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SELF-FOLDING OF A SLENDER MICROBEAM
AND THIN FILM: AN ELASTICA MODEL

JIANLIN LIU AND JUNG HOON LEE

Thin wires or films can be spontaneously folded into different shapes, and such phenomena hold promis-
ing applications in engineering, especially at micro and nanoscales. Based upon the established potential
energy functional, we derived the governing equation and adhesive boundary condition for a self-folding
system. Considering the inextensible condition of the structure, a closed-form solution for the deflection
of a racket-like structure was obtained in terms of elliptical integrals, which applies for both macro
and nanodimensions. We then determined the critical adhesive length under specified geometric and
energetic constraints. The results show that self-folding is energetically favorable and thermodynami-
cally stable with the cohesive work being strong enough and the structure being sufficiently flexible. As
soon as the self-folding configuration is formed, the slender structure must possess an initial adhesive
length. These conclusions are beneficial for the design of nanostructures, and the enhancement of their
mechanical, chemical, optical, and electronic properties.

1. Introduction

Self-folding phenomena of thin films and wires, spanning the micro, macro, and nanoscales, are widely
observable in nature and daily life. For example, when a piece of paper is coiled up in a tube, it does not
make complete contact near its ends but makes a certain angle with the inner tube wall [Romero et al.
2008]. In addition, a flexible thin sheet can be self-folded or wrapped by capillary forces; Py et al. [2007;
2009] and Pineirua et al. [2010] carried out a series of experimental studies on such processes. They
found that the surface tension of a droplet or a liquid film can cause the thin sheet to fold, origami-
like, into different geometric shapes. They also provided numerical solutions to calculate the adhered
configuration, which are consistent with their experimental results.

Nature often miraculously creates similar phenomena at different length scales; likewise, self-folding
exists widely in the nanoworld. On the one hand, the creation of self-folded structures is technologically
important in such practical applications as the self-assembly of nanostructures. A typical example is that
silicon–germanium nanotubes can be formed by the self-folding of a thin film through an inexpensive
label method [Schmidt and Eberl 2001]. During this process, the freed thin film is rolled up, with one of
the film edges being brought into contact with the film itself and finally stuck by van der Waals forces
[Glassmaker and Hui 2004]. Moreover, folding a two-dimensional graphene will significantly alter its
properties, because the deformed morphology modifies the electronic band structure of the graphene and
creates localized electronic states in the folded regions [Kim et al. 2011]. Using the folding method,
one can control the shape of a graphene sheet, and then tailor its mechanical, chemical, optical, and
electronic properties. On the other hand, self-folding or cross-section collapse can induce undesirable
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deformation or even failure of micro/nanosized devices and systems. For example, the circular cross
section of a carbon nanotube (CNT) with a large diameter may collapse into a ribbon or dumbbell shape
under van der Waals forces [Pantano et al. 2004]. Through molecular dynamic (MD) simulations, Gao
et al. [1998] discovered that there are two possible configurations for a CNT in equilibrium state, one
circular and one collapsed, corresponding to two determinate radius ranges, respectively. Recently, Tang
et al. [2005] and Tang and Glassmaker [2010] studied the energetics of self-collapse of a single CNT by
using the continuum mechanics method, and also calculated the critical radius for collapse.

The self-folding of thin films or microbeams may lead to different shapes, especially at micro and
nanoscales [Cohen and Mahadevan 2003]. Like a microtubule inside a vesicle buckling into a racket-like
shape [Fygenson et al. 1997], CNTs with a similar shape were also observed in a sample of high-pressure
carbon monoxide single-walled nanotubes after 30 minutes of sonication in dichloroethane [Cohen and
Mahadevan 2003]. The occurrence of self-folding in such small scaled materials as nanowires, micro-
tubules, nanotubes, and thin films is mainly attributed to their high aspect ratios. More precisely, the
maximal size (for example, the length of nanowire or the length/width of a thin film) is much larger than
the persistence length [Zheng et al. 2004; Lee et al. 2007]. Due to carbon–carbon covalent bonding and
seamless hexagonal network architecture, a CNT can be easily bent into an arc shape with significant
curvature [Buehler et al. 2004]. This special racket-like configuration is actually an energetically favor-
able state, with the interplay of elastic deformation and van der Waals attraction between different parts
of the CNTs.

Much effort has been directed toward understanding the physical mechanisms of self-folding processes.
The first atomistic simulation of single-wall CNTs with very large aspect ratios subject to compressive
loading was carried out in Buehler et al. [2004]. They investigated the shell-rod-wire transition of the
mechanical behavior of CNTs with increasing aspect ratios. Following this work, Buehler et al. [2006]
utilized atomistic simulation to study the deformation of a highly flexible nanotube forming a thermo-
dynamically stable self-folded structure, and presented the critical length and critical temperature for
folding or unfolding. Zhou et al. [2007] obtained the critical length for the self-folding of CNTs by MD
simulations and infinitesimal deformation analysis. Mikata [2010] then derived an approximate solution
for the self-folding of CNTs on the assumption that the curvature at the adhesion point is zero. Glassmaker
and Hui [2004] modeled the CNT as an elastica, presented the close-formed differential equation set, and
gave the numerical results. Similar to CNT folding, Cranford et al. [2009] studied the self-folding of
mono and multilayer graphene sheets, utilizing a coarse-grained hierarchical multiscale model derived
directly from atomistic simulation. Although the aforementioned studies have been devoted to self-
folding problems, to date there is still a lack of systematic theoretical analysis on the underlying physical
mechanisms, which involve very large deformation and strong geometric nonlinearity. In this paper,
we present an elastica model to quantitatively study the mechanism of self-folding. Our motivation is
to provide the explicit solution of the considered problem, then develop a new method to analyze the
racket-like shape of self-folded structures via the classical elastica solution. This landmark theory, which
can be traced back to the historic contribution of Euler [Love 1906], has been successfully used to solve
some finite deformation problems of slender structures [Bisshopp and Drucker 1945; Liu and Feng 2007;
Majidi 2007; Neukirch et al. 2012].

This article is organized as follows. In Section 2, we present a mechanics model to analyze the self-
folding of structures in terms of energy, and derive the nonlinear governing equation and the adhesive
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boundary condition. In Section 3, we discuss the critical adhesive length under specified geometric and
energetic constraints. Finally, we present the explicit solution for the deflection of a flexible structure.

2. Elastica model

2.1. Model formulation. First, we analyze the physical mechanisms of self-folding of a flexible struc-
ture, such as a filament or a thin film, by means of scaling laws. If the typical length of a planar structure
is denoted as Lc, then the interfacial or surface energy US ∝ Lc, the elastic strain energy UE ∝ L2

c , and
the potential energy due to gravity UG ∝ L3

c [Roman and Bico 2010]. As the dimension of a macroscopic
fiber or film shrinks to nanometers, the effect of surface energy becomes significant and should be taken
into account. Therefore, it can naturally be assumed that the effect of gravity is negligible. Given a
sufficiently large flexibility or aspect ratio, the structure can reach an energetically stable self-folding
shape like a tennis racket. For instance, a CNT can experience a shell-rod-wire transition as its aspect
ratio increases [Buehler et al. 2004]. If a straight and slender CNT is subject to two compressive loads
with magnitude of P exerted at its two ends, it will buckle when the load is bigger than a critical value:

Pcr =

(
π

L

)2
EI, (1)

where L is the total length of the CNT, EI the bending stiffness of the CNT, E the Young’s modulus of
the material, and I the moment of inertia of the cross section of the beam. After it buckles, the CNT may
become a ring-shaped structure [Bigoni 2012, 52–69] with radius R, and it can continue to be self-folded
if the van der Waals force q exceeds a critical value:

qcr =
3EI
R3 . (2)

In this situation, the van der Waals force between the upper and lower portions of the CNT will attract
each other, and the interfacial energy actually plays the role of a transmural pressure. In the present
study, we only concentrate on the folded morphology of the glued CNT.

In what follows, we consider a slender filament or a sheet stuck by the adhesion force of the solid
contact surface or a trapped liquid film, as shown in Figure 1a. Due to the symmetry and smoothness of
this configuration, the upper half portion of the structure can be modeled as a beam with two clamped
ends, as shown in Figure 1b. The total length of the rod is L/2, and the adhered segment is l. We
introduce a Cartesian coordinate system (o-xy). Besides the Euler coordinates x and y, the arc length s,
a Lagrange coordinate, is also employed as a variable in our analysis. The slope angle of the beam at an
arbitrary point is φ, which continuously changes from 0◦ at its left end to −90◦ at its right end.

According to Figure 1, the fixed boundary conditions of the elastic system are prescribed as

φ(l)= 0, φ
(L

2

)
=−

π

2
, φ(L − l)=−π; (3)

y(l)= 0, y
(L

2

)
= 0. (4)

The geometric conditions of the elastica are

ẋ = cosφ, ẏ = sinφ, (5)
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Figure 1. Schematic diagram of a slender structure self-folded into a racket-like shape.
(a) The left segment is adhered by solid interface or liquid film. (b) The total length of
the rod is L , the adhered segment l, and the slope angle at an arbitrary point φ.

where a dot above a character stands for the derivative of a variable with respect to the arc length s.
The total potential energy of the system consists of two parts, namely the elastic strain energy and

surface energy. Considering the symmetry of this configuration, the energy functional of the system can
be written as

5=

∫ L/2

l
[EI φ̇2

+ λ1(ẋ − cosφ)+ λ2(ẏ− sinφ)] ds−Wa l, (6)

where λ1 and λ2 are two Lagrange multipliers, enforcing the additional geometrical relations of (5).
The second term of at the right end of (6) stands for the surface energy, and the symbol Wa is defined

as the work of adhesion between two surfaces [Dupré 1969]. It is expressed as

Wa = (γ1+ γ2− γ12)b, (7)

where b is the contact width out of the plane, γ1 and γ2 are the surface energies of the two different
phases, and γ12 the interfacial energy. In the conventional definition, the work of adhesion is actually the
work per unit area necessary to create two new surfaces from a unit area of an adhered interface, which
is a positive constant for any two homogeneous materials binding at an interface at a fixed temperature
[Tang et al. 2005]. The cohesive work can be defined as the work of adhesion between two identical
material interfaces, which reads

Wc = 2γ1b. (8)

For a slender structure with the interface adhered by a liquid film, the cohesive work or the interfacial
energy per unit length is

Wc = 2(γl + γSV− γSL)b = 2γl(1+ cos θY )b, (9)

where γSV, γSL, and γl designate the interfacial tensions of the solid/vapor, solid/liquid, and liquid/vapor
interfaces, respectively, and θY is the Young’s contact angle. At micro and nanoscales, the cohesive work
is normally termed the binding energy EB [Zhou et al. 2007].

Although the intrinsic boundary condition of the present problem is fixed, we can view it as movable,
and then the new variation scheme can be introduced (see Appendix A). During the variation operation,
we should stress that the variation of the total potential energy can be separated to two portions: the first
part δ51 is the variation when the adhesive point s = l is assumed to be fixed; the second δ52 is the
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additional variation on the movable point at s = l. The additional term of the variation for the considered
problem is because the adhesive length l is yet to be determined, which leads to the movable boundary
condition. Therefore, according to the principle of least potential energy one has

δ5= δ51+ δ52 = 0. (10)

A detailed derivation of (10) can be found in Appendix B, and we can clearly obtain the governing
equation of the elastica

2EI φ̈− λ1 sinφ+ λ2 cosφ = 0 (11)

and the adhesive boundary condition at the moving point

EI φ̇(l)2−Wc = 0. (12)

The symbols λ1 and λ2 in (11) can be easily identified as the horizontal and vertical components of the
internal forces in the beam. It can be seen that the governing equation in (11) was obtained from the
perspective energy functional, which conforms to the result derived by Tang and Glassmaker [2010],
who adopted the analysis method of force equilibrium.

The transversality boundary condition represents the balance of the strain energy and the cohesive
work, which is called the adhesive boundary condition or transversality condition in mathematical ter-
minology. It is worth mentioning that the adhesive boundary condition in (12) can also be deduced
via the concept of the J -integral in fracture mechanics, as described by Glassmaker and Hui [2004] in
their analysis of silicon–germanium nanotube formation. The stationary potential and material force
balance methods have also been adopted to derive the adhesive boundary condition [Majidi 2007]. The
discrepancy between (12) and the result of [Glassmaker and Hui 2004] is due to a difference in geometry;
the current model is symmetric in the configuration, in comparison with the single-side adhesive interface
in the reference. In addition, the framework of the energy functional variation in consideration of the
adhesive boundary condition can also be extended to solve other problems, where the boundary conditions
can also be regarded as movable. The proposed method proves efficient and essential for calculating the
contact angle of a droplet, the morphology of a cell, and the peeling of a CNT from the substrate [Seifert
and Lipowsky 1990; Oyharcalbal and Frisch 2005; Bormasshenko and Whyman 2008].

Multiplying both sides of (11) by φ̇ and integrating, one has

EI φ̇2
= D− λ1 cosφ− λ2 sinφ, (13)

where the parameter D is an integration constant. Making use of (3), one obtains

EI φ̇(l)2 = D− λ1, (14)

EI φ̇(L − l)2 = D+ λ1. (15)

The symmetry of the configuration results in φ̇(l)2 = φ̇(L − l)2, and then the Lagrange multiplier λ1 = 0.
Considering (12) and (14), one has

D =Wc. (16)
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We introduce the parameter α =
√
λ2/(2EI ), and replace D/(2EI ) with α2C , where the symbol C =

Wc/λ2. Apparently, the physical meaning of α is the square ratio between the internal force and the bend-
ing stiffness. Thus the governing equation (13) and the adhesive boundary condition (12) are respectively
transformed into

1
2 φ̇

2
= α2(C − sinφ), 1

2 φ̇(l)
2
= α2C. (17)

The combination of (14) and (17)2 gives

2α2L2
ecC = 1. (18)

Here, we have defined a new characteristic length, that is, the elastocohesive length Lec =
√

EI/Wc,
which is different from the elastocapillary length LEC used in [Roman and Bico 2010]. The elasto-
cohesive length can be equivalently written in another format, as the parameter 1/

√
Q determined in

[Glassmaker and Hui 2004]. For a slender structure adhered by a liquid film, the elastocohesive length
Lec = (

√
2/2)LEC when θY = 0. It can be seen that in this case, (14) and (18) are consistent with the

result of [Py et al. 2007].

2.2. Displacement boundary condition. As ds is always positive and the increment of the slope angle
is not monotonic, (17)1 is simplified as

α ds =
|dφ|

√
2(C − sinφ)

. (19)

For convenient integration, the variable φ is replaced with θ . They are related by

(1+C) sin2 θ = 2k2 sin2 θ = 1+ sinφ (0≤ θ ≤ π, k > 0), (20)

and
C = 2k2

− 1,
√

2(C − sinφ)= 2k|cos θ |, |dφ| =
2k|cos θ |√

1− k2 sin2 θ
dθ. (21)

In these equations, we consider the uniqueness of the solution in light of the physical meaning of the
problem.

Substituting (21)2 and (21)3 into the displacement boundary condition in (3) leads to

α
[

y
(L

2

)
− y(l)

]
=

∫
−π/2

0

sinφ|dφ|
√

2(C − sinφ)
= F(k, π)− F(k, θ0)− 2[E(k, π)− E(k, θ0)] = 0, (22)

where sin θ0 = 1/(
√

2k) and F(k, θ) and E(k, θ) are the elliptic integrals of the first and second kinds,
which are respectively defined as

F(k, θ)=
∫ θ

0

1√
1− k2 sin2 θ

dθ, E(k, θ)=
∫ θ

0

√
1− k2 sin2 θ dθ. (23)

2.3. Inextensible condition. To close this mathematical problem, we complement the inextensible con-
dition of the elastic rod [Liu and Feng 2007; Neukirch et al. 2012], which is written as

α
(L

2
− l
)
=

∫
−π/2

0

|dφ|
√

2(C − sinφ)
= F(k, π)− F(k, θ0). (24)
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3. Critical adhesion parameters

3.1. Geometric constraint. From (22), one can solve for the corresponding values of k = 0.855092 and
C = 0.462366, both of which are independent of the material parameters of the beam. Furthermore,
(18) gives the following relation between the nondimensional internal force αL and the normalized
elastocohesive length:

αL =
1

√
4k2− 2(Lec/L)

, (25)

and the function curve is exhibited in Figure 2. It can be seen that the vertically internal force of the
cross section on the beam will increase with the increase of the cohesive work. This means that the
stronger interfacial adhesion ability will produce larger reaction force and internal force. The reduced
vertical force αL can be solved from (25) provided that the elastocohesive length and the total length of
the beam are given.

Substitution of (25) into (24) yields

l
L
=

1
2
−

√
4k2− 2[F(k, π)− F(k, θ0)]

Lec

L
. (26)

The symbol l in (26) is the critical adhesive length, which is a linear function of the elastocohesive length.
This relation agrees with the previous scaling analysis [Py et al. 2007] and infinitesimal deformation
calculations [Buehler et al. 2006; Zhou et al. 2007; Mikata 2010]. However, the slope of the linear
function in (26) is about −3.03 and differs from the experimental result of −4.9 [Py et al. 2007]. In
comparison, the previous work [Py et al. 2007] deals with the function of the attached length (L − 2l)
about the elastocapillary length, and the slope is approximately obtained by a linear regression method.
The deviation between our theoretical result and their experiment may stem from their data processing
method and the zero Young’s contact angle assumption.

The linear relation in (26) also indicates that the adhesive length will be in the range of 0< l/L < 0.5,
and the elastocohesive length meets the condition
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Figure 2. Variation of the nondimensional internal force with respect to the normalized
elastocohesive length.
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0<
Lec

L
<

1

2
√

4k2− 2[F(k, π)− F(k, θ0)]
. (27)

Equation (27) is an intuitively geometric constraint for the nondimensional cohesive length to ensure the
self-folding shape. It indicates that this dimensionless length has an upper limit (as schematized in the
dotted line in Figure 2, where Lec/L = 0.165146), that is, the cohesive work must be strong enough, and
simultaneously the rod should be sufficiently slender.

3.2. Energy constraint. Besides the aforementioned geometric constraint condition for the adhesive
length, another stronger constraint can be derived from the consideration of energy. Using (17)1, (19),
(21)2, (21)2, and (25), the analytical solution of the reduced potential energy on the system can be derived
as

5L
EI
= L

∫ L/2

l
φ̇2 ds−

Ll
L2

ec
=

2
√

4k2− 2[F(k, π)− F(k, θ0)]

Lec/L
−

1
2(Lec/L)2

. (28)

The total potential energy is shown in Figure 3 as a function of the normalized elastocohesive length,
which is not a monotonic function but has an extreme point. For a structure with extremely large elasto-
cohesive length, its potential energy is higher than zero. In reality, the flexible structure takes a rectilinear
shape for the ground state, whose total potential energy should be zero (there is no deformation). The
thermodynamic law tells us that the self-folding is energetically favorable only if the current energy is
smaller than that of the ground state. For a very short rod or a quite low cohesive work, the nondi-
mensional elastocohesive length is very large, the total potential energy 5 can be higher than zero (see
Figure 3), and it is difficult for the driving force to change the configuration from the ground state to the
self-folding state. Therefore, there must exist a critical adhesive length to ensure a stable configuration.
On the basis of (28), the energy requirement 5< 0 leads to

Lec

L
<

1

4
√

4k2− 2[F(k, π)− F(k, θ0)]
. (29)

This energetic constraint condition gives a more strict limitation for the normalized elastocohesive
length, which can only make sense in a much narrower range than that of (27). Beyond this scope, the

0.0 0.1 0.2 0.3 0.4
-100

-80

-60

-40

-20
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Geometric constraint3
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I
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L
ec

/L

Energetic constraint

 Figure 3. The dependence relationship between the nondimensional total potential en-
ergy of the system and the normalized elastocohesive length.
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racket-like shape of the structure is in a metastable state, as the dashed line shown in Figure 3. In other
words, the elastocohesive length must meet both the energy constraint in (29) (the first vertical line in
Figure 3) and the geometric constraint in (27) (the second vertical line in Figure 3), and the final adhesive
length satisfies 1/4 < l/L < 1/2. This newly presented conclusion indicates that, as soon as the self-
folding configuration is formed, the slender structure must possess an initial adhesive length larger than
L/4. Otherwise, the racket-like morphology due to self-folding is not energetically favorable, and would
seldom happen in reality. The corresponding critical total length to be self-folded is Lcr = 12.11Lec from
(29), nearly equal to the calculated value Lcr = 12.57Lec in [Zhou et al. 2007].

3.3. Deflection. After the adhesive length has been determined, the deflection of the rod can be deter-
mined by

αx = α
∫ s

0
cosφ ds = αl +

∫ θ

θ0

2k sin θ dθ = αl +
√

4k2− 2− 2k cos θ, (30)

αy = α
∫ s

0
sinφ ds = F(k, θ)− F(k, θ0)− 2[E(k, θ)− E(k, θ0)]. (31)

This is the analytical expression on the deflection of the elastica, which is different from the previ-
ous work, which was mostly conducted by numerical methods [Glassmaker and Hui 2004; Tang and
Glassmaker 2010]. Equations (30) and (31) indicate that the nondimensional deflection of the rod is
independent of the material parameters, showing the self-similarity of this racket configuration. The
analytical solution of the displacement normalized by the total length of the beam reads

x
L
=

1
2
−

√
4k2− 2[F(k, π)− F(k, θ0)]

Lec

L
+

√
4k2− 2 Lec

L

(√
4k2− 2− 2k cos θ

)
,

y
L
=

√
4k2− 2

Lec

L
{F(k, θ)− F(k, θ0)− 2[E(k, θ)− E(k, θ0)]},

(32)

and the width of the loop can also be deduced as

2ymax =
√

4k2− 2{F(k, π − θ0)− F(k, θ0)− 2[E(k, π − θ0)− E(k, θ0)]}Lec. (33)

The loop of the racket has the value 2ymax = 1.236Lec = 0.874LEC, which is quite close to the numerical
result of 0.89LEC given in [Py et al. 2007].

Comparison with the experiments in [Py et al. 2007] shows that our exact solution successfully predicts
the sheet wrapping behavior at the macro scale, and, in fact, it also applies to nanoscopic problems. For
example, if the CNT is flexible and long enough, the gain in the potential energy due to van der Waals
interaction (that is, the binding energy) is higher than the elastic strain energy necessary to bend the
CNT. Under these circumferences, the tennis racket-like shaped CNTs can be formed. To simulate the
morphology of self-folded CNTs, we select the following parameters [Mikata 2010]: Young’s modulus
E = 1000 GPa, moment of inertia I = 5.2678× 10−38 m4, binding energy EB = 8.65× 10−11 J/m.
Hence the elastocohesive length is Lec = 24.6778 nm, and the corresponding critical length of the CNT
is Lcr = 298.861 nm. We take the total length as L = 400 nm in computation. The deflection of the
CNT self-folding is determined from (32) and plotted in Figure 4 under two representative values of the
nondimensional elastocohesive length Lec/L = 0.0617 (corresponding to Lec = 24.6778 nm) and 0.05,
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 Figure 4. Normalized deflections of self-folding to a racket for a CNT, where Lec/L =
0.0617 and Lec/L = 0.05, respectively.

respectively. Clearly, the CNT will adhere more tightly with the increase of the cohesive work, and the
width of the loop will shorten further.

4. Conclusions

We have presented an exact elastica model for analyzing the self-folding of slender structures. First, the
potential energy functional of the system was constructed, which included the elastic strain energy and
surface energy. We derived the governing equation and the adhesive boundary condition of the elastica,
which stands for the balance of strain energy and surface energy at the movable boundary. Under the
inextensible condition of the rod, we obtained the closed-form solution for the deflection of the beam in
terms of elliptical integrals.

Furthermore, to ensure the self-folding of the slender structure into a tennis racket shape, the sys-
tem must satisfy both the geometric and energetic constraints. The results show that self-folding is
energetically favorable and thermodynamically stable with the cohesive work being strong enough and
the structure being sufficiently flexible. The calculated result shows that, as soon as the self-folding
configuration is formed, the structure must have an initial adhesive length after contact, of larger than
0.25L . The corresponding critical total length to be self-folded agrees well with the previous result.

This model can be used to investigate both a macroscopic sheet wrapped by a liquid film, and a CNT
self-folded by van der Waals forces. In this paper, our attention is only on planar problems, while an
extension of the presented elastica model to three-dimensional spatial problems, for example, the coiling
of DNA [Manohar et al. 2008; Huang 2011], would be of great interest.
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Appendix A

The transversality condition dealing with movable boundaries was in [Courant and Hilbert 1953, pp. 211–
214] and a more detailed deduction is presented here. A similar discussion can also be found in [Majidi
et al. 2012].

Normally, the forced or fixed boundary conditions of an energy functional are prescribed as

y(0)= y0, y′(0)= y′0; y(a)= ya, y′(a)= y′a. (A.1)

If the energy functional is expressed as

5[y(s, a)] =
∫ a

0
F[s, y(s, a), y′(s, a), y′′(s, a)] ds−

∫ L

a
W ds, (A.2)

then we consider the variation
y(s)= y0(s)+ εY (s), (A.3)

where y0(s) denotes the extreme solution to be found, and s = a is a moving point to be determined.
According to the prescribed boundary condition of (A.1), the extreme and varied solution must fulfill

y0(a0)= ya, y′0(a0)= y′a; y(a)= ya, y′(a)= y′a; Y (0)= Y ′(0)= 0. (A.4)

The unknown a can be expanded as

a(ε)= a0+ ε
da
dε

∣∣∣∣
ε=0
+ O(ε2). (A.5)

The boundary value in (A.3) can also be expanded as

y(a)= y0(a0)+ εy′(a0)
da
dε

∣∣∣∣
ε=0
+ εY (a0)+ O(ε2), (A.6)

y′(a)= y′0(a0)+ εy′′(a0)
da
dε

∣∣∣∣
ε=0
+ εY ′(a0)+ O(ε2). (A.7)

Comparing (A.3), (A.6), and (A.7), one arrives at

Y (a0)=−y′(a0)
da
dε

∣∣∣∣
ε=0
, Y ′(a0)=−y′′(a0)

da
dε

∣∣∣∣
ε=0
. (A.8)

Equations (A.8) give the variation of the “new” end point a(ε) as a function of the variation in y and the
derivatives y′ and y′′ at the “old” end point a0.

Before proceeding, we recall the formula for the derivative for an integral including a parameter α. Let

φ(α)=

∫ b(α)

a(α)
F(x, α) dx . (A.9)
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Its derivative with respect to α is

φ′(α)=

∫ b(α)

a(α)
Fα(x, α) dx + F[b(α), α]b′(α)− F[a(α), α]a′(α). (A.10)

Now let us return to the variation of the energy functional in (A.2). Substituting (A.1), (A.3), (A.4)
and (A.8) into (A.2), and using (A.9), one can obtain the derivative of the functional

d5
dε

∣∣∣∣
ε=0
= [W + F]s=a0

da
dε

∣∣∣∣
ε=0
+

∫ a0

0
[FyY + Fy′Y ′+ Fy′′Y ′′] ds

= [W + F]s=a0

da
dε

∣∣∣∣
ε=0
+ [Fy′Y + Fy′′Y ′]

a0
0 +

∫ a0

0

[
FyY −

d Fy′

ds
Y −

d Fy′′

ds
Y ′
]

ds

= [W + F]s=a0

da
dε

∣∣∣∣
ε=0
+

[
Fy′Y + Fy′′Y ′−

d Fy′′

ds
Y
]a0

0
+

∫ a0

0

[
Fy −

d Fy′

ds
+

d2 Fy′′

ds2

]
Y ds

=

[
W + F − y′Fy′ − y′′Fy′′ + y′

d Fy′′

ds

]
s=a0

da
dε

∣∣∣∣
ε=0
+

[
Fy′Y + Fy′′Y ′−

d Fy′′

ds
Y
]a0

0

+

∫ a0

0

[
Fy −

d Fy′

ds
+

d2 Fy′′

ds2

]
Y ds = 0. (A.11)

The fact that the above integral equals zero leads to the Euler–Poisson equation

Fy −
d Fy′

ds
+

d2 Fy′′

ds2 = 0. (A.12)

The remainder of (A.11) comes to the following form[
W + F − y′Fy′ − y′′Fy′′ + y′

d Fy′′

ds

]
s=a0

da
dε

∣∣∣∣
ε=0
= 0. (A.13)

This expression vanishes for arbitrary da/dε
∣∣
ε=0, which corresponds to arbitrary Y (a0) if the bracket is

zero. Then we can obtain the transversality condition for this variational problem:

W =
[

y′Fy′ + y′′Fy′′ − y′
d Fy′′

ds
− F

]
s=a0

. (A.14)

Appendix B

The detailed variation process on the energy functional proceeds as follows. Taking the variation on the
energy functional, the principle of least potential energy leads to

δ5= δ51+ δ52 = 0. (B.1)
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The first part of the variation is under the assumption that the boundary condition is fixed, namely

δ51 =

∫ L/2

l
[2EI φ̇ δφ̇+ δλ1(ẋ − cosφ)+ δλ2(ẏ− sinφ)

+ λ1 δ ẋ + λ1 sinφ δφ+ λ2 δ ẏ− λ2 cosφ δφ] ds

=

∫ L/2

l
[−2EI φ̈ δφ+ δλ1(ẋ − cosφ)+ δλ2(ẏ− sinφ)

+ λ1 sinφ δφ− λ2 cosφ δφ] ds+ [2EI φ̇ δφ+ λ1 δx + λ2 δy]L/2l . (B.2)

In view of the fixed boundary conditions (3) and (4), (B.2) can be reduced to

δ51 =

∫ L/2

l
[δλ1(ẋ − cosφ)+ δλ2(ẏ− sinφ)− (2EI φ̈− λ1 sinφ+ λ2 cosφ) δφ] ds− λ1 δl. (B.3)

Then we consider the corresponding variation on the movable boundary condition at the point s = l,
which is written as

δ52 =−[EI φ̇2
+ λ1(ẋ − cosφ)+ λ2(ẏ− sinφ)− 2φ̇(EI φ̇)− ẋλ1− ẏλ2]s=l δl −Wc δl

= [EI φ̇(l)2−Wc+ λ1] δl. (B.4)

Considering the arbitrariness of the variation, one can obtain the following governing equation:

2EI φ̈− λ1 sinφ+ λ2 cosφ = 0, (B.5)

and the transversality boundary condition at the moving point:

EI φ̇(l)2−Wc = 0. (B.6)
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