elastic joint is combined with the thin-film laminated plate model allow
modeling a new configuration of laminated double glazing system.

2.4. Dynamic model of a thin-film laminated double glazing system. The considered double glazing
system is composed of two thin-film laminated plate bonded by the elastic joint defined in Section 2.3.
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Figure 5. In plane (x, z) double laminate-joint model.

In this case, the two laminates are coupled by elastic linear and angular springs of stiffness k0·T z and
k0·Rx . The obtained coupled system is related to a rigid body by two elastic joints (k1·T z, k1·Rx) and
(k2·T z, k2·Rx)as presented in Figure 5.

The double glazing system energy functional can be obtained by calculating the associated energy of
each part composing the system. Then, we can write:

ϑD.G.S =
( 2∑

i=1

[(Estr.+ Ekin.)skins+ Efilm]L i

)
+
( 2∑

i=1

(Estr.)Ji0

)
+ (Ecoupling)J0·L1·L2 (17)

where (Estr.)Ji0 (i = 1, 2) and (Ecoupling)J0·L1·L2 represent respectively the strain energies due to the joint
effect at the edge of the laminate Li (i = 1, 2) and the laminates-joint coupling energy expressed as
follows:

(Estr.)Ji0 =
1
2 [(k0·T z + ki ·T z)

∫
`

w2
i d`+ (k0·Rx + ki ·Rx)

∫
`

β2
xi d`+ (k0·Ry + ki ·Ry)

∫
`

β2
yi d`]

(18)

(Ecoupling)J0·L1·L2 =−
1
2 [(2k0·T z

∫
`

w1w2 d`)+ (2k0·Rx

∫
`

βx1βx2 d`)+ (2k0·Ry

∫
`

βy1βy2 d`)] (19)

The discretization and the minimization of the double glazing system energy functional by the finite
element method (FE) give the following symmetrical coupled matrix equation:([

[KL1] + [K J10] −[K J0·L1·L2]

−[K J0·L1·L2]
T
[KL2] + [K J20]

]
−ω2

[
[ML1] [0]
[0] [ML2]

]){
{U1}

{U2}

}
=

{
{0}
{0}

}
(20)
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where ([KL1], [KL2]) and ([ML1], [ML2]) represent respectively the stiffness and mass matrices of the
laminates. [K J10] and [K J20] are respectively the stiffness matrices due to the joints effects at the edge
of the laminates; obtained from the FE discretization of Equation (18) and expressed as follows:

[K J10] = [K J1] + [K J0]

[K J20] = [K J2] + [K J0]
(21)

with: [K J0], [K J1] and [K J2] represent respectively the stiffness matrices of the elastic joints J0, J1, and
J2 defined at the laminate boundary nodes.
[K J0·L1·L2] is a stiffness matrix resulting from the coupling between the boundaries of two laminates

(L1, L2) and the joint J0 obtained from the FE discretization of Equation (19).
{U1} and {U2} represent respectively the nodal displacement vectors of laminates 1 and 2.

2.5. Modal analysis of the laminated double glazing system. The eigenmodes of the coupled system
are solution of Equation (20) which can be written in the following form:[

[KS1] −ω
2
[MS1] [CS]

[CS]
T

[KS2] −ω
2
[MS2]

]{
{U1}

{U2}

}
=

{
{0}
{0}

}
(22)

where [KSi ] = [KL i ] + [K Ji0], [MSi ] = [ML i ] (i = 1, 2), [CS] = −[K J0·L1·L2].
The eigenmodes [8S1] and [8S2] of each laminate alone can be used in order to reduce the size of the

coupled system (22). Then, the modal matrices of each plate alone can be written as follows:

[KSi ] = [8Si ]
T
[KSi ][8Si ] =


. . .

ω2
r ·Si

. . .

 for

{
r = 1 . . . Neig

i = 1, 2
(23)

[MSi ] = [8Si ]
T
[MSi ][8Si ] =


. . .

1
. . .

 for

{
r = 1 . . . Neig

i = 1, 2
(24)

Neig represent the number of eigenmodes retained.
Consequently, the coupled matrix system (22) can be much reduced and written as follows:[

ω2
r ·S1
−ω2

[CS]

[CS]
T ω2

r ·S2
−ω2

]{
{U1}

{U2}

}
=

{
{0}
{0}

}
(25)

where {U1} and {U2} represent, respectively the modal displacement vectors of laminates 1 and 2 defined
by:

{U1} = [8S1]
T
{U1}

{U2} = [8S2]
T
{U2}

(26)

[CS] represents the laminate-joint modal coupling matrix written as follows:

[CS] = [8S1]
T
[CS][8S2] (27)
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Figure 6. Laminated plate dynamic response nodes.

As discussed in [Akrout et al. 2008b; 2009; 2010], the resolution of the coupled system (25) allows
determining the coupled eigenfrequencies ωr ·C (r = 1, . . . . . . NC ·eig) and a coupled eigenmodes basis
[8C ] = [{81} . . . . . . . . . {8NC ·eig}]. So, we can calculate the modal responses of the laminated double
glazing system which is in free vibration and under initial excitations of the first laminate. The considered
initial conditions are the following:

for t = 0,

{
〈{U1}{U2}〉t=0 = 〈{U10}{0}〉

〈{U̇1}{U̇2}〉t=0 = 〈{U̇10}{0}〉
(28)

In this case, the nodal vibratory responses are obtained by the modal recombination method.
Hence, the calculated numerical responses are used as inputs in the ICA concept which is applied in

the OMA method in order to obtain estimated results of the eigenfrequencies and eigenmode shapes.

3. Numerical procedure validation: case of thin-film laminated plate alone

In this part, the OMA approach is used in order to estimate the eigenmodes of a thin-film laminated glass
plate alone for two cases of elastic boundary conditions:

• only a linear springs is considered at the level of the edge.

• both linear and angular springs are considered at the level of the edge.

In order to estimate the eigenfrequencies and the eigenmode shapes by the OMA method, 16 vibratory
responses of the laminate x (1, . . . , 16) are calculated at the indicated nodes (see Figure 6). Note that,
the plate is in free vibration under initial conditions.

The physical and geometrical properties of the studied structure are the following:

• skin’s laminate properties: in-plane dimensions: `x = 0.6 m, `y = 0.4 m, Young modulus: E1 =

E2= 7.2×104 MPa, Poisson’s ratio: ν1= ν2= 0.22, density: ρ1= ρ2= 2500 Kg/m3 skin’s thickness:
h1 = h2 = 3 mm.

• ultra-thin film stiffness: kfilm = 1.362× 107 N/mm3 (Araldite),

• linear stiffness per length unit: kT z = 0.264× 104 N/m2,
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Figure 7. Laminated plate bonded by translational joint.

• angular stiffness per length unit: kRx = kRy = 0.264× 104 N/rad.

In the next sections, the ICA results can be compared to those obtained numerically (by the classical
modal analysis). Also, the effect of angular springs added to the linear spring is presented and analyzed.

3.1. Case of translational stiffness ‘T’. In this section, the considered laminate is supported only by a
translational joint as sketched in Figure 7. The laminate is supposed to be in free vibration and under
arbitrary initial conditions satisfying to a standard statistical rule.

The eigenmodes of the laminate bonded by translational joint are solution of the following matrix
system:

([[KL ] + [K J ]] −ω
2
[ML ]){UL} = {0}

for t = 0

{
{UL} = {UL0}

{U̇L} = {U̇L0}

(29)

where ([KL ], [K J ]) and [ML ] are respectively the laminate-joint stiffness matrices and the mass matrix
of the structure. {UL0} and {U̇L0} are respectively the initial displacement and velocity vectors applied
on the laminate.

Figure 8 presents the observed signals at nodes x(3): node 11, x(10): node 166, x(12): node 176
and x(14): node 246 which are used for the eigenmodes estimation. In analyzing the spectrum of those
observed signals, we remark the existence of four dominant picks characteristics of the main natural
frequencies of the laminate.

Table 1 regroups the exact and estimated eigenfrequencies of the laminated glass plate with transla-
tional boundary conditions (linear springs). The OMA results are validated by calculating the following
performance criteria [Zhou and Chelidze 2007; Abbès et al. 2011]:

• The Modal Assurance Criterion defined as follows:

MACi =
(ψT

i ψ̄i )

(ψT
i ψi )(ψ̄

T
i ψ̄i )

(30)

where ψi and ψ̄i are respectively the numerical (exact) and estimated eigenmodes of the laminate.

• The Euclidean distance between two vectors of the modal matrix in order to calculate the approxi-
mation error of eigenmodes as follows:

Eri = ‖ψi − ψ̄i‖ (31)



EDGE STIFFNESS EFFECTS ON THIN-FILM LAMINATED DOUBLE GLAZING 847

0 0.05 0.1 0.15 0.2 0.25
-4

-2

0

2

4
x 10

-7
X

(3
)

time(s)

0 50 100 150 200 250
0

2

4

6

8
x 10

-8

F
F

T
(X

(3
))

frequency(Hz)

0 0.05 0.1 0.15 0.2 0.25
-4

-2

0

2

4
x 10

-7

X
(1

0
)

time(s)

0 50 100 150 200 250
0

2

4

6

8
x 10

-8

F
F

T
(X

(1
0
))

frequency(Hz)

0 0.05 0.1 0.15 0.2 0.25
-2

-1

0

1

2
x 10

-7

X
(1

2
)

time(s)
0 50 100 150 200 250

0

1

2

3

4
x 10

-8

F
F

T
(X

(1
2
))

frequency(Hz)

0 0.05 0.1 0.15 0.2 0.25
-2

-1

0

1

2
x 10

-7

X
(1

4
)

time(s)
0 50 100 150 200 250

0

1

2

3

4
x 10

-8

F
F

T
(X

(1
4
))

frequency(Hz)

Figure 8. Some observed signals: case of laminated plate bonded by translational joint.

• The relative error E fi between the exact and estimated eigenfrequencies present good performance
criteria defined as follows:

E fi (%)= 100
fi − f̄i

fi
(32)
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Mode
Exact

eigenfreq.
(Hz)

Estimated
eigenfreq.

(Hz)
Er MAC E f (%)

1 23.7771 24 0.0006 0.9979 0.9376
2 41.7990 42 0.0014 0.9996 0.4810
3 62.5867 62.5 0.0007 0.9999 0.1385
4 70.7569 71 0.0008 0.9966 0.3436
5 77.8571 78 0.0002 1.0000 0.1836
6 104.2231 104 0.0007 1.0000 0.2141
7 111.5364 111.5 0.0003 1.0000 0.0326
8 121.9734 122 0.0006 0.9998 0.0218
9 135.7371 135.5 0.0004 0.9999 0.1747

10 142.7350 142.5 0.0001 1.0000 0.1647
11 159.7369 159.5 0.0001 1.0000 0.1483
12 166.2010 166 0.0005 0.9998 0.1209
13 195.1359 195 0.0030 0.9557 0.0696
14 195.3606 195.5 0.0003 1.0000 0.0714
15 201.8061 202 0.0040 0.9972 0.0961
16 214.2604 214.5 0.0024 0.9666 0.1118

Table 1. Eigenfrequencies of a laminated plate alone bonded by translational joint.

where fi and f̄i represent respectively the exact and estimated eigenfrequencies.

Then, the performance criteria presented in Table 1 show that an excellent accord is achieved by com-
paring the numerical (exact) and the estimated eigenfrequencies (obtained by OMA).

As a next result, we present in Figure 9 the exact and estimated eigenmode shapes for the tree first
eigenfrequencies of the laminate. Hence, a good accord is obtained.

3.2. Case of both translational and rotational stiffness ‘T + R’. The model of the structure is pre-
sented in Figure 4. In this case, the same nodes {x(3): node11, x(10): node 166, x(12): node 176
and x(14): node 246} are used for the estimation of the laminate eigenmodes. So, according to those
nodes, Figure 10 present the observed signals and the corresponding spectra. In analyzing the evolution
of the dynamic responses versus time, we can see a reduced vibration amplitude for the laminate fixed by
both translational and rotational joints compared to the one fixed only by translational joint. Also, some
eigenfrequencies have vanished in the spectrum of joint ‘R+T’ (Figure 10) compared to the spectrum
of joint ‘T’ presented in Figure 8.

Table 2 contains the numerical and estimated eigenfrequencies of the laminated glass plate with elastic
(translational and rotational) boundary conditions. The OMA results are validated by calculating the
same performance criteria [Zhou and Chelidze 2007; Abbès et al. 2011] defined by (30), (31) and (32).
Also, the eigenfrequencies of the laminate-joint ‘R+T’ (Table 2) increased compared to those of the
laminate-joint ‘T’ (Table 1). Thus, more rigidity can be conferred to the structure.
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Figure 9. Eigenmode shapes of a laminated plate bonded by translational joint. (a) Ex-
act eigenmode shapes. (b) Estimated eigenmode shapes.

In addition, Figure 11 shows the numerical (exact) and estimated eigenmode shapes of a thin-film lam-
inated glass plate bonded by both translational and rotational joints. The same form is observed by com-
paring each corresponding mode presented in Figure 11(a) (exact) to the one presented in Figure 11(b)
(estimated).

4. OMA application: case of thin-film laminated double glazing system

In this section, the OMA method is applied in order to identify the modal characteristics of a laminated
double glazing system bonded by an elastic joint. Figure 12 presents the corresponding nodes used for
the calculation of 32 vibratory responses corresponding to the coupled system.

The double glazing system is composed of two identical laminated glass plate which each one is made
of two similar skins connected by an adhesive ultra-thin film.

The physical and geometrical properties of the laminate are given in Section 3.
A same elastic joint is used as boundary conditions of the coupled system (see Figure 5):

• linear stiffness per length unit: ki ·T z = kT z, (i = 0, 1, 2).

• angular stiffness per length unit: ki ·Rx = ki ·Ry = kRx = kRy, (i = 0, 1, 2).

The value of kT z , kRx and kRy are given in Section 3.
In the next sections, the ICA results can be compared to those obtained numerically (by the classical

modal analysis). Also, the effect of angular springs added to the linear spring is presented and analyzed.
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Figure 10. Some observed signals: case of laminated plate bonded by both translational
and rotational joints.
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Mode
Numerical
eigenfreq.

(Hz)

Estimated
eigenfreq.

(Hz)
Er MAC E f (%)

1 37.1843 37 0.0051 0.9779 0.4956
2 57.2723 57.5 0.0002 1.0000 0.3975
3 84.6944 84.5 0.0008 0.9999 0.2295
4 90.1553 90 0.0001 1.0000 0.1722
5 101.7795 102 0.0007 0.9997 0.2166
6 131.6648 131.5 0.0003 1.0000 0.1251
7 135.7660 136 0.0029 0.9999 0.1723
8 148.7430 149 0.0001 1.0000 0.1727
9 166.0922 166 0.0001 1.0000 0.0555

10 175.4942 175.5 0.0010 1.0000 0.0033
11 193.3816 193.5 0.0002 1.0000 0.0612
12 196.6265 196.5 0.0001 1.0000 0.0643
13 222.3098 222.5 0.0003 0.9999 0.0855
14 234.4725 234.5 0.0002 1.0000 0.0117
15 238.1860 238 0.0006 0.9999 0.0780
16 243.3318 243.5 0.0002 1.0000 0.0691

Table 2. Eigenfrequencies of a laminated plate alone bonded by both translational and
rotational joints.

4.1. Observed signals of the laminated double glazing system. As observed signals, we report in the
same graph (Figures 13, 14, 15 and 16) the dynamic responses of both a thin film laminated double
glazing fixed by ‘T’ joint and the same system fixed by ‘R+T’ joint. These vibratory responses are
determined at nodes: 166: x(10) and 246: x(14) for laminate 1 and at nodes: 417: x(25) and 502: x(30)
for laminate 2.

By analyzing the vibratory responses of the laminated double glazing system with translational stiff-
ness boundary conditions (dashed line, ‘T’) to those of the same system with both translational and
rotational stiffness boundary conditions (solid line, ‘R+T’), we remark a reduced vibration amplitude
for the ‘R+ T’ system compared to the one for the ‘T’ system. Also, the rotational stiffness can be
clearly seen in the observed signals of laminate 1 (Figures 13 and 14) on which the initial excitation
conditions are applied.

4.2. Eigenfrequencies of the coupled system. Table 3 regroups the numerical (exact) and estimated
(via OMA) eigenfrequencies of the two configurations ‘T’ and ‘R+T’ laminated double glazing system.
Besides the obtained good agreement between the exact and estimated values, one can clearly see that
the eigenfrequencies of the coupled system have increased when a rotational stiffness is added.

4.3. Eigenmodes shapes of the laminated double glazing system bonded by ‘R + T’ joint. In this sec-
tion, the exact and estimated eigenmode shapes of the laminated double glazing system are presented and
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Translational stiffness ‘T’ Translational + Rotational stiffness ‘R+T’

Mode
Num.
Efreq.
(Hz)

Estim.
Efreq.
(Hz)

Er MAC E f (%)
Num.
Efreq.
(Hz)

Estim.
Efreq.
(Hz)

Er MAC E f (%)

1 23.77 23 0.0095 0.7819 3.2394 37.18 37 0.0019 0.9976 0.4955
2 24.02 24 0.0263 0.8856 0.0833 37.81 38 0.0023 0.9994 0.4973
3 41.79 41.5 0.0019 0.9994 0.6939 57.27 57.5 0.0086 0.9913 0.3976
4 42.37 42.5 0.0006 0.9986 0.3068 58.21 58 0.0022 0.9969 0.3634
5 62.58 62.5 0.0163 0.8626 0.1278 84.69 84.5 0.0032 0.9963 0.2295
6 63.86 64 0.0001 1.0000 0.2192 88.28 88.5 0.0008 1.0000 0.2423
7 70.75 71 0.0053 0.9999 0.3534 90.15 90 0.0024 1.0000 0.1723
8 71.94 72 0.0025 0.9959 0.0834 91.96 92 0.0058 0.9883 0.0335
9 77.85 78 0.0061 0.9765 0.1927 101.77 102 0.0106 0.9602 0.2166

10 79.94 80 0.0022 1.0000 0.0751 105.34 105.5 0.0019 1.0000 0.1517
11 104.22 104 0.0037 0.9999 0.2111 131.66 131.5 0.0006 1.0000 0.1252
12 107.66 107.5 0.0058 0.9796 0.1486 135.52 135.5 0.0011 0.9995 0.0147
13 111.53 111.5 0.0102 0.6315 0.0269 135.76 136 0.0133 0.9035 0.1723
14 113.92 114 0.0025 0.9989 0.0702 139.91 140 0.0030 0.9989 0.0606
15 121.97 122 0.0319 0.8447 0.0246 148.74 149 0.0016 0.9997 0.1728
16 126.59 126.5 0.0267 0.1735 0.0711 162.01 162 0.0028 0.9949 0.0099
17 135.73 135.5 0.0093 0.9840 0.1695 166.09 166 0.0006 1.0000 0.0555
18 141.78 142 0.0011 0.9998 0.1552 175.49 175.5 0.0052 0.9965 0.0033
19 142.73 142.5 0.0018 0.9994 0.1611 177.83 178 0.0020 0.9994 0.0941
20 148.30 148.5 0.0026 0.9708 0.1349 180.59 180.5 0.0024 0.9962 0.0530
21 159.73 195.5 0.0057 0.9798 0.1440 193.38 193.5 0.0005 0.9999 0.0612
22 166.20 166 0.0003 1.0000 0.1203 196.62 196.5 0.0012 1.0000 0.0643
23 168.15 168 0.0037 0.9999 0.0892 204.28 204.5 0.0011 1.0000 0.1069
24 171.05 171 0.0033 0.9931 0.0292 205.99 206 0.0047 0.9922 0.0032
25 195.13 195 0.0959 0.1494 0.0666 222.30 222.5 0.0067 0.9841 0.0856
26 195.36 195.5 0.0046 0.9999 0.0717 234.47 234.5 0.0030 0.9999 0.0117
27 201.80 202 0.0011 1.0000 0.0991 238.18 238 0.0010 1.0000 0.0781
28 204.22 204 0.0426 0.4764 0.1077 242.95 243 0.0065 0.9850 0.0196
29 207.22 207 0.0675 0.0235 0.1062 243.33 243.5 0.0278 0.6943 0.0691
30 214.26 214.5 0.0385 0.7989 0.1120 248.59 248.5 0.0285 0.9056 0.0369
31 215.83 216 0.0421 0.8065 0.0788 259.04 259 0.0089 0.9902 0.4955
32 230.33 230.5 0.1840 0.8029 0.0738 265.25 265.5 0.0224 0.7569 0.4973

Table 3. Eigenfrequencies of the ‘T’ and ‘R+T’ coupled systems.
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      Mode 1: f1 = 37 Hz                      Mode 2: f2 = 57.5 Hz                Mode 3: f3 = 84.5 Hz 
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Figure 11. Eigenmode shapes of a laminated plate bonded by both translational and
rotational joints. (a) Exact eigenmode shapes. (b) Estimated eigenmode shapes.

 

Figure 12. Coupled system vibratory response nodes.

commented. Consequently, the considered 32 coupled system vibratory response nodes let’s to construct
the investigated eigenmodes (Figures 17 and 18).

Here, four eigenmode shapes are estimated and presented and then, a good accord is obtained when
comparing with numerical results. As discussed in [Basten et al. 2001; Akrout et al. 2009; 2010], two
categories of eigenfrequencies are found. The first one regroups those of a laminate alone bonded by
‘R+T’ joint. In this case, the two plates are vibrating in-phase. In fact, the middle joint doesn’t generate a
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Figure 13. Observed signals of the first laminate at node 166.
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Figure 14. Observed signals of the first laminate at node 246.

coupling with laminates. The second category regroups the coupled eigenfrequencies which are affected
by the coupling laminate-joint and where the two plates are vibrating in opposition.
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Figure 15. Observed signals of the second laminate at node 417.
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Figure 16. Observed signals of the second laminate at node 502.

5. Conclusion

In this work, the dynamic modal behavior of a thin-film laminated double glazing system is investi-
gated. In this case, the edge stiffness boundary conditions associated to an elastic joint (translational and
rotational effects) are modeled and its influence on a given structure (laminated plate alone or double
glazing system) can be analyzed. For this purpose, the OMA method is presented and exploited in
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� Figure 17. Exact eigenmodes shapes of the laminated double glazing system.
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Figure 18. Estimated eigenmodes shapes of the laminated double glazing system.

order to determine the modal characteristics (eigenfrequencies and eigenmode shapes) of the coupled
system. The modal procedure validation is based on the calculation of three performance criteria defined
by the Modal Assurance Criterion (MAC), the approximation error of the eigenmode shapes (Er) and
the relative error between numerical and estimated eigenfrequencies (E f ). Hence, a good agreement
is achieved by comparing the exact (obtained by FE) and estimated (obtained by OMA) eigenmodes.
Then, from the calculated results, it’s deduced that when angular springs are added to linear springs at



858 ALI AKROUT, MARIEM MILADI CHAABANE, LOTFI HAMMAMI AND MOHAMED HADDAR

the laminate’s edges, the vibratory behavior of the studied system becomes much better. In fact, reduced
vibration amplitudes are obtained and an improved rigidity can be conferred to the considered structure
due to the increasing of its natural frequencies.
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