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The need for efficient and low-cost techniques adequate for damage detection has become of great
interest in engineering applications where structural health monitoring (SHM) is of paramount impor-
tance. Promising algorithms for SHM have to deliver results with very low computational and response
time requirements and be trustworthy within a certain accuracy. Different algorithms (artificial neural
networks (ANN), response surface methodology (RSM), and optimization techniques — gradient-based
local search (GBLS) and nondominated sorting genetic algorithms (NSGA-II)) are proposed to fill this
research gap. The concept of a surrogate model as a fast-executing model is also introduced. Because
the objective of this paper is to concentrate on viable techniques suitable for damage detection using
vibration methods with very low computational requirements, surrogates are therefore employed to cur-
tail the computational expense. Particularly of interest among the proposed algorithms is RSM, the
principle of which has proved successful in the pharmaceuticals industry over the years. However, RSM
has not been so widely used in the field of structural engineering for delamination detection. In this
paper, we have demonstrated that a fourth-order polynomial has the capability to detect delaminations in
composite structures. In order to reduce the size of training data required to solve the inverse problem by
the proposed algorithms, the idea of a suitable design space is brought to the limelight as the combination
of all possible simulations that one is concerned about. Since the overall sum of design space is usually
prohibitively large, we have used K-means clustering to effectively achieve this. This research concerns
the application of ANN, RSM, and optimization techniques for delamination detection using changes in
natural frequencies before and after damage. Efficiencies of algorithms (ANN, GBLS, and NSGA-II)
are compared with the developed RSM models in terms of the accuracy of delamination detection and
response time requirements. The methods have been shown to compete effectively for delamination
detection and are accurate in detecting the size and locations of delaminations at midplanes. RSM has
a unique feature in that it produces models with a small training dataset requirement and also generates
mathematical models that are easy to interpret and implement. The optimization techniques, when inte-
grated with surrogate models, require small training sets clustered through the entire design space. ANN,
however, requires large training datasets to achieve its results. As such, the potential of these algorithms
as tools for on-board damage detection when integrated into a SHM system is successfully demonstrated.

1. Introduction

The utilization of in-service composite structures can be affected by degradation resulting from prolonged
use and exposure to harsh environmental conditions. This is because composite structures are susceptible
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to hidden or barely visible damage caused by impacts, design errors, overheating, loading abrasion, and
fatigue, that if unchecked results in fiber breakage, matrix cracking, and delaminations [Chakraborty
2005]. These factors can cause severe consequences for in-service structures with regards to higher life-
cycle costs, low structural reliability, and loss of operational capability causing loss of lives and property
[Kessler et al. 2005]. Hence, early and accurate detection and monitoring of structural failures such as
delaminations is a principal concern.

Delamination detection has therefore gained much attention from the structural engineering com-
munity because unpredicted delamination damage may cause catastrophic failures [Zheng et al. 2011].
Hence, the need to avoid delamination failure by providing a reliable and effective nondestructive damage-
identification technique is crucial to maintaining the safety and integrity of structures. Damage detection
is of paramount importance because it is the most vital subsystem of structural health monitoring (SHM).
Damage detection can be achieved via any of various methods such as visual inspection, nondestructive
evaluation methods, and solution of inverse algorithms. In the field of medicine, for example, a doctor
regularly monitors a patient’s blood pressure to determine the health of the patient by observing deviations
using sophisticated equipment. Similarly, engineers monitor the integrity of a structure by measuring
changes in the responses of the structure which can lead to structural failure. Taking immediate responses
in both scenarios can avoid catastrophic implications [Mufti 2001]. An effective SHM system involves the
use of expertise in many disciplines, giving rise to solutions of the multidisciplinary problem involving
damage detection modeling systems via finite element analysis, optimization methods, structures and
materials, computers, communication and electronics, real-time controllers, intelligent processing, and
so on. The aim of SHM is not just to detect structural failure, but also to provide an early indication of
damage. The early warning provided by an SHM system can then be used to define remedial strategies
before the structural damage leads to failure.

SHM is therefore the key to securing confidence in the utilization of fiber reinforced polymers (FRP) in
engineering applications. The unique advantages of FRP composite materials have made them preferred
in SHM applications. Previously, structures were monitored by carrying measuring devices to the site
each time a set of readings was required. Nowadays, by using vibration measurements for structural
health monitoring, structures can be monitored from time to time to ensure that they are in good condition
by obtaining an extensive amount of processed data off-site. In this work, delamination detection in
composite laminates is evaluated in the context of structural health monitoring, which essentially is a
reliable system with the ability to detect and interpret adverse changes in a structure as a result of damage.
The motivation driving SHM is that knowing the integrity of in-service structures on a continuous real-
time basis is essential to structural engineers. Monitoring and evaluating the integrity, in-situ behavior,
and health condition of a structure accurately and efficiently while it is in service optimizes resources for
repair/replacement, reduces downtime while increasing productivity, and ensures the safety of lives and
property. As a result, SHM enables avoidance of catastrophic failure through early detection of problems,
optimal use of structures, prevention of regular shutdowns of in-service structures, and inspection of
hard-to-reach places. SHM also replaces periodic maintenance with long-term maintenance schedules.
This reduces maintenance labor and minimizes human involvement, thus improving safety and reliability
[Kessler et al. 2005].

Most nondestructive testing techniques such as ultrasonic inspection, thermography, optical hologra-
phy, and mechanical impedance for delamination identification in composite laminates [Buynak et al.
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1989; Cantwell and Morton 1992; Broughton et al. 2000; Rao 2007] cannot be used for real-time
and online damage detection [Doebling et al. 1998]. Moreover, most of these techniques are mainly
applicable for the inspection of limited areas of a structure locally and hence are labor-intensive, time-
consuming, and cost-ineffective when considering large structures [Dackermann 2010]. Vibration-based
monitoring is a viable method to overcome these limitations. This is because of the reliability of its
measurements, ease of implementation, and relative cost competitiveness [Cawley and Adams 1979; Kim
and Yiu 2004]. In addition, utilization of a vibration-based monitoring tool can provide fast in-situ and
real-time monitoring [Doebling et al. 1998]. SHM exploiting vibration measurements are global methods
based on the principle that degradation due to damage in a structure changes its vibration parameters,
namely, its natural frequencies, mode shapes, and damping characteristics. It is hence feasible to use
any one measured vibration quantity to characterize and identify the presence of damage via an inverse
modeling. The choice of the natural frequencies as one of the commonly used vibration parameters is
attractive because the natural frequencies can be conveniently measured and determined easily from just
a few accessible points on the structure and are usually less contaminated by experimental noise [Fang
and Tang 2005]. Natural frequency-based methods use the natural frequency changes before and after
damage as the basic feature for damage identification in solving the inverse problem.

Reviews of vibration-based health monitoring methods utilizing artificial neural networks (ANN) and
optimization algorithms appear in previous works [Islam and Craig 1994; Okafor et al. 1996; Doebling
et al. 1998; Valoor and Chandrashekhara 2000; Harrison and Butler 2001; Nag et al. 2002; Watkins
et al. 2002; Chen et al. 2004; Su et al. 2005; Addin et al. 2006; Zheng et al. 2011]. Although previous
works have demonstrated the feasibility of ANN and optimization algorithms for delamination damage
detection, some limitations are worth highlighting. Most of the damage detection methods that have
been reviewed attempt to identify delamination by solving an inverse problem, which often requires the
construction of numerical models. Numerical simulations have therefore become increasingly useful
for studying the performance of engineering structures. However, because of the large scale of many
damage-identification problems, it is often not feasible to conduct many experiments to explore all
damage scenarios. Tremendous amounts of computing time are required to run these simulations and
oftentimes computing power is simply not available to conduct such complex simulations due to budget
and time considerations. This dependency on firsthand numerical models, which are computationally
expensive, makes these approaches unpromising for SHM.

Using a small number of datasets, surrogate models can be built to efficiently explore the entire design
space to determine areas of interest while lowering computational expense. Essentially, surrogates are
models that will run in seconds on a single processor in contrast to the hours that it may take to run a more
detailed analysis on a multiprocessor machine. On the other hand, one of the remarkable demerits of
ANN is the requirement of large amounts of training data. ANN has, however, demonstrated undoubted
efficiency for complex damage-detection schemes by seeking to discriminate between damaged and
undamaged specimens, and has been widely employed for pattern recognition, classification, function
approximation, signal processing, and damage identification [Addin et al. 2006]. ANN offers capa-
bilities such as self-adaptiveness, generalization, abstraction capabilities, and suitability for real-time
applications [Tsoukalas and Uhrig 1997]. These features make ANNs powerful tools for vibration-based
damage identification. But the computational power and size of training data required to solve the inverse
problem by ANN is usually exceedingly large. To fill this gap, the idea of K-means clustering algorithm
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is introduced. Since the overall sum of design space is usually This algorithm smartly determines which
numerical simulations should be run when resources are scarce and models are fit to these smartly chosen
data points.

The content of this research focuses on SHM as a diagnostic tool for delamination damage detec-
tion via the utilization of efficient inverse algorithms with significant interest in their prediction-error
quantification. In this aspect of SHM, the abstract data numbers are converted into quantities that relate
directly to the responses of a structure, that is, the natural frequency measurements will be converted
into quantities of delamination parameters via inverse algorithms. The key objective of the present study
is therefore to provide a comparative analysis of different algorithms for delamination detection. Based
on finite element simulation of a composite beam-type structure, a comparative study of several damage-
identification algorithms is provided to illustrate the validity and effectiveness of the algorithms. The
ANN adopted in this work is a response surface approximation method that is based on the concept
of artificial intelligence. The ANN is to provide surrogate models to computationally expensive finite
element (FE) models. The motivation for this is derived from the concept that constructing a surro-
gate model to approximate any expensive function can substantially reduce the computational cost for
objective function evaluations during the course of optimization and improve the optimization search
performance. Thus, once a neural network is effectively trained, it is capable of being used for future
interpolation and approximation.

For the response surface methodology (RSM), a simple fourth-order polynomial model that associates
input parameters to the output response is used for delamination prediction. RSM approximates the
output of a given system as a function of some input variables (design variables) by solving a system
of nonlinear equations. This method is effectively employed as an inexpensive low-order approximation
model for delamination prediction and, because of the model form, minimal effort is required to build
the model. The method also has relative flexibility in the range of problems it is able to model, unlike
the ANN, which requires a huge effort to train its model.

Another advantage of RSM is the ease of implementation in damage-identification settings. The
selection of the sampling points for building ANN surrogate models is vital and demanding because the
prediction capabilities of an approximation function are highly influenced by the sampling points in the
given design space [Kanungo et al. 2002]. The K-means clustering technique is used so as to ensure that
the sampling points are evenly distributed over the design space. This method gives a systematic and
efficient means of analyzing the complete design space. It explores the high-dimensional design space
and screens the most clustered design points corresponding to the set of design variables.

To solve the optimization problems, local and global optimization algorithms are employed for de-
lamination detection. Gradient-based optimization schemes are local optimizers that can get stuck at the
first optimum obtained during the search process. When applied to continuous problems, this algorithm
gives better performance than any other optimization scheme but is highly unsuitable when searching
for global optima when there is a mixture of discrete and continuous variables [Schittkowski 1986].
Global optimizers like the nondominated sorting genetic algorithm (NSGA-II) are most promising in
both discrete and continuous problems due to their robust and random nature of search but with a
significantly high computing cost. The high computing cost involved in deducing the function objec-
tives is greatly reduced using surrogate models, and hence taking advantage of their global optimization
behavior.
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2. Mathematical formulation

2.1. Mathematical formulation of the optimization problem. The goal of an optimization task is to
ascertain a set of values that result in a maximum or minimum of a function called the objective func-
tion. The objective function is a mathematical expression describing a relationship of the optimization
parameters. Optimization is an activity (which could be single or multiobjective) that aims at finding
the best (that is, optimal) solution to a problem. Single-objective optimization is scalar valued with a
single unique solution whereas when the objective is vector valued, the optimization process is referred
to as multiobjective [Ray et al. 2001]. In this delamination detection optimization problem, the objective
function is defined as a single objective function and two key components are effectively required to
solve the optimization problem:

• the simulator (which essentially computes/simulates the natural frequencies) and

• the comparator (objective function).

The optimization objective is to compare and minimize the errors between measured (actual) and
predicted natural frequencies. The percentage change in frequency caused by delaminations for i-th
mode (d Fi ), where i = 1, . . . , n, is defined as

d Fi =
Fui − Fdi

Fui
× 100, (1)

where Fui and Fdi are the numerically predicted natural frequencies of the undamaged and damaged
composite beam, respectively.

The objective function (comparator) is the norm of the difference between the measured (d FMi ) natural
frequencies for which the delamination parameters are to be determined and the numerically predicted
natural frequencies (d Fi ). All the computational analysis for the delaminated natural frequencies (in Hz)
is defined with respect to the beam in perfect condition and the deviation is expressed as a percentage
change in the natural frequencies.

The error, Ei , between the measured and predicted shifts in frequencies due to the delamination for
the i-th mode is given by

Ei =

(
d Fi − d FMi

d FMi

)2

, (2)

where d FMi is the measured percentage change in the natural frequencies for which the delamination
parameters are to be ascertained.

The use of high-fidelity simulation tools to compute the natural frequencies of composite structures
for the objective function always comes with an unavoidable computing time. For this reason, surrogate
models are a key element to reduce the optimization cycle time by providing alternative function evalu-
ations for the objective function. The objective function with surrogate, ObjS , is therefore given by the
sum of the errors

ObjS =

n∑
i=1

Ei = E1+ E2+ E3+ · · ·+ En. (3)
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Similarly, the objective function without surrogate, Obj, is given by

Obj=
√
(d F1− d FM1)2+ · · ·+ (d Fn − d FMn)2, (4)

where n is the maximum i-th mode.
In order to evaluate the objective function, the natural frequencies of the undelaminated and delami-

nated composite beams are simulated via finite element analysis (FEA). The objective function is eval-
uated using frequency shifts due to the delamination predicted using FEA and the measured frequency
shifts. Very few simulations were used to build the database using K-means clustering and then surrogate-
assisted optimization.

2.2. Solution strategy. An overview of the approach is shown in Figure 1.
A detailed description of the proposed methods to detect delaminations can be summarized as follows:

Optimization without surrogates. Step 1: Develop an FE model with ANSYS that computes the natural
frequencies before and after damage. This is also known as the simulator. Step 2: Engage the simulator
directly with the optimizer to evaluate the objective function to be minimized to determine the delami-
nation parameters. The objective function, also known as the comparator, essentially minimizes the sum
of errors between the simulated natural frequency changes before and after damage and the actual ones
to determine the delamination parameters for any number of variables (Nd ).

Surrogate-assisted optimization. Step 1: Develop an FE model with ANSYS that computes the natural
frequencies before and after damage. Step 2: Use the simulator to generate a database in the case of
optimization with surrogates. Step 3: Reduce the size of the generated database, which is usually large,
by a K-means clustering method. This ensures that a small number of well-clustered datasets within the
entire design space is used for delamination prediction. Step 4: Use the K-means clustered datasets to
create a surrogate model. Step 5: Engage the surrogate model directly with the optimizer to evaluate
the objective function to be minimized to determine the delamination parameters for any number of
variables (Nd ).

Direct solution via ANN and RSM. Step 1: Develop an FE model with ANSYS that computes a database
of natural frequencies before and after damage. Step 2: Do a K-means clustering if the size of the database
is to be reduced. Step 3: Use the database to train ANN and RSM models that give the delamination
prediction for any number of variables (Nd ).

2.3. Modeling of the laminated composite beam. We studied the vibration behavior of eight-layer [0◦/90◦

/90◦/0◦]s glass-epoxy laminated composite cantilever beams with and without delaminations. Glass fiber
(E-glass) is used as reinforcement in the form of unidirectional fibers with epoxy resin as matrix for
the composite beam. The laminates are reinforced unidirectionally. The material properties are given in
Table 1 for the FE analysis and theoretical model. The composite beam has length L = 267 mm, width
W = 25.4 mm, and thickness h = 1.778 mm.

E1 E2 G12 Poisson’s ratio (ν12) Density (ρ)

42.34 GPa 11.72 GPa 3.0025 GPa 0.27 1901.5 kg/m3

Table 1. Material properties of the composite beam laminates.
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Figure 1. Schematic of solution methodology.

Considering through-width delaminations, delaminations are simulated extending through the width
of the beam, with locations and sizes in the ranges 0< X ≤ 70 and 0< a ≤ 58, respectively, satisfying
the requirement that delamination must not extend outside the beam. For any delamination pattern
([Z , X, a]), Z denotes the interface, and the normalized delamination location is expressed as X =
Xactual/L , where Xactual is the distance from the middle of the delamination to the fixed end of the beam
and L is the total beam length. Similarly, the normalized delamination size is given as a = aactual/L ,
where aactual is the length of the delamination along the axis of the beam. Delaminations are simulated
at different interfaces, Z = 1 to 4; 1 being the midplane and 4 the outermost interface.
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2.3.1. Finite element (FE) analysis of the composite beam. Herath et al. [2010] investigated the effects
of delamination size and location in composite beams using a FEA model under quasistatic loading
and an analytical Euler-beam model. Ramanamurthy and Chandrasekaran [2011] used FE modeling
to develop a damage-detection method in a composite cantilever beam with an edge crack. Ishak et al.
[2001] employed the application of the strip element method and adaptive multilayer perceptron networks
(MLP) for inverse identification of interfacial delaminations in carbon/epoxy laminated composite beams.
In this paper, FEA is used to solve the forward problem and generate data for frequency shifts for known
delamination parameters. Numerical analysis is carried out using the commercial finite element program
ANSYS 12.1 to build the FE models for both the undelaminated and delaminated glass fiber reinforced
composite beams to investigate their vibration behavior. Analysis is carried out on a three-dimensional
eight-node layered solid element (SOLID185) with three degrees of freedom at each node. The shell
section is adopted to define the layer information.

In the FE model for the delaminated beam, the delaminated beam was modeled as two volumes,
separated along the interface at which the delamination is located. The nodes situated along the interface
of undelaminated segments were merged together while nodes in the interface of the delaminated area
are left unmerged [Zhang et al. 2010]. Contact elements (TARGE170/CONTAC173) were introduced
between the delaminated surfaces to prevent separation and interpenetration, so the upper and lower
sublaminates had the same deflection, acting as two separate beams constrained to move together. To
build the model, the number of elements required to provide acceptable levels of accuracy and also
determine how fine the mesh should be in order to get convergence of the numerical results without
excessive use of computational time was determined using a convergence analysis. The final FE mesh
employed had 200 elements along the length, six elements across the width, and one element for each
layer of the eight-ply laminate.

The natural frequencies obtained from the undelaminated model are consistent with those from theory.
To determine the natural frequencies of the delaminated beam, ANSYS Workbench batch mode simu-
lation was used to setup the eigenvalue modal analysis. Further, using the block Lanczos method, the
natural frequencies of the first eight bending modes were extracted, discarding the torsion and in-plane
bending modes. The natural frequencies of the undamaged and damaged glass fiber/epoxy composite
beam were computed. The natural frequencies obtained from the FE model have been compared to
theoretical results for validation purposes.

2.3.2. Theoretical modeling of laminated composite beam. The theoretical formulation of the vibration
characteristics of the models of beams with and without delaminations were based on the pioneering
works in this field. Ramkumar and Kulkarni [1979] were the first of these pioneers. They developed
a simplified model to compute the free vibration frequencies of a cantilever laminated beam with a
single through-the-width delamination at the interlaminar position. Their basic concept was to deduce
mathematically the actual vibration properties of four different Timoshenko beams combined together by
considering the delaminated and undelaminated portions of the beams. Their mathematical model of the
eigenvalue problem fulfilled all the necessary boundary and continuity conditions between the adjoining
beams. They also carried out experimental studies, which showed that the analytical computations of
the natural frequencies were uniformly lower than the experimental ones. As a follow up, Wang and Liu
[1982] employed the analytical model of [Ramkumar and Kulkarni 1979] using classical Bernoulli–Euler
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[Z , X, a] Mode Theory (Fui ) Theory (Fdi ) FE (Fui ) FE (Fdi ) % diff. (Fui ) % diff. (Fdi )

[1, 54, 24] 1 16.06 15.97 16.04 15.94 0.159 0.14
2 100.67 100.54 100.46 100.33 0.211 0.2
3 281.9 252.38 281.04 251.49 0.349 0.3
4 549.4 522.12 550.07 52.81 0.443 0.12
5 913.09 780.59 907.91 776.82 0.482 0.57
6 1364.04 1192.95 1353.75 1184.85 0.679 0.75
7 1905.15 1636.83 1886.64 1624.22 0.771 0.97
8 2536.44 2191.25 2505.46 2170.49 0.947 1.22

[1, 62, 18] 1 16.06 16.032 16.039 16.007 0.154 0.14
2 100.67 100.333 100.458 100.120 0.213 0.2
3 281.9 275.044 281.042 274.152 0.324 0.3
4 549.4 504.202 550.068 501.887 0.459 0.119
5 913.09 894.735 907.913 889.365 0.600 0.57
6 1364.04 1199.253 1353.748 1191.622 0.636 0.75
7 1905.15 1725.247 1886.636 1709.563 0.909 0.97
8 2536.44 2291.992 2505.461 2271.168 0.909 1.22

Table 2. Quantitative comparison between the analytical and numerical natural frequen-
cies (in Hz).

beam theory to obtain consistent results by incorporation of the coupling between flexural and axial
vibrations of the delaminated sublaminates of the model. Then later on, Mujumdar and Suryanarayan
[1988] applied a pressure distribution between two respective delaminated sections to impose a constraint
between the two beam sections in order to obtain similar flexural deformation. This kind of proposed
model was termed a “constrained model” in contrast with the so-called “free model” proposed in [Wang
and Liu 1982]. Their analytical model, demonstrated for isotropic materials, was found to have the
ability to determine the natural frequencies of a delaminated beam at any interface. Della and Shu
[2005] extended the model of [Mujumdar and Suryanarayan 1988] to composite beams, by using the
effective bending stiffness terms of composite laminates. In what could be termed a similar approach,
Pardoen [1989] developed a constrained model to predict the natural frequencies of a simply supported
composite beam considering only midplane delaminations.

In this analytical study, the model first adopted by [Ramkumar and Kulkarni 1979] is customized for
composite laminates, to determine the changes in natural frequencies due to delaminations located at
different interfaces.

2.4. Validation of the FE analysis. A comparison of the analytical and ANSYS numerical results for
undelaminated (Fui ) and delaminated (Fdi ) beams is shown in Table 2. It is observed that the natural
frequencies decrease as delaminations occur and the percentage errors increase for the higher modes.
The objective of this exercise is to verify the results of the numerical model. The numerical results
are consistent with the analytical results with errors less than 1%. Numerical modeling is preferred to
analytical modeling particularly in complex systems because it is relatively easy to incorporate different
boundary conditions, loading configurations, etc.
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3. Algorithms for solution of the inverse problem

3.1. Optimization search algorithms. Global search methods are search schemes that are not prone to
being trapped by local optima. They require huge amounts of computational effort. Local search methods,
on the other hand, restrict candidate potential solutions to a confined design space starting at an initial
guess [Shang et al. 2001]. Thus, a combination of these is an attractive choice, which has led to the
development of the memetic algorithm.

3.1.1. Gradient-based local search. The gradient-based local search (GBLS) method is a kind of opti-
mization algorithm that basically employs gradient information of the objective function for determining
the direction of the subsequent search points from a given start point. This technique uses a function
which seeks the minimization of a scalar (single) objective function of multiple design variables within
a region specified by linear constraints and bounds using the sequential quadratic programming (SQP)
algorithm.

The SQP is the most famous gradient-based algorithm. The SQP method is most successful specifically
for problems of nonmultimodal behavior. The GLBS used in this work is based on SQP. SQP methods
embody the state of the art in nonlinear programming methods. An overview of SQP is found in [Schit-
tkowski 1986]. In this method, the function solves a quadratic programming subproblem at each iteration
by obtaining and updating iteratively at every step an estimate or approximation of the Hessian of the
Lagrangian function using a quasi-Newton updating method based on the Broyden–Fletcher–Goldfarb–
Shanno formula [Schittkowski 1986]. The method uses iteration from an initial guess until it reaches a
feasible local optimum. During the process of every iteration, quadratic nonlinear programming is used
to solve the objective at that point. If the problem is unconstrained, then the method reduces to Newton’s
method for finding a point where the gradient of the objective disappears. The solutions of the quadratic
programming are used to initiate a search space towards a better solution until the optimum set is found.

However, the GLBS can be trapped in local optima and hence a reinitialization is used to avoid
stagnation. Reinitialization is a process adopted to prevent to some extent the trapping of the technique at
the local optimum by starting the optimization process from different start points. The final optimum may
not be the global optimum, but this process effectively increases the optimization cycle time [Shang et al.
2001]. This technique has been implemented in MultiStart from the MATLAB Optimization Toolbox.

3.1.2. Global optimizer based on evolutionary algorithms. To ensure global optimum results and in-
crease the accuracy of results while reducing the search time via surrogates, biologically inspired evo-
lutionary algorithms (EA) are used. An EA is a kind of algorithm that encodes (both numerical and
nonnumerical) design parameters to shuffle multiple candidates via parallel and interactive search. Dur-
ing the search process, there is firstly a selection performed based on survival of the fittest. To generate
the next generation of possible candidate solutions, some parameter values are exchanged between two
candidates (crossover) and new values introduced (mutation). EAs cannot be easily trapped in local
minima or maxima as a result of crossover and mutation operations, which makes them an ideal method
to effectively handle multimodal optimization problems.

EAs are therefore representatives of the class of stochastic (random) and robust optimization algo-
rithms that do not require gradient information during the course of an optimization process but rather
use an objective function value, which makes them more computationally expensive than the GBLS,
which requires fewer iterations. However, they can handle a wide variety of problem characteristics such
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as discrete and continuous design variables and multimodality, in contrast with the GBLS. Surrogates
are used to contain their computationally expensive nature, hence exploring the advantage of their global
optimization behavior.

The choice of an efficient optimization algorithm is based on the problem under study. For our opti-
mization problem in which the variables are a combination of discrete and continuous, it is difficult to
use conventional optimization algorithms such as the gradient-based method to obtain the global opti-
mum, since they rely on the use of continuous variables. In an attempt to solve such discrete problems,
a population-based stochastic algorithm, and in particular a nondominated sorting genetic algorithm
(NSGA-II) [Deb et al. 2002], are found as an ideal choice to effectively manipulate the optimization task
for detecting delaminations in composite laminates as they are the most promising in both discrete and
continuous multimodal problems. While an evolutionary algorithm has been used in the current study,
other forms of evolutionary algorithms such as particle swarms, differential evolution (DE), etc., can
also be used. DE is peculiar to solving single objective optimization problems with continuous variables.
Several DE variants exist such as the DE/rand/1/bin strategy and self-adaptive DE.

The parameters of NSGA-II and their values are listed in Table 3 while its flowchart is depicted in
the authors’ previous work [Ihesiulor et al. 2012a] (see Figure 1). The detailed description of NSGA-II
processes includes:

(1) Generation of initial population (G): Generation of the first parent population of size N . This is
randomly generated within the predefined feasible region (the upper and lower bounds of the design
space).

(2) Nondominated sort: Individual population are evaluated and sorted based on nondomination. A
solution (s1) dominates (is preferred to) another solution (s2) if and only if s1 is better than s2 in the
objective function. For every generation, fast nondominated sorting is applied to identify nondomi-
nated solutions to construct the nondominated front. This produces a set of candidate solutions that
are nondominated by any individual in the population. These solutions are then discarded from the
population temporarily until the next-best nondominated set is identified. This process goes on and
on until all solutions are classified and assigned ranks equal to their nondomination level assuming
fitness minimization.

(3) Crowding distance: This is basically the niche safeguarding in the design objective space. The
crowding distance assigned equals the front density in the neighborhood (the distance of each can-
didate solution from its nearest neighbors).

(4) Selection by ranking: The initial population is sorted in ascending order according to fitness func-
tions. Potentially better solutions are ranked higher than the worst solutions. Individuals are selected
by the use of a binary tournament selection with the crowded comparison operator.

(5) Genetic operators: A mating pool is formed by bonding of the parent and child populations. The
simulated binary crossover operator and polynomial mutation are used to create an offspring of new
population. Mutation occurs by random walk around individuals. The best population of parents
and offspring with higher fitness is selected to reproduce the next generation.

(6) Recombination and selection: Combination of the traits of the offspring population and parent
population is done to reproduce the extended population of the next generation (2N ) [Ayala and dos
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Maximum population size N = 200
Crossover probability Pc = 0.9
Mutation probability Pm = 0.1
Maximum number of exact function evaluations 4000
Evolutionary operators (binary tournament selection) s = 2
Evolutionary operators (polynomial mutation) ηm = 10
Evolutionary operators (simulated binary crossover) ηc = 10
Evolutionary operators (elitism, nondomination rank, crowding distance) 80
Number of independent runs (stochastic and can be run more than once) ≥ 10

Table 3. NSGA-II parameters.

Santos Coelho 2008]. This is done to ensure elitism and to keep diversity in generating subsequent
successive populations [Sastry et al. 2006]. The replacement criteria keeps the best among the
parents and offspring based on the fast nondominated sorting and maintains the best diversified
individuals to provide a larger search space. The new population size with the initial population is
filled with individuals from the sorting fronts starting from the best. The crowding distance method
is recalled to maintain diversity if a front incompletely fills the next generation. This ensures that
convergence in one direction does not take place. This process repeats itself to generate subsequent
generations until a stopping criterion is reached.

3.2. Database creation for ANN training using K-means clustering algorithm. The ANN model and
its results are highly dependent on the training dataset provided. It is hence necessary to maintain the
diversity of the training set to obtain a good prediction model by ensuring that the training data is not
clustered around one part of the design domain. The most vital strategy in the selection of the training
datasets is to find the ideal set that is a true representation of all the possible samples in the total design
space. This is done using K-means clustering.

K-means clustering is used for grouping large datasets into smaller sets called clusters. The num-
ber of k-groups or objects needed is specified. Each object is represented by some feature vector in
n-dimensional space, n being the number of all characteristics used to describe the objects to cluster.
The algorithm then randomly chooses k-points in that vector space. These points serve as the initial
centers of the clusters and all objects are assigned to the center they are closest to [MacQueen 1967].
Basically, the K-means clustering algorithm finds a subset of k-groups known as centroids that minimizes
the mean squared distance from each data point to its nearest center in an entire dimensional space of
n-data points [Kanungo et al. 2002]. The algorithm is implemented in the following steps:

• Step 1: Specify k-points into the space represented by the objects that are being clustered. These
points represent the initial group centroids.

• Step 2: Each object is allocated to the group with the closest centroid.

• Step 3: When all objects have been assigned, the positions of the k-centroids are recomputed.

• Steps 2 and 3 are iterated until the centroids no longer move. This introduces a separation of the
objects into groups from which the metric to be minimized can be computed.
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3.3. Introduction to ANN as an inverse solver and surrogate creator. Artificial neural networks (ANNs)
have evolved as one of the promising artificial intelligence concepts used in real-world applications.
ANN have been extensively used in structural engineering applications in the areas of failure prediction,
delamination identification, crack detection, as well as others [Mahdi and El Kadi 2007]. ANN is a very
powerful interpolator that can be used to map functions and derive a relationship between a set of input
parameters and their output responses.

There are different types of ANN architectures, namely, multilayer perceptron (MLP), radial basis
function (RBF), and so on. The MLP type [Delashmit and Manry 2005] is adopted in this study because
it effectively provides a complex nonlinear mapping between the input and output variables. MLPs are
feed-forward nets with one or more hidden layers between the input and output neurons as shown in
Figure 2. ANN based on MLP is trained using a back propagation neural network (BPNN) algorithm, a
gradient-based method that has emerged as successful in the training of multilayered neural nets using
supervised learning. In supervised learning, the network learns using input and output data and provides
an approximation of the functional mapping between the two.

A typical BPNN is based on the fact that a feed-forward neural net (FFNN) with at least one hidden
layer can approximate any continuous nonlinear function with arbitrary accuracy the number of hidden
neurons is sufficient. MLP is a FFNN which consists essentially of an input layer with several neurons
(depending on the number of inputs, d Fi to d Fn), a layer of output neurons and one or more layers of
hidden neurons that wholly perform the application expected objective. The primary building blocks
of MLP are the artificial neurons or processors. The neurons in each layer are fully interconnected to
the preceding and subsequent layers. Every one of them is connected by adjustable associated weights
to enable the network to map complex associations between the input and output data. The activation
function (a) for each neuron is defined as the summation of all the inputs multiplied by their connection
weights and biases (wt1, wt2, . . . , wtn), given as

a = d F1wt1+ d F2wt2+ · · ·+ d Fnwtn. (5)

The activation function is transmitted through a link to other neurons via a feed-forward network
design and then fed to a transfer function which could be linear or nonlinear to generate the output.
The structure of the network is a function of the interaction between these neurons. Functions such as

Figure 2. A schematic framework of one-hidden-layer architecture.
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the sigmoidal and radial (Gaussian) are used to build the neuron activity. A tangent-sigmoidal transfer
function is used in the hidden layer and to avoid limiting the output to a small range, a linear transfer
function is employed in the output layer. A Bayesian regularization (trainbr) back-propagation learning
algorithm is utilized to speed up the convergence of the MLP model. Bayesian regulation is a robust
iterative training algorithm that learns patterns based on input and output data; it essentially provides
stronger and more efficient generalization ability by regularization. The ANN training process is stopped
when a maximum number of 1000 epochs is reached. The error is measured based on the root-mean-
square error (RMSE) between the predicted values and the output for all elements in the training and
testing set. The networks are initialized to return neural network nets with weight and bias values updated
according to the network initialization function.

3.3.1. Pros of ANN. The most vital advantages of ANN include:

• Its capability to model and map complex nonlinear systems (nonlinearity) by deriving a relationship
between a set of input and output responses (input-output mapping).

• The ability to learn which allows the network to adapt to changes in the surrounding environment
(adaptivity).

• Once ANNs are properly trained, damage identification is relatively fast and mathematical models
do not need to be constructed.

• There are no limitations on the type of vibration parameters to be used as inputs for ANNs. The
input and output parameters can be selected with much flexibility without increasing the complexity
of network training.

3.3.2. Cons of ANN. A major demerit of ANNs is that the resulting weights and nets of the trained
network are difficult to interpret (that is, an inability to obtain adequate solutions of complex problems
with physical mathematical methods in contrast to RSM). Others include:

• It is difficult to find an appropriate network architecture.

• It usually suffers from the problems of underfitting (inaccurate approximation of the training data)
resulting from too-small networks, and overfitting (inadequate generalization) due to too-large net-
works.

• It requires several networks of different architectures to be trained, and their performance compared
on a separate set of test data to estimate their generalization properties.

• The training data of the database should be large enough to have a close relationship with the
associated parameters (that is, sufficient training data for complex ANNs are necessary, requiring
availability of a large database).

3.3.3. Modifications to the basic ANN. Extensive work has been done on the basic ANN to improve
its generalization ability. The following are some contributions made to the ANN model to improve its
generalization capability, accuracy of approximation, output variable handling, and training time.

• Single and ensemble nets: The capabilities of ANN to handle multidimensional outputs are well
known. However, it is preferred to use individual ANN models to predict each output because it is
not feasible to use ensemble (multiple) nets to predict all the output variables. Training single nets
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enhances the prediction accuracy because only one output is predicted. This improves the handling
capability of the optimizers when coupled with surrogates during the optimization process.

• The concept of the K-means clustering algorithm introduced enables one to effectively reduce the
size of dataset required for ANN training and hence determine the minimum amount of datasets just
sufficient for ANN training.

• The adoption of the trainbr training algorithm showed great effectiveness in the ANN results. Gen-
eralization enhancement by Bayesian regularization produces a network that performs well with the
training data and exhibits smoother behavior when presented with new data.

• Increasing the number of hidden neurons and layers. Larger numbers of neurons in the hidden layer
can give the network more flexibility because the network has more parameters it can optimize.
However, the number of layers should be increased gradually because large hidden layers lead to
undercharacterization of the network since the network must optimize more parameters than there
are data vectors to constrain these parameters.

• Adoption of network architectures with tansig and purelin transfer functions yields better results for
low RMSE values and high R2 values than other possible combinations tried.

• Preprocessing of the network inputs and targets improves the efficiency of the neural network train-
ing. It basically reduces the dimensions of the input vectors to increase network performance. This
is essentially the normalization or scaling of inputs and targets so that they fall in the range [−1, 1].
However, it was seen that scaling had no great significant effect on the network performance for the
proposed problem under consideration.

3.3.4. Steps in designing ANN model. The ANN training process is not an easy task and involves finding
an appropriate ANN model for a given problem. Hence, the necessary requirements for a successful ANN
development include: a sufficient database, careful selection of the parameters, network architecture
(number of hidden layers, number of hidden and output nodes), transfer functions, and effective training
and learning algorithms. These choices completely depend on the approximation function.

The process of building an ANN model can hence be outlined and summarized as follows:

• Selection of the number of input and output variables of the neural network and database creation
(the dataset obtained from FEM analysis after a K-means clustering is divided into a training set
and a testing set).

• Determination of network architecture by trial and error method (that is, number of hidden layers and
number of hidden nodes — information processing occurs at many simple elements called neurons)
required to generalize the design space.

• Selection of the training algorithm and functions and measure of its effectiveness based on RMSE
performance.

• Invoking of a back-propagation algorithm to train multilayer feed-forward networks with differ-
entiable transfer functions to perform function approximation. Training by back propagation is
described as the process by which derivatives of network error with respect to network weights and
biases are computed. This process is subdivided into:
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– Feed forward of the input training data (input vector of set of design variables from the input
layer is fed forward by propagation to the hidden layer and subsequently to the output layer) in
a process termed the forward pass of the back propagation algorithm.

– The computation and back propagation of the associated weight and errors. The predicted values
of the output layer are compared with the target values. The error between the predicted and
target values is calculated and propagated back toward the hidden layer in a process known as
the backward pass of the back propagation algorithm. The error is used to update the weight
matrices between the input-hidden layers and hidden-output layers.

• The mean square error of the network is computed by calculating the amount between the predicted
and target values. Consequently, this error is minimized by a predetermined training algorithm
using optimization algorithms based on a gradient-based back-propagation process which repeatedly
changes the performance values depending on the network connection weights. The trainbr function
is used for this purpose. This function trains the network by randomly initializing and updating the
weights and bias values according to a Bayesian regularization algorithm.

• Terminating the network training using 1000 maximum epochs to reduce the effect of random
weights on training the network. This method stops the training when the maximum number of
training cycles given is reached.

• Computing the average performance of each of the network architecture with RMSE as the perfor-
mance criterion and selecting the best network performance with the minimum RMSE.

• The best model is applied to the test data to investigate the performance on an unseen set of data.

3.3.5. ANN configuration to analyze the best network architectures. Choosing the number of hidden
layers and neurons in the hidden layer is also a demanding task and it is the principal limitation of ANN.
Since the ANN configuration has a great influence on the predictive output, various arrangements have
been considered. It is essential to designate a formula to describe the ANN configuration as (I -n1-n2-O).
For example, 2-20-1 means a one-hidden-layer ANN with two input parameters and one output parameter,
with the hidden layers containing 20 elements (neurons); 3-10-10-2 denotes a three-input and two-output
ANN, with ten neurons in two hidden layers. The MATLAB neural network toolbox has been used as
the basis in which the networks can be configured in a very wide variety of architectures, and the training
algorithms can be also chosen with ease.

Evaluation of the network performance is measured based on RMSE analysis and coefficient of deter-
mination (R2). The power of prediction can be quantified by the RMSE of the predicted output from test
data. The smaller the RMSE of the test dataset is, the higher the predictive capability of the network.

The RMSE (that is, the root mean square of the differences between the actual and predicted values,
which should be very close to zero) is expressed as

RMSE=
√

mean((RA− RP)2), (6)

where RA and RP are the actual and predicted values from the network.
Similarly, R2 (that is, a measure of how well the variation in the output is explained by the targets; if
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this number is equal to 1 there is a perfect correlation between the targets and outputs) is given by

R2
=

∑
(RA− R A)(RP − R P)√∑

(RA− R A)2(
∑
(RP − R P))2

, (7)

R A and R P are defined as the means of the actual and predicted values from the network.

3.3.6. Training performance of trial neural networks for the forward problem. Several neural network
architectures were tried since there is no laid down rule for choosing the optimal number of hidden layers
and processing elements for each layer; it is basically problem dependent. However, incorporation of
more processing elements enhances the generalization capability of the network for a larger number of
training data points. The motivation was to determine the best network with the least RMSE and good
coefficient of determination (R2) irrespective of the time. In other words, the length of computation
time was not considered as a factor for choosing the best network. However, larger network architecture
takes longer running time in all analysis, and smaller networks take a shorter time. It is shown that
when enough training datasets have been used, the root mean square of the output error converges to
zero. The neural network optimum network architecture in most cases consisted of one input layer,
one or two hidden layers, and one output layer, with the circles representing processing elements or
neurons in Figure 2. For the inverse problem, the eight inputs were the differences between the damaged
beam and the undamaged beam for the first eight natural frequencies and the outputs were the interface,
delamination size, and location, and vice versa for the forward problem. The hidden layers contained a
maximum of 80 neurons.

For data generation, considering only midplane delaminations, 441 FE models equally spaced at gaps
of 2% were run in a batch process for two hours assuming normalized delaminations located from 30%
to 70% (30:2:70) of the total beam length and having normalized sizes ranging from 18% to 58% at gaps
of 2% (18:2:58). The 441 generated datasets were randomized using K-means clustering. As shown in
Figure 3(a), 90.7% (400) of the 441 simulations run in ANSYS were used for training a neural network

(a) (b)

Figure 3. Design space for training and testing datasets. (a) 400 training datasets and
(b) 41 testing datasets.
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Figure 4. Comparison of performance of different network architectures on RMSE of
training data (left) and testing data (right).

model and the remaining 9.3% (41) of the dataset were used for testing of the network as shown in
Figure 3(b).

Then, consider the solution of a forward problem trained with ANN using different network architec-
tures. Figure 4 demonstrates the trial performance of different network architectures with their training
and testing RMSE values for the individual eight percentage frequency changes (individual nets) taken
as output to the network with two inputs (location and size of delamination). It is shown that 2-80-1 is
the best network with the least RMSE. It is evident that high network architectures give better results
than low network architecture for both training and testing datasets.

3.3.7. Training performance of trial neural networks for the inverse problem. For the inverse problem
where the eight natural frequencies are taken as input to the network and delamination location and size
as network outputs, high network architectures are also found to give better results, in terms of low
RMSE and high values of R2, than small network architectures.

3.4. Surrogate approach. In the surrogate approach, ANN is used to build surrogate models for approx-
imation of the computationally expensive FE models by solving the forward problem. This approach is
solving the forward problem to approximate the output of the natural frequencies simulated using the FE
models from the given corresponding delamination parameters. Later, these surrogates are used in the
optimization loop instead of direct optimization via FE models as shown in Figure 1. The surrogate ap-
proach is extensively employed as an inexpensive approximation of the true function evaluations instead
of the computationally expensive FEM simulations. Surrogates are especially interesting for expensive
objective functions, since the necessary computational effort to build the surrogate is smaller than the
effort of the objective function evaluation.

ANN, RBF, RSM, Kriging, and design and analysis of experiments are some examples of surrogate
models [Sul et al. 2011]. The choice of surrogate models depends on the problem under consideration.
In the current work ANN is to provide surrogate models to computationally expensive FE models and is
found to be very effective. This justifies the need for surrogate models in reducing the optimization cycle
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[Z , X, a] Mode FE ANN % error

[1, 54, 24] d F1 0.8013 0.8026 0.1711
d F2 0.3182 0.3179 0.0831
d F3 10.6770 10.6769 0.0006
d F4 5.6542 5.6545 0.0050
d F5 14.5527 14.5530 0.0020
d F6 12.5625 12.5636 0.0083
d F7 13.9558 13.9579 0.0155
d F8 13.3759 13.3778 0.0134

[Z , X, a] Mode FE ANN % error

[1, 62, 18] d F1 0.4049 0.4044 0.1312
d F2 0.5266 0.5266 0.0075
d F3 2.6310 2.6310 0.0013
d F4 8.9072 8.9068 0.0039
d F5 2.1741 2.1740 0.0017
d F6 12.0654 12.0639 0.0126
d F7 9.4308 9.4367 0.0627
d F8 9.3618 9.3599 0.0199

Table 4. Comparison of d Fi between FE simulations and ANN approximations.

time and exploring the complete design space with minimal computational cost. RSM was first tried, and
failed to consistently provide a true approximation model due to high multimodality of the delamination
detection problem in higher modes, say modes 4–8. Since ANN was found to perform very well for the
solution of the problem under consideration, it was selected for the unique purpose of building surrogate
models to expensive FE models [Ihesiulor et al. 2012b]. Other surrogate models were not tried.

3.4.1. Validation of the surrogate model. A validity check of our surrogate model is necessary to prevent
misleading of the search by the optimizers due to poor approximations. To validate the performance of
the trained ANN, a perfect match of true function evaluation by ANSYS and the approximated functions
by ANN is shown in Table 4 for delamination signatures [1, 54, 24] and [1, 62, 18] for the first eight
percentage changes in frequencies. The results are shown to have negligible error of not more than
0.17%. Also, perfect fits plot and regression (R2) plots for the 400 training and 41 test datasets between
the simulated percentage change in frequencies and the predicted output from the neural network training
for mode 1 are shown in Figures 5 and 6, respectively.

Figure 5. Simulated percentage change in natural frequencies: actual values (circles)
versus predicted output (red stars) from the ANN model for mode-1 training (left) and
testing (right) datasets.
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Figure 6. Simulated percentage change in natural frequencies: R2 plot between actual
and the predicted output from the ANN model for mode-1 training (left) and testing
(right) datasets.

3.5. Introduction to RSM. Response surface methodology (RSM) can be defined as development of the
mathematical and statistical techniques applied in the modeling and analysis of engineering problems in
which the output of interest is governed by some input variables and the key objective is to optimize this
output response [Montgomery 2005]. RSM is essentially a statistical method that employs quantitative
data from appropriate simulations or experiments to determine and solve simultaneously multivariant
equations.

RSM, also known as polynomial fitness function modeling, adopts regression curve fitting to obtain
mathematical approximations of responses of a given system as functions of some input design variables
[Todoroki 2001]. This method is widely employed as an inexpensive low-order approximation model
instead of the more time-consuming but accurate calculations using FEM simulations. Response surfaces
can easily be fitted to data by least-squares approach. The order of the polynomial is important; quadratic
or cubic polynomials are mainly used, with quadratic polynomials best suited for continuous, unimodal
problems. RSM models are widely used in polynomial approximation schemes due to their flexibility
and ease of use. In the polynomial approximation method, the response surface model is a polynomial
of n-th degree whose coefficients are determined from a linear system of equations. The linear system
is solved using least-square minimization of the error between the predicted and actual values.

3.5.1. Advantages of RSM. In the current study, RSM is adopted as another inverse-problem solver be-
cause of the following benefits it enjoys over ANN:

(1) It does not require too much computational effort and resources to generate its mathematical models
(ease of calculations and use).

(2) Its solution to the inverse problems can be approximately solved without the constraints of modeling.

(3) Its approximation model can be easily validated through statistical means.



EFFICIENCIES OF ALGORITHMS FOR VIBRATION-BASED DELAMINATION DETECTION 267

3.5.2. Analysis of a first-order model response surface. In RSM, the factors that are considered as most
important are used to build a polynomial model in which the independent variable is response from
experiments or numerical simulations. A first-order multiple regression model with N simulation runs
carried out on k input variables (N > k) and an output response R can be expressed as

Ri = C0+

k∑
j=1

C j d Fi j + εi (i = 1, 2, . . . , N ). (8)

The response Ri is a function of the input variables d F1, d F2, . . . , d Fn , plus the error. The C j are the
regression coefficients, and d Fi j corresponds to the i-th sample and j-th independent variable.

Equation (8) can be expressed in matrix form as

R = d F ∗C + ε, (9)
R1

R2
...

RN


︸ ︷︷ ︸

R

=


1 d F11 d F12 · · · d F1k

1 d F21 d F22 · · · d F2k
...

...
...

...

1 d FN1 d FN2 · · · d FNk


︸ ︷︷ ︸

d F


C0

C1
...

Ck


︸ ︷︷ ︸

C

+


ε1

ε2
...

εN


︸ ︷︷ ︸

ε

.

Invoking the least-square error method, the estimated coefficient Ĉ of the coefficient vector (C) can
be given as

Ĉ = (d FT d F)−1 d FT R. (10)

3.5.3. Analysis of a second-order model response surface. The presence of high curvature in the re-
sponse surface makes the first-order models unsuitable for complex problems. A second-order model
becomes handy in approximating the true response surface. The second-order model accommodates all
the terms in the first-order model, in addition to quadratic terms (C11 d F2

1i ) and all cross-product terms
(C13 d F1i d F3 j ). The method of least squares can also be applied to estimate the coefficients in the
model. The equation based on a second-order polynomial is given by

Ri = C0+

k∑
j=1

C j d F j +

k∑
j=1

C j j d F2
j +

k−1∑
i=1

k∑
j=i+1

Ci j d Fi d F j + ε. (11)

Hence, to develop the relationship between the variations in the simulated natural frequencies and the
corresponding size and location of delamination, response surfaces of fourth-degree polynomials were
generally adequate in this study.

The RSM procedure described above is employed to fit a fourth-order polynomial equation using the
simulation data where 400 FE model simulations are performed and 41 datasets used for testing. From
the Minitab output, the fourth-order polynomial equation for predicting location and size is given below,
where the output responses are the delamination location and size and the inputs are the first percentage
changes in natural frequencies. The least-square error method is adopted to obtain the unknown coeffi-
cients of the polynomials. All the insignificant interaction terms are removed from the models using an
ANOVA table.



268 OBINNA K. IHESIULOR, KRISHNA SHANKAR, ZHIFANG ZHANG AND TAPABRATA RAY

3.5.4. Validation and adequacy check of the developed models. In order to ascertain the adequacy and
goodness of the developed response surface approximation models, the coefficient of determination (R2)
as already defined and the absolute average deviation (AAD) are adopted. The efficiency of the model
in terms of its predictive power can be determined by both R2 and AAD, because R2 alone cannot be
effectively used to measure the performance of the developed models. The R2 is basically a measure of
how well the variation in the output is explained by the targets; if this number is equal to 1 there is a
perfect correlation between targets and outputs. However, a large value of R2 does not necessarily imply
that the regression model is a good one [Bas and Boyaci 2005]. Thus, it is possible for models that
have large values of R2 to yield poor predictions of new observations or estimates of the mean response.
Plotting actual results versus predicted results from the model gives a straight line passing the origin with
an angle of 45◦, but in practical cases the model fails to give accurate results to new data. This limitation
of R2 is eliminated by using AAD analysis, which is a direct method for describing the deviations in
the actual and predicted outputs by the models [Bas and Boyaci 2005]. Minitab was used to conduct all
analysis.

The AAD is calculated by

AAD=
N∑

i=1

([abs(RA− RP)/RA]/N ) ∗ 100. (12)

The expression for R2 is given in (7). Also, adjusted R2 is defined as the improvement of R2 when the
number of terms in a model is adjusted, which is and lower than the R2 value. It is given as

R2
= 1−

1− R2

N − 1/N − k− 1
(13)

where RA and RP are the actual and predicted responses, and N is the number of simulation runs.
Evaluation of the R2 and AAD values together was just adequate to check the accuracy of the devel-

oped models. The R2 must be close to 1 and the AAD between the predicted and actual output must be as
small as possible tending towards 0. Acceptable values of R2 and AAD mean that the model equations de-
fine the true behavior of the system and they can be used for interpolation in the simulation design space.

From the equation shown in Table 5 for X , the R2 and adjusted R2 values for delamination location (X )
are calculated as 99.3% and 99.2%, respectively. The near-perfect prediction (R2 value) of the model is
an indicator that the model generated has been perfected to fit the given data and thus is highly significant.
The high R2 is a good indication of the predictive power of the developed model. Similarly, from the
equation shown in Table 6 for a, the R2 and adjusted R2 values for the delamination size (a) are deduced
to be 100% and 100%, respectively. This shows that the developed model for delamination size has more
predictive power in terms of accuracy of prediction results than the model for delamination location.

Also, from the equations shown in Tables 5 and 6, the calculated AAD for the delamination location
and size are, respectively, obtained as 2.78% and 0.37%. This indicates that the fourth-order polynomial
model for delamination size a is highly significant and adequate to represent the actual relationship
between the response and the significant input variables, with very small AAD value (0.37%) and a
satisfactory coefficient of determination (R2

≈ 1).
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78.1+28.1 dF1−29.6 dF2+11.1 dF3+16.5 dF4−7.65 dF5−1.74 dF6+7.90 dF7+6.22 dF8

+6.62 dF1 dF2+12.2 dF1 dF3−0.647 dF1 dF4−0.289 dF1 dF5+1.79 dF1 dF6−1.70 dF1 dF7

+1.05 dF1 dF8−1.90 dF2 dF3+0.642 dF2 dF4+0.279 dF2 dF5+0.253 dF2 dF6+0.591 dF2 dF7

−0.0537 dF2 dF8−0.0150 dF3 dF5+0.546 dF3 dF6+0.284 dF3 dF7−0.170 dF3 dF8

−0.234 dF4 dF5−0.0908 dF4 dF6−0.150 dF4 dF7−0.0582 dF4 dF8−50.5 dF2
1

−0.015 dF2
2−1.21 dF2

3+0.666 dF2
4+0.314 dF2

5+0.274 dF2
6−0.015 dF2

7

−0.087 dF2
8+2.14 dF3

1+0.0324 dF3
2+0.0286 dF3

3−0.00935 dF3
4−0.0156 dF3

5

−0.0186 dF3
6+0.00317 dF3

7+0.0029 dF3
8−0.0570 dF4

1−0.00114 dF4
2−0.000677 dF4

3

+0.000030 dF4
4+0.000114 dF4

5+0.000264 dF4
6−0.000075 dF4

7−0.000055 dF4
8

Table 5. Fourth-order polynomial equation for generated delamination location (X ) in
terms of input percentage change in natural frequencies.

13.8− 6.16 dF1+ 1.23 dF2+ 0.667 dF3+ 0.214 dF4+ 0.0664 dF5− 0.0667 dF6

− 0.276 dF7+ 0.541 dF8+ 0.247 dF1 dF2− 0.0635 dF1 dF3+ 0.0177 dF1 dF4

+ 0.0152 dF1 dF5+ 0.0530 dF1 dF6− 0.0268 dF1 dF7− 0.168 dF1 dF8

+ 0.00728 dF2 dF3+ 0.0328 dF2 dF4− 0.0118 dF2 dF5− 0.00396 dF2 dF6

+ 0.00520 dF2 dF7+ 0.0443 dF2 dF8+ 0.00523 dF3 dF5− 0.00468 dF3 dF6

+ 0.00086 dF3 dF7+ 0.0228 dF3 dF8− 0.00051 dF4 dF5− 0.00669 dF4 dF6

+ 0.00139 dF4 dF7− 0.00449 dF4 dF8+ 0.733 dF2
1− 0.213 dF2

2− 0.00885 dF2
3

+ 0.0203 dF2
4+ 0.0339 dF2

5+ 0.0289 dF2
6+ 0.0547 dF2

7− 0.0752 dF2
8− 0.0746 dF3

1

+ 0.00782 dF3
2+ 0.000083 dF3

3− 0.00118 dF3
4− 0.00184 dF3

5− 0.00128 dF3
6

− 0.00289 dF3
7+ 0.00389 dF3

8+ 0.00197 dF4
1− 0.000149 dF4

2+ 0.000020 dF4
3

+ 0.000020 dF4
4+ 0.000034 dF4

5+ 0.000021 dF4
6+ 0.000047 dF4

7− 0.000061 dF4
8

Table 6. Fourth-order polynomial equation generated for delamination size (a) in terms
of input percentage change in natural frequencies.

For the response surface model for delamination location X , it was found that the low AAD was
obtained due to high nonlinear curvature in the delamination location with respect to the percentage
change in frequencies.

4. Comparison of delamination prediction efficiencies of different algorithms

The approach or algorithm one uses will have a great effect on the accuracy of results. In solving the
problem of delamination detection in composite laminates, different algorithms have been employed as
seen in the previous sections and in [Ihesiulor et al. 2012a]. Hence, it is worthwhile to do a comparative
analysis of these algorithms to ascertain the most effective and efficient in terms of accuracy of prediction.
Efficiency of algorithms with respect to the minimization optimization algorithms can be measured as
the minimum time needed to lower the error below a certain specified value associated with the value
of the objective function after a given number of runs. The efficiency of the ANN and RSM algorithms
can be defined as the measure of performance in terms of RMSE and AAD, respectively. Accordingly,



270 OBINNA K. IHESIULOR, KRISHNA SHANKAR, ZHIFANG ZHANG AND TAPABRATA RAY

Algorithm Name

1 Artificial neural network (ANN)
2 Response surface method (RSM)
3 GBLS with surrogates (GBLSWoS)
4 GBLS without surrogates (GBLSWS)
5 NSGA-II with surrogates (NSGA-IIWS)
6 NSGA-II without surrogates (NSGA-IIWoS)

Table 7. List of proposed algorithms.

one is only interested in the algorithm that gives the least prediction error regardless of the time, but the
evaluation time should not be too large before expected results are evaluated for effective use in online
SHM. With these factors under consideration, a comparative analysis is made in this section between
four key algorithms (ANN, RSM, GBLS, and NSGA-II) under six different approaches (ANN, RSM,
GBLSWS, NSGA-IIWS, GBLSWoS, and NSGA-IIWoS) as shown in Table 7, where GBLSWS and GBLSWoS

are GBLS methods with and without surrogates, respectively. Similarly, NSGA-IIWS and NSGA-IIWoS

are NSGA-II methods with and without surrogates, respectively.
So far we have shown that most algorithms are fast and contains several capabilities, such as:

• Ease of use and implementation and allowing a user to specify input data for which the delamination
signature is to be ascertained easily (RSM).

• Generation of random results up to a significant number of runs and selection of the best result in
terms of the minimum objective function value (NSGA-II).

For this study, in terms of dataset generation, the dataset scenario described earlier containing 400
training datasets and 41 test datasets was considered for this comparative analysis and two hours was
required to generate the database. The training data used for this comparison was simulation data bench-
marked at 400 datasets for all algorithms and ten damage cases, as shown in Table 8, out of the 41
reserved tests were selected for the performance comparative study. This comparison was based on the
two-variable problem, that is, predicting delamination location and size at midplanes.

4.1. Algorithm 1: ANN. The ANN model used in the benchmark tests had 8 input nodes, 80 hidden
nodes, and 2 output nodes (that is, a network architecture of 8-80-2). The training data contained 400
input and output vector pairs. The training time for the ANN algorithm was measured to be about 133 s.
Table 9 gives the prediction results of the selected ten cases using ANN. It is seen that ANN gives for

S/N Delamination signature [X, a] S/N Delamination signature [X, a]

1 [50, 26] 6 [58, 40]
2 [68, 24] 7 [48, 34]
3 [50, 20] 8 [58, 30]
4 [30, 36] 9 [48, 28]
5 [34, 44] 10 [62, 36]

Table 8. Selected test cases to ascertain the method with best performance.
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S/N Actual [X, a] Predicted [X, a] % ([(E − X), (E − a)])

1 [50, 26] [49.9946, 26.0000] [0.0109, 0.0001]
2 [68, 24] [68.0095, 23.9990] [0.0139, 0.0042]
3 [50, 20] [50.0068, 19.9999] [0.0136, 0.0003]
4 [30, 36] [30.0009, 36.0000] [0.0031, 0.0001]
5 [34, 44] [33.9994, 44.0000] [0.0019, 0.0001]
6 [58, 40] [57.9997, 40.0004] [0.0006, 0.0011]
7 [48, 34] [48.0056, 34.0001] [0.0116, 0.0002]
8 [58, 30] [57.9919, 30.0003] [0.0139, 0.0011]
9 [48, 28] [47.9980, 27.9999] [0.0043, 0.0004]

10 [62, 36] [61.9995, 36.0005] [0.0008, 0.0013]

Total [0.0745, 0.0088]

Table 9. Percentage errors of ten test cases using ANN modeling.

the ten cases total percentage errors of 0.07% and 0.009% in location and size, respectively. This shows
that ANN is very unique in performance, giving a maximum error of 0.014% in all the cases under
consideration.

4.2. Algorithm 2: RSM. Invoking the RSM regression models developed in the equations shown in
Tables 5 and 6 using 400 datasets for delamination location and size, respectively, the prediction results
of the ten selected cases are shown in Table 10. Results show that RSM gives adequate approximations
as an inverse tool using the variations in natural frequencies for delamination detection. It is seen that
RSM can be used to successfully predict delamination location and size. The test data helps to establish
that a model that closely matches the actual values is developed and it is still a mathematical fit over
the training data. It is seen that the results in predicting delamination size are more accurate than for
delamination location because the percentage change in frequency increases monotonically with increase

S/N Actual [X, a] Predicted [X, a] % ([(E − X), (E − a)])

1 [50, 26] [50.0724, 25.9779] [0.1448, 0.0850]
2 [68, 24] [69.0697, 23.9806] [1.5731, 0.0808]
3 [50, 20] [50.4786, 19.9550] [0.9572, 0.2250]
4 [30, 36] [29.9083, 36.1363] [0.3057, 0.3786]
5 [34, 44] [35.1090, 44.2064] [3.2618, 0.4691]
6 [58, 40] [59.3110, 40.0181] [2.2603, 0.0452]
7 [48, 34] [48.1630, 34.0942] [0.3396, 0.2771]
8 [58, 30] [58.4583, 29.9824] [0.7902, 0.0587]
9 [48, 28] [47.9457, 27.9744] [0.1131, 0.0914]

10 [62, 36] [62.8340, 35.9788] [1.3452, 0.0589]

Total [11.0909, 1.7698]

Table 10. Percentage errors of ten test cases using RSM modeling.
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S/N Actual [X, a] MinimumObj Predicted [X, a] % ([(E − X), (E − a)])

1 [50, 26] 0.09550 [49.6446, 25.4675] [0.7108, 2.0482]
2 [68, 24] 0.00553 [68.0706, 23.8523] [0.1039, 0.6156]
3 [50, 20] 0.00852 [50.0634, 19.4827] [0.1268, 2.5863]
4 [30, 36] 1.56888 [31.3309, 36.1582] [4.4363, 0.4396]
5 [34, 44] 0.69202 [34.6365, 43.4115] [1.8721, 1.3376]
6 [58, 40] 0.73237 [57.8042, 38.9887] [0.3376, 2.5282]
7 [48, 34] 0.00528 [48.0291, 33.2507] [0.0606, 2.2037]
8 [58, 30] 2.82593 [42.2571, 30.0895] [27.1428, 0.2983]
9 [48, 28] 0.00543 [48.0293, 27.3201] [0.0610, 2.4284]

10 [62, 36] 0.00481 [62.1006, 35.6956] [0.1622, 0.8456]

Total [35.0140, 15.3315]

Table 11. Percentage errors of ten test cases using NSGA-IIWoS.

in delamination size whereas for the delamination location versus percentage frequency change, the
frequency changes increase with a very sharp curvature resulting in a high nonlinear complex function.
Hence, it can be deduced that the total sums of errors for the ten test cases are given to be 11% and
2% for delamination location and size, respectively. However the maximum error for individual cases
is shown to be 3% and 0.5% in delamination location and size, respectively. These results suggest that
the performance of the RSM algorithm results is quite satisfactory. This approach also requires less time
for computation, less than 5 s. The only significant time involved in this approach is the time required to
create the 400 data points used for the surface fitting.

4.3. Algorithm 3: NSGA-IIWoS. The NSGA-IIWoS approach is basically the minimization of the objec-
tive function directly from the FE models. This approach is very time-consuming, or in other words,
computationally expensive. To be consistent with the amount of datasets used for database creation only
400 function evaluations of the FE models are allowed for about two hours. Because of this significant
amount of time required to produce 400 function evaluations, only one test run was allowed. Over this
limit of function evaluations, Table 11 shows that prediction results are highly unsatisfactory, with the
total sum of errors for the ten test cases given as 35% and 15% in location and size, respectively. The
individual maximum errors in location and size predictions are seen to be 27% and 2.6%, respectively.

4.4. Algorithm 4: NSGA-IIWS. The NSGA-IIWS approach is essentially the minimization of the ob-
jective function via the surrogate models instead of the FE models. This approach is very time saving
and increases optimization performance and results. At 400 function evaluations, Table 12 shows the
prediction results of the best and mean predicted values over ten runs for each test case. The results are
highly satisfactory with the maximum total sum of errors for the ten test cases given as 1% and 2% in
location and size, respectively. The individual maximum errors in location and size predictions are 0.9%
and 1%, respectively. The mean and best predicted results over the ten runs are also tabulated. It takes
107 s by the surrogate model to get to the lowest minimum objective function value at 1.95× 10−8. The
standard deviation (std) over the ten runs for each case is found to be reasonable enough, confirming the
correlation of results. The total time taken for this approach is calculated as the time taken for building
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S/N Actual [X, a] Best [X, a] Mean [X, a]

1 [50, 26] [49.9291, 25.8786] [49.6955, 25.5635]
2 [68, 24] [68.0011, 24.0027] [68.0426, 24.0560]
3 [50, 20] [50.1820, 20.0756] [49.9154, 19.8753]
4 [30, 36] [30.0322, 36.0383] [30.2427, 36.0153]
5 [34, 44] [33.9957, 44.0029] [34.0788, 43.8958]
6 [58, 40] [57.9630, 40.0507] [58.0399, 40.0705]
7 [48, 34] [47.8901, 34.0011] [48.1582, 34.1024]
8 [58, 30] [58.0443, 29.8654] [57.7149, 29.9079]
9 [48, 28] [47.9878, 28.0775] [47.7617, 27.6020]

10 [62, 36] [61.9884, 36.0114] [62.0230, 36.0974]

S/N Best minObjS Best % ([(E−X), (E−a)]) Std.

1 1.03× 10−4
[0.1419, 0.4668] [0.5757, 0.6222]

2 1.36× 10−6
[0.0016, 0.0111] [0.2205, 0.1768]

3 4.41× 10−4
[0.3640, 0.3781] [0.3117, 0.2228]

4 3.10× 10−6
[0.1073, 0.1065] [0.2449, 0.2519]

5 1.95× 10−8
[0.0126, 0.0066] [0.4450, 0.3539]

6 4.46× 10−6
[0.0637, 0.1267] [0.3116, 0.4229]

7 7.75× 10−5
[0.2290, 0.0032] [0.5521, 0.4906]

8 6.91× 10−5
[0.0764, 0.4485] [0.8881, 0.3545]

9 4.85× 10−5
[0.0255, 0.2767] [0.6261, 0.9934]

10 6.10× 10−7
[0.0187, 0.0318] [0.1003, 0.2432]

Total [1.0406, 1.8559]

Table 12. Percentage errors of ten test cases using NSGA-IIWS via surrogate models
over ten runs.

the database for the surrogate models and the optimization time using surrogates, or

Total time= time to build the database for surrogate modeling+ average optimization time for 10 runs

= 7135+ 107= 7242 s.

4.5. Algorithm 5: GBLSWoS. The GBLSWoS approach is basically the minimization of the objective
function directly from the FE models. This approach is very time-consuming, requiring about three hours
to execute an average of 603 function calls over 100 different start points. The function calls cannot be
limited to the 400 function evaluations used in the other algorithms and it takes a bit more function calls
to obtain the result shown in Table 13. Prediction results are unsatisfactory with the maximum total sum
of errors for the ten test cases given as 29% in both location and size. The individual maximum errors in
location and size predictions are 7% and 6%, respectively. This approach requires no database creation
and takes an average total time of 10016 s.

4.6. Algorithm 6: GBLSWS. The GBLSWS approach is essentially the minimization of the objective
function via the surrogate models instead of the FE models. This approach is very time saving and
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S/N Actual [X, a] Predicted [X, a] MinimumObj % ([(E − X), (E − a)])

1 [50, 26] [50.7110, 27.0946] 2.7400 [1.4220, 4.2100]
2 [68, 24] [67.8292, 24.8455] 2.9079 [0.2512, 3.5229]
3 [50, 20] [52.4490, 18.7351] 3.0489 [4.8980, 6.3245]
4 [30, 36] [30.7860, 36.3687] 1.0421 [2.6200, 1.0242]
5 [34, 44] [34.7297, 45.7929] 4.1068 [2.1462, 4.0748]
6 [58, 40] [54.8648, 39.4625] 3.9815 [5.4055, 1.3438]
7 [48, 34] [51.1505, 34.1076] 1.5220 [6.5635, 0.3165]
8 [58, 30] [59.9530, 31.3064] 4.4239 [3.3672, 4.3547]
9 [48, 28] [48.2997, 29.0019] 2.4912 [0.6244, 3.5782]

10 [62, 36] [61.0460, 35.9119] 1.8632 [1.5387, 0.2447]

Total [28.8367, 28.9942]

Table 13. Percentage errors of ten test cases using GBLSWoS over 100 start points.

increases optimization performance and results. At an average 524 function calls over ten different start
points for the ten test cases, the prediction results using this method are shown in Table 14. The results
are also highly satisfactory, with the total sums of errors for the ten test cases being 0.04% and 0.12%
in location and size, respectively. The individual maximum errors in location and size predictions are
0.06% and 0.04%, respectively. The excellent results of GBLSWS can be attributed to a very low objective
function, with the lowest at 3.63× 10−9. The total time taken for this approach is calculated as the time
taken for building the database for the surrogate models and the optimization time using surrogates:

Total time= time to build database for surrogate modeling+ average optimization time for 10 runs

= 7135+ 124= 7259 s.

4.7. Summary of comparative results. Tables 15 and 16 give a comprehensive comparative analysis in
terms of completion time and least minimum objective function value and prediction errors, respectively,

S/N Actual [X, a] Predicted [X, a] # of calls MinimumObjS % ([(E − X), (E − a)])

1 [50, 26] [49.9983, 26.0013] 657 4.40× 10−7
[0.0034, 0.0050]

2 [68, 24] [68.0023, 24.0063] 477 1.26× 10−6
[0.0034, 0.0262]

3 [50, 20] [50.0011, 19.9926] 292 1.08× 10−5
[0.0022, 0.0370]

4 [30, 36] [30.0017, 36.0010] 530 4.45× 10−9
[0.0057, 0.0028]

5 [34, 44] [33.9993, 44.0010] 545 3.63× 10−9
[0.0021, 0.0023]

6 [58, 40] [57.9984, 40.0036] 635 5.50× 10−8
[0.0028, 0.0090]

7 [48, 34] [48.0014, 34.0022] 661 5.22× 10−8
[0.0029, 0.0065]

8 [58, 30] [58.0036, 29.9994] 552 7.76× 10−8
[0.0062, 0.0020]

9 [48, 28] [48.0024, 28.0058] 670 2.83× 10−7
[0.0050, 0.0207]

10 [62, 36] [61.9991, 36.0038] 523 4.48× 10−8
[0.0015, 0.0106]

Total [0.0350, 0.1220]

Table 14. Percentage errors of ten test cases using GBLSWS over ten start points.
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Figure 7. Performance comparison of different methods based on error of prediction in
delamination location X (left) and size a (right).

for the different algorithms ANN, RSM, NSGA-IIWoS, NSGA-IIWS, GBLSWoS, and GBLSWS. The pre-
diction percentage errors in delamination location and size for the ten test cases are plotted for better
comparison in Figure 7. From Tables 15 and 16 and Figure 7, the following deductions can be made.

• Giving a general conclusion on the algorithm with the best performance in terms of negligible
prediction error irrespective of the time, we see from Table 16 that ANN outperforms all other
methods, with a maximum prediction error of 0.012% in predicting delamination location and size.
This is followed by GBLSWS, with a maximum prediction error of 0.06% in terms of delamina-
tion location and size, and then NSGAWS, with a maximum prediction error of 0.5%. Fourth in
the performance order is the highly flexible RSM, with maximum prediction errors of 3.3% and
0.4% in predicting delamination location and size, respectively. The optimization methods without
surrogates (GBLSWoS and NSGA-IIWoS) both perform badly, with high amounts of error, which
justifies the approach and objective of this study since optimization without surrogates is not only
computationally demanding but yields poor results in terms of prediction accuracy because of the
huge amount of computational effort required to explore the design space.

S/N Algorithm ACT= DT+RT (s) Minimum objfun

1 ANN 7135+ 133= 7268 N/A
2 RSM 7135+ 5= 7140 N/A
3 GBLSWoS 10016 4.42
4 GBLSWS 7135+ 124= 7259 3.63× 10−9

5 NSGA-IIWoS 7135 2.82
6 NSGA-IIWS 7135+ 107= 7242 1.95× 10−8

Table 15. Average completion time (ACT) and lowest minimum objective function val-
ues (minimum objfun) for different algorithms, where DT is the time to create database
and RT is the run time for the algorithm.
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S/N ANN RSM GBLSWoS

1 [0.0109, 0.0001] [0.1448, 0.0850] [1.4220, 4.2100]
2 [0.0139, 0.0042] [1.5731, 0.0808] [0.2512, 3.5229]
3 [0.0136, 0.0003] [0.9572, 0.2250] [4.8980, 6.3245]
4 [0.0031, 0.0001] [0.3057, 0.3786] [2.6200, 1.0242]
5 [0.0019, 0.0001] [3.2618, 0.4691] [2.1462, 4.0748]
6 [0.0006, 0.0011] [2.2603, 0.0452] [5.4055, 1.3438]
7 [0.0116, 0.0002] [0.3396, 0.2771] [6.5635, 0.3165]
8 [0.0139, 0.0011] [0.7902, 0.0587] [3.3672, 4.3547]
9 [0.0043, 0.0004] [0.1131, 0.0914] [0.6244, 3.5782]

10 [0.0008, 0.0013] [1.3452, 0.0589] [1.5387, 0.2447]

Total [0.0745, 0.0088] [11.0909, 1.7698] [28.8367, 28.9942]

S/N GBLSWS NSGA-IIWoS NSGA-IIWS

1 [0.0034, 0.0050] [0.7108, 2.0482] [0.1419, 0.4668]
2 [0.0034, 0.0262] [0.1039, 0.6156] [0.0016, 0.0111]
3 [0.0022, 0.0370] [0.1268, 2.5863] [0.3640, 0.3781]
4 [0.0057, 0.0028] [4.4363, 0.4396] [0.1073, 0.1065]
5 [0.0021, 0.0023] [1.8721, 1.3376] [0.0126, 0.0066]
6 [0.0028, 0.0090] [0.3376, 2.5282] [0.0637, 0.1267]
7 [0.0029, 0.0065] [0.0606, 2.2037] [0.2290, 0.0032]
8 [0.0062, 0.0020] [27.1428, 0.2983] [0.0764, 0.4485]
9 [0.0050, 0.0207] [0.0610, 2.4284] [0.0255, 0.2767]

10 [0.0015, 0.0106] [0.1622, 0.8456] [0.0187, 0.0318]

Total [0.0350, 0.1220] [35.0140, 15.3315] [1.0406, 1.8559]

Table 16. Summary of comparative prediction percentage error results — that is, pairs
[(E − X), (E − a)]— for different proposed algorithms.

• ANN and GBLSWS give the best delamination predictions. Results show not more than 0.06%
error using both methods for predicting both delamination location and size at a known interface.
However, ANN results are achieved by solving only the inverse problem whereas the optimization
method requires the solution of the forward problems.

• When ANN and RSM are compared, it is evident that ANN’s results beat those of RSM in terms of
prediction results; however, the ease and flexibility of the RSM methods when compared to ANN
and even other methods offer vital advantages. This is basically because, unlike other methods,
RSM gives mathematical expressions (models) that can be used to predict delamination location
and size of a modeled structure at any given time.

• GBLSWS, in comparison with NSGA-IIWS, offers better results in terms of accuracy, as is evident in
the lowest minimum objective function values for the former and latter, 3.63×10−9 and 1.95×10−8,
respectively, as shown in Table 15. However, subsequent comparisons between the two approaches
when the number of variables considered increases from two to five, as in a more complicated
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composite plate, revealed that NSGA-IIWS performs consistently better than GBLSWS due to its
ability to accommodate both discrete and continuous variables, which are limited in other methods.

• When the minimum objective function values are compared in Table 15 for the optimization tech-
niques, it is shown that GBLSWS gives the lowest minimum value of objective function, followed
by NSGA-IIWS. The objective functions for optimization without surrogates are very high leading
to their inefficiency in delamination predictions.

• The number of iterations or function calls for GBLS cannot be controlled, unlike NSGA-II, and
hence it yields better results even with function evaluations of less than 300 calls. This justifies the
need to use surrogate models.

• It can also be deduced from Table 15 that it takes about the same completion time for all the
algorithms to successfully predict delaminations.

5. Conclusions

This paper presents potential candidate methods for the detection of delamination damage in composite
laminates using variations of natural frequencies before and after damage. Key algorithms (artificial
neural networks (ANN), response surface methodology (RSM), and optimization techniques) for real-
world implementation of structural health monitoring (SHM) systems for delamination detection in
composite structures are presented. The structural health monitoring systems proposed are incorporated
with vibration-based damage detection techniques, which has been regarded as an efficient way to assess
delamination damage in a structure and foresee probable costly failures. This research should help to
identify starting points for damage detection via vibration-based monitoring and also guide practitioners
in the field in choosing and implementing the most effective available damage-identification algorithms.
The conclusions of our findings can be summarized as thus:

• Different inverse algorithms for delamination damage detection for SHM have been successfully
developed and tested with numerical results. The notable excellent delamination prediction results
obtained reiterate the robustness and accuracy of the algorithms as well as the approach. The re-
sults also underline the advantages of using K-means clustering for the choice of database while
integrating surrogates in the optimization loop.

• An interesting finding in this research is that related to the superiority of the incorporation of sur-
rogate models in the optimization loop. Surrogates with adequate approximation accuracy can be
used to replace computationally expensive analysis. Management of such surrogates, that is, training
regimes, selection of training data, and validation schemes, play an important role in any surrogate-
assisted optimization exercise. Hence, surrogates enhance the optimization search performance by
exploring the entire design space in a relatively short time.

• The use of optimization techniques directly in the optimization loop for delamination detection in
composite beams and plates requires evaluations of large numbers of candidate solutions, thereby
making the evaluations computationally expensive. The research reported in this thesis is focused on
improving the efficiency of delamination detection results by allowing minimum computational cost.
The approach adopted was to use surrogate models in lieu of expensive simulations to evaluate the
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natural frequencies of the laminates. Further, an optimization strategy has been developed by integra-
tion with surrogate models. The optimization methodology was successfully applied to delamination
prediction with the objective of improving structural integrity and minimizing computational costs.

• ANN is a superior and more accurate modeling technique as compared with RSM, as it represents
nonlinearities in a much better way. However, a major disadvantage of ANN is that the result-
ing weights of the trained network are difficult to interpret, unlike RSM, which provides physical
mathematical models that are easy to compute and interpret. Another problem peculiar to ANN, in
contrast to RSM, is the difficulty of finding an appropriate network architecture. The RSM algorithm
is straightforward in that it gives a physical mathematical expression for a delamination prediction
and its model can easily be validated by statistical means.

• Both RSM and ANN require a large number of numerical experiments for obtaining a trained ANN
or regressed response surfaces for predicting the delamination location and size from the measured
data. By means of K-means clustering, the total number of numerical experiments required to build
an ANN and RSM model is reduced to a substantial size. This represents a significant computational
cost reduction associated with the developed approach. It can be seen from the previous work by
the authors that with small training datasets, ANN and RSM fail to give accurate prediction results.
But when solving a forward problem by creating surrogates with small datasets (say of size 40) and
doing surrogate-assisted optimization with gradient-based local search (GBLS) and a nondominated
sorting genetic algorithm (NSGA-II), the prediction results are very satisfactory.

• When one is interested in solving only the two-variable problem (delamination prediction at a known
interface), the RSM and ANN algorithms deliver a good job. However, for three variables (delamina-
tion prediction at an unknown interface), surrogate-assisted optimization using GBLS and NSGA-II
is very efficient. Finally, for the five-variable problem, as in composite plates, NSGA-II is preferred.
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