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ON SUCCESSIVE DIFFERENTIATIONS OF THE ROTATION TENSOR:
AN APPLICATION TO NONLINEAR BEAM ELEMENTS

TEODORO MERLINI AND MARCO MORANDINI

Successive differentiations of the rotation tensor are characterized by successive differential rotation
vectors. Useful expressions of the differential rotation vectors for differentiations up to third order are
derived. In the context of the exponential parameterization, explicit expressions for the differential maps
(the maps providing the differential rotation vectors from the differentials of the parameters chosen) are
obtained by resorting to an original infinite family of recursive subexponential maps. Useful properties
of the mapping tensors are discussed.

The formulation is appropriate for nonlinear problems of computational solid mechanics, when spa-
tial, incremental, and virtual variations of particle orientations must be dealt with together. As an appli-
cation, the classical problem of modeling space-curved slender beams by finite elements is considered.
The variational formulation and the nonlinear interpolation of the orientations, together with the relevant
linearizations, consistently exploit the proposed differentiations and lead to an objective beam element.
Two test cases are discussed.

1. Introduction

The motivation for a circumstantial study of the differentiations of the rotation tensor comes from spe-
cific demands in computational continuum mechanics by the finite element method and in the relevant
variational formulations. As far as three-dimensional solids are concerned, the rotation field is manifestly
an unknown variable in nonlinear mechanics of polar materials [Grekova and Zhilin 2001; Bauer et al.
2010], but is introduced as well as an unknown variable in some discrete representations with classical
nonpolar materials [Simo et al. 1992; Atluri and Cazzani 1995; Merlini 1997]. Moreover, the rotation
field is a primary unknown variable in Cosserat-type formulations of structured solid mechanics, namely
beams, that behave as one-dimensional polar continua, and shells (refer to [Altenbach et al. 2010] and
references therein), that feature a mixed polar/nonpolar constitutive behavior.

Multiple differentiations of the finite-rotation field are involved in nonlinear continuum mechanics
problems. The particle orientations (that is, rotations from an absolute reference frame) within a body in
any (deformed) configurations “differ” in general from each other, and the differential (hence the gradient)
of the orientation field is used to define angular curvatures within the body (and hence angular strains
by comparing curvatures in different configurations). Throughout the body deformation, the particle
orientations undergo rotations; differential rotations are the unknowns of an incremental solution process
in nonlinear boundary value problems. Following a variational approach with its discrete representation
by the finite element method, one handles virtual functionals depending on virtual variable fields, so

Keywords: finite rotation differentiations, exponential map, rotation differential maps, space-curved slender beams,
orientation interpolation, nonlinear beam elements.
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virtual (differential) rotations of the particle orientations must be accounted for as well. This outline of
the computational strategy lets us see that we have to deal with (at least) three independent variations of
the orientation field: a spatial variation within the material body (by itself a complicated task in three
dimensions), an incremental variation along with the configuration evolution, and a virtual variation that
enables us to cast a discrete equation set.

A consistent setting that allows one to handle successive derivatives of the rotation tensor in a sys-
tematic way is lacking in the literature. A number of papers on the derivatives of wider classes of
tensor-valued functions of a tensor were published during the past decade. Often, these investigations
were motivated in the field of continuum mechanics [Rosati 1999; Itskov 2002; Jog 2008] and in the
modeling of nonlinear elastoplastic constitutive laws [de Souza Neto 2001]. Most papers concern the
representation and the derivatives of isotropic tensor functions of either a symmetrical or a generally
unsymmetrical tensor [Ortiz et al. 2001; de Souza Neto 2001; 2004; Itskov and Aksel 2002; Itskov 2003;
Fung 2004; Lu 2004; Dui et al. 2006; Wang and Dui 2007; Jog 2008]. Some of these works deal explicitly
with exponential functions, and in this context reference is due to the accurate and worthy paper [Najfeld
and Havel 1995], published in a field far from the scope of engineering. Though some cues may come
from these works, it seems difficult to bring them in the bed of orthogonal tensors, as the exponential
functions of skew-symmetric tensors are.

In the case of orthogonal tensors, explicit formulae for the derivatives of the tangent map of the rotation
tensor are available, for example, in [Borri et al. 1990; Ritto-Corrêa and Camotim 2002; Mäkinen 2008],
but again a systematic setting of successive differentiations is missing. However, the specific properties
of the special orthogonal group should help in obtaining closed-form expressions for any differentiations.
This task is undertaken in this paper. Our approach is based on an original decomposition of the expo-
nential map into an infinite family of recursive subexponential maps, whose lowest differentiations are
affordable. This enables us to manage successive differentiations of the rotation tensor with analytical
expressions that are safe to implement and exact within machine precision. The proposed methodology
was implemented in a nonlinear finite element code and successfully tested with solids [Merlini and
Morandini 2005] and shells [Merlini and Morandini 2011a]; in [Merlini and Morandini 2004b, Appen-
dices] a brief description of the methodology was given.

The outline of the paper is as follows. In Section 2 the essential structure of successive differentiations
of an orthogonal tensor is presented and appropriate differential rotation vectors are proposed, however
no parameterization of the rotation tensor is introduced yet. In Section 3 the exponential map is assumed
for the rotation tensor and a useful family of subexponential maps is conveniently set. The lowest
differentiations of the subexponential maps are dealt with in Section 4 and are used in Section 5 in order
to provide expressions for the differential maps of the rotation, that is, the maps from the differentials of
the rotation vector to the differential rotation vectors themselves.

The remaining part of the paper deals with an application of the proposed formulation to a classical
problem in computational mechanics, the finite-element modeling of space-curved slender beams. The
essentials of Reissner–Simo beam variational mechanics are discussed in Section 6 and a beam element
based on a consistent nonlinear interpolation is discussed in Section 7. The formulation is contrasted
with the analogous paper [Ritto-Corrêa and Camotim 2002] to highlight the significance of adopting
a nonlinear element. In Section 8, two popular numerical tests demonstrate the performance of both
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two-node and three-node beam elements. As further remarked in Section 9, the formulation is kept
parameterization-free for as long as possible.

The style of the mathematical developments is kept as plain as possible. Abstract formalisms, typical
of rotation math, are avoided as unnecessary to understanding matters that are meant for people with
a mechanical background. When tensor-valued functions are differentiable — as rotations are, being
exponential functions of the rotation vector — we by far prefer working with differentials than with
directional derivatives. On the other hand, a heavy use of higher-order tensors is unavoidable in this
context, and an index-free tensor notation is adopted throughout the paper to make it easier to follow
complicated developments. Tensor notations and rules used in the paper are gathered in the Appendix.

2. Structure of successive differentiations of an orthogonal tensor

From a merely geometric standpoint, a rotation is a tensor Φ that transforms a frame of three vectors
(say a, b, and c) into another frame (Φa, Φb, and Φc), while preserving the vector lengths and their
mutual orientations, and hence the frame volume a× b · c. To work so, a rotation tensor must obey the
symmetrical tensor equation

ΦΦT
= I (1)

and the scalar condition detΦ =+1. Equation (1) is called the orthogonality condition and represents
six scalar constraints to fulfill in order to classify a tensor as a rotation; as a consequence, it makes a
rotation tensor depend on just three scalar parameters.

2.1. Differential rotation vectors. It is well known that the differentiation of the rotation tensor is char-
acterized by a skew-symmetric tensor, hence by the relevant axial vector [Pietraszkiewicz and Badur
1983; Cardona and Géradin 1988; Ibrahimbegović et al. 1995]. It has been found that any successive
independent differentiation of the rotation tensor is in turn characterized by a further vector that depends
on the differentiations of the preceding characteristic vectors themselves [Merlini and Morandini 2004a].
In this section we delve into this topic.

Let us start by differentiating the orthogonality condition (1). We denote successive independent
variations with d1, d2, d3, . . . and keep evaluating d1(ΦΦ

T), d2d1(ΦΦ
T), d3d2d1(ΦΦ

T), . . . in sequence.
We use the symbolic notation dn( ) for a multiple differential dn . . . d3d2d1( ). Evaluation of the n-th
differential dn(ΦΦT) yields a sum of 2n terms, specifically the extreme tensors, namely dnΦΦT and its
transpose Φ dnΦT, and the bulk of the remaining tensors that contain lower-order differentials (up to
dn−1Φ) of the rotation. Let us denote by −2ΦS

dn the sum of this bulk of tensors, which is of course a
symmetric tensor (we denote a symmetric tensor by a superscript ( )S and a skew-symmetric tensor by
means of its axial vector a as a×, see (A.1)). Thus, a multiple differentiation of (1) ends up in a form
like dn(ΦΦT)= dnΦΦT

− 2ΦS
dn +Φ dnΦT

= dnΦΦT
−ΦS

dn + (dnΦΦT
−ΦS

dn )
T
= 0. This means that

tensor dnΦΦT
−ΦS

dn is skew-symmetric, say ϕdn×, and finally we obtain the decomposition of tensor
dnΦΦT into its symmetric and skew-symmetric parts,

dnΦΦT
= (ϕdn×)+ΦS

dn .

As it is well known, tensor d1ΦΦ
T
= ϕd1× is skew-symmetric (ΦS

d1
= 0) and ϕd1 represents the

characteristic vector of the first differential d1Φ of the rotation tensor. The successive tensors dnΦΦT
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with n > 1 have both symmetric and skew-symmetric parts, instead. The former ones (ΦS
dn ) are alge-

braic functions of the characteristic vectors ϕd1 , ϕd2, . . . ,ϕdn−1 of the preceding lower-order differentials,
whereas the latter ones (ϕdn×) contain the differentials of those characteristic vectors as well. Therefore,
the axial vector ϕdn can be assumed as a characteristic vector of the n-th differential dnΦ of the rotation
tensor. Note that vectors ϕdn with n > 1 also contain algebraic functions of the preceding characteristic
vectors ϕd1 , ϕd2, . . . ,ϕdn−1 , thus there is some arbitrariness in the choice of the characteristic vector. Our
choice is to assume the whole axial vector of dnΦΦT as the characteristic vector of the differential dnΦ.

The above characterization of successive differentials of the rotation tensor is now made explicit
for differentiations up to third order. We denote three successive independent variations by δ, ∂ , and
d. In computational finite elasticity, such symbols are conveniently associated respectively with virtual
variations, incremental variations, and spatial variations — the latter being derivatives along either a one-
coordinate domain (beams), or surface gradients on a two-dimensional domain (shells), or even gradients
on a three-dimensional solid domain. After evaluation of δ(ΦΦT)= 0, ∂δ(ΦΦT)= 0, and d∂δ(ΦΦT)= 0,
we easily obtain

δΦΦT
= ϕδ×,

∂δΦΦT
= ϕ∂δ×+

1
2 (ϕ∂×ϕδ×+ϕδ×ϕ∂×),

d∂δΦΦT
= ϕd∂δ×+

1
2 (ϕd∂×ϕδ×+ϕ∂δ×ϕd×+ϕδd×ϕ∂×+ϕd×ϕ∂δ×+ϕ∂×ϕδd×+ϕδ×ϕd∂×),

(2)

where ϕδ, ϕ∂δ, and ϕd∂δ are proposed here as the characteristic vectors introduced at each successive
variation.

It is worth noting that no parameterization of the rotation tensor is implied in the foregoing charac-
terization. In spite of that, the first characteristic vector ϕδ has been properly referred to as the virtual
rotation vector [Borri et al. 1990]. A simple reason for such terminology comes from considering the
rotation built with the infinitesimal rotation vector ϕδ, that is, exp(ϕδ×) � I +ϕδ×, and appending it
to a rotation Φ; the composed rotation becomes exp(ϕδ×)Φ � (I + ϕδ×)Φ = Φ + δΦ and matches
the expression of what is often understood — perhaps improperly — as a varied rotation. However, it is
worth stressing that ϕδ is an (independent) infinitesimal differential rotation vector and by no means has
to coincide (in general) with the differential δϕ of the rotation vector ϕ= ax lnΦ [Borri et al. 1990]. Note
that vector ϕδ is also related to the concept of spin and is often given a perhaps misleading notation using
the differential symbol δ applied at a different variable, for example, δω in [Ritto-Corrêa and Camotim
2002]. We by far prefer the notation with an appended subscript δ to the rotation vector itself, a notation
that stresses unequivocally that ϕδ is not the variation of a vector-valued function.

We extend the same notation convention to vectors ϕ∂δ and ϕd∂δ and adopt a general terminology for
the characteristic vectors of any differentials of the rotation tensor by calling them differential rotation
vectors. These vectors account for the variations of the differential vectors of lower order, as it is shown
next.

2.2. Evaluation of successive differential rotation vectors. Expressions for evaluating the second and
third differential rotation vectors follow from their definitions as axial vectors, that is, ϕ∂δ = ax(∂δΦΦT)

and ϕd∂δ = ax(d∂δΦΦT). From

ϕ∂δ×=
1
2 (∂δΦΦ

T
− (∂δΦΦT)T) and ϕd∂δ×=

1
2 (d∂δΦΦ

T
− (d∂δΦΦT)T)
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we obtain, after some algebraic manipulations involving (2), the expressions

ϕ∂δ = ∂ϕδ−
1
2 ϕ∂ ×ϕδ,

ϕd∂δ = dϕ∂δ− 1
2 ϕd×ϕ∂δ−

1
2 (ϕd⊗ϕ∂ ·ϕδ+ (ϕ∂ ⊗ϕδ)

S
·ϕd)

= d∂ϕδ− 1
2 ϕd∂ ×ϕδ−

1
2 (ϕd×ϕ∂δ+ϕ∂ ×ϕδd)− (ϕd⊗ϕ∂)

S
·ϕδ,

(3)

where the symbols d, ∂ , and δ may exchange cyclically. Other expressions, symmetrical with respect to
the variations d, ∂ , and δ, easily follow from (3):

ϕ∂δ =
1
2 (∂ϕδ+ δϕ∂),

ϕd∂δ =
1
3 (dϕ∂δ+ ∂ϕδd+ δϕd∂)−

1
6 (ϕd×ϕ∂δ+ϕ∂ ×ϕδd+ϕδ×ϕd∂)

−
1
3 (ϕd⊗ϕ∂ ·ϕδ+ϕ∂ ⊗ϕδ ·ϕd+ϕδ⊗ϕd ·ϕ∂)

=
1
3 (d∂ϕδ+ ∂δϕd+ δdϕ∂)− 1

6 (ϕd×ϕ∂δ+ϕ∂ ×ϕδd+ϕδ×ϕd∂)

−
1
3 (ϕd⊗ϕ∂ ·ϕδ+ϕ∂ ⊗ϕδ ·ϕd+ϕδ⊗ϕd ·ϕ∂),

(4)

together with the identity

dϕ∂δ+ ∂ϕδd+ δϕd∂ = d∂ϕδ+ ∂δϕd+ δdϕ∂ .

In practical applications, a parameterization of the rotation tensor must be resorted to, and the differ-
ential rotation vectors are solved for the differentials of the parameters chosen. Evaluation of the first
differential vector follows from its definition ϕδ = ax(δΦΦT); then, the next differential vectors ϕ∂δ and
ϕd∂δ are evaluated, via (3) or (4), by differentiating the lower-order differential vectors themselves —
which in turn is a parameterization-dependent operation. Such customized evaluations of the differential
vectors are addressed in Section 5, with focus on our preferred natural parameterization.

Alternative expressions, based on corotational instead of direct differentiations of lower-order differ-
ential vectors, are available for ϕ∂δ and ϕd∂δ. Introducing the corotational differentiations

Φ ∂(ΦTϕδ)= ∂ϕδ−ϕ∂ ×ϕδ,

Φ d(ΦTϕ∂δ)= dϕ∂δ−ϕd×ϕ∂δ,

Φ d∂(ΦTϕδ)= d∂ϕδ−ϕd∂ ×ϕδ− (ϕd×ϕ∂δ+ϕ∂ ×ϕδd),

(5)

and the related formulae

Φ d(ΦTϕ∂δ)+Φ ∂(Φ
Tϕδd)+Φ δ(Φ

Tϕd∂)=Φ d∂(ΦTϕδ)+Φ ∂δ(Φ
Tϕd)+Φ δd(ΦTϕ∂)

= dϕ∂δ+ ∂ϕδd+δϕd∂ − (ϕd×ϕ∂δ+ϕ∂ ×ϕδd+ϕδ×ϕd∂)

= d∂ϕδ+ ∂δϕd+δdϕ∂ − (ϕd×ϕ∂δ+ϕ∂ ×ϕδd+ϕδ×ϕd∂),

equation (3) can be written

ϕ∂δ =Φ ∂(Φ
Tϕδ)+

1
2 ϕ∂ ×ϕδ,

ϕd∂δ =Φ d(ΦTϕ∂δ)+
1
2 ϕd×ϕ∂δ−

1
2 (ϕd⊗ϕ∂ ·ϕδ+ (ϕ∂ ⊗ϕδ)

S
·ϕd)

=Φ d∂(ΦTϕδ)+
1
2 ϕd∂ ×ϕδ+

1
2 (ϕd×ϕ∂δ+ϕ∂ ×ϕδd)− (ϕd⊗ϕ∂)

S
·ϕδ,

(6)
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and the symmetrical forms (4) become

ϕ∂δ =
1
2 (Φ ∂(Φ

Tϕδ)+Φ δ(Φ
Tϕ∂)),

ϕd∂δ =
1
3 (Φ d(ΦTϕ∂δ)+Φ ∂(Φ

Tϕδd)+Φ δ(Φ
Tϕd∂))+

1
6 (ϕd×ϕ∂δ+ϕ∂ ×ϕδd+ϕδ×ϕd∂)

−
1
3 (ϕd⊗ϕ∂ ·ϕδ+ϕ∂ ⊗ϕδ ·ϕd+ϕδ⊗ϕd ·ϕ∂)

=
1
3 (Φ d∂(ΦTϕδ)+Φ ∂δ(Φ

Tϕd)+Φ δd(ΦTϕ∂))+
1
6 (ϕd×ϕ∂δ+ϕ∂ ×ϕδd+ϕδ×ϕd∂)

−
1
3 (ϕd⊗ϕ∂ ·ϕδ+ϕ∂ ⊗ϕδ ·ϕd+ϕδ⊗ϕd ·ϕ∂).

Combining (3), (5), and (6), some remarkable relations follow:

Φ ∂(ΦTϕδ)= ∂ϕδ−ϕ∂ ×ϕδ

= δϕ∂ ,
(7)

Φ d(ΦTϕ∂δ)= dϕ∂δ−ϕd×ϕ∂δ

= ∂δϕd−
1
2 (ϕ∂ × δϕd+ϕδ× ∂ϕd),

(8)

Φ d∂(ΦTϕδ)= d∂ϕδ−ϕd∂ ×ϕδ− (ϕd×ϕ∂δ+ϕ∂ ×ϕδd)

= δϕd∂ −
1
2 (ϕd× δϕ∂ +ϕ∂ × δϕd).

(9)

They will be exploited in Section 5.

3. The exponential and subexponential maps

The structure of the differentiations of the rotation tensor discussed above has general validity, indepen-
dently of any particular parameterization. From now on, a specific parameterization is assumed instead.
We adopt the natural vectorial parameterization and resort to the so-called exponential map,

Φ = exp(ϕ×)=
∞∑

n=0

1
n!
ϕ×n, (10)

where ϕ× is the skew-symmetric tensor built on the rotation vector ϕ (refer, for example, to [Argyris
1982; Ritto-Corrêa and Camotim 2002; Bauchau and Trainelli 2003; Mäkinen 2008]).

In this section we propose a helpful representation of the rotation tensor by means of a family of
recursive subexponential maps; such representation will be profitably exploited in the parameterized
differentiations in Sections 4 and 5. However, let us introduce this family in the realm of ordinary scalar
functions first.

3.1. The family of subexponential functions. Consider the exponential function and the relevant series
expansion X (x)= exp(x)=

∑
∞

n=0(1/n!)xn . Collect all terms after the first (unity) and take the second
term itself as the common factor of a subsequent series X1(x). Operate in the same way on X1(x) to
define a subsequent series X2(x), and so on. By proceeding recursively, an infinite family of functions
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X0(x), X1(x), X2(x), . . . is defined:

X (x)= 1+ x + x2

2
+

x3

6
+ · · ·︸                         ︷︷                         ︸

X0(x)

= X0(x)

= 1+ x
(

1+ x
2
+

x2

6
+

x3

24
+ · · ·

)
︸                               ︷︷                               ︸

X1(x)

= 1+ x X1(x)

= 1+ x
(

1+ x
2

(
1+ x

3
+

x2

12
+

x3

60
+ · · ·

)
︸                               ︷︷                               ︸

X2(x)

)
= 1+ x

(
1+ x

2
X2(x)

)

= 1+ x
(

1+ x
2

(
1+ x

3

(
1+ x

4
+

x2

20
+

x3

120
+ · · ·

)
︸                                ︷︷                                ︸

X3(x)

))
= 1+ x

(
1+ x

2

(
1+ x

3
X3(x)

))
= · · · = · · · .

(11)

In (11), functions Xm(x) (m = 0, 1, 2, . . . ) are nested together inside each other as matryoshkas. Alter-
natively, the exponential function can be given one of the following forms of finite series:

X (x)= X0(x)

= 1+ x X1(x)

= 1+ x + 1
2 x2 X2(x)

= · · ·

=

m−1∑
n=0

1
n!

xn
+

1
m!

xm Xm(x).

(12)

The meaning of (12) is clear: truncating the series expansion of X (x) at the m-th term is exact, provided
the last retained term is multiplied by the m-th element of the family X0(x), X1(x), X2(x), . . . . Thus,
the elements of this family behave as plugs to properly truncate the series expansion of X (x).

Functions Xm(x) are equipped with the following series expansions:

Xm(x)= expm(x)=
∞∑

n=0

m!
(n+m)!

xn (∀m ≥ 0), (13)

where we resort to the symbolic notation expm(x) owing to the evident similarity with the exponential
expansion. We refer to the set of functions expm(x) as the family of subexponential functions (a plot
of the first few is illustrated in Figure 1). The base function exp0(x) is the exponential function itself,
whereas at very high integer m the subexponential function approaches unity, expm→∞(x)→ 1.

It is clear from the nesting representation (11) that each subexponential function can in turn be ex-
pressed via some higher subexponential functions. This recursive character allows us to extend the
representation (12) to the whole family, in the form of the relation
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Figure 1. The family of subexponential functions.

Xm(x)=
l−1∑
n=0

m!
(n+m)!

xn
+

m!
(l +m)!

x l Xl+m(x) (∀m ≥ 0,∀ l ≥ 1), (14)

which can also be obtained directly from (13).

3.2. The family of subexponential maps. The family of subexponential maps Φ0, Φ1, Φ2, . . . of the
rotation tensor is introduced exactly the same way as above. Tensors Φm (m = 0, 1, 2, . . . ) take the
series expansion form

Φm = expm(ϕ×)=

∞∑
n=0

m!
(n+m)!

ϕ×n (∀m ≥ 0). (15)

The first element exp0(ϕ×) of the family coincides with the exponential map (10) and the asymptotic
element is the unit tensor, expm→∞(ϕ×)→ I . The subexponential maps are nested together just like
the subexponential functions are in (11) and allow us to properly truncate the exponential map as in (12).
This truncation property applies recursively to each element of the family, so, as in (14), we can state

Φm =

l−1∑
n=0

m!
(n+m)!

ϕ×n
+

m!
(l +m)!

ϕ×l Φl+m (∀m ≥ 0,∀ l ≥ 1).

In particular, the strongest truncation (l = 1),

Φm = I +
1

m+ 1
ϕ×Φm+1 (∀m ≥ 0), (16)

lets us envisage a nested representation of the rotation tensor employing all the subexponential maps in
cascade.
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It can be noted that all the subexponential maps expm(ϕ×) share the same eigenvector ϕ; they are
transparent to their argument, ϕ×Φm =Φmϕ×, and commute with each other, ΦmΦn =ΦnΦm . Other
useful identities involving subsequent tensors Φm (with m ≥ 1) are easily proven:

ϕ×Φm = m(Φm−1− I),

Φm−1−Φm =
1
m

∞∑
n=1

m!
(n+m)!

ϕ×n Φn+m =

( 1
m
Φm −

1
m+1

Φm+1

)
ϕ×,

(Φm −Φm+1)ϕ×= I +mΦm−1− (m+ 1)Φm,

ΦmΦ
T
0 =

m∑
n=1

(−1)n−1m!
n!(m− n)!

ΦT
n .

(17)

Finally, the following property is quoted:

(Φm −Φn)I×ϕ×= ϕ× I×(Φm −Φn) (∀m, n),

which can be proved using the expansion (15) and the tensor identities (A.7), (A.13), and (A.14). Tensor
I× is the unitary third-order tensor of skew-symmetrical nature, namely Ricci’s tensor (A.6).

3.3. Compact form. Series expansions Φm can be brought to forms made of a finite number of terms and
more suited for computations. This is accomplished by recursively using the formula ϕ×3

+ϕ2ϕ×= 0,
where ϕ is the magnitude of vector ϕ, namely the rotation angle. This formula follows from the Cayley–
Hamilton theorem applied to skew-symmetric tensor ϕ×, or it can be drawn directly from tensor identity
(A.9); it can be generalized to any power ϕ×n (∀ n ≥ 1) in the forms

ϕ×2n−1
= (−1)n−1ϕ2(n−1)ϕ×,

ϕ×2n
= (−1)n−1ϕ2(n−1)ϕ×2 .

Using these formulae and the trigonometric series expansions in (15) yields

Φ0 = I + aϕ×+b0ϕ×
2,

Φm = I +mbm−1ϕ×+bmϕ×
2 (∀m ≥ 1).

(18)

Equation (18) is referred to as the compact form of the family of tensors Φm ; they stand on three
minimal tensorial bases, the identity I and tensors ϕ× and ϕ×2. The coefficients a and bm are recursive
functions of the rotation angle,

a =
∞∑

n=0

(−1)n

(2n+ 1)!
ϕ2n
=

1
ϕ

sinϕ,

b0 = 0!
∞∑

n=0

(−1)n

(2n+ 2)!
ϕ2n
=

1
ϕ2 (1− cosϕ),

b1 = 1!
∞∑

n=0

(−1)n

(2n+ 3)!
ϕ2n
=

1
ϕ2 (1− a),

bm = m!
∞∑

n=0

(−1)n

(2n+ 2+m)!
ϕ2n
=

1
ϕ2 (1−m(m− 1)bm−2) (∀m ≥ 2).

(19)
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Details about the computational implementation of these coefficient functions are discussed in [Merlini
and Morandini 2004b, Appendix A].

It is seen that (18)1 is the well-known Euler–Rodrigues formula of the rotation tensor [Cheng and
Gupta 1989]. The expression for Φ1 in (18)2 corresponds to another well-known tensor in the finite-
rotation literature, sometimes referred to as the associated differential tensor [Bauchau and Trainelli
2003]. This tensor represents the mapping of the differential dϕ of the rotation vector onto the differential
rotation vector ϕd, which characterizes the tangent space of the rotation [Ibrahimbegović et al. 1995; Borri
et al. 2000; Ritto-Corrêa and Camotim 2002; Mäkinen 2008].

4. Differentiation of subexponential maps

Subexponential maps expm(ϕ×) are power series expansions of the argument itself and as such are
differentiable tensor functions. In fact, each differential d(ϕ×n) of a power term in (15) is easily brought
to the form [de Souza Neto 2001]

d(ϕ×n)=

n∑
k=1

ϕ×k−1 dϕ×ϕ×n−k (∀ n > 0), (20)

linear with respect to dϕ×. So, the differential of a tensor Φm can be brought to an expression like
dΦm = Φ

T132
m/ · dϕ, linear with the variation of the rotation vector, where Φm/ is a third-order tensor,

a function itself of powers of ϕ×. It follows that tensor Φm/ is a differentiable tensor itself, and as a
consequence tensor Φm is two times differentiable.

Recursively, it can be seen that the subexponential maps are continuously differentiable with respect
to their vector argument. However, for present purposes, our interest is in the first two successive, and
independent, differentiations, say δ and ∂ . The relevant differentials can be cast in the form

δΦm =Φm/ : δϕ⊗ I, ∂Φm/ =Φ
1234
m// : ∂ϕ⊗ I,

∂δΦm =Φm/ : ∂δϕ⊗ I +Φ1234
m//

... ∂ϕ⊗ δϕ⊗ I,
(21)

where Φ1234
m// is a fourth-order tensor, symmetric with respect to the two inner polyadic legs (see (24);

refer to the Appendix for notation and rules), and the variations ∂ and δ are of course interchangeable.
We may refer to tensors Φm/ and Φ1234

m// as the first derivative and the second derivative, respectively, of
tensor Φm with respect to the rotation vector.

Equation (21) defines the first two derivatives of the subexponential maps, however successive deriva-
tives can analogously be defined on demands. The recursive forms developed in Section 4.2 pave the way
for building successive derivatives virtually up to any order. In this section we derive useful expressions
of the first two derivative tensors.

4.1. Series expansion form of the derivative tensors. Simple series expansion forms of the derivative
tensors are easily obtained recalling (20). Differentiation of (15) yields

δΦm =

∞∑
j=0

∞∑
k=0

m!
(1+ j + k+m)!

ϕ× j
δϕ×ϕ×k

=

∞∑
j=0

∞∑
k=0

−m!
(1+ j + k+m)!

ϕ× j I×ϕ×k
:δϕ⊗ I, (22)
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and comparison with (21)1 provides the first derivative tensor in the power series expansion form

Φm/ =

∞∑
j=0

∞∑
k=0

−m!
(1+ j + k+m)!

ϕ× j I×ϕ×k . (23)

Subsequently, differentiation of (23) yields

∂Φm/ =

∞∑
j=0

∞∑
k=0

∞∑
l=0

−m!
(2+ j + k+ l +m)!

ϕ× j (∂ϕ×ϕ×k I×+ I×ϕ×k ∂ϕ×)ϕ×l

=

∞∑
j=0

∞∑
k=0

∞∑
l=0

2m!
(2+ j + k+ l +m)!

(ϕ× j I×ϕ×k I×ϕ×l)S1234
: ∂ϕ⊗ I,

(24)

and comparison with (21)2 provides the second derivative tensor in the power series expansion form

Φ
1234
m// =

∞∑
j=0

∞∑
k=0

∞∑
l=0

2m!
(2+ j + k+ l +m)!

(ϕ× j I×ϕ×k I×ϕ×l)S1234. (25)

Equations (23) and (25) are concise straightforward expressions of the derivative tensors, however they
may not be fit for numerical computations. More suitable expressions are derived in next subsections.

4.2. Recursive form of the derivative tensors. Differential (22) can be worked out using (15), (16),
(17)1, and (17)2. After some algebraic manipulations, the following expression is obtained:

δΦm =
1

m+1

(
I×− (I×Φm+1+Φm+1 I×)− 1

2
(
ϕ× I×(Φm+1−Φm+2)

+ (Φm+1−Φm+2)I×ϕ×
))
: δϕ⊗ I . (26)

Recalling (21), subsequent differentiation yields

∂δΦm=
1

m+1
(
I×−(I×Φm+1+Φm+1 I×)−1

2
(ϕ×I×(Φm+1−Φm+2)+(Φm+1−Φm+2)I×ϕ×)

)
:∂δϕ⊗I

+
1

m+1

(1
2
(
I× I×(Φm+1−Φm+2)+ (Φm+1−Φm+2)I× I×

)
− (I×Φm+1/+Φm+1/ I×)

−
1
2
(
ϕ× I×(Φm+1/−Φm+2/)+ (Φm+1/−Φm+2/)I×ϕ×

))S1234 ... ∂ϕ⊗ δϕ⊗ I . (27)

In (26) and (27), new expressions of the derivative tensors Φm/ and Φ1234
m// , defined in (21), are clearly

recognized. They are referred to as the recursive form of the derivatives of tensor Φm as they are functions
of the next subexponential maps and of their first derivative tensors. Such recursive forms are better suited
for numerical computations than the series expansion forms.

4.3. Compact form of the derivative tensors. Other expressions of the derivative tensors can be drawn
from (26) and (27) using the compact forms (18) of the subexponential maps. These new expressions



316 TEODORO MERLINI AND MARCO MORANDINI

stand on five tensorial bases and are called the compact form of the derivative tensors:

Φm/ = fm0 I×+ fm1(ϕ× I×+ I×ϕ×)+ fm2(ϕ×
2 I×+ϕ× I×ϕ×+I×ϕ×2)

+ fm3
1
2 (ϕ×

2 I×ϕ×+ϕ× I×ϕ×2)+ fm4ϕ×
2 I×ϕ×2, (28)

Φ
1234
m// =

(
gm0 I× I×+gm1(ϕ× I× I×+ I×ϕ× I×+ I× I×ϕ×)+gm2(ϕ×

2 I× I×+ I×ϕ×2 I×+ I× I×ϕ×2

+ϕ× I×ϕ× I×+ϕ× I× I×ϕ×+I×ϕ× I×ϕ×+ϕ2 I× I×)

+ gm3ϕ× I×ϕ× I×ϕ×+gm4ϕ× I×ϕ×2 I×ϕ×
)S1234

. (29)

The coefficient functions in (28) and (29) are defined as follows:

fm0 =
−1

m+ 1
, gm0 = 2bm,

fm1 =−bm, gm1 = bm − bm+1,

fm2 =
−1

m+ 1
bm+1, gm2 =

1
m+ 1

(bm+1− bm+2),

fm3 =
−1

m+ 1
(bm+1− bm+2), gm3 =

1
m+ 1

(bm+1− bm+2)−
1

m+ 2
(bm+2− bm+3),

fm4 =
−1

(m+ 1)(m+ 2)
(bm+2− bm+3), gm4 =

1
m+ 1

(
1

m+ 2
(bm+2− bm+3)−

1
m+ 3

(bm+3− bm+4)

)
.

5. Differential maps of the rotation

The differential maps of the rotation transform the multiple differentials of the rotation vector into the
differential rotation vectors defined in Section 2. The differentiations of the lowest two subexponential
maps, as derived above, are used in this section to develop the expected differential maps and to highlight
some important properties.

5.1. Explicit notation for the lowest two subexponential maps. The first and second subexponential
maps play important roles in computational mechanics. As mentioned in Section 3.3, Φ0 is the expo-
nential map itself (that is, the rotation tensor), whereas Φ1 is known as its tangent map or the associated
differential map [Borri et al. 2000]; in the present context, the latter will be referred to concisely as the
tangent tensor (of the rotation). Both of these tensors are assigned hereafter specific notations:

Φ =Φ0 = exp(ϕ×)=
∞∑

n=0

1
n!
ϕ×n
= I + aϕ×+b0ϕ×

2,

Γ =Φ1 = exp1(ϕ×)=

∞∑
n=0

1
(n+ 1)!

ϕ×n
= I + b0ϕ×+b1ϕ×

2 .

(30)

Note that, Γ being the strongest truncation of Φ, the relation Φ = I +ϕ×Γ holds as derived directly
from (16).
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The first and second differentiations of tensors Φ and Γ are written, from (21), as

δΦ =Φ/ : δϕ⊗ I, ∂Φ/ =Φ
1234
// : ∂ϕ⊗ I,

∂δΦ =Φ/ : ∂δϕ⊗ I +Φ1234
//

... ∂ϕ⊗ δϕ⊗ I,
(31)

and
δΓ = Γ/ : δϕ⊗ I, ∂Γ/ = Γ

1234
// : ∂ϕ⊗ I,

∂δΓ = Γ/ : ∂δϕ⊗ I +Γ 1234
//

... ∂ϕ⊗ δϕ⊗ I .
(32)

Expressions of the relevant derivative tensors,

Φ/ =Φ0/, Φ
1234
// =Φ

1234
0// ,

Γ/ =Φ1/, Γ
1234
// =Φ

1234
1// ,

(33)

are easily written by setting m = 0 or m = 1 in (22)–(29). They are not repeated here.
The compact forms of the derivative tensors (33) are known in the literature. Let us use (28) and (29),

together with the coefficient functions (19), to evaluate the following second-order tensors built with
tensors (33) and arbitrary vectors u and v:

Φ/ : u⊗ I = au×+b0(u⊗ϕ+ϕ⊗ u)− aϕ · u⊗ I
− (b0− b1)ϕ · u⊗ϕ×−(b1− b2)ϕ · u⊗ϕ⊗ϕ,

Γ/ : u⊗ I = b0u×+b1(u⊗ϕ+ϕ⊗ u)− (b0− b1)ϕ · u⊗ I
− (b1− b2)ϕ · u⊗ϕ×−1

2 (b2− b3)ϕ · u⊗ϕ⊗ϕ,

(34)

and

Φ
1234
//

... u⊗ v⊗ I
= b0(u⊗ v+ v⊗ u)− au · v⊗ I − (b0− b1)(ϕ · u⊗ v×+ϕ · v⊗ u×+u · v⊗ϕ×)

− (b1− b2)
(
ϕ · u⊗ (v⊗ϕ+ϕ⊗ v)+ϕ · v⊗ (u⊗ϕ+ϕ⊗ u)+ u · v⊗ϕ⊗ϕ

)
+ (b0− b1)ϕ · v⊗ϕ · u⊗ I +

(
(b1− b2)−

1
2 (b2− b3)

)
ϕ · v⊗ϕ · u⊗ϕ×

+
( 1

2 (b2− b3)−
1
3 (b3− b4)

)
ϕ · v⊗ϕ · u⊗ϕ⊗ϕ,

Γ
1234
//

... u⊗ v⊗ I
= b1(u⊗ v+ v⊗ u)− (b0− b1)u · v⊗ I

− (b1− b2)(ϕ · u⊗ v×+ϕ · v⊗ u×+u · v⊗ϕ×)− 1
2 (b2− b3)

(
ϕ · u⊗ (v⊗ϕ+ϕ⊗ v)

+ϕ · v⊗ (u⊗ϕ+ϕ⊗ u)+ u · v⊗ϕ⊗ϕ
)
+
(
(b1− b2)−

1
2 (b2− b3)

)
ϕ · v⊗ϕ · u⊗ I

+
( 1

2 (b2− b3)−
1
3 (b3− b4)

)
ϕ · v⊗ϕ · u⊗ϕ×+1

2

( 1
3 (b3− b4)−

1
4 (b4− b5)

)
ϕ · v⊗ϕ · u⊗ϕ⊗ϕ.

(35)

It is seen that (34)1 and (34)2 coincide respectively with the directional derivatives DΦ[u] and DΓ [u]
found, respectively, in [Ritto-Corrêa and Camotim 2002, Equations (18) and (19)], once our coefficient
functions (19) are converted to those used by them. It is also seen that (35)1 and (35)2 coincide, respec-
tively, with the second directional derivatives D2Φ[u, v] and D2Γ [u, v] [ibid., Equations (20) and (21)].
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5.2. Lowest three differential maps. The differential (31)1 of the rotation tensor is easily obtained from
(26) with m = 0:

δΦ =−δϕ×+(δϕ×Φ1+Φ1 δϕ×)+
1
2 (ϕ× δϕ× (Φ1−Φ2)+ (Φ1−Φ2) δϕ×ϕ×).

Using (16) with m = 1, namely Φ1 = I + 1
2ϕ×Φ2 = I + 1

2Φ2ϕ×, and the tensor identity (A.9), δΦ is
rewritten as

δΦ = δϕ×+1
2 (ϕ⊗ δϕ ·Φ2+Φ2 · δϕ⊗ϕ)−Φ1⊗ϕ · δϕ

and is then multiplied by ΦT
0 to draw an expression for tensor δΦΦT. Using the property (17)4 with

m = 1 (that is, Φ1Φ
T
0 = Φ

T
1 ) and m = 2 (that is, Φ2Φ

T
0 = 2ΦT

1 −Φ
T
2 ), the tensor identities (A.9) and

(A.12), and (16) with m = 0 and m = 1, the relation

δΦΦT
= (Φ1 · δϕ)×

is finally obtained. Comparison with (2)1 and (30)2 provides the sought relation of ϕδ as a linear function
of δϕ:

ϕδ = Γ · δϕ, (36)

a well-known result involving the tangent tensor Γ .
The foregoing derivation of the first differential map of the rotation is an alternative to other derivations

found in the literature, for example, [Borri et al. 1990; Ibrahimbegović et al. 1995; Ritto-Corrêa and
Camotim 2002].

Expressions for the next differential vectors are drawn directly from their definitions as elaborated in
(4)1 and (4)3, respectively. The second differential map is easily obtained using (36) and (32)1:

ϕ∂δ = Γ · ∂δϕ+Γ
S123
/ : ∂ϕ⊗ δϕ, (37)

where Γ S123
/ =

1
2 (Γ/+Γ

T132
/ ) is the right-symmetric part of Γ/ (that is, symmetric with respect to the

two rightmost polyadic legs, see (A.2)1).
The third differential map is obtained, after a more involved derivation, in the form

ϕd∂δ = Γ · d∂δϕ+Γ
S123
/ : (dϕ⊗ ∂δϕ+ ∂ϕ⊗ δdϕ+ δϕ⊗ d∂ϕ)

+
(
Γ

1234
// −

1
2 (I
×Γ )T132Γ

S123
/ −Γ ⊗Γ TΓ

)S1234 ... dϕ⊗ ∂ϕ⊗ δϕ, (38)

where ( )S1234 denotes the full-symmetric part, with respect to the three rightmost polyadic legs, of a
fourth-order tensor, see (A.5). Derivation of (38) requires (36), (37), (32), and the property (39).

5.3. Properties of the derivative tensors. The derivative tensors Γ/ and Γ 1234
// are endowed with useful

properties, which descend from the definition of the differential vectors themselves. Let us focus first on
the property (7) and develop Φ ∂(ΦTϕδ) from (7)1 and (7)2 separately, using the differential map (36)
and the differentiation formula (32)1. Comparison of the results leads to

Γ T132
/ = Γ/− (I×Γ )T132Γ . (39)
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Observing that (I×Γ )T132Γ is a right-skew-symmetric third-order tensor, see (A.17), (39) entails the
right-symmetry of tensor Γ/− 1

2 (I
×Γ )T132Γ , hence the property

Γ/ = Γ
S123
/ +

1
2 (I
×Γ )T132Γ . (40)

Equation (40) represents the decomposition of the tangent-tensor first derivative into the symmetric and
skew-symmetric parts of the rightmost polyadic legs. Note that property (7) enables a straightforward
derivation of (40), while deriving the latter directly from the expressions of Γ/ in (33) would be a much
more involved task.

Next, let us focus on property (8) and develop Φ d(ΦTϕ∂δ) from (8)1 and (8)2 separately, using the
differential maps (36) and (37), the differentiation formulae (32), and the property (39). (Alternatively,
one might start from property (9).) Comparison of the results leads to a useful property of the symmetric
parts of another fourth-order tensor, specifically tensor Γ 1234

// − (I×Γ )T132Γ/. This property can be
written in the following equivalent forms:

(Γ
1234
// − (I×Γ )T132Γ/)

S1234
= (Γ

1234
// − (I×Γ )T132Γ/)

T1342S1234
,

(Γ
1234
// − (I×Γ )T132Γ/)

S1234
= (Γ

1234
// − (I×Γ )T132Γ/)

T1423S1234
,

(Γ
1234
// − (I×Γ )T132Γ/)

T1342S1234
= (Γ

1234
// − (I×Γ )T132Γ/)

T1423S1234
.

(41)

Other remarkable relations descend from the property

Γ = Γ TΦ =ΦΓ T, (42)

which is obtained by setting m = 1 in (17)4. Equation (42) represents a factorization of the tangent tensor
into itself, by means of the rotation tensor Φ.

Differentiating (42) and developing the identity δΓ = δ(ΦΓ T) using (32)1, (2)1, (36), and (39), the
relation Γ T132

/ =ΦΓ T321
/ is obtained; hence the factorization of the first derivative of the tangent tensor

follows in the forms
Γ/ = Γ

T231
/ Φ =ΦΓ T312

/ . (43)

Differentiating (42) further and developing the identity ∂δΓ = ∂δ(ΦΓ T) using (32), (2), (36), (37), and
(39)–(43), a factorization of the second derivative of the tangent tensor is obtained in the form

Γ
1234
// = (Γ

1234
// − (I×Γ )T132Γ/)

T3241S1234
Φ. (44)

Finally, factorization formulae of the derivative tensors Φ/ and Φ1234
// are easily obtained from (31)

using (2), (36) and (37), and (42) and (43):

Φ/ = (I×Γ )T132Φ =Φ(I×Γ T)T132, (45)

and
Φ

1234
// =

(
(I×Γ/)T1342

+ (I×Γ )T132(I×Γ )T132)S1234
Φ. (46)

All the above properties will be exploited in the following sections.
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6. Slender beam variational mechanics

As an application of the formulation discussed so far to computational elastostatics, we address the finite-
element modeling of space-curved slender beams for geometrically nonlinear problems. In the context of
a variational approach and a typical Newton–Raphson solution procedure, we are concerned with three
independent variations, namely virtual variations, incremental variations, and field derivatives on a one-
coordinate domain (the ordinary derivatives with respect to beam abscissa). The simple form taken by
the spatial variations in this problem is the main motivation for the choice of this particular application,
as it allows us to focus on the significance of correctly differentiating the rotation up to third order.

Within the domain of one-dimensional intrinsic continuum mechanics, we identify the beam cross-
sections with material particles aligned along a curvilinear arc-length s. The particle position and orien-
tation are independent configuration variables and allow for shear-deformable beam response. Customary
hypotheses such as linear elastic material, small strains and small stresses with respect to the elastic mod-
uli, constant cross-sections, and rigid-section deformations are understood. In these circumstances, we
may refer to the beam theory proposed by Reissner [1973], reformulated by Simo [1985], and discussed
in [Ritto-Corrêa and Camotim 2002] as Reissner–Simo beam theory (see also [Simo and Vu-Quoc 1986]).
The essentials of the beam variational mechanics are addressed in this section, whereas a beam element
is formulated in the next section. For our present purposes, we may focus on just the variational term
arising from the internal virtual work.

6.1. Nonlinear mechanics setup.

Kinematics. Nonrigid beam deformation produces a one-dimensional strain that can be identified by the
rotational and translational strain measures

ω = k′−Φk, χ = x′,s −Φx,s , (47)

also referred to as the angular and linear strain vectors, respectively. Here, ( ),s denotes a derivative with
respect to the beam abscissa and the appended prime ( )′ distinguishes the current configuration from
the reference one. The position vector x and the orthogonal orientation tensor α of an orthonormal triad
define the section configuration. Vector k is the angular curvature defined by αTα,s = (α

Tk)× as for (2)1,
and x,s is the tangent vector to the beam axis. Tensor Φ is the section rotation from α to α′ =Φα. It can
be seen (see (58)1 and (62)1) that the expression of ω in (47) coincides with the angular strain induced by
a variable rotation along the beam and defined by ΦTΦ,s = (Φ

Tω)× as for (2)1. The kinematical strain
vectors ω and χ in (47) represent differences of curvature and tangent vectors, that are made comparable
thanks to a forward rotation of the reference values by Φ; they vanish in the case of rigid deformation.

Statics. The differential equilibrium equations

M ′,s +x′,s ×T ′+ c′ = 0, T ′,s + f ′ = 0,

involve a one-dimensional stress state identified by the internal couple M ′ and force T ′ in the current
configuration, also referred to as the angular and linear stress resultants. Current external loads c′ and
f ′ are couples and forces per unit length.

Constitutive law. Assuming a hyperelastic model, there exists a strain energy w(β, ε), a function of the
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angular (β) and linear (ε) strain parameters, whose first derivatives with respect to the strain parameters
define the conjugate angular and linear stress parameters,

M̂ = w/β, T̂ = w/ε. (48)

The second derivatives define the elastic tensors Êββ = w/ββ , Êβε = ÊT
εβ = w/βε, and Êεε = w/εε,

which allow us to write the tangent map that transforms strain-parameter variations into stress-parameter
variations: {

∂ M̂
∂ T̂

}
=

[
Êββ Êβε
Êεβ Êεε

]
·

{
∂β

∂ε

}
. (49)

Constitutive-to-mechanical variables connection. The parameters governing the constitutive model are
connected to the corresponding mechanical variables defined above by the relations (cf. [Ritto-Corrêa
and Camotim 2002])

β =ΦTω,

ε =ΦTχ ,

M̂ =ΦT M ′,
T̂ =ΦTT ′.

(50)

Thus, the strain parameters are the back-rotated versions of the kinematical strains and the stress param-
eters are the back-rotated versions of the stress resultants. By analogy with three-dimensional elasticity,
we may say that M ′ and T ′ are stress vectors of the first Piola–Kirchhoff kind, whereas M̂ and T̂ are
stress vectors of the Biot kind.

The formulation summarized above matches the Reissner–Simo beam theory as described in [Ritto-
Corrêa and Camotim 2002]. In that paper, the two representations of either strains or stresses are referred
to as the spatial and the material representations, the latter being the back-rotated version of the former.
Moreover, in that formulation (but not in the implementation, see [ibid., Section 5.2]) the cross-section
in the material representation is oriented as the absolute reference frame, hence what they call section
rotation corresponds to our section orientation (α in the reference configuration and α′ in the current
configuration), and the pull-back operation from the spatial to the material representation is performed by
the orientation α′. This difference does not impair the equivalence of our formulation to theirs. However,
it must be pointed out that tensors Ēββ , Ēβε = ĒT

εβ , and Ēεε, as built with the customary matrices of the
section elastic properties, are meant to be defined in the absolute reference frame and must be rotated by
α to build the elastic tensors in (49), that is, Êββ = α ĒββαT, etc.

The foregoing relations, together with the essential and natural boundary conditions, allow us to set up
a variational functional Πδ =

∫
s πδ ds and state the principle of virtual work for the beam as Πδ = 0. In

nonlinear elasticity, we are usually concerned with the linearized form of the principle, Πδ+ ∂Πδ = 0. In
the forthcoming discussion, we focus on the internal work of stresses and address only the contributions
πint δ and ∂πint δ to the virtual work per unit length; recalling the constitutive equations (48) and the
relevant tangent map (49), they are given by

πint δ =

{
δβ

δε

}T

·

{
M̂
T̂

}
,

∂πint δ = ∂πint Gδ+ ∂πint Eδ =

{
∂δβ

∂δε

}T

·

{
M̂
T̂

}
+

{
δβ

δε

}T

·

[
Êββ Êβε
Êεβ Êεε

]
·

{
∂β

∂ε

}
.
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The incremental term ∂πint δ is made of a geometric contribution, that accounts for the current stress
state, and an elastic contribution, that depends on the strain increments. Using (50), the contributions to
the linearized internal virtual work are rewritten in terms of current mechanical variables as

πint δ =

{
Φ δ(ΦTω)

Φ δ(ΦTχ)

}T

·

{
M ′

T ′

}
, ∂πint Gδ =

{
Φ ∂δ(ΦTω)

Φ ∂δ(ΦTχ)

}T

·

{
M ′

T ′

}
,

∂πint Eδ =

{
Φ δ(ΦTω)

Φ δ(ΦTχ)

}T

·

[
Φ ÊββΦT Φ ÊβεΦT

Φ ÊεβΦT Φ ÊεεΦT

]
·

{
Φ ∂(ΦTω)

Φ ∂(ΦTχ)

}
.

(51)

The development of the corotational variations of the kinematical strain that appear in (51) can be
carried out in various ways. The proper choice mainly depends on the interpolating model one chooses
to set up a beam element. Two different approaches are discussed in the next subsections.

6.2. Vectorial parameterization of motion. The first approach is more suitable for beam elements based
on a linear interpolating model of the beam motion. According to (2), three variation variables (ϕδ, ϕ∂ ,
and ϕ∂δ) characterize the virtual and incremental variations of the section rotation,

ΦT
δΦ = (ΦTϕδ)×, ΦT ∂Φ = (ΦTϕ∂)×,

ΦT ∂δΦ = (ΦTϕ∂δ)×+
1
2 ((Φ

Tϕ∂)× (Φ
Tϕδ)×+(Φ

Tϕδ)× (Φ
Tϕ∂)×).

(52)

Thus, recalling the properties (7) and (9), one immediately writes

Φ δ(ΦTω)= ϕδ,s , Φ ∂(ΦTω)= ϕ∂ ,s ,

Φ ∂δ(ΦTω)= ϕ∂δ,s −
1
2 (ϕ∂ ×ϕδ,s +ϕδ×ϕ∂ ,s ).

(53)

Moreover, recalling (47) and using (52), one easily obtains

Φ δ(ΦTχ)= δx′,s −ϕδ× x′,s , Φ ∂(ΦTχ)= ∂x′,s −ϕ∂ × x′,s ,

Φ ∂δ(ΦTχ)= ∂δx′,s −ϕ∂δ× x′,s −(ϕ∂ × δx′,s +ϕδ× ∂x′,s )+ 1
2 (ϕ∂ ×ϕδ×+ϕδ×ϕ∂×)x

′,s .
(54)

The corotational variations of the kinematical strain vectors in (53) and (54) are expressed as functions
of the differential rotation vectors ϕδ, ϕ∂ (the spins, in the terminology of [Ritto-Corrêa and Camotim
2002]), and ϕ∂δ; their derivatives with respect to the beam abscissa; and the derivatives of the virtual and
incremental variations δx′, ∂x′, and ∂δx′ of the current position vector — that is, the tangent vector vir-
tual and incremental variations. The motivation for retaining, at this level, the mixed virtual-incremental
variations ∂δx′ will become clear later on.

Substituting (53) and (54) in (51), the virtual work contributions are rewritten in terms of the differen-
tial rotation and position vectors and their derivatives. In particular, contributions πint δ and ∂πint Gδ take
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the very neat expressions

πint δ =


ϕδ,s
δx′,s
ϕδ


T

·


M ′

T ′

−x′,s ×T ′

 ,
∂πint Gδ =


ϕ∂δ,s
∂δx′,s
ϕ∂δ


T

·


M ′

T ′

−x′,s ×T ′

+

ϕδ,s
δx′,s
ϕδ


T

·

 0 0 1
2 M ′×T

0 0 T ′×T

1
2 M ′× T ′× (x′,s ×T ′×)S

 ·

ϕ∂ ,s
∂x′,s
ϕ∂

 .
(55)

It is worth stressing that the virtual work contributions developed here through (55), are true and natural
expressions in nonlinear beam variational mechanics, independently of any particular parameterization
of the rotation one may choose to solve the elastic problem numerically. However, it is also worth noting
that the multiplier ϕ∂δ,s is the derivative of a (second) differential rotation vector, not the characteristic
differential rotation vector of the third differentiation of the rotation tensor.

Let us introduce now the vectorial parameterization of the rotation tensor defined in (10). Recalling
the differential maps (36) and (37) and the derivative tensors defined in (32), the space-derivatives of the
differential rotation vectors in (55) are expressed as functions of the variations of the rotation vector:

ϕδ,s = Γ · δϕ,s +(ϕ,s ·Γ
T213
/ ) · δϕ,

ϕ∂ ,s = Γ · ∂ϕ,s +(ϕ,s ·Γ
T213
/ ) · ∂ϕ,

ϕ∂δ,s = Γ · ∂δϕ,s +(ϕ,s ·Γ
T213
/ ) · ∂δϕ

+Γ
S123
/ : (∂ϕ,s ⊗δϕ+ ∂ϕ⊗ δϕ,s )+

(
ϕ,s ·Γ

1234
//

T2134 )S123
: ∂ϕ⊗ δϕ.

(56)

Then, the differential maps (36) and (37), the space-derivatives (56), and the relations (50) are introduced
within (55). Note that the first term of the expression of ∂πint Gδ splits into a term working for the mixed
double variations (∂δ) and a term working for the single virtual (δ) and incremental (∂) variations. The
latter adds to the second term in the right-hand-side of (55)2 and the final result follows in the form

πint δ =


δϕ,s
δx′,s
δϕ


T

·


Γ M̂
Φ T̂

ϕ,s ·Γ/M̂ + x′,s ·Φ/T̂

 ,
∂πint Gδ =


∂δϕ,s
∂δx′,s
∂δϕ


T

·


Γ M̂
Φ T̂

ϕ,s ·Γ/M̂ + x′,s ·Φ/T̂


+


δϕ,s
δx′,s
δϕ


T

·

 0 0 Γ/M̂
0 0 Φ/T̂

(Γ/M̂)T (Φ/T̂ )T ϕ,s ·Γ
1234
// M̂ + x′,s ·Φ

1234
// T̂

 ·

∂ϕ,s
∂x′,s
∂ϕ

 .
(57)

Derivation of (57) is carried out with the help of the properties (40), (42)–(46), and (A.16)2.
It is seen that (57)1 and the second term in (57)2 coincide respectively with the integrands found in

[Ritto-Corrêa and Camotim 2002, Equations (36) and (40)]. The first term of ∂πint Gδ is lacking in that
paper, as configuration-independent interpolations of both the displacement and the rotation are assumed
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there, so the mixed double variations hold null in their formulation. This is not the case in our design of
a nonlinear beam element, as it will be shown in the next section.

The foregoing development of the kinematical strain corotational variations is suitable for beam el-
ements relying on a linear interpolation of the parameters of the section motion. This was a common
approach in the nineties [Cardona and Géradin 1988; Ibrahimbegović 1995; Ibrahimbegović et al. 1995].
The beam element developed by Ritto-Corrêa and Camotim [2002] relies on the interpolation of the total
position and rotation vectors as for x=

∑N
J=1 WJ xJ and ϕ=

∑N
J=1 WJϕJ (whence x,s =

∑N
J=1 WJ ,s xJ

and ϕ,s =
∑N

J=1 WJ ,s ϕJ ). These very simple formulae are linear with the nodal unknowns xJ and ϕJ ,
and substituting them in (57) leads to a linear beam element. However, as Ritto-Corrêa and Camotim
themselves point out, that element was not frame invariant.

6.3. Consistent account of the rotation variations. The second approach is more suitable for a nonlinear
interpolating model of the section orientation and allows us to build nonlinear beam elements that are
frame invariant and path independent at the same time. Equation (2) is now written for all combinations
of the virtual, incremental, and spatial independent variations of the section rotation; they provide seven
equations, those in (52) and, in addition,

ΦTΦ,s = (Φ
Tω)×,

ΦT
δΦ,s = (Φ

Tωδ)×−
1
2 (Φ

Tϕδ×ω)×+(Φ
Tϕδ)× (Φ

Tω)×,

ΦT ∂Φ,s = (Φ
Tω∂)×−

1
2 (Φ

Tϕ∂ ×ω)×+(Φ
Tϕ∂)× (Φ

Tω)×,

ΦT ∂δΦ,s = (Φ
Tω∂δ)×−

1
2 (Φ

Tϕ∂δ×ω)×+(Φ
Tϕ∂δ)× (Φ

Tω)×

−
1
2 (Φ

Tϕ∂ ×ωδ+Φ
Tϕδ×ω∂)×+(Φ

Tϕ∂)× (Φ
Tωδ)×+(Φ

Tϕδ)× (Φ
Tω∂)× .

(58)

Equations (52) and (58) actually define seven variation variables: the virtual, incremental, and mixed
virtual-incremental rotation vectors ϕδ, ϕ∂ , and ϕ∂δ, the finite angular strain vector ω, and the virtual,
incremental, and mixed virtual-incremental angular strain vectors ωδ, ω∂ , and ω∂δ. Using (6), the angular
strain corotational variations are given the expressions

Φ δ(ΦTω)= ωδ−
1
2 ϕδ×ω, Φ ∂(ΦTω)= ω∂ −

1
2 ϕ∂ ×ω,

Φ ∂δ(ΦTω)= ω∂δ−
1
2 ϕ∂δ×ω−

1
2 (ϕ∂ ×ωδ+ϕδ×ω∂)+ (ϕ∂ ⊗ϕδ)

S
·ω.

(59)

Note that, in (58) and (59), ω∂δ is a third characteristic differential rotation vector as defined in (2)3.
In view of the interpolating model that will be introduced in the next section, we also address the

variations of the section orientation in the current configuration, α′ = Φα. Since the orientations are
assumed to be orthogonal tensors, we may write, as for (52) and (58),

α′T δα′ = (α′Tϕδ)×, α′T ∂α′ = (α′Tϕ∂)×,

α′T ∂δα′ = (α′Tϕ∂δ)×+
1
2 ((α

′Tϕ∂)× (α
′Tϕδ)×+(α

′Tϕδ)× (α
′Tϕ∂)×),

(60)
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and

α′Tα′,s = (α
′Tk′)×,

α′T δα′,s = (α
′Tk′δ)×−

1
2 (α
′Tϕδ× k′)×+(α′Tϕδ)× (α′Tk′)×,

α′T ∂α′,s = (α
′Tk′∂)×−

1
2 (α
′Tϕ∂ × k′)×+(α′Tϕ∂)× (α′Tk′)×,

α′T ∂δα′,s = (α
′Tk′∂δ)×−

1
2 (α
′Tϕ∂δ× k′)×+(α′Tϕ∂δ)× (α′Tk′)×

−
1
2 (α
′Tϕ∂ × k′δ+α

′Tϕδ× k′∂)×+(α
′Tϕ∂)× (α

′Tk′δ)×+(α
′Tϕδ)× (α

′Tk′∂)× .

(61)

The differential vectors that characterize the virtual and incremental orientation variations in (60) are
easily seen to coincide with vectors ϕδ, ϕ∂ , and ϕ∂δ. Equation (61), instead, defines the current curvature
vector k′ and three differential curvature vectors, k′

δ
, k′∂ , and k′

∂δ
(again, a third characteristic differential

rotation vector).
The finite and differential strain vectors can be linked to the finite and differential current curvature

vectors by differentiating the relation α′ = Φα and recalling the definition of the reference curvature,
αTα,s = (α

Tk)×. This yields

ω = k′−Φk,

ωδ = k′δ−
1
2 ϕδ×Φk,

ω∂ = k′∂ −
1
2 ϕ∂ ×Φk,

ω∂δ = k′∂δ−
1
2 ϕ∂δ×Φk+ 1

2 (ϕ∂ ⊗ϕδ+ϕ∂ ·ϕδ⊗ I)S ·Φk.

(62)

Finally, using (62) within (59), the angular strain corotational variations are brought to the following
expressions, which coincide with the curvature corotational variations:

Φ δ(ΦTω)= α′ δ(α′Tk′)= k′δ−
1
2 ϕδ× k′,

Φ ∂(ΦTω)= α′ ∂(α′Tk′)= k′∂ −
1
2 ϕ∂ × k′,

Φ ∂δ(ΦTω)= α′ ∂δ(α′Tk′)= k′∂δ−
1
2 ϕ∂δ× k′− 1

2 (ϕ∂ × k′δ+ϕδ× k′∂)+ (ϕ∂ ⊗ϕδ)
S
· k′.

(63)

The linear strain corotational variations are much easier to write and are seen to coincide with the
tangent vector corotational variations. From (47)2, recalling (52), one obtains

Φ δ(ΦTχ)= α′ δ(α′Tx′,s )= δx′,s−ϕδ× x′,s ,

Φ ∂(ΦTχ)= α′ ∂(α′Tx′,s )= ∂x′,s−ϕ∂ × x′,s ,

Φ ∂δ(ΦTχ)= α′ ∂δ(α′Tx′,s )= ∂δx′,s−ϕ∂δ× x′,s−(ϕ∂ × δx′,s+ϕδ× ∂x′,s )+(ϕ∂ ×ϕδ×)Sx′,s ,
(64)

which also coincides with (54).
The corotational variations of the kinematical strain vectors are expressed in (63) and (64) as functions

of true characteristic differential vectors: the differential rotation vectors ϕδ, ϕ∂ , and ϕ∂δ, the differential
curvature vectors k′

δ
, k′∂ , and k′

∂δ
, and the differential tangent vectors δx′,s , ∂x′,s , and ∂δx′,s . The

interested reader could substitute (63) and (64) within (51) to write expressions for πint δ and ∂πint Gδ that
are the counterparts of (55) in terms of true characteristic differential vectors. However, let us address
now the issue of a consistent interpolation along a beam element.
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7. Slender beam element

Ensuring path-independence and frame-invariance is an important asset for an interpolating mechanism
in finite element approximations. In nonlinear problems, the interpolation of the total rotation vector
on a Euclidean vector space is path independent but not frame invariant [Crisfield and Jelenić 1999].
Interpolating either the incremental or the iterative rotation vector impairs path-independence, however
Ibrahimbegović and Taylor [2002] proved that it may achieve frame-invariance. These issues were re-
marked on by Ritto-Corrêa and Camotim [2002] and were also discussed in [Merlini and Morandini
2004b] with reference to multicoordinate domains. It was ascertained that interpolating the orientations
instead of their motions is the key to ensuring path-independence, and that averaging relative orientations
in a given configuration is the key to ensuring frame-invariance. An interpolation scheme for a beam
element in line with these concepts and ensuring frame-invariance and path-independence was proposed
by Jelenić and Crisfield [1999].

In Section 7.1 we discuss the basic features that an interpolating model fit for rotational kinematics
should conform to, and in Section 7.2 we outline our general interpolation scheme that ensures path-
independence and frame-invariance.

7.1. Interpolating model. A consistent interpolation for a beam element should provide a section ori-
entation (function of the beam abscissa s) consistent with the special manifold the rotations belong
to. Accordingly, any interpolated orientation α in the reference configuration must be allowed to be
regarded as the result of a relative rotation Φ̃J (s) from the orientation αJ of whichever node J (with
J = 1, 2, . . . , N and N the number of nodes). The same must be true for the current configuration, so
multiplicative expressions for the interpolated orientations,

α = Φ̃JαJ and α′ = Φ̃ ′Jα
′

J , (65)

must hold. In (65) the relative rotations are transcendental functions Φ̃J (s) and Φ̃ ′J (s) of the beam
abscissa. The derivatives of these functions along the beam, namely Φ̃T

J Φ̃J ,s = (Φ̃
T
J ω̃J )× and Φ̃ ′TJ Φ̃

′

J ,s =

(Φ̃
′T
J ω̃
′

J )×, define relative angular strains ω̃J (s) and ω̃′J (s). The interpolated curvatures k and k′ are
immediately found to coincide with these relative strains:

k = ω̃J and k′ = ω̃′J . (66)

An interpolation scheme provides the relative-rotation functions Φ̃J (s) and Φ̃ ′J (s) and the character-
istic vectors ω̃J (s) and ω̃′J (s) of their derivatives. Once these quantities become known and orientations
and curvatures are obtained in both the reference and the current configurations, the section rotation and
the angular strain can immediately be recovered as Φ = α′αT and ω = k′−Φk (Figure 2). This way,
the correct equivalent of an isoparametric element for rotational kinematics is achieved, in the sense that
the reference and the current orientation fields (not the rotation field) are approximated using the same
interpolating model [Merlini and Morandini 2011b].

The interpolating model is completed with a linearization procedure that yields the appropriate varia-
tion variables (virtual, incremental, and mixed virtual-incremental variations). In the current configura-
tion, the reference nodal orientations αJ are rotated by the unknowns ΦJ :

α′J =ΦJαJ . (67)
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Figure 2. Interpolating model: recovering rotations and angular strains.

The interpolated orientation is a multiplicative combination of two successive rotations, ΦJ in (67) fol-
lowed by Φ̃ ′J in (65)2, resulting in α′ = Φ̃ ′JΦJαJ . A careful linearization of the compound rotation
Φ̃ ′JΦJ is required in order to derive consistent orientation variations.

According to (2), the variations of either ΦJ or Φ̃ ′J are characterized by specific differential vectors.
The virtual, incremental and mixed virtual-incremental variations of the discrete rotation ΦJ (or alterna-
tively the discrete orientation α′J ) define, as usual, the differential rotation vectors ϕJ δ, ϕJ ∂ , and ϕJ ∂δ.
The relevant formulae are not displayed here, but are easily written from (52) (or alternatively (60)),
simply by replacing Φ with ΦJ (or α′ with α′J ). In a similar way, variations of the relative-rotation field
Φ̃ ′J define the virtual, incremental, and mixed virtual-incremental relative rotation vectors ϕ̃′J δ, ϕ̃

′

J ∂ , and
ϕ̃′J ∂δ and relative angular differential strains ω̃′J δ, ω̃

′

J ∂ , and ω̃′J ∂δ. The relevant formulae can be written
from (52) and (58) after replacing Φ with Φ̃ ′J .

Differentiating α′ = Φ̃ ′JΦJαJ yields a relationship between the local variation variables (ϕδ, ϕ∂ , ϕ∂δ,
k′
δ
, k′∂ , k′

∂δ
), the relative variation variables (ϕ̃′J δ, ϕ̃

′

J ∂ , ϕ̃
′

J ∂δ, ω̃
′

J δ, ω̃
′

J ∂ , ω̃
′

J ∂δ), and the nodal variation
variables (ϕJ δ, ϕJ ∂ , ϕJ ∂δ). After cumbersome algebraic manipulations (detailed in [Merlini 2002]), one
obtains

ϕδ = ϕ̃
′

J δ+ Φ̃
′

JϕJ δ,

ϕ∂ = ϕ̃
′

J ∂ + Φ̃
′

JϕJ ∂ ,

ϕ∂δ = ϕ̃
′

J ∂δ+ Φ̃
′

JϕJ ∂δ−
1
2 ((Φ̃

′

JϕJ ∂)× ϕ̃
′

J δ+ (Φ̃
′

JϕJ δ)× ϕ̃
′

J ∂),

(68)

and

k′δ = ω̃
′

J δ−
1
2 (Φ̃

′

JϕJ δ)× ω̃
′

J ,

k′∂ = ω̃
′

J ∂ −
1
2 (Φ̃

′

JϕJ ∂)× ω̃
′

J ,

k′∂δ = ω̃
′

J ∂δ−
1
2 (Φ̃

′

JϕJ ∂δ)× ω̃
′

J −
1
2 ((Φ̃

′

JϕJ ∂)× ω̃
′

J δ+ (Φ̃
′

JϕJ δ)× ω̃
′

J ∂)

+
1
4 ((Φ̃

′

JϕJ ∂)× (ϕ̃
′

J δ+ Φ̃
′

JϕJ δ)×+(Φ̃
′

JϕJ δ)× (ϕ̃
′

J ∂ + Φ̃
′

JϕJ ∂)×)ω̃
′

J

− (Φ̃ ′JϕJ ∂ ⊗ ϕ̃
′

J δ+ Φ̃
′

JϕJ δ⊗ ϕ̃
′

J ∂ + Φ̃
′

JϕJ ∂ ⊗ Φ̃
′

JϕJ δ)
S
· ω̃′J .

(69)

The reader should notice the relevance of considering the third characteristic differential vector defined
in (2)3, which is present here as k′

∂δ
and ω̃′J ∂δ.
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7.2. A multiplicative interpolation scheme. It is worth noting that the findings in the previous subsection
are perfectly independent of any particular parameterization of the rotation tensor and of any particular
interpolation scheme. They are just the natural premise for an interpolation to be consistent with the traits
of the manifold the rotations belong to. In this subsection instead, we introduce the algorithm we use
to implement a frame-invariant and path-independent multiplicative interpolation scheme for rotational
kinematics.

The idea underlying the interpolation scheme is quite simple. The sought orientation is a weighted
average between the nodal orientations, in the sense that the relative orientations with respect to each
node are weighted in conformity with the position of the section within the beam element. This concept
is achieved by satisfying a condition of multiplicative nature,

N∑
J=1

WJ ln(ααT
J )= 0,

where WJ (s) are (normalized) weight functions and the skew-symmetric tensors ln(ααT
J )= ϕ̃J× (recall

(65)1) are built with the relative rotation vectors from each node. Note that this condition is the exact
transposition of the condition of additive nature

∑N
J=1 WJ (x− xJ )= 0, which underlies the commonly

used interpolation on the Euclidean position-vector space and simply results in x =
∑N

J=1 WJ xJ . In
contrast, the interpolation condition for rotational kinematics is a nonlinear implicit equation that cannot
be solved in general in closed form, and therefore requires an iterative procedure. This interpolation
scheme, together with a fast algorithm to solve the nonlinear condition, has been proposed in [Merlini
and Morandini 2004b] with reference to multicoordinate domains.

In the current configuration, the interpolation algorithm reads
N∑

J=1

WJ ln(α′α′TJ )= 0,
N∑

J=1

WJ (x′− x′J )= 0. (70)

The linearization of the multiplicative condition (70)1 is a quite subtle task. A short account is outlined
below, but any details can be recovered from [Merlini and Morandini 2004b] and references therein.
The reader should notice that so far, in the whole formulation aimed at building a beam element, we
have not yet referred to any parameterization of the rotation tensor. Only now is it time to introduce a
parameterization. We resort to the natural vectorial parameterization (10) and its linearization discussed
in Section 5, where the differential maps (36)–(38) are obtained. Recalling (65)2 and the exponential
map Φ̃ ′J = exp(ϕ̃′J×), (70)1 can be rewritten as a vectorial equation as

N∑
J=1

WJ ϕ̃
′

J = 0. (71)

Differentiating (71) up to third order yields seven algebraic equations for the unknowns δϕ̃′J , ∂ϕ̃′J , ∂δϕ̃′J ,
ϕ̃′J ,s , δϕ̃′J ,s , ∂ϕ̃′J ,s , and ∂δϕ̃′J ,s . After inverting (36)–(38) for δϕ, ∂δϕ, and d∂δϕ and using the results
within the seven equations, the unknowns of the equation set are turned to the relative variation variables
ϕ̃′J δ, ϕ̃

′

J ∂ , ϕ̃
′

J ∂δ, ω̃
′

J , ω̃′J δ, ω̃
′

J ∂ , and ω̃′J ∂δ. Finally, after solving (68), (66)2, and (69) for ϕ̃′J δ, ϕ̃
′

J ∂ ,
ϕ̃′J ∂δ, ω̃

′

J , ω̃′J δ, ω̃
′

J ∂ , and ω̃′J ∂δ and substituting the results within the seven equations, the unknowns are
changed to the local variation variables ϕδ, ϕ∂ , ϕ∂δ, k′, k′

δ
, k′∂ , and k′

∂δ
.
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The equations are solved in cascade and yield an expression for the curvature,

k′ =−
( N∑

K=1

WK Γ̃
′−1
K

)−1 N∑
J=1

WJ ,s ϕ̃
′

J , (72)

and six expressions for the local variation variables,

ϕδ =

N∑
J=1

Ỹ ′J ·ϕJ δ, ϕ∂ =

N∑
K=1

Ỹ ′K ·ϕK∂ ,

ϕ∂δ =

N∑
J=1

Ỹ ′J ·ϕJ ∂δ+

N∑
J=1

N∑
K=1

Ỹ
′

JK : ϕJ δ⊗ϕK∂ ,

(73)

and

k′δ =
N∑

J=1

Z̃
′

J : ϕJ δ⊗ I, k′∂ =
N∑

K=1

Z̃
′

K : ϕK∂ ⊗ I,

k′∂δ =
N∑

J=1

Z̃
′

J : ϕJ ∂δ⊗ I +
N∑

J=1

N∑
K=1

Z̃′JK
... ϕJ δ⊗ϕK∂ ⊗ I .

(74)

Equations (73) and (74) are interpolating functions, linear in the nodal variation variables ϕJ δ, ϕJ ∂ , and
ϕJ ∂δ. The tensor-valued coefficients Ỹ ′J , Ỹ

′

JK , Z̃
′

J , and Z̃′JK (see [Merlini and Morandini 2004b]) are
nonlinear functions of the current nodal unknowns and thus need to be computed dynamically in the
solution process. The curvature in the reference configuration is computed once for all as in (72).

The linearization of translational kinematics descends straightforwardly from (70)2. Since no double
variations ∂δx′J of free variables make sense, and the interpolation is linear with the free variables x′J , it
follows

δx′,s =
N∑

J=1

WJ ,s δx′J , ∂x′,s =
N∑

J=1

WJ ,s ∂x′J , (75)

and ∂δx′,s is discarded.

7.3. Element implementation. Equations (72)–(75) are now used within (63)–(64) to provide appropri-
ate interpolating functions for the kinematical strain corotational variations, and the latter are finally used
within (51). After integration over the element domain, the internal virtual work contribution from each
element to the linearized functional is obtained in the form

Π e
int δ =

∫
se
πint δ dse

=

{
ϕJ δ

δx′J

}T

·

{
Fe
ϕ J

Fe
x J

}
,

∂Π e
int δ =

∫
se
∂πint δ dse

= ϕJ ∂δ · Fe
ϕ J +

{
ϕJ δ

δx′J

}T

·

[
K e
ϕϕ JK K e

ϕx JK

K eT
ϕx JK K e

xx JK

]
·

{
ϕK∂

∂x′K

}
.

(76)

However, (76) cannot be assembled within the global structure model in the present form. The nodal
mixed multipliers ϕJ ∂δ do not have a correspondence in finite element formulations, and must be solved
for the separate virtual and incremental nodal variation variables ϕJ δ and ϕJ ∂ . Actually, this resolution
is feasible at each single node, where the rotation vector ϕJ is a truly free variable, so that ∂δϕJ does not
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exist at all. By applying the differential maps (36) and (37) to the total nodal rotation ΦJ and discarding
the term in ∂δϕJ , the resolution formula

ϕJ ∂δ =�����ΓJ · ∂δϕJ +Γ
S123
J/ : Γ −1

J ϕJ ∂ ⊗Γ
−1
J ϕJ δ (77)

is made available. (Note that ΓJ and ΓJ/ in (77) are global tensors, built with the total nodal rotation
vector ϕJ .) The first term of ∂Π e

int δ can then be unfolded into a form like the second term and added to the
latter. Thus, a workable expression for the increment of the internal virtual work is obtained; it provides
a symmetrical and fully nonlinear tangent matrix, built with the interpolating functions (72)–(74), which
are nonlinear functions of the current nodal orientations. The global tangent matrix can be assembled
and the linearized problem is solved for the incremental unknowns ϕK∂ and ∂x′K . The nodal variables
are then updated consistently as for α′K ← exp(ϕK∂×)α

′

K and x′K ← x′K + ∂x′K .
It may be worth stressing that the double variation ∂δϕ of the local rotation vector cannot be discarded

as if ϕ were a free variable. This follows from the differential maps (36) and (37), since the local
variation variables ϕδ, ϕ∂ , and ϕ∂δ are computed — consistently with the assumed interpolating model —
from (73).

The framework of this nonlinear slender beam element, and in particular the interpolation methodol-
ogy, are the same as in our solid element [Merlini and Morandini 2004b; 2005] and shell element [Merlini
and Morandini 2011a]. The frame-invariance and path-independence of our interpolation scheme was
discussed and proved in those papers. In those papers, actually, we adopted a particular modeling of the
continuum — called helicoidal modeling — where the angular and linear kinematic fields are coupled
into a single field of orthogonal dual tensors, to which however the multiplicative interpolation discussed
above applies as is. Incidentally, a working slender beam element based on helicoidal modeling is ready
and will be published separately.

8. Numerical tests

A two-node and a three-node beam element have been implemented in our own finite-element code, for-
merly developed for nonlinear solid and shell elements. In the two-node case, the interpolation discussed
in Section 7 provides an element having a constant curvature k along the element length. In this case,
the linearization of the interpolation is much simpler, and manageable expressions for the corotational
variations (63) and (64) can be obtained in the form of linear functions of the nodal variation variables
(similarly to (73)–(75)), without the need of the third differential map (38). However, both the two-node
and the three-node elements are built with the general form of the interpolation discussed above. Standard
Lagrange polynomials are used for the weight functions WJ (s). As a common practice in beam element
technology, shear locking is avoided by resorting to reduced integration; we adopt Gaussian quadrature
with one integration point for the two-node element and two integration points for the three-node element.

Two benchmark problems in nonlinear beam analysis illustrate the performance of the proposed el-
ement. In all computations, the convergence of the Newton–Raphson iterations is checked against a
tolerance of 10−2 on the maximum absolute value of the residual. No explicit units are reported here,
but it is understood that all measures are associated with a coherent system, for example, SI.

8.1. Bending of 45◦ curved cantilever. The cantilever bend was introduced by Bathe and Bolourchi
[1979] and then repeated by almost every author of new nonlinear beam elements. The circular arc of
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radius 100 spans 45◦ in the horizontal plane and is loaded at the free tip by a vertical force up to the
final value 600 (Figure 3). The beam has a square cross-section of size 1× 1 and elastic material with
Young’s modulus E = 107 and Poisson’s ratio ν = 0. After [Ritto-Corrêa and Camotim 2002], two
sets of cross-section elastic properties are considered, according to a different choice of the effective
shear areas and torsional constant. The set denoted by AJ takes unchanged areas A2 = A3 = 1 for shear
and polar moment of inertia J = J2+ J3 for torsion; the set denoted by SK takes effective shear areas
A2 = A3 = 5/6 and torsional constant J = 0.141; the values of both sets are listed in Figure 3.

Several meshes are analyzed, from coarse ones (4 elements) to refined ones (128 elements). All
analyses are requested to seek convergence in a single load-step, but an algorithm of automatic step
control makes the step size shrink or stretch dynamically. The resulting numbers of steps and iterations,
together with the coordinates of the free tip at the final load 600, are listed in Tables 1 and 2. Some
values available from recent literature are also compared in the tables, while earlier results — for which,
however, it is not always certain which cross-section elastic properties were used — can be found in the
cited papers.

8.2. Cantilever beam twisted to a helical form. A clamped slender beam is bent to a helical shape by a
force and coaxial couple at the free tip, as illustrated in Figure 4 for a couple-to-force ratio M/F = 4π .
At increasing load, the beam coils into narrower and narrower circles while the tip crosses the circles
planes alternately from one side to the opposite side. At the final load M = 200π and F = 50, the helix
develops in 10 circles and the out-of-plane displacement is opposite to the applied force. This example
was introduced by Ibrahimbegović [1997] to test analyses with space rotations exceeding 2π , and was
then used by other authors [Zupan and Saje 2003; 2004; Mäkinen 2007; Zupan et al. 2009].

Five meshes with two-node and three-node elements are considered (Table 3). The load is applied in
100 equal steps, but an automatic step control may halve a step if necessary; this happens three to five
times in any of the computations. However, the computations converge quite quickly, as can be seen

Figure 3. 45◦ bend: reference and deformed configurations of the SK beam model with
eight two-node elements.



332 TEODORO MERLINI AND MARCO MORANDINI

Tip coordinates at load 600
Element type # of elements # of steps # of iterations x y z

2-node1 8 6 equal 38 15.7426 47.2606 53.3730
2-node2 8 6 equal 54 15.67 47.29 53.37

2-node 8 6 41 15.7423 47.2600 53.3742
2-node 16 2 26 15.6991 47.1779 53.4495
2-node 32 6 41 15.6884 47.1573 53.4685
2-node 64 6 40 15.6857 47.1522 53.4733
2-node 128 6 40 15.6850 47.1509 53.4745

3-node 4 8 51 15.6837 47.1553 53.4671
3-node 8 6 42 15.6848 47.1507 53.4744
3-node 16 6 40 15.6848 47.1504 53.4748
3-node 32 6 41 15.6848 47.1504 53.4749
3-node 64 5 35 15.6848 47.1504 53.4749

Table 1. 45◦ bend: AJ model computation data. Data from (1) [Ritto-Corrêa and Camo-
tim 2002] and (2) [Ghosh and Roy 2009].

from Table 3. To check the relevance of the resolution (77) of the nodal mixed variation variables, a test
was run with the recovering of the first term of ∂Π e

int δ in (76)2 disabled, but it failed untimely at 3% of
the final load.

The displacement of the free tip in the direction of the applied force is plotted in Figure 5 versus the
fraction of the total load. Among the five meshes, only the response of the coarse mesh of twenty four

Figure 4. Helical beam: reference and deformed configuration of the model with ninety
six two-node elements at 13% of the final load.
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Tip coordinates at load 600
Element type # of elements # of steps # of Iterations x y z

2-node1 8 6 equal 38 15.6213 47.0142 53.4980
4-node3 1 4 equal 7–13 /step 15.57 46.95 53.51
4-node3 2 4 equal 7–13 /step 15.56 46.89 53.61
4-node3 8 4 equal 7–13 /step 15.56 46.89 53.61
3-int-pt4 8 6 equal 30 15.61 46.89 53.60

2-node 8 6 41 15.6211 47.0137 53.4991
2-node 16 2 26 15.5754 46.9259 53.5786
2-node 32 6 41 15.5640 46.9038 53.5988
2-node 64 6 40 15.5613 46.8982 53.6038
2-node 128 6 40 15.5606 46.8968 53.6050

3-node 4 8 51 15.5251 46.8361 53.6350
3-node 8 6 42 15.5410 46.8592 53.6295
3-node 16 6 40 15.5502 46.8766 53.6190
3-node 32 6 41 15.5551 46.8863 53.6125
3-node 64 5 35 15.5577 46.8913 53.6091

Table 2. 45◦ bend: SK model computation data. Data from (1) [Ritto-Corrêa and Camo-
tim 2002], (3) [Kapania and Li 2003], and (4) [Zupan et al. 2009].

Element type # of elements # of steps # of iterations Average iterations per step
2-node 24 105 600 5.7
2-node 48 103 548 5.3
2-node 96 104 519 5.0

3-node 24 104 575 5.5
3-node 48 104 537 5.2

Table 3. Helical beam: computation data.

two-node elements is clearly distinguishable. These results are in good agreement with the papers cited
above: though data for a tabular comparison are not available, a graphical superposition confirms that the
curves in the published plots lie within the band between the curves in Figure 5. A series of coordinates
of the free tip, as computed at completion of each successive coil, is listed in Table 4.

It is worth stressing that the computations are insensitive to rotations exceeding 2π . This is due to the
formulation implemented, which does not need to store and update total rotation vectors, hence eludes the
discontinuities arising at rotation angles which are multiples of 2π ; instead, the nodal orientation tensors
are stored and updated via the incremental rotation tensors at each iteration. Of course, the proposed
formulation is not able to handle the extreme case of relative nodal orientations exceeding 2π within a
single element; this causes the computation to stall, as punctually happened at just 95% of the final load
when testing a mesh of twelve three-node elements.
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Figure 5. Helical beam: tip displacement in the direction of the applied force.

9. Closing remarks

When tackling nonlinear problems of computational solid mechanics involving rotation fields, sooner
or later a parameterization of the rotation tensor is introduced to allow a numerical solution. Thus, we
may discern two subsequent stages: a first stage where an intrinsic, parameterization-free formulation is

Load fraction x y z
0.0 10 0 0
0.1 0.413441 52.67× 10−3

−1.078310
0.2 0.115254 8.381× 10−3

−0.600272
0.3 0.052562 2.606× 10−3

−0.402270
0.4 0.029900 1.122× 10−3

−0.296987
0.5 0.018846 589.0× 10−6

−0.230692
0.6 0.013505 344.8× 10−6

−0.185107
0.7 0.009904 219.0× 10−6

−0.151404
0.8 0.007593 147.4× 10−6

−0.124996
0.9 0.005902 101.7× 10−6

−0.103637
1.0 0.005318 78.40× 10−6

−0.085524

Table 4. Helical beam: tip coordinates of the beam model with ninety six two-node elements.
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developed, hopefully in a consistent way with the properties of the special orthogonal group the rotations
belong to; and a second, parameterization-driven stage. In the sample beam problem we consider in this
paper, an effort is made to keep intrinsic the formulation for as long as possible and to introduce a
parameterization as late as possible.

After completing a consistent formulation and linearization of the beam variational mechanics, a
consistent nonlinear, but properly linearized interpolating model provides an objective finite element
approximation. Differential rotation vectors up to third order are used along these steps and lead to an
approximate linearized virtual functional that includes the term ϕJ ∂δ · Fe

ϕ J , which is unusual for the
finite element method. All these steps are performed without resorting to any parameterization, so the
outlined formulation is consistent and intrinsic. The parameterization of the rotation tensor is resorted
to only twice in the discrete approximation: when linearizing the algorithm that interpolates the section
orientation among the nodal orientations, and when solving the nodal mixed multipliers ϕJ ∂δ while
assembling the beam elements.

The proposed differentiations of the rotation tensor are applied here to the one-dimensional case of
slender beams just as an example. However, they are also valid for other continuum mechanics problems,
and proved to be a valuable tool for shells and solids, where two and three-dimensional gradients are
involved.

Appendix: Tensor reference guide

A short reference guide, in the form of a bare collection of tensor notations and rules, is appended here
to help in following the mathematical developments in the paper. Hereafter, a denotes a vector, A a
second-order tensor, A a third-order tensor, and A a fourth-order tensor. A three-dimensional space
is understood, with g j and g j ( j = 1, 2, 3) reciprocal triads of base vectors. Repeated covariant and
contravariant indexes entail summation from 1 to 3 (Einsteinian rule).

Polyadic representation. For example:

A = Al ⊗ gl
= Akl ⊗ gk

⊗ gl
= A jkl ⊗ g j

⊗ gk
⊗ gl
= Ai jkl gi

⊗ g j
⊗ gk
⊗ gl,

where components Al , Akl , A jkl , and Ai jkl are third-order tensors, second-order tensors, vectors, and
scalars, respectively.

Dot operators. Multiple dots saturate the neighboring polyadic legs in order left-to-right. For example:

A
... B= A jkl ⊗ g j

⊗ gk
⊗ gl ... Bpqr gp⊗ gq ⊗ gr

produces vector A jklB
jkl . A single dot is often understood.

Transpose tensors. For example:

A= Ai j gi
⊗ g j , AT

= Ai j g j
⊗ gi
;

A=Ai jk gi
⊗ g j

⊗ gk
=AT312T231

=AT231T312
,

AT231
=Ai jk g j

⊗ gk
⊗ gi
=AT312T312

, AT312
=Ai jk gk

⊗ gi
⊗ g j

=AT231T231
,

AT132
=Ai jk gi

⊗ gk
⊗ g j , AT321

=Ai jk gk
⊗ g j

⊗ gi , AT213
=Ai jk g j

⊗ gi
⊗ gk .



336 TEODORO MERLINI AND MARCO MORANDINI

Symmetric tensors. Symmetric second-order tensor:

A12 if A= AT.

Simple-symmetric third-order tensors:

A123 if A=AT132, A123 if A=AT321, A123 if A=AT213
;

double-symmetric third-order tensor:

A123 if A=AT231
=AT312

;

and full-symmetric third-order tensor:

A123 if A=AT231
=AT312

=AT132
=AT321

=AT213.

Such symmetries are used as well for the rightmost polyadic legs of fourth-order tensors.

Tensor additive decompositions. Second-order tensor decomposition with a symmetric part:

A= AS
+ AA, AS

=
1
2 (A+ AT), AA

=
1
2 (A− AT)= a×, (A.1)

where a = ax A= 1
2 g j
× Ag j =

1
2 I× : A is the axial vector of A. Third-order tensor decompositions

with simple-symmetric parts:

A=AS123
+AA123, AS123

=
1
2 (A+AT132), AA123

=
1
2 (A−AT132),

A=AS123
+AA123, AS123

=
1
2 (A+AT321), AA123

=
1
2 (A−AT321),

A=AS123
+AA123, AS123

=
1
2 (A+AT213), AA123

=
1
2 (A−AT213);

(A.2)

third-order tensor decomposition with a double-symmetric part:

A=AS123
+AA123,

{
AS123

=
1
3 (A+AT231

+AT312),

AA123
=

1
3 (2A−AT231

−AT312);
(A.3)

and third-order tensor decomposition with a full-symmetric part:

A=AS123
+AA123

,

{
AS123

=
1
6 (A+AT231

+AT312
+AT132

+AT321
+AT213),

AA123
=

1
6 (5A−AT231

−AT312
−AT132

−AT321
−AT213).

(A.4)

Such decompositions are used as well for the rightmost polyadic legs of fourth-order tensors. For exam-
ple:

A = A
S1234
+A

A1234
,

{
A

S1234
=

1
6 (A+AT1342

+AT1423
+AT1243

+AT1432
+AT1324),

A
A1234

=
1
6 (5A−AT1342

−AT1423
−AT1243

−AT1432
−AT1324).

(A.5)
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Unitary tensors. Second-order tensor identity:

I = g j ⊗ g j .

Third-order Ricci’s tensor:

I× = g j ×⊗g j
= I×T312

= g j ⊗ g j
×= I×T231

=−I×T213
=−I×T321

=−I×T132
. (A.6)

Fourth-order unitary tensors:

I= g j ⊗ gk ⊗ g j
⊗ gk

= ĬT1243
= (I ⊗ I)T1324,

Ĭ= g j ⊗ gk ⊗ gk
⊗ g j

= IT1243
= (I ⊗ I)T1342,

I ⊗ I = g j ⊗ g j
⊗ gk ⊗ gk

= IT1324
= ĬT1423,

where, according to the standards introduced by Del Piero [1979], the fourth-order identity also writes
I = I � I , and Ĭ is the transposer T (the tensor product � between second-order tensors converts, in
our notation, as A� B = (A⊗ B)T1324); other useful fourth-order unitary tensors are the symmetrizer
S= 1

2 (I+ Ĭ) and the skew-symmetrizer

W = 1
2 (I− Ĭ)= 1

2 I× I× = 1
2 g j ×⊗g j

× .

Some useful tensor identities.

a×= I×a = a · I×, (A.7)

a× b= I×a · b= a · I×b= I× : b⊗ a, (A.8)

a× b×= b⊗ a− a · b⊗ I, (A.9)

a× : b×= 2a · b, (A.10)

a× a× b× a×= a× b× a× a×, (A.11)

(a× b)×= I× I× : b⊗ a = b⊗ a− a⊗ b= a× b×−b× a×, (A.12)

I×a×−a× I× = I ⊗ a− a⊗ I, (A.13)

a× a× I×a×= a× I×a× a×, (A.14)

a× c× b×+b× c× a×=−((a⊗ b+ b⊗ a) · c)×, (A.15)

I×A= (AT I×)T231, AT I× = (I×A)T312, (A.16)

((I×A)T132 A)T132
=−(I×A)T132 A. (A.17)
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[Ibrahimbegović 1997] A. Ibrahimbegović, “On the choice of finite rotation parameters”, Comput. Methods Appl. Mech. Eng.
149:1-4 (1997), 49–71.
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[Jelenić and Crisfield 1999] G. Jelenić and M. A. Crisfield, “Geometrically exact 3D beam theory: implementation of a strain-
invariant finite element for statics and dynamics”, Comput. Methods Appl. Mech. Eng. 171:1-2 (1999), 141–171.

[Jog 2008] C. S. Jog, “The explicit determination of the logarithm of a tensor and its derivatives”, J. Elasticity 93:2 (2008),
141–148.

[Kapania and Li 2003] R. K. Kapania and J. Li, “A formulation and implementation of geometrically exact curved beam
elements incorporating finite strains and finite rotations”, Comput. Mech. 30 (2003), 444–459.

[Lu 2004] J. Lu, “Exact expansions of arbitrary tensor functions F(A) and their derivatives”, Int. J. Solids Struct. 41:2 (2004),
337–349.

http://dx.doi.org/10.1023/A:1024265401576
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1016/j.cma.2010.05.002
http://dx.doi.org/10.1007/BF00370057
http://dx.doi.org/10.1007/BF00370057
http://dx.doi.org/10.1023/A:1009830626597
http://dx.doi.org/10.1002/nme.1620261105
http://dx.doi.org/10.1115/1.3176034
http://dx.doi.org/10.1098/rspa.1999.0352
http://dx.doi.org/10.1098/rspa.1999.0352
http://dx.doi.org/10.1007/BF00041097
http://dx.doi.org/10.1007/s11433-006-0321-y
http://dx.doi.org/10.1002/nme.909
http://dx.doi.org/10.1007/s00466-008-0358-z
http://dx.doi.org/10.1007/s00466-008-0358-z
http://dx.doi.org/10.1023/A:1014828612841
http://dx.doi.org/10.1016/0045-7825(95)00724-F
http://dx.doi.org/10.1016/0045-7825(95)00724-F
http://dx.doi.org/10.1016/S0045-7825(97)00059-5
http://dx.doi.org/10.1016/S0045-7825(02)00442-5
http://dx.doi.org/10.1016/S0045-7825(02)00442-5
http://dx.doi.org/10.1002/nme.1620382107
http://dx.doi.org/10.1002/nme.1620382107
http://dx.doi.org/10.1002/1521-4001(200208)82:8<535::AID-ZAMM535>3.0.CO;2-U
http://dx.doi.org/10.1016/S0045-7825(03)00397-9
http://dx.doi.org/10.1016/S0020-7683(02)00464-X
http://dx.doi.org/10.1016/S0020-7683(02)00464-X
http://dx.doi.org/10.1016/S0045-7825(98)00249-7
http://dx.doi.org/10.1016/S0045-7825(98)00249-7
http://dx.doi.org/10.1007/s10659-008-9169-x
http://dx.doi.org/10.1007/s00466-003-0422-7
http://dx.doi.org/10.1007/s00466-003-0422-7
http://dx.doi.org/10.1016/j.ijsolstr.2003.10.004


ON SUCCESSIVE DIFFERENTIATIONS OF THE ROTATION TENSOR 339

[Mäkinen 2007] J. Mäkinen, “Total Lagrangian Reissner’s geometrically exact beam element without singularities”, Int. J.
Numer. Methods Eng. 70:9 (2007), 1009–1048.

[Mäkinen 2008] J. Mäkinen, “Rotation manifold SO(3) and its tangential vectors”, Comput. Mech. 42:6 (2008), 907–919.

[Merlini 1997] T. Merlini, “A variational formulation for finite elasticity with independent rotation and Biot-axial fields”,
Comput. Mech. 19 (1997), 153–168.

[Merlini 2002] T. Merlini, “Differentiation of rotation and rototranslation”, Scientific Report DIA-SR 02-16, Dipartimento di
Ingegneria Aerospaziale, Politecnico di Milano, 2002, Available at http://www.aero.polimi.it/diasr/02-16.pdf.

[Merlini and Morandini 2004a] T. Merlini and M. Morandini, “The helicoidal modeling in computational finite elasticity. Part I:
Variational formulation”, Int. J. Solids Struct. 41:18-19 (2004), 5351–5381.

[Merlini and Morandini 2004b] T. Merlini and M. Morandini, “The helicoidal modeling in computational finite elasticity.
Part II: Multiplicative interpolation”, Int. J. Solids Struct. 41:18-19 (2004), 5383–5409. Erratum in Int. J. Solids Struct. 42
(2005), 1269.

[Merlini and Morandini 2005] T. Merlini and M. Morandini, “The helicoidal modeling in computational finite elasticity. Part III:
Finite element approximation for non-polar media”, Int. J. Solids Struct. 42 (2005), 6475–6513.

[Merlini and Morandini 2011a] T. Merlini and M. Morandini, “Computational shell mechanics by helicoidal modeling, II: Shell
element”, J. Mech. Mater. Struct. 6 (2011), 693–728.

[Merlini and Morandini 2011b] T. Merlini and M. Morandini, “Consistency issues in shell elements for geometrically nonlin-
ear problems”, pp. 355–376 in Shell-like structures: nonclassical theories and applications, edited by H. Altenbach and V.
Eremeyev, Advanced Structured Materials 15, Springer, Heidelberg, 2011.

[Najfeld and Havel 1995] I. Najfeld and T. F. Havel, “Derivatives of the matrix exponential and their computation”, Adv. Appl.
Math. 16:3 (1995), 321–375.

[Ortiz et al. 2001] M. Ortiz, R. A. Radovitzky, and E. A. Repetto, “The computation of the exponential and logarithmic
mappings and their first and second linearizations”, Int. J. Numer. Methods Eng. 52:12 (2001), 1431–1441.

[Pietraszkiewicz and Badur 1983] W. Pietraszkiewicz and J. Badur, “Finite rotations in the description of continuum deforma-
tion”, Int. J. Eng. Sci. 21:9 (1983), 1097–1115.

[Reissner 1973] E. Reissner, “On one-dimensional, large-displacement, finite-strain beam theory”, Stud. Appl. Math. 52 (1973),
87–95.

[Ritto-Corrêa and Camotim 2002] M. Ritto-Corrêa and D. Camotim, “On the differentiation of the Rodrigues formula and its
significance for the vector-like parameterization of Reissner–Simo beam theory”, Int. J. Numer. Methods Eng. 55:9 (2002),
1005–1032.

[Rosati 1999] L. Rosati, “Derivatives and rates of the stretch and rotation tensors”, J. Elasticity 56:3 (1999), 213–230.

[Simo 1985] J. C. Simo, “A finite strain beam formulation. The three-dimensional dynamic problem. Part I”, Comput. Methods
Appl. Mech. Eng. 49 (1985), 55–70.

[Simo and Vu-Quoc 1986] J. C. Simo and L. Vu-Quoc, “A three-dimensional finite-strain rod model. Part II: Computational
aspects”, Comput. Methods Appl. Mech. Eng. 58 (1986), 79–116.

[Simo et al. 1992] J. C. Simo, D. D. Fox, and T. J. R. Hughes, “Formulations of finite elasticity with independent rotations”,
Comput. Methods Appl. Mech. Eng. 95:2 (1992), 277–288.

[de Souza Neto 2001] E. A. de Souza Neto, “The exact derivative of the exponential of an unsymmetric tensor”, Comput.
Methods Appl. Mech. Eng. 190:18-19 (2001), 2377–2383.

[de Souza Neto 2004] E. A. de Souza Neto, “On general isotropic tensor functions of one tensor”, Int. J. Numer. Methods Eng.
61:6 (2004), 880–895.

[Wang and Dui 2007] Z.-Q. Wang and G.-S. Dui, “On the derivatives of a subclass of isotropic tensor functions of a nonsym-
metric tensor”, Int. J. Solids Struct. 44:16 (2007), 5369–5379.

[Zupan and Saje 2003] D. Zupan and M. Saje, “Finite-element formulation of geometrically exact three-dimensional beam
theories based on interpolation of strain measures”, Comput. Methods Appl. Mech. Eng. 192:49-50 (2003), 5209–5248.

[Zupan and Saje 2004] D. Zupan and M. Saje, “Rotational invariants in finite element formulation of three-dimensional beam
theories”, Comput. Struct. 82 (2004), 2027–2040.

http://dx.doi.org/10.1002/nme.1892
http://dx.doi.org/10.1007/s00466-008-0293-z
http://dx.doi.org/10.1007/s004660050165
http://www.aero.polimi.it/diasr/02-16.pdf
http://dx.doi.org/10.1016/j.ijsolstr.2004.02.024
http://dx.doi.org/10.1016/j.ijsolstr.2004.02.024
http://dx.doi.org/10.1016/j.ijsolstr.2004.02.026
http://dx.doi.org/10.1016/j.ijsolstr.2004.02.026
http://dx.doi.org/10.1016/j.ijsolstr.2004.09.004
http://dx.doi.org/10.1016/j.ijsolstr.2004.09.004
http://dx.doi.org/10.1016/j.ijsolstr.2005.06.031
http://dx.doi.org/10.1016/j.ijsolstr.2005.06.031
http://dx.doi.org/10.2140/jomms.2011.6.693
http://dx.doi.org/10.2140/jomms.2011.6.693
http://dx.doi.org/10.1007/978-3-642-21855-2
http://dx.doi.org/10.1007/978-3-642-21855-2
http://dx.doi.org/10.1006/aama.1995.1017
http://dx.doi.org/10.1002/nme.263
http://dx.doi.org/10.1002/nme.263
http://dx.doi.org/10.1016/0020-7225(83)90050-2
http://dx.doi.org/10.1016/0020-7225(83)90050-2
http://dx.doi.org/10.1002/nme.532
http://dx.doi.org/10.1002/nme.532
http://dx.doi.org/10.1023/A:1007663620943
http://dx.doi.org/10.1016/0045-7825(85)90050-7
http://dx.doi.org/10.1016/0045-7825(86)90079-4
http://dx.doi.org/10.1016/0045-7825(86)90079-4
http://dx.doi.org/10.1016/0045-7825(92)90144-9
http://dx.doi.org/10.1016/S0045-7825(00)00241-3
http://dx.doi.org/10.1002/nme.1094
http://dx.doi.org/10.1016/j.ijsolstr.2007.01.009
http://dx.doi.org/10.1016/j.ijsolstr.2007.01.009
http://dx.doi.org/10.1016/j.cma.2003.07.008
http://dx.doi.org/10.1016/j.cma.2003.07.008
http://dx.doi.org/10.1016/j.compstruc.2004.03.069
http://dx.doi.org/10.1016/j.compstruc.2004.03.069


340 TEODORO MERLINI AND MARCO MORANDINI

[Zupan et al. 2009] E. Zupan, M. Saje, and D. Zupan, “The quaternion-based three-dimensional beam theory”, Comput. Meth-
ods Appl. Mech. Eng. 198:49-52 (2009), 3944–3956.

Received 27 Nov 2012. Revised 1 Mar 2013. Accepted 1 Mar 2013.

TEODORO MERLINI: Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Campus Bovisa,
via La Masa 34, 20156 Milano, Italy

MARCO MORANDINI: marco.morandini@polimi.it
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Campus Bovisa, via La Masa 34, 20156 Milano,
Italy

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.cma.2009.09.002
mailto:marco.morandini@polimi.it
http://msp.org


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
msp.org/jomms

Founded by Charles R. Steele and Marie-Louise Steele

EDITORIAL BOARD

ADAIR R. AGUIAR University of São Paulo at São Carlos, Brazil
KATIA BERTOLDI Harvard University, USA

DAVIDE BIGONI University of Trento, Italy
IWONA JASIUK University of Illinois at Urbana-Champaign, USA

THOMAS J. PENCE Michigan State University, USA
YASUHIDE SHINDO Tohoku University, Japan
DAVID STEIGMANN University of California at Berkeley

ADVISORY BOARD

J. P. CARTER University of Sydney, Australia
R. M. CHRISTENSEN Stanford University, USA
G. M. L. GLADWELL University of Waterloo, Canada

D. H. HODGES Georgia Institute of Technology, USA
J. HUTCHINSON Harvard University, USA

C. HWU National Cheng Kung University, Taiwan
B. L. KARIHALOO University of Wales, UK

Y. Y. KIM Seoul National University, Republic of Korea
Z. MROZ Academy of Science, Poland

D. PAMPLONA Universidade Católica do Rio de Janeiro, Brazil
M. B. RUBIN Technion, Haifa, Israel

A. N. SHUPIKOV Ukrainian Academy of Sciences, Ukraine
T. TARNAI University Budapest, Hungary

F. Y. M. WAN University of California, Irvine, USA
P. WRIGGERS Universität Hannover, Germany

W. YANG Tsinghua University, China
F. ZIEGLER Technische Universität Wien, Austria

PRODUCTION production@msp.org

SILVIO LEVY Scientific Editor

Cover photo: Wikimedia Commons

See msp.org/jomms for submission guidelines.

JoMMS (ISSN 1559-3959) at Mathematical Sciences Publishers, 798 Evans Hall #6840, c/o University of California, Berkeley,
CA 94720-3840, is published in 10 issues a year. The subscription price for 2013 is US $555/year for the electronic version, and
$705/year (+$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues, and changes of address
should be sent to MSP.

JoMMS peer-review and production is managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://msp.org/jomms/
mailto:production@msp.org
http://msp.org/jomms/
http://msp.org/
http://msp.org/


Journal of Mechanics of Materials and Structures
Volume 8, No. 5-7 July–September 2013

Efficiencies of algorithms for vibration-based delamination detection: A
comparative study OBINNA K. IHESIULOR, KRISHNA SHANKAR,
ZHIFANG ZHANG and TAPABRATA RAY 247

Evaluation of the effective elastic moduli of particulate composites based on
Maxwell’s concept of equivalent inhomogeneity: microstructure-induced
anisotropy VOLODYMYR I. KUSHCH, SOFIA G. MOGILEVSKAYA,
HENRYK K. STOLARSKI and STEVEN L. CROUCH 283

On successive differentiations of the rotation tensor: An application to nonlinear
beam elements TEODORO MERLINI and MARCO MORANDINI 305

Predicting the effective stiffness of cellular and composite materials with
self-similar hierarchical microstructures
YI MIN XIE, ZHI HAO ZUO, XIAODONG HUANG and XIAOYING YANG 341

On acoustoelasticity and the elastic constants of soft biological tissues
PHAM CHI VINH and JOSE MERODIO 359

Identification of multilayered thin-film stress from nonlinear deformation of
substrate KANG FU 369

JournalofM
echanics

ofM
aterials

and
Structures

2013
V

ol.8,N
o.5-7

http://dx.doi.org/10.2140/jomms.2013.8.247
http://dx.doi.org/10.2140/jomms.2013.8.247
http://dx.doi.org/10.2140/jomms.2013.8.283
http://dx.doi.org/10.2140/jomms.2013.8.283
http://dx.doi.org/10.2140/jomms.2013.8.283
http://dx.doi.org/10.2140/jomms.2013.8.341
http://dx.doi.org/10.2140/jomms.2013.8.341
http://dx.doi.org/10.2140/jomms.2013.8.359
http://dx.doi.org/10.2140/jomms.2013.8.369
http://dx.doi.org/10.2140/jomms.2013.8.369

	1. Introduction
	2. Structure of successive differentiations of an orthogonal tensor
	2.1. Differential rotation vectors
	2.2. Evaluation of successive differential rotation vectors

	3. The exponential and subexponential maps
	3.1. The family of subexponential functions
	3.2. The family of subexponential maps
	3.3. Compact form

	4. Differentiation of subexponential maps
	4.1. Series expansion form of the derivative tensors
	4.2. Recursive form of the derivative tensors
	4.3. Compact form of the derivative tensors

	5. Differential maps of the rotation
	5.1. Explicit notation for the lowest two subexponential maps
	5.2. Lowest three differential maps
	5.3. Properties of the derivative tensors

	6. Slender beam variational mechanics
	6.1. Nonlinear mechanics setup
	6.2. Vectorial parameterization of motion
	6.3. Consistent account of the rotation variations

	7. Slender beam element
	7.1. Interpolating model
	7.2. A multiplicative interpolation scheme
	7.3. Element implementation

	8. Numerical tests
	8.1. Bending of 45 curved cantilever
	8.2. Cantilever beam twisted to a helical form

	9. Closing remarks
	Appendix: Tensor reference guide
	References
	
	

