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EMPIRICAL MODELS FOR PREDICTING PROTECTIVE PROPERTIES
OF CONCRETE SHIELDS AGAINST HIGH-SPEED IMPACT

GABI BEN-DOR, ANATOLY DUBINSKY AND TOV ELPERIN

We have accumulated practically all the information available in the literature regarding empirical mod-
els used for describing high-speed normal penetration of rigid strikers into concrete shields, including
recently posed models. The description of the models is unified; this includes recommendations on
the range of applicability of the models and additional restrictions implied by the used mathematical
formulations. The description of the models is quite comprehensive, and allows their direct application.
All the relevant formulas are presented in SI units. In addition to this extensive survey we include
the results of original comparative investigations on the performance of various models for describing
penetration into semiinfinite and finite-thickness shields.

Nomenclature

b Thickness of the shield

bperf Perforation thickness

bscab Scabbing thickness

BLV Ballistic limit velocity

c Maximum aggregate size of concrete

c× Half-size of the concrete aggregate

CRH Caliber radius head of a ogive-nosed projectile

d Maximum diameter of impactor, reference size

DOP Depth of penetration

ē Parameter, (24)

E Young’s modulus of material of projectile

Esteel Young’s modulus of steel

f ′c Unconfined compressive strength (Pa)

H Depth of penetration

H (i)
min,H (i)

max Parameters in functions 9perf(H) and 9scab(H), (A.1)

H (i)
∗ Parameter, (A.4)

Hexp DOP obtained in experiment

Keywords: protection, concrete, shield, penetration, impact, scabbing, perforation, ballistic limit.
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I Parameter, (36)

I∗ Parameter, (45)

I (i)min,I (i)max Parameters of penetration model, (35)

J Parameter defined in (39)

KCRH = ρog/(2R), CRH of the ogive-nosed projectile

Kshape Nose shape coefficient of impactor in Young’s model

K (1)
shape Nose shape coefficient of impactor, (18)

K (2)
shape Nose shape coefficient of impactor, (25)

K (3)
shape Nose shape coefficient of impactor, (54)

K (4)
shape Nose shape coefficient of impactor, (39)

m Mass of impactor

vimp Impact velocity

vres Residual velocity

v0 Reference velocity, 1000 m/s

vsl Scabbing limit velocity

vbl Ballistic limit velocity

αpen, βpen, γpen Parameters of penetration model, (41)

αperf, βperf, γperf Parameters of perforation model, (42)

αscab, βscab, γscab Parameters of scabbing model, (43)

α(i), β(i), γ (i) Parameters in functions 9perf(H) and 9scab(H), (A.1)

α̃
(i)
pen, β̃(i)pen Parameters of penetration model, (35)

µ Parameter of model (can be different for different models)

µ̃ Parameter, (36)

4perf Function determining dependence on b̄perf versus v̄imp

4scab Function determining dependence on b̄scab versus v̄imp

ρsh Density of concrete

ρog Radius of the arc of the ogive

φ Function determining dependence on H versus v̄imp

9perf Function determining dependence on b̄perf versus H

9scab Function determining dependence on b̄scab versus H

A bar over a parameter indicates a dimensionless parameter. Parameters having dimensions of length
are normalized by the diameter of impactor d while parameters having dimensions of velocity are nor-
malized by the characteristic velocity v0 = 1000 m/s.
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1. Introduction

Hereafter we use the term “empirical model” for formulas describing penetration which have been
obtained by statistical analysis of experimental results and are not based on physical laws. Relations
between “integral characteristics” of penetration, namely, the impact velocity and the depth of penetration
(DOP) for a semiinfinite shield and the ballistic limit velocity (BLV) and the thickness of the plate for a
shield having a finite thickness, are examples of these empirical models.

Engineering models of penetration into concrete shields, including empirical models, can be found
in the dedicated surveys [Kennedy 1976; Adeli and Amin 1985; Williams 1994; Teland 1998; Li et al.
2005]. Reviews and research papers [Walter and Wolde-Tinsae 1984; Brown 1986; Corbett et al. 1996;
Dancygier and Yankelevsky 1996; Yankelevsky 1997; Dancygier 2000; Linderman et al. 1974; Ben-
Dor et al. 2005; Vossoughi et al. 2007; Guirgis and Guirguis 2009; Daudeville and Malécot 2011],
monographs [Bulson 1997; Bangash and Bangash 2006; Ben-Dor et al. 2006; Carlucci and Jacobson
2007; Bangash 2009; Szuladziński 2009], and a publication of the Department of Energy [2006] also
include information on this topic. Few of the studies compare predictions of models with experimental
results.

In this study we have accumulated practically all the available information in the literature regarding
empirical models which are used for describing high-speed normal penetration of rigid strikers into
concrete shields, including models formulated in recent years. This comprehensive survey also has the
following characteristics: the description of the models is unified; it includes recommendations on the
range of applicability of the models and additional restrictions implied by the used mathematical formu-
lations; the descriptions of the models are quite comprehensive, allowing for their direct application; and
all the relevant formulas are presented in SI units.

In addition to this extensive survey we include the results of original comparative investigations on the
performance of various models for describing penetration into semiinfinite and finite-thickness shields.

2. Basic definitions

The local response of a shield is initiated with spalling (Figure 1a) and subsequently can result in penetra-
tion, scabbing of the shield material from the back face of the shield (Figure 1b), and eventual perforation
of the shield (Figure 1c), transporting the projectile through the shield [DOE 2006].

We consider normal penetration (with zero angle of attack) of rigid (nondeformable) projectiles into a
shield. If otherwise not indicated, we consider lightly reinforced concrete shields and flat-nosed projec-
tiles. Formulas given for projectiles with a circular cross-section may be applied for projectiles having
more complicated shapes by replacing the diameter by the equivalent diameter, based on the perimeter
[Walter and Wolde-Tinsae 1984; Barr 1990].

Hereafter the following definitions are used [Kennedy 1976; DOE 2006].

The depth of penetration (DOP), H , is defined as the depth to which a projectile penetrates into a massive
(semiinfinite) concrete shield, for a given impact velocity.

The scabbing thickness, bscab, for a given impact velocity, is defined as the shield thickness that is just
large enough to prevent the peeling off of the back face of the panel opposite the face of impact. In other
words, scabbing thickness is the minimum thickness of the shield required to prevent scabbing.
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Figure 1. Local response of a shield: (a) penetration and spalling, (b) scabbing, and (c) perforation.

The perforation thickness, bperf, for a given impact velocity, is defined as the shield thickness that is just
large enough to allow a missile to emerge from the back face of the shield with zero exit velocity. In other
words, the perforation thickness is the minimum thickness of the shield required to prevent perforation.

The ballistic limit velocity (BLV), vbl, is defined as the minimum impact (initial) velocity required to
perforate a shield with a given thickness.

Similarly to the BLV, we introduce the scabbing limit velocity, vsl, as the minimum impact (initial)
velocity required for scabbing a shield with a given thickness.

Note that [DOE 2006] recommends, for practical calculations of the shield thicknesses that prevent
scabbing and perforation, using values of bscab and bperf obtained from empirical formulas and increased
by 10% and 20%, respectively.

We assume that bscab < bperf in the range of validity of the models.

3. Unified approach

An empirical model is determined by a triad of equations having the form

H = φ(v̄imp), b̄perf =9perf(H), b̄scab =9scab(H), (1)

where φ, 9perf, and 9scab are known functions. Analysis of penetration into a finite-thickness shield
involves the DOP into a semiinfinite shield, which is not directly related with the problem. Therefore, it
is convenient to present the model for a finite-thickness shield by a pair of equations that are obtained
after eliminating H from (1):

b̄perf =4perf(v̄imp), b̄scab =4scab(v̄imp), (2)

where
4perf(z)=9perf(φ(z)), 4scab(z)=9scab(φ(z)). (3)
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Taking into account that 4perf and 4scab are increasing functions, (2) and (3) yield the formulas for
v̄bl and v̄sl:

v̄bl =4
−1
perf(b̄), v̄sl =4

−1
scab(b̄). (4)

Figure 2 illustrates the derivation of the first relationship in (4). The curve described by the equation
b̄ = 4perf(v̄imp) separates the domain of parameters v

⇀

imp and b
⇀

into two subdomains. The subdomain
under the curve corresponds to perforation of the shield while the subdomain above the curve corresponds
to nonperforation. Let b̄0 be an arbitrary thickness of the shield. Inspection of Figure 2 shows that the
minimum value of v

⇀

imp for which perforation occurs (by definition this value equals the BLV) is 4−1
perf(b̄0),

and, consequently, the first relationship in (4) is valid. The validity of the second relationship in (4) can
be proved similarly.

Therefore a model for a plate having a finite thickness is determined by a pair of relationships given
by (2) or (4). Hereafter we use this fact for shortening descriptions of models.

Some typical classes of penetration models are considered in the Appendix. This will allow us in
describing particular models to present only the values of the coefficients and avoid rewriting bulky
formulas.

4. Modified Pétry formulas

The Pétry formula [Pétry 1910] has a modified version [Kennedy 1976] which can be written similarly
to [Li et al. 2005]:

H = φ(v̄imp)=
0.0795K pm

d3 log10(1+ 50v̄2
imp), (5)

where K p is a coefficient depending on the type of the concrete. The coefficients in (5) are selected so
that the dimensional parameters m and d are measured in SI units while British units (ft3/lb) are retained
for K p in order to use generally adopted values of this parameter.

Amirikian [1950], with reference to [Samuely and Hamann 1939], prescribed the following values
of the parameter K p for different types of concrete: 0.00799 for massive concrete, 0.00426 for normal
reinforced concrete, and 0.00284 for specially reinforced concrete. This version of the model is called the
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Figure 2. BLV and perforation thickness.
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modified Pétry I model by Kennedy [1976], who recommended using an additional dependence between
K p and f ′c . For reinforced concrete this dependence has been presented in a graphical form in [Kennedy
1976], in what is called a modified Pétry II model. A convenient analytical form of this dependence was
suggested in [Walter and Wolde-Tinsae 1984]:

K p = 6.34 · 10−3 exp(−0.2937 · 10−7 f ′c). (6)

Amirikian [1950] suggested taking into account the thickness of the shield when the DOP is calculated.
He recommended using (5) if b̄ ≥ 3H , assumed that perforation begins when b̄ = 2H , that is,

b̄perf =9perf(H)= 2H , (7)

and proposed, instead of (5), the following expression for the DOP, H×, in the intermediate domain,
2H ≤ b̄ ≤ 3H :

H× =3(H)= [1+ exp(4(b̄/H − 2))]H . (8)

Kennedy [1976] proposed using the modified Pétry formulas for the scabbing thickness:

b̄scab =9scab(H)= 2.2H . (9)

Equations (7) and (9) can be written in the form given by (A.5) with the following coefficients: α(1)
perf =

α
(1)
scab = γ

(1)
perf = γ

(1)
scab = 0, β(1)

perf = 2.0, β(1)
scab = 2.2, and n = 1.

Taking into account the modifications proposed by Amirikian [1950] the expression for the DOP for
a shield with thickness b̄ can be written as

H× =


φ(v̄imp) if v̄imp ≤ φ

−1(b̄/3),

3(φ(v̄imp)) if φ−1(b̄/3) < v̄imp < φ
−1(b̄/2),

perforation if v̄imp ≥ φ
−1(b̄/2).

(10)

Other basic ballistic characteristics are determined by (A.5), (A.6), and (A.9). Amde et al. [1997]
presented the following the Pétry formula for the residual velocity referring to Gilbert Associates:

vres = vimp
√

1− (0.5b/H). (11)

It should be noted that classifying the Pétry formulas, (5), as empirical models is done here partly in
order to follow tradition. Indeed, their form implies that these formulas were derived by integrating the
equation of motion of the penetrator under the assumption of two-term quadratic dependence (without
the linear term) of drag force on velocity.

5. Ballistic research laboratory (BRL) formulas

The BRL formula does not take into account the influence of the unconfined compressive strength on the
protective properties of a shield, and the value f ′c = 20.7 MPa was assumed [Kennedy 1976]. In order
to remedy this shortcoming the modified BRL formula was suggested. Kennedy [1976] emphasized that
this modified formula, in contrast to the common approach, directly predicts the perforation thickness:

b̄perf =4perf(v̄imp)=
13m

d2.8
√

f ′c
v̄1.33

imp , (12)
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while the scabbing thickness can be estimated as

b̄scab = 2b̄perf. (13)

The BLV and scrubbing limit velocity can be calculated using the formulas

v̄bl =4
−1
perf(b̄), v̄sl =4

−1
perf(b̄/2). (14)

Chelapati et al. [1972] obtained a similar result starting from the expression for the DOP. Their formula
for the DOP, H , coincides with the right-hand side of (12) divided by 1.3, which yields b̄perf = 1.3H .

6. Whiffen formula

Bulson [1997], with reference to [Whiffen 1943], suggested the model

H = φ(v̄imp)=
2.6m

d3c̄0.1
√

f ′c
(1.87v̄imp)

ñ, ñ =
97.5

4
√

f ′c
, c̄ = c

d
, (15)

where c is the maximum aggregate size of concrete.
The latter equation is based on experiments with ogival-nosed projectiles conducted for the following

ranges of parameters: 0.8 ≤ KCRH ≤ 3.5, 5 MPa< f ′c < 70 MPa, 12 mm< d < 965 mm, 0.02< c̄ < 2,
vimp < 1130 m/s, 136 g< m < 10, 000 kg. This formula fits the experimental data within a scatter band
of the order of ±15%.

Note that Teland [1998] referred to this model as the “TBAA formula”.

7. Army corporations of engineers (ACE) formula

The ACE formula [ACE 1946; Gwaltney 1968], written using variables H and v̄imp and SI units, reads

H = φ(v̄imp)=
11.1m

d2.785
√

f ′c
v̄1.5

imp+ 0.5. (16)

There are two versions of the dependencies between the perforation/scabbing thickness and the DOP
which differ only slightly [Gwaltney 1968; Chelapati et al. 1972; Li et al. 2005]. Following [Kennedy
1976] we have selected the version of this formula with the coefficients shown in Table 1, which is
associated with the model given by (A.1).

Formulas for the other basic ballistic characteristics are given by (A.5), (A.6), and (A.9).

α(1) β(1) γ (1) H (1)
min H (1)

max

Perforation 1.24 1.32 0 1.35 13.5
Scabbing 1.36 2.12 0 0.65 11.75

Table 1. ACE model for perforation and scabbing. Coefficients in (A.1), n = 1.
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8. Ammann and Whitney formula

The Ammann and Whitney formula was suggested for predicting perforation by small explosively gen-
erated fragments having impact velocity larger than 300 m/s [Kennedy 1976]:

H = φ(v̄imp)=
15K (1)

shapem

d2.8
√

f ′c
v̄1.8

imp, (17)

where

K (1)
shape =


0.72 for a flat nose,

0.84 for a blunt nose,

1.00 for an average nose (spherical end),

1.14 for a very sharp nose.

(18)

9. Modified national defense research committee (NDRC) formula

The modified NDRC formula can be written in a commonly accepted form as an implicit function with
respect to the DOP [NDRC 1946; Kennedy 1976]. Using the dimensionless variables H and v̄imp and SI
units for the dimensional parameters this formula reads

G(H)= µv̄1.8
imp, (19)

where

µ= 9.55
K (1)

shapem

d2.8
√

f ′c
, (20)

G(H)=

{
0.25H 2 if H ≤ 2,

H − 1 if H > 2,
(21)

and the effect of the unconfined compressive strength is included in the model following the suggestion
of Kennedy [1976].

In the universal form given by (1), this model can be rewritten as

H = φ(v̄imp)=

{
2
√
µv̄0.9

imp if v̄imp ≤ 1/µ5/9,

µv̄1.8
imp+ 1 if v̄imp > 1/µ5/9.

(22)

The modified NDRC model for perforation and scabbing [Kennedy 1976] can be written in the form
of (A.1) with coefficients from Table 2. The dependencies b̄perf and b̄scab versus v̄imp as well as v̄bl and
v̄sl versus b̄ are given by (A.5)–(A.9), where

φ−1(z)=

{
(0.5z/

√
µ)10/9 if z ≤ 2,

[(z− 1)/µ]5/9 if z ≥ 2.
(23)

Inspection of Table 2 shows that the inequalities given by (A.4) are satisfied.



PREDICTING PROTECTIVE PROPERTIES OF CONCRETE SHIELDS AGAINST HIGH-SPEED IMPACT 207

i β(i) α(i) γ (i) H (i)
min H (i)

max H (i)
∗

Perforation 1 0 3.19 0.718 – 1.35 2.22
2 1.32 1.24 0 1.35 13.5 –

Scabbing 1 0 7.91 5.06 – 0.65 0.78
2 2.12 1.36 0 0.65 11.75 –

Table 2. Modified NDRC model for perforation and scabbing. Coefficients in (A.1), n = 2.

According to [DOE 2006], the NDRC formula was derived for the following ranges of impact param-
eters: vimp > 152 m/s, 2.54 cm< b < 40.6 cm and b/d ≥ 3. However, as suggested by Kennedy [1976],
this formula can be extrapolated beyond these ranges.

10. Kar’s formula

Kar’s formula [Kar 1978; Bangash and Bangash 2006] is an improved modified NDRC formula that
takes into account the size of the aggregates of concrete and the type of the projectile material.

In the universal form given by (1), Kar’s formula is given by (22) where

µ= 9.55
K (2)

shapemē6.25

d2.8
√

f ′c
, ē =

( E
Esteel

)0.2
, (24)

and E and Esteel are the Young’s moduli of the material of the projectile and steel. The nose shape
parameter, K (2)

shape, is calculated as

K (2)
shape =

{
0.72 for a flat-nosed projectile,

min(K̂nose, 1.17) for an ogive-nosed projectile,
(25)

where
K̂nose = 0.72+ 0.25

√
KCRH− 0.25. (26)

Kar’s model for perforation and scabbing can be written in the form of (A.1) where the coefficients
are presented in Table 3 and c̄× is the half-size of the concrete aggregate.

The dependence of b̄perf and b̄scab on v̄imp, and of v̄bl and v̄sl on b̄, is given by (A.5)–(A.9) with φ−1(z)
calculated from (23).

i β(i) α(i) γ (i) H (i)
min H (i)

max H (i)
∗

Perforation 1 c̄× 3.19 0.718 – 1.35 2.22
2 c̄×+ 1.32 1.24 0 1.35 13.5 –

Scabbing 1 c̄× 7.91ē 5.06ē – 0.65 0.71
2 c̄×+ 2.12ē 1.36ē 0 0.65 11.75 –

Table 3. Kar’s model for perforation and scabbing. Coefficients in (A.1), n = 2.
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11. Healey–Weissman formula

The Healey–Weissman penetration formula [Healey and Weissman 1974; Li et al. 2005] can be consid-
ered as a version of Kar’s formula where the expression for µ given by (24) is replaced by

µ= 10.95
( E

Esteel

)K (2)
shapem

d2.8
√

f ′c
. (27)

The formula for the residual velocity reads [Healey et al. 1975; Kar 1979]:

vres

vimp
=

{
[1− (b/bperf)

2
]
0.555 if b ≤ 2d,

[1− (b/bperf)]
0.555 if b > 2d.

(28)

12. Bechtel formula

The Bechtel Corporation proposed the following formula for scabbing thickness that is valid for a hard
cylindrical projectile [Rotz 1975; 1977; Bangash and Bangash 2006]:

b̄scab =4scab(v̄imp)=
1.23 · 103m0.4

d1.2
√

f ′c
v̄0.5

imp. (29)

This equation is based on twelve tests with solid missiles and nine tests with half-pipe missiles. The
tests were conducted for the following ranges of parameters: [Teland 1998]: 37 m/s< vimp < 144 m/s,
20.3 cm< d < 21.8 cm, and 30.5 cm< b < 61 cm; and 7.6 cm< b < 22.9 cm, 30 MPa< f ′c < 40 MPa,
and 3.6 kg< m < 97.1 kg.

13. Stone and Webster formula

The following formula was proposed for calculating the scabbing thickness [Jankov et al. 1977; Li et al.
2005; Bangash and Bangash 2006]:

b̄scab =4scab(v̄imp)=
100
d

( m
K b̄

)1/3
v̄

2/3
imp, (30)

where K b̄ is the dimensionless coefficient which can be approximated by the formula [Li et al. 2005]

K b̄ = 0.013b̄+ 0.33, 1.5≤ b̄ ≤ 3. (31)

The equation is based on seven tests with solid missiles and 21 tests with half-pipe missiles. The
tests were conducted for the following ranges of parameters [Teland 1998]: 27 m/s< vimp < 157 m/s,
4.1 cm< d < 8.9 cm, 11.4 cm< b < 15.2 cm, 22 MPa< f ′c < 30 MPa, and 1.9 kg< m < 12.8 kg.

14. CEA-EDF formula

The CEA-EDF (Commissariat à l’énergie atomique et Électricité de France) formula [Berriaud et al.
1978] reads:

b̄perf =4perf(v̄imp)=
146m0.5

d1.5( f ′c)0.375ρ0.125
c

v̄0.75
imp , (32)
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where ρsh is the density of concrete.
This model is valid in the following ranges of parameters: vimp < 200 m/s, 150 kg/m3 < ρsh <

300 kg/m3, 20 kg< m < 300 kg, 0.35< b/d < 4.17, and 23 MPa< f ′c < 46 MPa.

15. Degen’s formula

Based on the available experimental data, Degen [1980] suggested a formula for the perforation thickness
that can be written in the form given by (A.1) with the coefficients shown in Table 4, where H is
determined from the modified NDRC model, (22). The dependence v̄sl versus b̄ is given by (A.6) where
φ−1(z) is determined by (23).

The tests were conducted in the following ranges of parameters: 25 m/s< vimp < 310 m/s, 15 kg<
m < 134 kg, 28 MPa < f ′c < 43 MPa, 10 cm < d < 31 cm, and 15 cm < b < 60 cm. The concrete
reinforcement varied in the range between 160 kg/m3 and 350 kg/m3, and penetrators having flat, conical,
and hemispherical nose shapes were used.

16. Chang’s formula

Chang’s formulas [Chang 1981] for flat-nosed projectiles penetrating into a reinforced concrete shield
read:

b̄perf =4perf(v̄imp)=
497
d1.5

√
m
f ′c
v̄0.75

imp , (33)

b̄scab =4scab(v̄imp)=
321
d1.2

(
m
f ′c

)0.4

v̄
2/3
imp. (34)

These formulas are based on experiments conducted in the following ranges of parameters: 17 m/s<
vimp<312 m/s, 110 g<m<344 kg, 23 MPa< f ′c <46 MPa, 5.1 cm<b<61 cm, and 2 cm<d<30.5 cm.

17. Haldar–Miller formula

The Haldar–Miller model for penetration [Haldar and Miller 1982] can be described as

H = φ(v̄imp)=


α̃
(1)
pen I + β̃(1)pen if

√
I (1)min/µ̃≤ v̄imp ≤

√
I (1)max/µ̃,

α̃
(2)
pen I + β̃(2)pen if

√
I (2)min/µ̃≤ v̄imp ≤

√
I (2)max/µ̃,

α̃
(3)
pen I + β̃(3)pen if

√
I (3)min/µ̃≤ v̄imp ≤

√
I (3)max/µ̃,

(35)

i β(i) α(i) γ (i) H (i)
min H (i)

max H (i)
∗

Perforation 1 0 2.2 0.3 – 1.52 3.67
2 0.69 1.29 0 1.52 13.42 –

Table 4. Degen’s model for perforation. Coefficients in (A.1), n = 2.
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where

I = µ̃v̄2
imp, µ̃= 106

K (1)
shapem

d3 f ′c
, (36)

with the coefficients presented in Table 5.
Haldar and Miller considered their model an improved modified NDRC model.

18. Haldar–Hamieh–Miller formula

This penetration model [Haldar et al. 1984; Haldar and Hamieh 1984] is described by (35) with the
coefficients shown in Table 6.

The Haldar–Hamieh–Miller formula yields the following expression for the scabbing thickness:

b̄scab = 0.0342µ̃v̄2
imp+ 3.3437, 4.58

/√
µ̃≤ v̄imp ≤ 19.6

/√
µ̃. (37)

19. Hughes’ formula

Hughes’ formula for penetration [Hughes 1984] reads:

H = 0.19K (4)
shape

J
1+ 12.3 ln(1+ 0.03J )

, (38)

where

J = 106
mv̄2

imp

d3 ft
, K (4)

shape =


1.00 for a flat nose,

1.12 for a blunt nose,

1.26 for a spherical nose,

1.39 for a very sharp nose,

(39)

and ft is the tensile strength of concrete. With reference to [ACI 1978], Hughes [1984] recommended
using the relationship between ft and f ′c :

ft = 630
√

f ′c . (40)

i α̃
(i)
pen β̃

(i)
pen I (i)min I (i)max

1 0.22024 −0.02725 0.3 2.5
2 0.446 −0.592 2.5 3.0
3 0.06892 0.53886 3.0 21.0

Table 5. Haldar–Miller model for penetration. Coefficients in (35).

i α̃
(i)
pen β̃

(i)
pen I (i)min I (i)max

1 0.2251 −0.0308 0.3 4.0
2 0.0567 0.6740 4.0 21.0
3 0.0299 1.1875 21.0 455

Table 6. Haldar–Hamieh–Miller model for penetration. Coefficients in (35).
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The dependencies b̄perf versus H and b̄scab versus H are the same as given by (A.1) (n = 2) with the
coefficients shown in Table 7.

Hughes [1984] noted that his formulas are valid in the range J < 3500 but they will be conservative
for J < 40 and b̄ < 3.5.

20. Adeli–Amin formula

Using a large set of experimental data from [Sliter 1980], Adeli and Amin [1985] proposed a model that,
similarly to the Haldar–Miller and Haldar–Hamieh–Miller models, is based on the factor I given by (36).
This model can be written as

H = ψ(αpen, βpen, γpen; I ), (41)

b̄perf = ψ(αperf, βperf, γperf; I ), (42)

b̄scab = ψ(αscab, βscab, γscab; I ), (43)

where
ψ(α, β, γ ; I )= β +α I − γ I 2 (44)

and parameters α, β, and γ for penetration, perforation, and scabbing are given in Table 8. The parameter

I∗ = 0.5α/γ (45)

is shown in the last column of Table 8. This parameter is the upper limit of the increasing function ψ
versus I . The requirement similar to the inequality in (A.4) reads:

I < I∗. (46)

Instead of (41), Adeli and Amin suggested using

H = 0.0123+ 0.196I − 0.008I 2
+ 0.0001I 3, (47)

i β(i) α(i) γ (i) H (i)
min H (i)

max

Perforation 1 0 3.6 0 – 0.7
2 1.4 1.58 0 0.7 –

Scabbing 1 0 5.0 0 – 0.7
2 2.3 1.74 0 0.7 –

Table 7. Hughes’ model for perforation and scabbing. Coefficients in (A.1), n = 2.

β α γ I∗
Penetration 0.0416 0.1698 0.0045 18.8
Perforation 0.906 0.3214 0.0106 15.1
Scabbing 1.8685 0.4035 0.0114 17.7

Table 8. Adeli–Amin model. Coefficients in (41)–(43).
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where the function H(I ) increases when I < I∗ = 19.1.
The Adeli–Amin formulas are valid in the following ranges of parameters [Adeli and Amin 1985]:

27 m/s< vimp < 312 m/s, 110 g< m < 344 kg, 0.7< b/d < 18, d < 30 cm, H < 2.0, and 0.3< I < 21.
The range for the parameter I should be decreased taking into account (46) and values of I∗ in Table 8.

21. CRIEPI formula

The model of the Central Research Institute of the Electric Power Industry (CRIEPI) of Japan gives the
following relationship for the DOP [Ohnuma et al. 1985; Li et al. 2005]:

H = φ(v̄imp)=
26.1m

d1.8

(
16.7 · 104

( f ′c)2/3
− 1

)[
d + 0.25

(1.25b̄+ 1)b̄

]
v̄2

imp. (48)

Ohnuma et al. [1985] recommended using (48) for vimp ≤ 50 m/s. Clearly, the constraints f ′c < 68.2
and H ≤ b̄ must be satisfied.

They also proposed the following formulas for calculating perforation and scabbing thicknesses:

b̄perf =4perf(v̄imp)=
447
d1.5

√
m
f ′c
v̄0.75

imp , (49)

b̄scab =4scab(v̄imp)=
306
d1.2

(
m
f ′c

)0.4

v̄
2/3
imp. (50)

These formulas differ from (33) and (34) (Chang’s model) by the values of the coefficients.

22. Vretblad (British) formula

Teland [1998], with reference to [Vretblad 1988], presented the following penetration model, also known
as the “British formula”:

H = φ(v̄imp)=
0.76 · 10−3(1− 0.6 · 10−8 f ′c)m

d3c̄×
v̄1.5

imp. (51)

23. UKAEA-CEBG-NNC formulas

This section is mainly based on the guidelines given in [Barr 1990]. Some additional information on
this subject can be also found in [Fullard and Barr 1989; Fullard et al. 1991]. According to [Barr 1990],
major contributions to this model were made by the UK Atomic Energy Authority (UKAEA), the Central
Electricity Generating Board (CEGB), and the National Nuclear Corporation (NNC), so we refer to this
model by the names of these organizations.

For calculation of the DOP of a solid missile penetrating into a reinforced concrete barrier with suffi-
cient thickness so as to suffer no scabbing, the following model is recommended:

g(H)= µv̄1.8
imp, (52)
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where

µ= 9.55
K (3)

shapem

d2.8
√

f ′c
, (53)

K (3)
shape =


0.72 for a flat nose,

0.84 for a spherical nose,

1.00 for a blunt (conic frustum or ogive) nose,

1.14 for a sharp (conical) nose,

(54)

g(H)=


0.55H − H 2 if H < 0.22,

0.25H 2
+ 0.0605 if 0.22≤ H ≤ 2,

H − 0.9395 if H > 2.

(55)

In the unified form given by (1), the UKAEA-CEBG-NNC model can be rewritten as

H = φ(v̄imp)=


0.275−

√
0.0756−µv̄1.8

imp if v̄imp < 0.233/µ5/9,

2
√
µv̄1.8

imp− 0.0605 if 0.233/µ5/9
≤ v̄imp ≤ 1.033/µ5/9,

µv̄1.8
imp+ 0.9395 if v̄imp > 1.033/µ5/9.

(56)

The ranges of parameters in this formula are as follows: +20% to −20% for H > 0.75 and +100%
to −50% for H < 0.75, 25 m/s< vimp < 300 m/s, 5 · 103 kg/m3 <m/d3 < 2 · 105kg/m3, and 22 MPa<
f ′c < 44 MPa.

For predicting the scabbing thickness the following formula was suggested:

b̄scab =4scab(v̄imp)= 5.3µ1/3v̄0.6
imp. (57)

The accuracy of this formula is ±40% for 2< b̄scab < 5.6 within the following ranges of parameters:
29 m/s< vimp < 238 m/s, 26 MPa< f ′c < 44 MPa, and 1.5 · 103 kg/m3 < m/(d2bscab) < 4 · 104 kg/m3.

The formula for the BLV of a flat-nosed missile with a circular or noncircular cross-section against a
reinforced concrete shield reads:

v̄bl =

{
v̄∗bl if v̄∗bl ≤ 0.07,

v̄∗bl(4 · v̄
∗2
bl + 1) if v̄∗bl > 0.07,

(58)

where

v̄∗bl =
1.3 · 10−3kRk2/3

p ρ
1/6
sh d2

√
f ′∗c

m2/3

√
r + 0.3 b̄4/3, (59)

f ′∗c =

{
f ′c if f ′c ≤ 37 MPa,

37 MPa if f ′c > 37 MPa,
(60)
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kR =

{
1.2− 0.6cR/b if 0.12≤ cR/b ≤ 0.49,

1 if cR/b < 0.12 or cR/b > 0.49,
(61)

r = 100
b

(
aF

3cF
+

2aR

3cR

)
, kp = p/(πd). (62)

Here aF (aR) is the cross-sectional area of a single front (rear) rebar; cF (cR) is a front (rear) rebar
spacing (see Figure 3; a steel plate at the distal face of the shield is lacking in the considered model); p
is the perimeter of the impactor; f ′c is the characteristic compressive strength of concrete measured for
150 mm diameter, 300 mm long cylinders; and kp = 1 for a missile with a circular cross-section.

This model is valid in the following ranges of parameters: 11 m/s < vbl < 300 m/s, 0 < r < 0.75,
0.2< p/(πb) < 3, 150 kg/m3 < m/(p2b) < 104 kg/m3, and f ′c > 15 MPa.

In the case in which a steel plate is installed at the distal face of the shield (Figure 3) to improve its
protective effectiveness, the following formula is recommended instead of (88):

v∗bl =
1.3ρ1/6

sh

√
f ′∗c

m2/3

( p
π

)2/3√
B+ 0.3b4/3, (63)

where
B = r + 100bsteel/b (64)

and bsteel is the steel plate thickness.
This formula is valid in the following ranges of parameters: 45 m/s< vbl < 300 m/s, 0< r < 0.75,

150 kg/m3 < m/(p2b) < 104 kg/m3, 1.2< B < 4.3, 0.2< p/(πb) < 3, and f ′c > 15 MPa.

24. Young’s formula

24.1. Original model. After some algebra, Young’s equation [Young 1997] can be written as

H = φ(v̄imp)=
KS KshapeKm

d2.4 P(v̄imp), (65)
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c
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cR
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b
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Front face
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Rear face
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Figure 3. Reinforced concrete barrier, with notation.
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where the coefficients KS and Kshape will be defined subsequently, and

P(v̄imp)=

{
Pa(v̄imp) if v̄imp < v̄∗,

Pb(v̄imp) if v̄imp ≥ v̄∗,
(66)

Pa(v̄imp)= α1 ln(1+α2v̄
2
imp), α1 = 9.48 · 10−4, α2 = 215, (67)

Pb(v̄imp)= k(v̄imp− v̄0), k = 0.0213, v̄0 = 0.0305, (68)

v̄∗ = 0.061, (69)

Km =

{
0.46m0.85 if m < 182,

m0.7 if m ≥ 182.
(70)

Coefficient Kshape depends on the shape of the impactor and is determined as

Kshape =

{
0.18Lnose− 0.091Lnose+ 0.56 for an ogive nose,

0.25Lnose− 0.1251Lnose+ 0.56 for a conic nose,
(71)

where Lnose and 1Lnose are the dimensionless (measured in impactor’s diameter units) length of the nose
and reduction of this length because of the bluntness (if any), respectively.

For sharp ogive-nosed shapes, the following equation can also be used:

Kshape = 0.56+ 0.18
√

KCRH− 0.25. (72)

If the nose of the impactor is neither ogive nor cone, Young [1997] recommended approximating the
actual nose shape with ogive or conic shapes. If the bluntness is less than 10% of the penetrator diameter,
it can be ignored.

Coefficient KS depends on the properties of the concrete and is determined as

KS =
0.247Ke(11− K D)

(t ′cb̄′)0.06( f ′c)0.3
, (73)

where

t ′c =min(tc, 1), b̄′ =min(b̄, 6), Ke =max
[(

KF F

W

)0.3

, 1
]
, (74)

KF =

{
0.5 if b̄ ≤ 2,

1 if b̄ > 2,
F =

{
20 for reinforced concrete,

30 for nonreinforced concrete.
(75)

K D is the volumetric rebar content, tc is the cure time in days, and W is the shield thickness. Bars over
variables denote dimensionless parameters which are normalized as indicated in the beginning of this
section.

If there is no available data for calculating the coefficient KS , the default value, KS = 0.9, can be
used.

This model is recommended for 7 MPa< f ′c < 124 MPa, m > 5 kg, H ≥ 3, and vimp < 1220 m/s.
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24.2. Modifications of the models. Function P(v̄imp) is discontinuous at the point v̄imp = v̄∗, which
has no physical meaning and can cause problems when applying these relations. Ben-Dor et al. [2008a;
2008b] proposed two modifications of the model that improve the smoothness of P(v̄imp).

The first modification [Ben-Dor et al. 2008a] is based on the correction of the parameters α1, α2, and
v̄∗ in (67)–(69). In order to satisfy the requirements that Pa(v̄∗) = Pb(v̄∗) and P ′a(v̄∗) = P ′b(v̄∗), their
new values of these parameters are selected as

v̄∗ = 0.065, α1 = 6.092 · 10−3, α2 = 30.34. (76)

In the second modification [Ben-Dor et al. 2008b], a more smooth approximation of the function
P(v̄imp) is proposed. This approximation is continuous and has continuous first and second derivatives
for v̄ = v̄∗ (and, consequently, for all v̄imp > 0). Toward this end, Ben-Dor et al. [2008b] modified the
model for relatively small v̄imp while keeping the Young’s approximation for large v̄imp. Specifically, the
function Pb(v̄imp) is given by (68) while the following approximation of Pa(v̄imp) for small values of
v̄imp is used:

Pa(v̄imp)= (−4.95v̄2
imp+ 0.196)v̄2

imp, v̄imp ≤ v̄∗, v̄∗ = 0.0813. (77)

25. UMIST formulas

This section is based on [Li et al. 2005; 2006], which refer to the approach suggested in the studies
conducted at the University of Manchester Institute of Science and Technology (UMIST) [Reid and Wen
2001; BNFL 2003].

25.1. Penetration model. The formula for the DOP reads [Li et al. 2005]:

H = φ(v̄imp)=
0.88 · 106K (3)

shapem

σt(v̄imp)d3 v̄2
imp, (78)

where σt is the rate-dependent characteristic strength of concrete,

σt(v̄)= ζ0( f ′c)+ ζ1( f ′c)v̄, (79)

ζ0( f ′c)= 4.2 f ′c + 1.35 · 108, ζ1( f ′c)= 14 f ′c + 0.45 · 108. (80)

Equation (78) has been validated in the following ranges of parameters: H < 2.5, 3 m/s < vimp <

66 m/s, 35 kg< m < 2500 kg, and 5 cm< d < 60 cm.

25.2. Perforation and scabbing model and its analysis. On the basis of formulas presented in [Li et al.
2005] (in [Li et al. 2006] a similar model is described for flat-nosed projectiles when the concrete rein-
forcement is ignored), the relations for the BLV and the scabbing limit velocity can be written as

v̄2
bl

κσt(v̄bl)
=


χ
(1)
perf(b̄) if 0.5< b̄ ≤ 1,

χ
(2)
perf(b̄) if 1≤ b̄ < 5,

χ
(3)
perf(b̄) if b̄ ≥ 5,

(81)

v̄2
sl

κσt(v̄sl)
=

{
χ
(1)
scab(b̄) if 0.5< b̄ < 5,

χ
(2)
scab(b̄) if b̄ ≥ 5,

(82)
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where

χ
(1)
perf(b̄)= η(1.506b̄2

− 0.506b̄), χ
(2)
perf(b̄)= η(2b̄3

− b̄),

χ
(3)
perf(b̄)= 78.5b̄− 235.5, χ

(2)
scab(b̄)= (56.52b̄− 24.3)K (3)

shape,

χ
(1)
scab(b̄)= η(1.386b̄2

− 0.5441b̄)/K (3)
shape, κ = 2 · 10−8d3/m.

(83)

Parameter η is associated with the reinforcement of the shield and is given by

η =

{
1.5r(d/cF R)+ 0.5 if d/cF R <

√
d/dF R,

1.5r(d/dF R)+ 0.5 if d/cF R ≥
√

d/dF R,
(84)

where r = 100aF R/(cF Rb) is determined by (62) with aF = aR = aF R = πd2
F R/4 and cF = cR = cF R;

aF R and dF R are the cross-sectional area and the diameter of the rebar, respectively; and cF R is the rebar
spacing (see Figure 3).

These scabbing and perforation models are valid for 2.2 cm < d < 60 cm, 1 kg < m < 2622 kg,
20 MPa< f ′c < 79 MPa, 0< r < 4, 5.1 cm< b < 64 cm, and 0< vimp < 427 m/s [Li et al. 2005].

Since σt is a linear function of v̄, determining v̄ = v̄bl or v̄ = v̄sl in terms of b̄ requires solving the
quadratic equation f (v̄)= 0, where

f (v̄)= v̄2
− (κζ12)v̄− κζ02, (85)

and 2 is the right-hand side of (81) or (82). It can be easily shown that the equation f (v̄) = 0 has a
single positive root:

v̄ = ω(2), ω(2)= 0.5κζ12+
√
κ2(0.25κζ12+ ζ0). (86)

Taking into account (86), v̄bl and v̄sl, which are determined by (81) and (82), can be expressed as
increasing functions of b̄. Consequently, the suggested model adequately describes the physics of pen-
etration, and the single-valued inverse functions b̄perf(v̄imp) and b̄scab(v̄imp) exist. Since the functions
determined by (81) and (82) are discontinuous at the point b̄ = 5, the function v̄bl = v̄bl(b̄) assumes
different values, v̄′bl and v̄′′bl, to the left and to the right of this point. Therefore the inverse function,
b̄perf =4perf(v̄imp), cannot be defined in the interval v̄′bl < v̄imp < v̄

′′

bl. The discontinuity of the function
v̄sl = v̄sl(b̄) causes similar problems.

26. Malaysia models

Zaidi et al. [2010], of the Universiti Tun Hussein Onn Malaysia (UTHM), proposed a linear model (here-
after, UTHM model) describing the dependence between the DOP, H , and the parameter mv2

imp/( f ′cd3)

which is valid for ogive-nosed impactors:

H =
0.5 · 106mv̄2

imp

f ′cd3 q1+ q0, (87)
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where the coefficients depend on the CRH of the impactor, KCRH:

q0 =−0.6256K 3
CRH+ 7.9656K 2

CRH− 32.892KCRH+ 48.008,

q1 = 0.014K 3
CRH− 0.1585K 2

CRH+ 0.5606KCRH− 0.5405.
(88)

This formula can be applied in the following ranges of parameters: 139 m/s < vimp < 1225 m/s,
13.5 MPa≤ f ′c ≤ 108 MPa, 64 g< m < 13.2 kg, 2≤ KCRH ≤ 6, and 13 mm< d < 76.2 mm.

Both Rahman et al. [2010] and Latif et al. [2011] considered perforation by flat-nosed (cylindrical)
impactors. Rahman et al. proposed the scabbing limit velocity

v̄sl = 10−3d

√
2 f ′cd

m
ψ1(b̄), (89)

where

ψ1(b̄)=


0.87b̄− 0.29 if 0.69≤ b̄ ≤ 3.0,

3.31b̄− 7.58 if 3.0< b̄ ≤ 6.0,

4279.181b̄− 25662.82 if 6.0< b̄ ≤ 14.86.

(90)

The latter formula is valid in the following ranges of parameters: 0.69< b/d < 14.86, 24.15 MPa≤
f ′c ≤ 50.2 MPa, 17.5 mm< d< 305.0 mm, 0.92 kg<m< 309 kg, 29 m/s<vsl< 427 m/s, and 50.8 mm<
b < 609.6 mm.

Latif et al. [2011] suggested a formula for the BLV that can be written as

v̄bl = 10−3d

√
2 f ′cd

m
ψ2(b̄), (91)

where

ψ2(b̄)= 0.174b̄3
+ 0.169b̄2

+ 0.0577b̄+ 0.2969. (92)

This formula is valid in the following ranges of parameters: 0.92 kg<m<309 kg, 29 m/s<vbl<427 m/s,
0.69< b/d < 14.86, 24.15 MPa≤ f ′c ≤ 50.2 MPa, and 17.5 mm< d < 305.0 mm.

27. TM 5-855-1 formulas

The formulas of [TM 5-855-1 1986] are proposed for describing penetration by a standard fragment
in the shape of a cylinder of diameter d and length 0.5d with a hemispherical nose. The mass of the
fragment that is used in the formulas is calculated as

m = (5π/24)ρimpd3
= 0.654ρimpd3. (93)

The model of [TM 5-1300 1990] employs the following formula for the fragment mass (after conver-
sion to SI units): m = 5.149 · 103d3, that is, the density is assumed to be ρimp = 7873 kg/m3.
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After some transformations the formulas of [TM 5-855-1 1986] can be written in the form

H =


13.46m0.37v̄0.9

imp

( f ′c)0.25 if v̄imp ≤ v̄
∗

imp,

1.09 · 103m0.4v̄1.8
imp

( f ′c)0.5
+ 0.395m0.33 if v̄imp > v̄

∗

imp,

(94)

bperf = 0.0311Hm0.033
+ 2.95m0.33, (95)

bscab = 0.0334Hm0.033
+ 4.465m0.33, (96)

v̄res =

{
v̄imp[1− (b/bperf)

2
]
0.555 if v̄imp ≤ v̄

∗

imp,

v̄imp[1− (b/bperf)]
0.555 if v̄imp > v̄

∗

imp,
(97)

where

v̄∗imp = 5.13 · 10−3( f ′c)
0.278/m0.044. (98)

28. Folsom’s model for penetration into a shield with a predrilled hole

Folsom [1987] proposed a formula for the DOP of ogive-nosed projectile into a predrilled shield that can
be written, in the interpretation of [Teland 2001], in the form

H =
17.3mv̄1.5

imp

f ′cd2.785 ·
1− 038η2

1− η2 −
4�(KCRH, η)

1− η2 +

√
KCRH− 0.25, (99)

where d0 is diameter of the hole and

�(z, η)=
(

1− η2

4
− z+ 2z2

)
g+ 1−2z

2
[
g
√

z2− g2+ z2 sin−1(g/z)
]
−

g3

3
,

g(z, η)=
√
(1− η)[z− 0.25(1− η)], η = d0/d.

(100)

29. Some other models and related problems

Walter and Wolde-Tinsae [1984] proposed a modified version of several empirical formulas that account
for the presence of a steel plate at the distal face of a shield by introducing an artificial thickness of the
shield. Riera [1989] presented the relationship between H and vimp as an implicit function and suggested
and discussed equations for determining vbl and vsl. Al-Hachamee and Azeez [2010] proposed formulas
for H , bperf, and bscab on the basis of the results of 20 experiments from the literature. Dancygier [1997]
proposed a method that allowed for including the reinforcement ratio as a parameter in the existing
semiempirical perforation formulas.

Me-Bar [1997] proposed a method for scaling ballistic penetration into concrete shields using energy
balance whereby the energy absorbed by a shield during penetration was expressed as a sum of the energy
expended for surface effects and the energy expended for volume effects. Dancygier [2000] investigated
the effects of impact by similarly (though not necessarily geometrically similar) shaped impactors on
the reinforced concrete barriers. Based on the widely known empirical formulae he derived expressions
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for the velocity ratios between the simulator (reference impactor) and the simulated impactors that are
required in order to yield the same DOP and the same perforation limit thickness.

30. Comparison between models and their experimental validations

30.1. Brief review. Plots which allow comparing the dependencies obtained using various phenomeno-
logical models can be found in [Kennedy 1976; Yankelevsky 1997; Teland 1999; Li and Tong 2003] as
well as other studies.

Analysis of the models based on comparison of their predictions with experimental results is com-
plicated for the following reasons: the small number of performed experiments, the narrow range of
parameters within which the experiments are usually conducted, and the lack of information concerning
the properties of the concrete in the shield (reinforcement, aggregate size, etc.). Also, in some cases
the accuracy of the model is evaluated using the same experimental data as used in the derivation of the
model.

Kennedy [1976] examined the ACE, NDRC, BBL, Ammann–Whitney and Pétry models using experi-
mental data and recommended the modified NDRC formula for calculating bscab and bperf in the following
ranges of the parameters: d < 41 cm, 0.02 kg/m3 < m/d3 < 0.54 kg/m3, and 30 m/s< vimp < 900 m/s.
He concluded that this formula generally agrees with the test results within an accuracy of ±20% in
these ranges of the parameters.

Sliter [1980] collected experimental data on the penetration of cylindrical projectiles into finite-thickness
shields and calculated the DOP using the NDRC model, the scabbing thickness using the NDRC, Bechtel,
and Stone–Webster models, and the perforation thickness using the NDRC and CEA-EDF models. He
found that the values of the DOP predicted by the NDRC formula are within an experimental scatter of
±25% for vimp > 152 m/s while the agreement between the predicted and the observed values of the DOP
is unsatisfactory for relatively low impact velocities. As far as scabbing thickness prediction concerns,
Sliter [1980] noted that the NDRC, Bechtel, and Stone–Webster models may all be used equally well for
missiles having relatively small diameters. Regarding perforation, he indicated that damage is predicted
better by the CEA-EDF formula than by the NDRC model.

On the basis of experimental data collected by Sliter [1980], Adeli and Amin [1985] examined the
modified NDRC, Haldar–Miller, Hughes, and Adeli–Amin models for penetration, the Pétry I, Pétry
II, ACE, modified NDRC, BRL, Bechtel, Chang, Hughes, and Adeli–Amin models for scabbing, and
the Pétry I, Pétry II, ACE, modified NDRC, BRL, CEA-EDF, Degen, Chang, Hughes, and Adeli–Amin
models for perforation. Their conclusions are as follow.

Penetration modeling. For H exp ≥ 0.6, where H exp = Hexp/d and Hexp is the experimentally observed
DOP, the modified NDRC, Haldar–Miller, Hughes, and Adeli–Amin models “tend to agree with the
experimental results within ±25%”. For H exp < 0.6, the Pétry II, Haldar–Miller, and cubic Adeli–Amin
models perform better than the other models. The ACE and Pétry I models considerably overestimate
the DOP. Consequently, for estimating the DOP Adeli and Amin [1985] recommended applying the
quadratic Adeli–Amin formula for vimp < 145 m/s and the quadratic Adeli–Amin model or modified
NDRC formula for 145 m/s≤ vimp < 305 m/s.

Scabbing modeling. The Adeli–Amin, Bechtel, and Chang models perform better and, generally, are
the least conservative among all the models. The Hughes model is the most conservative while the
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Pétry I, Pétry II, and BRL equations performance is the poorest in predicting the scabbing thickness.
Consequently, for scabbing modeling quadratic the Adeli–Amin, Bechtel, or Chang’s formulas for vimp <

310 m/s are recommended.

Perforation modeling. The CEA-EDF, Degen, Chang, and Adeli–Amin models perform better than the
other models although the predictions of the modified NDRC and Pétry I formulas also agree with the
experimental data. The predictions of the Pétry II, BRL, and ACE formulas do not exhibit good agreement
with the results of experiments. Consequently, the CEA-EDF, Degen, Chang, and Adeli–Amin models
for vimp < 310 m/s are recommended for perforation modeling.

Walter and Wolde-Tinsae [1984] used the results of 45 experiments for comparing the performance
of the basic empirical models. They concluded that among nine empirical models the best predictions of
perforation/nonperforation events are provided by the Pétry I, Pétry II, Degen, BRL, and CEA-EDF for-
mulas whereby the percentage of the correct prediction varies in the range 71–75% while the percentage
of the correct prediction is small for the NDRC and Kar’s formulas (53%).

In [DOE 2006] Chang’s formula is recommended for calculating bscab and bperf.

30.2. Evaluation of performance of different models: Finite-thickness shields. The evaluation of the
performance of different empirical models in this section is based on the results of experiments collected
in [Sliter 1980]. The input data for the evaluated models are also adopted from [ibid.], and only those
experiments that satisfy the conditions for the validity of the model are used for evaluating each of the
models. The UMIST model is not included in the list of analyzed models because most of the experiments
from [ibid.] fall outside the range of validity of this model. Comparison of the UMIST model and the
NDRC model with other sets of experimental data can be found in [Li et al. 2006].

General results on the performance of the various models are summarized in Table 9. The denominator
in the fraction in the penetration (scabbing, perforation) column denotes the number of experiments in
which penetration (scabbing, perforation) was observed, while the numerator is the number of calcula-
tions which predicted the corresponding phenomenon. The last column contains similar characteristics
for all types of damage (penetration, scabbing, and perforation) so that the numerator of the fraction
equals the sum of the numerators of the fractions in the preceding columns and the denominator is the
sum of the denominators of the fractions in the preceding columns. Clearly, only the experiments that
were calculated using the empirical models are taken into account. Parameters bperf and bscab in the
average model are determined as arithmetic means of the values of the corresponding parameters in the
models which predicted these parameters. It is assumed that penetration, scabbing, or perforation occurs
if b < bscab, bscab ≤ b < bperf, or b ≥ bperf, respectively.

Analysis of the data presented in Table 9, conducted taking into account the number of the experiments
included in the evaluation of each model, reveals the advantages of Chang’s model and the CRIEPI model
over the other models.

30.3. Evaluation of performance of different models: Semiinfinite shields. Evaluation of the perfor-
mance of different models for semiinfinite shields is based on the experimental data on ogive-nosed im-
pactors collected in [Hansson 2003]. These experiments were conducted in the following ranges of param-
eters: 13 mm≤ d ≤ 365 mm, 132 m/s≤ vimp ≤ 1050 m/s, 64 g≤m ≤ 485 kg, 21.6 MPa≤ f ′c ≤ 140 MPa,
55 mm≤ Hexp ≤ 1.96 m, and 1.5≤ KCRH ≤ 6.
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Penetration,
scabbing,

Model Penetration Scabbing Perforation perforation

Pétry II 31
35 = 89% 3

51 = 6% 2
16 = 13% 36

102 = 35%

BRL 29
35 = 83% 9

51 = 18% 4
16 = 25% 42

102 = 41%

ACE 17
19 = 89% 4

6 = 67% 5
5 = 100% 26

30 = 87%

NDRC 28
35 = 80% 11

51 = 22% 12
16 = 75% 51

102 = 50%

Chang 30
35 = 86% 41

51 = 80% 8
16 = 50% 79

102 = 77%

Adeli–Amin 20
22 = 91% 9

18 = 50% 4
5 = 80% 33

45 = 73%

CRIEPI 31
35 = 89% 48

51 = 94% 4
16 = 25% 83

102 = 81%

Average 34
35 = 97% 32

51 = 63% 6
16 = 31% 71

102 = 70%

Table 9. Comparison of empirical models based on type of shield damage with experi-
mental data from [Sliter 1980].

In the calculations for evaluating the performances of different empirical models, we included only
those models which are applicable for ogive-shaped impactors: the Ammann–Whitney model, the mod-
ified NDRC model, Degen’s model, Kar’s model, the Healey–Weissman model, the Haldar–Hamieh–
Miller model, Hughes’ model, the UKAEA-CEBG-NNC model, Young’s model, the Whiffen formula,
and the UTHM formula. The UMIST, Haldar–Miller, and Adeli–Amin formulas are not included because
most or all the experiments fall outside the range of validity of these models. A value of c̄ = 1 is used in
Whiffen’s model.

Detailed results of the calculations are shown in Figure 4, where circles indicate experiments for which
the constraints for applicability of the model (if any) are satisfied while triangles denote experiments that
fall outside the range of validity of the particular model. The average model is constructed using values
of the DOP equal to the arithmetic mean of the values of the DOPs for all models where the model’s
constraints are satisfied. The error, ε̃, is calculated for each experiment as

ε̃ =
H − Hexp

Hexp
100%, (101)

where Hexp is the DOP observed in the experiment. Horizontal lines denote the values of ε̃ which
are considered the minimum ε̃min and maximum ε̃max values of ε̃; in some cases we excluded outliers
with anomalously high deviations from the mean. Hereafter in calculating ε̃min and ε̃max (and in other
calculations) for each model, we take into account only those experiments that correspond to the range
of the validity of the model (denoted by the circles in Figure 4).

The results of calculations are summarized in Table 10, where the name of the model is indicated in
the first column. In some cases the whole range of variation of H exp is divided into two subranges. The
number of experiments in each subrange or the whole range, where the value of the parameter ε̃ falls in
the interval between ε̃min and ε̃max, is indicated in column 2 (index N ); the end-points of the range (or
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subrange) are presented in column 3; ε̃min and ε̃max in columns 4 and 5, respectively. The indexes in the
rest of the columns are described below.
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Figure 4. Comparison of DOPs predicted using empirical model with results of ex-
periments, taking (circles) and not taking (triangles) into account model constraints
(continued on next page).
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Figure 4 (cont.)

Inspection of Table 10 and Figure 4 shows that for the modified NDRC, Degen, Kar, Haldar–Hamieh–
Miller, UKAEA-CEBG-NNC, Hughes, and average models, ε̃max < 0 or slightly larger than 0. Conse-
quently, practically all predicted values of the DOP are smaller than the experimental values, and the
predictions of the models are expected to be biased towards smaller magnitudes of the DOP. Since for
the other models as well the interval of variation of ε̃ is strongly asymmetrical with respect to ε̃ = 0
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Model N H exp ε̃min ε̃max k̂ ε̂∗

Ammann–Whitney 53 2÷ 18 −50% +17% 1.20 40%
41 18÷ 65 −17% +33% 0.93 23%

NDRC, Degen 88 2÷ 65 −49% −12% 1.44 26%

Kar 91 2÷ 65 −49% −13% 1.44 26%

Healey–Weissman 92 2÷ 65 −42% 0% 1.26 27%

Haldar–Hamieh–Miller 56 2÷ 26 −57% −25% 1.70 27%

Hughes 51 2÷ 18 −50% −3% 1.36 31%

UKEA-CEBG-NNC 14 2÷ 10 −50% −18% 1.50 23%

Young’s 24 2÷ 17 −30% +62% 0.85 38%

Whiffen 44 2÷ 28 −41% +24% 1.10 35%
20 28÷ 65 −41% 0% 1.26 26%

UTHM 8 2÷ 12 −14% +95% 0.71 39%
43 12÷ 65 −27% +9% 1.10 20%

Average 92 2÷ 65 −42% +2% 1.25 27%

Table 10. Summary of data for evaluating performance of penetration models on the
basis of the indexes k̂ and ε̂∗.

(ε̃max strongly deviates from −ε̃min), predictions of the models are also biased in these cases. Therefore
in practice it is not recommended to directly use the predictions of any one of these models for the
indicated range of penetration conditions.

Let us introduce for each model the correction factor, k̂ > 0, which allows us to reduce or increase the
predicted value of the DOP, that is, replace the calculated values, H , by k̂ H . Then, taking into account
(101), the new errors of the model’s predictions, ε̂, can be expressed through the old, ε̃, as

ε̂ =
k̂ H − Hexp

Hexp
· 100%=

[
k̂
( H

Hexp

)
− 1

]
· 100%= [k̂(0.01ε̃+ 1)− 1] · 100%. (102)

The value of k̂ is selected by applying the following criterion: all values of ε̂ must fall in the inter-
val between the minimum, −ε̂∗, and the maximum, +ε̂∗, values of the errors of the corrected model.
Equation (102) implies that ε̂ increases when ε̃ is increased. Therefore, the above requirement yields the
following system of equations:

k̂(0.01ε̃min+ 1)− 1=−0.01ε̂∗, k̂(0.01ε̃max+ 1)− 1= 0.01ε̂∗, (103)

which has the solution

k̂ =
2

2+ 0.01(ε̃min+ ε̃max)
, ε̂∗ =

ε̃max− ε̃min

2+ 0.01(ε̃min+ ε̃max)
. (104)
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Figure 5. Comparison of the DOPs predicted using the recommended corrected empir-
ical model with the results of experiments.

The values of parameters k̂ and ε̂∗ for all models are presented in Table 10. Now the performances
of the corrected models can be evaluated by using only one fundamental parameter, ε̃, which is related
with their errors. In the study of the performance of a certain empirical model which is based on the
same experimental data, Hansson [2003] also suggested introducing a correction factor, although he did
not devise an unambiguous procedure for determining the correction coefficient.

In selecting the best model, we take into account the following considerations: the number of sub-
ranges; the error interval of the corrected model, 2ε̂∗; the proximity of the absolute value of the coefficient
k̂ to 1; and the number of points, N . Inspection of Table 10 shows that at the first stage it is appropriate to
select for further consideration those models which span the whole range 2≤ H exp ≤ 65 without dividing
it into subranges and having a parameter ε̂∗ that only slightly differs from the minimal (among all models)
value. These models include the modified NDRC, Degen, Kar, Healey–Weissman, and average models,
for which 26%≤ ε̂∗ ≤ 27%. Among the remaining five models the performance of the modified NDRC,
Degen, and Kar models is inferior to the rest as they are characterized by comparatively large values of k̂.

Therefore, the most appropriate models are the Healey–Weissman and average models, which are
corrected using the correction factors 1.26 and 1.25, respectively, and which are expected to have error
±27%. Figure 5 illustrates the distribution of errors for these corrected models.

We used a comparatively simple approach for the comparison and evaluation of the performance of
different penetration models. It is feasible to employ other approaches that are more heavily based on
the methods of mathematical statistics. In particular, different models can be interpreted as regression
equations, and the correction factor for each model can be interpreted as a regression coefficient. Clearly,
models with several regression coefficients can be also considered. However, in this case as well, unam-
biguous procedures for solving the problem cannot be devised [Draper and Smith 1998].

31. Concluding remarks

We would like to draw attention to some peculiarities of the procedures for evaluating the performance
and accuracy of empirical penetration models.
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Firstly, analysis of the accuracy of a model which employs the same data used for the model derivation
is questionable. Secondly, while a model with multiple parameters, based on a few experimental points,
can be quite accurate at these points, good predictive properties of the model cannot be guaranteed. In
the limiting case, one can suggest a model where the number of parameters is equal to the number of
the experimental points. The errors of the approximation at these experimental points vanish while the
accuracy of the model at other points can be inadequate. Thirdly, it is not worthwhile to overvalue
statistical estimates of the reliability of a model since many of these estimates are based on a number of
questionable assumptions.

Appendix

Most of the types of dependencies between b̄perf and H and between b̄scab and H can be described as

b̄p/s =9p/s(H)=



β(1)+α(1)H − γ (1)H 2 if H (1)
min ≤ H ≤ H (1)

max,
...

...

β(i)+α(i)H − γ (i)H 2 if H (i)
min ≤ H ≤ H (i)

max,
...

...

β(n)+α(n)H − γ (n)H 2 if H (n)
min ≤ H ≤ H (n)

max,

(A.1)

where it is assumed that all parameters α(i), β(i), and γ (i) are nonnegative and functions 9p/s are con-
tinuous at the joint points of the adjacent segments:

H (i)
max = H (i+1)

min , i = 1, 2, . . . , n− 1, (A.2)

β(i)+α(i)H (i)
max− γ

(i)
[H (i)

max]
2
= β(i)+α(i)H (i+1)

min − γ
(i)
[H (i+1)

min ]
2, i = 1, 2, . . . , n− 1. (A.3)

The subscript p/s denotes “perforation” or “scabbing”. Clearly, the parameters α(i), β(i), γ (i), H (i)
min,

and H (i)
max should have the same additional subscripts, p or s, which are omitted for simplicity.

If γ (i) = 0, then 9p/s(H) is an increasing function on the i-th interval (i = 1, 2, . . . , n). If γ (i) > 0,
then 9p/s(H) is an increasing function when

H (i)
max < H (i)

∗
, H (i)

∗
= 0.5α(i)/γ (i), i = 1, 2, . . . , n (A.4)

The constraints given by (A.4) must be taken into account when the admissible ranges of the parame-
ters are indicated.
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Taking into account (A.1), (2) and (4) can be rewritten as

b̄p/s =4p/s(v̄imp)=



β(1)+α(1)φ(v̄imp)−γ
(1)
[φ(v̄imp)]

2 if φ−1(H (1)
min)≤ v̄imp≤φ

−1(H (1)
max),

...
...

β(i)+α(i)φ(v̄imp)−γ
(i)
[φ(v̄imp)]

2 if φ−1(H (i)
min)≤ v̄imp≤φ

−1(H (i)
max),

...
...

β(n)+α(n)φ(v̄imp)−γ
(n)
[φ(v̄imp)]

2 if φ−1(H (n)
min)≤ v̄imp≤φ

−1(H (n)
max),

(A.5)

v̄bl/sl =4
−1
perf(b̄)

=



φ−1(H (1)) if β(1)+α(1)H (1)
min− γ

(1)
[H (1)

min]
2
≤ b̄ ≤ β(1)+α(1)H (1)

max− γ
(1)
[H (1)

max]
2,

...
...

φ−1(H (i)) if β(i)+α(i)H (i)
min− γ

(i)
[H (i)

min]
2
≤ b̄ ≤ β(i)+α(i)H (i)

max− γ
(i
[H (i)

max]
2,

...
...

φ−1(H (n)) if β(n)+α(n)H (n)
min− γ

(1)
[H (n)

min]
2
≤ b̄ ≤ β(n)+α(n)H (n)

max− γ
(n)
[H (n)

max]
2,

(A.6)

where the subscript bl/sl denotes the BLV and scabbing limit velocity, and H (i) is a root of the equation

β(i)+α(i)H (i)
− γ (i)[H (i)

]
2
= b̄, (A.7)

which is given by

H (i)
=

√[
α(i)

2γ (i)

]2

+
b̄−β(i)

γ (i)
−
α(i)

2γ (i)
if γ (i) > 0, (A.8)

H (i)
=

b̄−β(i)

α(i)
if γ (i) = 0. (A.9)
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