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REFLECTION OF PLANE LONGITUDINAL
WAVES FROM THE STRESS-FREE BOUNDARY

OF A NONLOCAL, MICROPOLAR SOLID HALF-SPACE

AARTI KHURANA AND SUSHIL K. TOMAR

This work is concerned with plane waves propagating through an isotropic nonlocal micropolar solid.
Two longitudinal waves and two sets of coupled transverse waves propagating with distinct speeds may
travel in the medium. All these waves are found to be dispersive in nature. Reflection coefficients and
energy ratios are presented for when a longitudinal displacement wave strikes at the stress-free boundary.
The dispersion curves of various waves for a silicon crystal are computed numerically and depicted
graphically. The effect of nonlocality on the reflection coefficients and energy ratios is observed. The
energy balance law has been verified at each angle of incidence.

1. Introduction

The theory of nonlocal elasticity, developed in [Eringen 1972a; 1972b; 2002; Eringen and Edelen 1972],
states that the nonlocal stress tensor at any reference point x of the body depends not only on the strain at
the point x but also on the strains at all other points x′ of the body. This observation is in accordance with
the atomic theory of lattice dynamics and experimental observations on phonon dispersion [Chen et al.
2004]. In the limiting case, when the effects of strains at points other than x are neglected, one recovers
the classical (local) theory of elasticity. The most general form of the constitutive relation in the nonlocal
elasticity-type representation involves an integral over the entire region of interest. This integral contains
a nonlocal kernel function, which describes the relative influence of the strains at various locations on
the stress at a given location.

Polar theories, in principle, are nonlocal theories (see [Eringen 1999]) where the nonlocality is achieved
through moment tensors associated with each point of the body. However, as the wavelengths of the waves
transmitted become shorter, the number of moment tensors to be employed must be increased to provide
sufficient accuracy in the prediction of the physical phenomena. The response of a body depends heavily
on the ratio of the external characteristic length (L) to the internal characteristic length (l). In classical
field theories, a ratio of L/ l� 1 will yield reliable predictions. However, when L/ l ≈ 1, the classical
field theories (local) fail and we must resort to nonclassical theories (nonlocal). One of the theories in
which L ≈ l is the micropolar theory of elasticity. Some of the relevant papers on nonlocal theories are
[Eringen 1984; Erbay et al. 1992; Wang and Dhaliwal 1993; Lazar and Kirchner 2006; Zeng et al. 2006;
Najafi et al. 2012] among others.

In this paper, we have extended the work proposed in [Eringen 1984] by exploring the possibility of
the propagation of plane elastic waves in a linear isotropic nonlocal micropolar solid. It is seen that there
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may exist four waves comprising of two coupled transverse waves and two independent longitudinal
waves analogous to those existing in a local micropolar solid. In local micropolar elasticity, the longi-
tudinal displacement wave is frequency independent, while the longitudinal microrotational wave and
two sets of coupled transverse waves are frequency dependent. In nonlocal micropolar elasticity, all the
longitudinal and transverse waves are frequency dependent. The reflection phenomena of a longitudinal
displacement wave incident obliquely at a stress-free flat boundary of a nonlocal micropolar elastic half-
space are investigated in detail. Reflection coefficients and their corresponding energy ratios are obtained
analytically and depicted graphically for a silicon crystal against the angle of incidence. The reflection
coefficients and energy ratios have been plotted for two values of the nonlocal parameter, namely e0 = 0
and e0 = 0.39. The parameter e0 = 0 corresponds to the local micropolar medium. The sum of energy
ratios is found to be unity at each angle of incidence which shows that there is no dissipation of energy
during reflection at the free boundary surface of a nonlocal micropolar solid.

2. Basic equations and constitutive relations

For a linear anisotropic nonlocal micropolar solid, the strain energy density function W is given as
[Eringen 2002]

W = 1
2

∫ ∫
{Aklmn(x, x′)εkl(x′)εmn(x)+ Bklmn(x, x′)γkl(x′)γmn(x)

+Cklmn(x, x′)(εkl(x′)γmn(x)+ εkl(x)γmn(x′)} dv(x′)dv(x), (1)

where εkl = ul,k − εklmφm denotes the relative distortion tensor and γkl = φk,l is the curvature or wryness
tensor. The nonlocal constitutive moduli possess the symmetries

Aklmn(x, x′)= Amnkl(x′, x) and Bklmn(x, x′)= Bmnkl(x′, x).

In local micropolar elasticity, the force stress tensor (tkl(x)) and couple stress tensor (mkl(x)) are given
in integral form by the nonlocal constitutive relations [Eringen 2002]

tkl(x)=
∫
{Aklmn(x, x′)εmn(x′)+Cklmn(x, x′)γmn(x′)} dv(x′), (2)

mkl(x)=
∫
{Blkmn(x, x′)γmn(x′)+Cmnlk(x, x′)εmn(x′)} dv(x′). (3)

For an isotropic micropolar solid, the nonlocal elastic moduli are [Eringen 2002]

Aklmn(x, x′)= λδklδmn + (µ+ K )δkmδln +µδknδlm,

Bklmn(x, x′)= αδklδmn + γ δkmδln +βδknδlm and Cklmn(x, x′)= 0,

where the material moduli λ, µ, K , α, β, and γ depend on x and x′ through |x− x′|, that is,

{λ,µ, K , α, β, γ } = {λ′, µ′, K ′, α′, β ′, γ ′}G(|x− x′|),

with λ′, µ′, K ′, α′, β ′, and γ ′ as local micropolar elastic constants, of which λ′ and µ′ correspond to the
classical Lamé constants, and G(|x− x′|) as the nonlocal kernel. The function G(|x− x′|) represents
the effect of distant interactions of material points x′ on the material point x. Since the long-range effects
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quickly die out with distance, this function should attain its maximum at x′ = x. Eringen has shown that
the function G happens to be the Green’s function for the infinite plane, that is, it satisfies [Eringen 1984]

(1− ε2
∇

2)G = δ(|x′− x|), (4)

where ε = e0a, a being the internal characteristic length (for example, the atomic lattice parameter in
crystals, the average granular distance in granular solids, etc.), and e0 is a material constant.

Using these expressions of the elastic moduli, the constitutive relations (2) and (3) become

tkl(x)=
∫
{λδklεrr (x′)+ (µ+ K )εkl(x′)+µεlk(x′)} dv(x′), (5)

mkl(x)=
∫
{αδklγrr (x′)+βγkl(x′)+ γ γlk(x′)} dv(x′). (6)

The equations of motion for a nonlocal isotropic micropolar solid are given by [Eringen 2002]

tkl,k + ρ( fl − ül)= 0, (7)

mkl,k + εlmntmn + ρ(ll − j φ̈l)= 0. (8)

Applying the operator (1− ε2
∇

2) to (5) and (6) and using the property (4) together with∫
f (x)δ(x − a) dx = f (a), (9)

we obtain

(1− ε2
∇

2)tkl = σkl = λ
′δklεrr (x)+ (µ′+ K ′)εkl(x)+µ′εlk(x), (10)

(1− ε2
∇

2)mkl = µkl = α
′δklγrr (x)+β ′γkl(x)+ γ ′γlk(x). (11)

We can see from the expressions of the above equations that σkl and µkl are the force stress and couple
stress tensors of local micropolar elasticity.

Now, using (10) and (11) in the field equations (7) and (8), we obtain

(λ′+µ′)uk,kl + (µ
′
+ K ′)ul,kk + K ′εklmφk,m + (1− ε2

∇
2)ρ( fl − ül)= 0, (12)

(α′+β ′)φk,kl + γ
′φl,kk + K ′εlmnun,m − 2K ′φl + (1− ε2

∇
2)ρ(ll − j φ̈l)= 0. (13)

These are the equations of small motion in a nonlocal micropolar elastic medium. It is clear that in the
absence of nonlocality, that is, when e0 = 0, these equations reduce to the well-known equations of a
uniform micropolar solid. Since ε = e0a, the parameter ε may be called the nonlocal parameter.

3. Wave propagation

Introducing the scalar potentials (q , ξ ) and vector potentials (U , 5) through the Helmholtz decomposition
theorem as

u =∇q +∇ ×U, φ =∇ξ +∇ ×5; ∇ ·U =∇ ·5= 0, (14)
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and plugging them into (12) and (13), we obtain the following equations of motion, in the absence of
body forces and body couples:

(λ′+ 2µ′+ K ′)∇2q − ρ(1− ε2
∇

2)q̈ = 0, (15)

(µ′+ K ′)∇2U + K ′∇ ×5− ρ(1− ε2
∇

2)Ü = 0, (16)

(α′+β ′+ γ ′)∇2ξ − 2K ′ξ − ρ j (1− ε2
∇

2)ξ̈ = 0, (17)

γ ′∇25+ K ′∇ ×U − 2K ′5− ρ j (1− ε2
∇

2)5̈= 0. (18)

It can be seen that (16) and (18) are coupled in vector potentials U and 5 and (15) and (17) are indepen-
dent in scalar potentials q and ξ . It is also noted that in the absence of nonlocality, that is, when ε = 0,
(15)–(18) reduce completely to the wave equations of a linear micropolar solid.

For plane waves propagating in the positive direction of a unit vector n, we have

{q, ξ,U,5} = {a, b, A, B} exp{ιk(n · r − V t)}, (19)

where a and b are scalar constants, A and B are vector constants, and V is the phase speed. The circular
frequency ω is defined by ω = kV , k being the wavenumber. Inserting the expression of q from (19) into
(15), we obtain

V 2
1 = (λ

′
+ 2µ′+ K ′)ρ−1

− ε2ω2. (20)

This is the speed of the longitudinal displacement wave representing the longitudinal acoustic branch.
We see that the speed of the longitudinal displacement wave in the nonlocal micropolar solid is equal
to the speed of the longitudinal wave in the local micropolar solid decreased by an amount ε2ω2. Next,
inserting the expression of ξ from (19) into (17), we obtain

V 2
2 =

(
α′+β ′+γ ′

ρ j
− ε2ω2

)(
1−

2K ′

ρ jω2

)−1

. (21)

This is the speed of the longitudinal microrotational wave representing the longitudinal optic branch.
Similarly, inserting the expressions of U and 5 from (19) into (16) and (18), we obtain

A{(µ′+ K ′)k2
− ρω2

− ρω2ε2k2
}− ιkK ′n× B = 0, (22)

ιkK ′n× A− B{k2γ ′+ 2K ′− ρ jω2
− ρ jω2ε2k2

} = 0. (23)

Elimination of A or B from (22) and (23) yields a quadratic equation in V 2 given by

AV 4
+ BV 2

+C = 0. (24)

The roots of this equation are given by

V 2
3 =

1
2A
(
−B+

√
B2− 4AC

)
, V 2

4 =
1

2A
(
−B−

√
B2− 4AC

)
, (25)

where

A = 1−�, B = ω2ε2
− c2

4−
1
2 c2

3�+ (1−�)(ω
2ε2
− c2

2− c2
3), C = (ω2ε2

− c2
2− c2

3)(ω
2ε2
− c2

4),

�=
2ω2

0

ω2 , ω2
0 =

K ′

ρ j
, c2

2 =
µ′

ρ
, c2

3 =
K ′

ρ
, c2

4 =
γ ′

ρ j
.
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When ε = 0, the expressions of the coefficients A, B, and C exactly match with those obtained in
[Parfitt and Eringen 1969] for micropolar elasticity. These authors showed:

(i) For A > 0, and keeping in mind the restrictions imposed on elastic moduli, the quantity B is always
negative and the quantity C is always positive. Thus, the discriminant is B2

− 4AC > 0 and hence
the value of V 2

3 is finite and positive.

(ii) For A < 0, the quantity B2
− 4AC is finite and positive, since C is already a positive quantity. Also,

√
B2− 4AC > |−B|, which makes the value of V 2

3 negative. This shows that V 2
3 < 0 or > 0 for

A < 0 or > 0, respectively.

(iii) V 2
4 is a finite and positive quantity for A > 0 as well as for A < 0. Thus, a wave propagating with

phase speed V4 exists for all values of ω.

In the present case, that is, when ε 6= 0 and A > 0, the quantity C will have a negative value if ω/ω0

lies between (c4/c3)
(√

j/ε
)

and
√

(1+ c2
2/c

2
3)( j/ε2). Outside this range, we find that the quantity C > 0.

Thus, it is seen that V 2
3 is finite and positive provided C < 0, that is, when

min

{√(
1+

c2
2

c2
3

)
j
ε2 ,

c4
c3

√
j
ε

}
<
ω

ω0
<max

{√(
1+

c2
2

c2
3

)
j
ε2 ,

c4
c3

√
j
ε

}
.

Even for A < 0, one can show that the value of V 2
3 is finite and positive, provided C < 0. Thus, a wave

propagating with phase speed V3 exists only when C < 0. This means that the value of ω/ω0 must lie
between (c4/c3)

(√
j/ε
)

and
√

(1+ c2
2/c

2
3)( j/ε2) for the existence of a wave propagating with speed V3.

The quantity V 2
4 will be finite and positive for A < 0, that is, when ω <

√
2ω0. Beyond this critical

value of ω, a wave propagating with phase speed V4 will degenerate into distance-decaying sinusoidal
vibrations. Thus, we conclude that the nonlocality in an isotropic micropolar medium results in the wave
speed V3 behaving like the wave speed V4 of local micropolar elasticity (see [Parfitt and Eringen 1969]),
but oppositely/adversely.

The quantity V3 is the speed of a set of coupled transverse waves and represents the transverse acoustic
branch, while the quantity V4 is also the speed of another set of coupled transverse waves and represents
the transverse optic branch.

In the absence of nonlocality, all the phase speeds of longitudinal and transverse waves of a linear
isotropic micropolar solid are recovered.

4. Reflection phenomena

Let M = {(x, z);−∞< x <∞,−∞< z ≤ 0} be the region occupied by an isotropic nonlocal micropolar
solid. Let z = 0 be the plane boundary surface of M that is assumed to be free from stresses. We discuss
a two-dimensional problem in the x-z plane, so we take

u = (u1, 0, u3), φ = (0, φ2, 0), ∂

∂y
≡ 0.

From (14), we have

u1 = q,x −U2,z, u3 = q,z +U2,x , φ2 =51,z −53,x ,

where U2 is the y-component of U and 51 and 53 are the x and z-components of 5.
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Let a train of longitudinal displacement waves having amplitude A0 and speed V1 be made incident
at an angle θ0 on the free surface z = 0. We postulate the existence of the following reflected waves to
satisfy the boundary conditions at the free plane surface:

(i) a longitudinal wave of amplitude A1 with speed V1, making an angle θ1 with the normal,

(ii) a set of coupled transverse waves of amplitude A3y propagating with speed V3, making an angle θ3

with the normal, and

(iii) a similar set of coupled transverse waves of amplitude A4y propagating with speed V4, making an
angle θ4 with the normal.

The complete geometry of the problem is shown in Figure 1. Thus, the total wave field is given by

q = A0 exp{ιk1(sin θ0x + cos θ0z)− ιω1t}+ A1 exp{ιk1(sin θ1x − cos θ1z)− ιω1t}, (26)

U =
∑

p=3,4

Apy êy exp{ιkp(sin θpx − cos θpz)− ιωpt}, (27)

5=
∑

p=3,4

(Bpx êx + Bpz êz) exp{ιkp(sin θpx − cos θpz)− ιωpt}, (28)

where ωl = kl Vl (l = 1, 3, 4) have been defined earlier and êx , êy , and êz are the Cartesian unit base
vectors along the x , y, and z directions, respectively.

Comparing the x and z components of (18) and then using (27) and (28), we obtain

Bp =
ιω2

0

kp(c2
4+ 2ω2

0/k
2
p − V 2

p − ε
2ω2

p)
(cos θp êx + sin θp êz)Apy . (29)

This gives us the relation between the coefficients Ap and Bp.

M: [O��P��.��D��E��J��U]

A
Incident wave

z = 0

z

x

0

(A    ,    )4y

T0

T4

(A    ,    )3y T3

( A   ,    )1 T1

O

Figure 1. The geometry of the problem.
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Since the boundary of the half-space M is mechanically stress-free, the appropriate boundary con-
ditions are the vanishing of the force stress and the couple stress. Mathematically, these boundary
conditions can be written as:

σ33 = σ31 = µ32 = 0 at z = 0. (30)

The requisite components of stresses are given by

σ33 = λ
′q,xx + (λ

′
+ 2µ′+ K ′)q,zz + (2µ′+ K ′)U2,xz,

σ31 = (2µ′+ K ′)q,xz +µ
′U2,xx − (µ

′
+ K ′)U2,zz − K ′φ2, µ32 = γ

′φ2,z.
(31)

We shall also assume that at the boundary surface, all frequencies are equal, that is, ω1 = ω3 = ω4 = ω,
say, and Snell’s law holds, which gives k1 sin θ0 = k1 sin θ1 = k3 sin θ3 = k4 sin θ4. The potentials given
in (26)–(28) will satisfy the above boundary conditions (30) at z = 0, if∑

p=0,1

[λ′+ (2µ′+ K ′) cos2 θp]k2
1 Ap − (2µ′+ K ′)

∑
p=3,4

sin θp cos θpk2
p Apy = 0, (32)

(2µ′+ K ′) sin θ0 cos θ0k2
1 A0− (2µ′+ K ′) sin θ1 cos θ1k2

1 A1

−

∑
p=3,4

[
µ′ cos 2θp + K ′ cos2 θp − K ′ω2

0k−2
p

(
c2

4+
2ω2

0

k2
p
− ε2ω2

p − V 2
p

)−1]
k2

p Apy = 0, (33)

∑
p=3,4

γ ′ω2
0 cos θpkp Apy

(
c2

4+
2ω2

0

k2
p
− ε2ω2

p − V 2
p

)−1

= 0. (34)

These equations enable us to provide the amplitude ratios of various reflected waves. Equations (32)–(34)
can be written in matrix form as

[ai j ][Z ] = [M], (35)

where [ai j ] is a 3× 3 matrix, [Z ] = [Z1, Z3, Z4]
t is a column matrix (where superscript t denotes the

transpose), and Z1= A1/A0 and Z p = Apy/A0 (p= 3, 4) are the reflection coefficients. All the entries of
the matrix [ai j ] together with the column matrix [M] are given in the Appendix. Following [Achenbach
1973], the rate of energy transmission per unit area is given by

P∗ = σ33u̇3+ σ31u̇1+µ32φ̇2. (36)

The expressions of the energy ratios Ei (i = 1, 3, 4) corresponding to various reflected waves are

E1 =−Z2
1, E p =

1
P1

[
µ′+ K ′−

ω2
0

k2
p Dp

(
K ′+

γ ′ω2
0

Dp

)]
k3

p cos θp Z2
p, p = 3, 4,

where P1 =−k3
1 cos θ0(λ

′
+ 2µ′+ K ′) and Dp = c2

4+ 2ω2
0/k

2
p − ε

2ω2
p − V 2

p .

5. Numerical results and discussion

For a silicon crystal, the following values of the relevant parameters are taken for an isotropic nonlocal
micropolar solid [Zeng et al. 2006]: λ= 0.1055× 1013 dyne/cm2, µ= 0.2518× 1012 dyne/cm2, K =
0.1×1012 dyne/cm2, e0 = 0.39, j = 9.21×10−12 cm2, ρ = 2.330 gm/cm3, γ = 0.1423×1013 dyne, and
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a = 0.5× 10−7 cm, while for a local micropolar solid, λ= 0.7431× 1012 dyne/cm2, µ= 0.1373× 1012

dyne/cm2, K = 0.1× 1012 dyne/cm2, j = 9.21× 10−12 cm2, ρ = 2.330 gm/cm3, γ = 0.1275× 1013

dyne, a = 0.5× 10−7 cm, and e0 = 0.
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In Figure 2, we have shown the variation of the square of phase speeds (nondimensional) V 2
i /c

2
1

(i = 1, 3, 4) in the nonlocal micropolar solid, with the frequency ratio (ω/ω0). It is seen that the values
of V 2

1 /c
2
1 and V 2

4 /c
2
1 remain almost constant in the considered range 0 ≤ ω/ω0 ≤ 8. We have plotted

the curve of V 2
3 /c

2
1 after magnifying it by a factor of 10−12 as its value was large enough in comparison
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with the values of other quantities. It can be seen through this figure that ωc =
√

2ω0 is the critical
frequency for a wave propagating with phase speed V3, that is, before ωc =

√
2ω0 the quantity V 2

3 /c
2
1

has negative values while later on it remains positive. Moreover, it has also been observed that the effect
of the nonlocality parameter on phase speed depends heavily on the value of characteristic length a. At
higher values of a, the phase speeds of waves are found to be more dispersive.

Figures 3–5 depict the comparison between the nonlocal and local micropolar solids for modulus
values of reflection coefficients Z1, Z3, and Z4 with angle of incidence of the longitudinal displacement
wave propagating with phase speed V1. The solid curve is for the nonlocal micropolar solid, that is, when
e0 = 0.39, while the dotted curve is for the local micropolar solid.

In Figure 3, the modulus value of the reflection coefficient Z1 has a maximum value equal to unity
at normal incidence in both the cases. Then, its value decreases till θ0 = 58◦. Thereafter it increases
with the increase of θ0 to attain its maximum value at grazing incidence. The pattern is similar for the
nonlocal micropolar solid and the local micropolar solid.

In Figure 4, we have plotted the variation of modulus values of the reflection coefficient Z3× 1014

as the value of Z3 is negligibly small. The value of the reflection coefficient Z3 is maximal at normal
incidence. This value decreases with an increase of θ0 throughout the range and approaches zero as θ0

approaches 90◦. Figure 5 depicts the variation of the absolute values of the reflection coefficient Z4. It
is seen that the value increases with increase in θ0 in the range 0◦ ≤ θ0 ≤ 52◦, and thereafter it decreases
and vanishes at θ0 = 90◦.

In Figures 3–5, we have seen that at each angle of incidence the modulus value of the reflection
coefficients Z1 and Z3 for the local micropolar solid is bigger than the corresponding values for the
nonlocal micropolar solid. However, the value of Z4 for the nonlocal micropolar solid is bigger at each
angle of incidence than the value for the local micropolar solid.
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Figures 6–8 depict the variation of the modulus values of the energy ratios with the angle of incidence.
At the free boundary surface, the sum of the energy ratios is equal to unity during reflection at each angle
of incidence of a longitudinal displacement wave propagating with speed V1. The formulae for reflection
coefficients and their corresponding energy ratios are obtained analytically and numerically. This shows
that there is no dissipation of energy at the free boundary surface.

1.0

0.8

0.6

0.4

0.2

0.0
0 10 20 30 40 50 60 70 80 90

Nonlocal

Angle of incidence

LocalEn
er

gy
 ra

tio
 (E

  x
 1

0 
 )14

3

Figure 7. Variation of modulus of energy ratio E3 with angle of incidence.
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6. Conclusions

This paper deals with the possibility of plane-wave propagation in an isotropic nonlocal micropolar solid.
The reflection phenomena of a plane wave striking obliquely at the free boundary surface is also discussed.
The following is concluded.

(i) Four waves may travel with distinct speeds in a nonlocal micropolar solid: a longitudinal displace-
ment wave, a longitudinal microrotational wave, and two sets of coupled transverse waves. All the
waves are dispersive in nature.

(ii) The effect of the nonlocality parameter on the reflection coefficients (as well as on the energy ratios)
is found to be maximal at some intermediate angle of incidence of a longitudinal displacement wave.
However, there is no significant difference seen at the grazing incidence and the normal incidence
on the reflection coefficients and energy ratios.

(iii) The balance of energy law has been verified at each angle of incidence of a longitudinal displacement
wave at the free boundary surface.

Appendix

Entries of the matrices [ai j ] and [M]:

a11 =−1, a12 =
(2µ′+ K ′) sin θ0

[λ′+ (2µ′+ K ′) cos2 θ0]v31

√
1− v2

31 sin2 θ0,

a13 =
(2µ′+ K ′) sin θ0

[λ′+ (2µ′+ K ′) cos2 θ0]v41

√
1− v2

41 sin2 θ0, a21 = sin θ0 cos θ0,

a22 =
1

(2µ′+ K ′)v2
31

[
µ′(1− 2v2

31 sin2 θ0)+ K ′(1− v2
31 sin2 θ0)−

K ′ω2
0

k2
3 D3

]
,

a23 =
1

(2µ′+ K ′)v2
41

[
µ′(1− 2v2

41 sin2 θ0)+ K ′(1− v2
41 sin2 θ0)−

K ′ω2
0

k2
4 D4

]
,

a31 = 0, a32 =
�

√
1− v2

31 sin2 θ0

2v3
31

(
1+

ε2ω2
3

V 2
3
−

2ω2
0

ω2
3
−

c2
4

V 2
3

), a33 =
�

√
1− v2

41 sin2 θ0

2v3
41

(
1+

ε2ω2
4

V 2
4
−

2ω2
0

ω2
4
−

c2
4

V 2
4

),
M1 = 1, M2 = sin θ0 cos θ0, M3 = 0,

where v31 =
V3

V1
and v41 =

V4

V1
.
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