
Journal of

Mechanics of
Materials and Structures

ON ACOUSTOELASTICITY AND THE ELASTIC CONSTANTS
OF SOFT BIOLOGICAL TISSUES

Pham Chi Vinh and Jose Merodio

Volume 8, No. 5-7 July–September 2013

msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 8, No. 5-7, 2013

dx.doi.org/10.2140/jomms.2013.8.359 msp

ON ACOUSTOELASTICITY AND THE ELASTIC CONSTANTS
OF SOFT BIOLOGICAL TISSUES

PHAM CHI VINH AND JOSE MERODIO

We analyze the acoustoelastic study of material moduli that appear in the constitutive relations that
characterize the response of anisotropic nonlinearly elastic bodies, in particular, materials reinforced with
one set of fibers along one direction. Studies dealing with acoustoelastic coefficients in incompressible
solids modeled by means of strain-energy density functions expanded up to different orders in terms of
the Green strain tensor can be found in the literature. In this paper, we connect that analysis and the
parallel one developed from the general theory of nonlinear elasticity which is based on strain energies
that depend on the right Cauchy–Green deformation tensor. Establishing this relation explicitly will
improve understanding of the mechanical properties of soft biological tissues among other materials.

1. Introduction

Determination of the acoustoelastic coefficients in incompressible solids has very recently attracted a
lot of attention since these analyses give an opportunity to capture the mechanical properties of such
materials, among other applications [Bigoni et al. 2007; 2008; Destrade et al. 2010b].

An incompressible transversely isotropic model has recently been analyzed by Destrade et al. [2010a]
in which the strain-energy density is given by

W D �I2C
1
3
AI3C˛1I2

4 C˛2I5C˛3I2I4C˛4I3
4 C˛5I4I5; (1)

where

I2 D tr.E2/; I3 D tr.E3/; I4 DM � .EM /; I5 DM � .E2M /; (2)

E is the Green strain tensor, M is the unit vector that gives the undeformed fiber direction, and �, ˛1,
˛2 and A, ˛3, ˛4, ˛5 are second and third-order elastic constants, respectively (the order is given by the
exponent of E ). To evaluate the elastic constants Destrade et al. established formulas for the velocity
waves. The formulas are given as first-order polynomials in terms of the elongation e1, which is defined
by �D 1C e1, where � is the principal stretch in the direction that gives both the fiber direction and the
direction of uniaxial tension. The speeds of infinitesimal waves do provide a basis for the acoustoelastic
evaluation of the material constants [Destrade and Ogden 2010].

Soft biological tissues are anisotropic solids due to the presence of oriented collagen fiber bundles
[Holzapfel et al. 2000; Destrade et al. 2010a]. To make the model (1) more general and able to capture
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soft biological tissue mechanical behavior a fourth-order incompressible strain-energy function has been
analyzed in [Vinh and Merodio 2013], namely

W D �I2C
1
3
AI3C˛1I2

4 C˛2I5C˛3I2I4C˛4I3
4

C˛5I4I5C˛6I2
2 C˛7I2I2

4 C˛8I2I5C˛9I4
4 C˛10I2

5 C˛11I3I4; (3)

where ˛6; : : : ; ˛11 are fourth-order elastic constants. The results show that linear corrections to the
acoustoelastic wave speed formulas involve second and third-order constants, and that quadratic correc-
tions involve second, third, and fourth-order constants, in agreement with [Hoger 1999]. Indeed, this
is precisely the rationale behind the considered expansions (1) and (3) and the reason to develop the
acoustoelastic wave speed formulas in terms of constitutive models that depend on the invariants of the
Green strain tensor. Nevertheless, in this paper we develop acoustoelastic wave speed formulas in terms
of constitutive models that depend on the invariants of the right Cauchy–Green tensor.

The model (3) has 13 elastic constants. It would be perfectly justifiable to question the efficacy of
a model that depends on such a number of elastic constants. It is not easy to determine the structure
of these material constants by any correlation with experiments. This makes a careful scrutiny of the
nature of these constitutive models necessary in order to determine which of these elastic constants must
be retained in the development of models. The models have to be well understood, and we can only do
this if we analyze their structure. In passing, we mention that there has been lately in the literature some
controversy regarding the use of planar tests to characterize anisotropic nonlinearly elastic materials. For
a general discussion refer to [Holzapfel and Ogden 2009].

The more available formulations there exist in the literature to characterize elastic materials the more
possibilities researchers have to capture the structure of the constitutive models. Furthermore, while
physical acousticians are interested in third-order constants for anisotropic solids, workers in nonlinear
elasticity, and, in particular, in soft biological tissue, use finite extensions involving fourth-order constants.
In addition, soft biological tissue is modeled using general nonlinear elasticity theory expressed in terms
of the right Cauchy–Green deformation tensor (see [Holzapfel et al. 2000]), among other formulations.
Therefore, to develop the acoustoelastic wave speed formulas in terms of general nonlinear elasticity
theory, that is, in terms of the right Cauchy–Green tensor, may improve our understanding of the me-
chanical response of soft tissue, among other materials. It is to this aspect of the problem that this study
is directed.

In this paper we only address the subtle differences between the two approaches. To the best of
our knowledge this relation has not been explored in the literature and we believe that the cumbersome
technical details of the analysis are worthy of investigation. Our purpose is twofold: on the one hand,
we illustrate the analysis for these nonisotropic elastic energy functions; on the other, we connect the
acoustoelastic formulations of both material models, the one depending on the Green strain tensor and
the one depending on the right Cauchy–Green tensor.

The layout of the paper is as follows. In Section 2, we introduce briefly the main governing equations.
Section 3 is devoted to the acoustoelastic analysis of constitutive models that depend on the invariants
of the right Cauchy–Green strain tensor. In particular, the equations governing infinitesimal motions
superimposed on a finite deformation have been used to establish formulas for the velocity of (plane
homogeneous) shear bulk waves propagating in general soft biological tissues subject to uniaxial tension



ON ACOUSTOELASTICITY AND THE ELASTIC CONSTANTS OF SOFT BIOLOGICAL TISSUES 361

or compression. Furthermore, the analysis connects with the constitutive model (3). In Section 4 we give
some conclusions.

2. Overview of the main equations

We consider an elastic body whose initial geometry defines a reference configuration, which we denote
by Br , and a finitely deformed equilibrium configuration B0. The position vectors of representative
particles in Br and B0 are denoted by X and x, respectively. It is well known that x D x.X ; t/, where
t is time. The deformation gradient tensor associated with the deformation Br !B0 is denoted by F .

2.1. Material model. Soft tissue is modeled as an incompressible transversely isotropic elastic solid.
The most general transversely isotropic nonlinear elastic strain-energy function � depends on F through
the right Cauchy–Green tensor C , which is C D F TF , and we therefore consider � to depend on the
invariants of the tensor C . It is well known that E D .C � I/=2, where I is the identity tensor. The
isotropic invariants of C most commonly used are the principal invariants, defined by

I�1 D tr C ; I�2 D
1
2
Œ.tr C /2� tr.C 2/�; I�3 D det C : (4)

The (anisotropic) invariants associated with M and C are usually taken as (see, for instance, [Merodio
and Saccomandi 2006])

I�4 DM � .CM /; I�5 DM � .C 2M /: (5)

It follows that for incompressible materials �D�.I�
1
; I�

2
; I�

4
; I�

5
/ since I�

3
D 1.

In the Appendix several expressions that are needed in this analysis are given. The corresponding
Cauchy stress tensor for � using the relations (A.4) and (A.6) yields

� D�pI C 2�1B C 2�2.I
�
1 B �B2/C 2�4m˝mC 2�5.m˝BmCBm˝m/; (6)

where p is the hydrostatic pressure arising from the incompressibility constraint, B D FF T , and mD

FM gives the deformed fiber direction. This expression in indicial notation is

�ij D�pıij C 2�1Bij C 2�2.I
�
1 ıij �Bi /Bj C 2�4mimj C 2�5.Bjmmi CBimmj /: (7)

It follows using (7) that
p D 2�1; �4C 2�5 D 0; (8)

in the reference configuration where F D I and the Cauchy stress components are zero.

2.2. Linearized equations of motion. The linearized equations of motion for incompressible materials
are summarized below. For a complete derivation see [Ogden and Singh 2011]. From B0, the linearized
incremental form of the equations of motion and the incompressibility constraint, in component form,
are written as

A0piqj uj ;pq �p�;i D �ui;t t ; ui;i D 0; (9)

respectively, where ui.x; t/ is the small time-dependent displacement increment, a comma indicates
differentiation with respect to the spatial coordinate or with respect to t , p� is the time-dependent pressure
increment, and
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A0piqj D Fp˛Fqˇ

@2�

@Fi˛@Fjˇ

:

The subscript 0 indicates the so-called pushed-forward quantity from the initial reference configuration
to the finitely deformed equilibrium configuration. We give its specialization to the situation in which
there is no finite deformation and B0 coincides with Br . The elasticity tensor A0piqj is given in (A.7).
Under these conditions, customarily, the subscript 0 on A0 is omitted, and in what follows we do so.

2.3. Homogeneous plane waves. We apply the equation of motion and the incompressibility condition
to the analysis of homogeneous plane waves. In particular, we consider the incremental displacement u

and Lagrange multiplier p� to have the forms

uD f .n �x� vt/d ; p� D g.n �x� vt/; (10)

where d is a constant unit (polarization) vector, the unit vector n is the direction of propagation of the
plane wave, v is the wave speed, f is a function that need not be made explicit but is subject to the
restriction f 00 ¤ 0, and g is a function related to f . A prime on f or g indicates differentiation with
respect to its argument.

Substitution of (10) into (9) then yields

ŒQ.n/d � �v2d �f 00�g0nD 0; d �nD 0; (11)

where the (symmetric) acoustic tensor Q.n/ is defined by

Qij .n/DApiqj npnq: (12)

The elasticity tensor Apiqj is given in (A.7). Now, we just give the main result. For a complete derivation
see [Ogden and Singh 2011]. It follows that for a given n and d the wave speed v is obtained from

�v2
D ŒQ.n/d � �d : (13)

3. An approach to finding formulas for the speeds
of homogeneous plane waves using general nonlinear elasticity theory

We now describe the loading and geometric case that will be used in the analysis that follows. Consider
a rectangular block of a soft transversely isotropic incompressible elastic solid whose faces in the un-
stressed state are parallel to the .X1;X2/, .X2;X3/, and .X3;X1/-planes and with the fiber direction M

parallel to the X1-direction. Suppose that the sample is under uniaxial tension or compression with the
direction of tension parallel to the X1-axis. It is easy to see that the sample is subject to x1 D �1X1,
x2 D �2X2, and x3 D �3X3, and whence

F D diag.�1; �2; �3/; (14)

in which
�1 D �; �2 D �3 D �

�1=2; � > 0; (15)

where �k are the principal stretches of deformation. Note that the faces of the deformed block are parallel
to the .x1;x2/, .x2;x3/, and .x3;x1/-planes.
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The analysis can now focus on different cases. We consider motion in the .x1;x2/-plane (a plane that
contains the deformed fiber direction) with n1D cos � D c, n2D sin � D s, d1D� sin � , and d2D cos � ,
where � is the angle between n and the x1-direction. The wave speed is, under these conditions, obtained
using (13), (12), and (A.7) and can be written as

�v2
DApiqj npnqdidj

DA1212c4
C 2.A1222�A1112/c

3sC .A1111CA2222� 2A1122� 2A1221/c
2s2

C 2.A1121�A2221/cs3
CA2121s4: (16)

We now assume the situation described in (14) and investigate propagation in the fiber direction, that
is, n coincides with the deformed fiber direction, which initially is in the X1-direction. In this case, the
relevant term in (16) is

A1212 D 2�1�
2
1C2�2.I

�
1 �

2
1��

2
1�

2
2��

4
1/C2�4m2

1C2�5Œ2m1B1m C�
2
2m2

1C�
2
1m2

2�

C4�44m2
1m2

2C2�55.m1B2m Cm2B1m /
2
C4�452m1m2.m1B2m Cm2B1m /

C2�1�
2
1C2�2�

2
1�

2
3C2�4m2

1C2�5Œ2m1B1m C�
2
1m2

2C�
2
2m2

1�

C4�44m2
1m2

2C4�55.m1B2m Cm2B1m /
2
C8�45m1m2.m1B2m Cm2B1m /:

Considering, further, that in this case the components of m are m1 D �1 and m2 D 0 the wave speed
v12 is

�v2
12 DA1212 D 2�1�

2
1C 2�2�

2
1�

2
3C 2�4�

2
1C 2�5.2�

4
1C�

2
1�

2
2/: (17)

On the other hand, and with a parallel argument, the wave speed for the analysis of propagation in
the perpendicular-to-the-fiber direction denoted by v21, that is, n is perpendicular to the deformed fiber
direction, which initially is in the X1-direction, yields using (16)

�v2
21 DA2121 D 2�1�

2
2C 2�2�

2
2�

2
3C 2�5�

2
1�

2
2: (18)

It follows using (7), particularized for the (uniaxial) conditions at hand, (17), and (18) that

A1212�A2121 D �1� �2: (19)

We do not pursue here the study of these relations. For further details, we refer to [Ogden and Singh
2011], which also establishes connections between the identities given with the formulation developed
here and the identities developed by Biot [1965] with his formulation.

Now, we consider �1 D 1C e1 for e1 sufficiently small. By incompressibility �2 D �3 D �
�1=2
1

, and
it follows that �2

1
�2

3
D �2

1
�2

2
D �1 D 1C e1. Using these expressions, (4), and (5), the invariants I�i in

terms of e1 are

I�1 D �
2
1C�

2
2C�

2
3 D �

2
1C 2�2

2 D 1C 2e1C e2
1 C 2.1C e1/

�1
D 3C 3e2

1 ;

I�2 D �
�2
1 C 2��2

2 D 1� 2e1C 3e2
1 C 2.1C e1/D 3C 3e2

1 ;

I�4 D �
2
1 D 1C 2e1C e2

1 ;

I�5 D �
4
1 D 1C 4e1C 6e2

1 :

(20)
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Expansion of (17) requires the expansion of the different derivatives �i , i D 1; 2; 4; 5, in (17). One finds
using the chain rule and (20) that

�1 D�
.o/
1
C e1

d

de1
�1

ˇ̌̌
e1D0
C

1

2
e2

1

d2

de2
1

�1

ˇ̌̌
e1D0

D�
.o/
1
C e1

�
2�

.o/
14
C4�

.o/
15

�
C

1

2
e2

1
d

de1
Œ6�11e1C6�12e1C�14.2C2e1/C�15.4C12e1/�

ˇ̌̌
e1D0

D�
.o/
1
C2e1

�
�
.o/
14
C2�

.o/
15

�
C

1

2
e2

1

�
6�

.o/
11
C6�

.o/
12
C2�

.o/
14
Ca2�

.o/
15
C4�

.o/
144
C16�

.o/
145
C16�

.o/
155

�
;

where �.o/
1

is the value of �1 in the reference configuration. Furthermore, it is easy to obtain that

�i D�
.o/
i C2

�
�
.o/
i4
C2�

.o/
i5

�
e1C

�
3�

.o/
i1
C3�

.o/
i2
C�

.o/
i4
C6�

.o/
i5
C2�

.o/
i44
C�

.o/
i45
C8�

.o/
i55

�
e2

1 ; (21)

where i can take the values 1, 2, 4, and 5.
Use of (21) and (17) yields for the wave speed, disregarding terms of order higher than 2 in e1,

�v2
12 D 2�

.o/
1
C2�

.o/
2
C2�

.o/
4
C6�

.o/
5
C e1

�
4�

.o/
1
C2�

.o/
12
C4�

.o/
4
C18�

.o/
5
C4�

.o/
14
C8�

.o/
15

C4�
.o/
24
C8�

.o/
25
C4�

.o/
44
C20�

.o/
45
C24�

.o/
55

�
C e2

1

�
2�

.o/
1
C2�

.o/
4
C24�

.o/
5

C8
�
�
.o/
14
C2�

.o/
15

�
C4

�
�
.o/
24
C2�

.o/
25

�
C8

�
�
.o/
44
C�

.o/
45

�
C36

�
�
.o/
45
C2�

.o/
55

�
C6�

.o/
11
C12�

.o/
12

C8�
.o/
14
C30�

.o/
15
C6�

.o/
22
C8�

.o/
24
C30�

.o/
25
C2�

.o/
44
C18�

.o/
45
C36�

.o/
55
C4�

.o/
144
C16�

.o/
145

C16�
.o/
155
C4�

.o/
244
C16�

.o/
245
C16�

.o/
255
C4�

.o/
444
C30�

.o/
445
C64�

.o/
455
C48�

.o/
555

�
: (22)

This formula gives the general acoustoelastic wave speed for constitutive models that depend on the
invariants of the right Cauchy–Green tensor. This completes the first purpose of our analysis. Now, we
focus on the second purpose, which is to connect this formulation and the one developed for constitutive
models that depend on invariants of the Green strain tensor.

The relations between both invariant formulations I�i and Ii are established though C and the well-
known Cayley–Hamilton theorem, that we write as

C 3
D I�1 C 2

� I�2 C C I ; tr.C 3/D I�1 .I
�
1

2
� 2I�2 /� I�1 I�2 C 3:

Hence, the invariants Ii in terms of I�i
are

I2 D tr.E2/D 1
4

tr.C 2
� 2C C I/D 1

4
.I�1

2
� 2I�2 � 2I�1 C 3/;

I3 D tr.E3/D 1
8

tr.C 3
� 3C 2

C 3C C I/D 1
8
.I�1

3
� 3I�1 I�2 � 3I�1

2
C 6I�2 C 3I�1 /;

I4 DM � .EM /D 1
2
.I�4 � 1/;

I5 DM � .E2M /D 1
4
.I�5 � 2I�4 C 1/:

(23)

Using (23) the constitutive model (3) (or any other model written in terms of the invariants Ii) can be
written in terms of the invariants I�i and the same constants �, A, and ˛1; : : : ; ˛11. Then, (22) for that
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particular model after a lengthy but straightforward calculation yields

�v2
12 D �C

1
2
˛2C

�
3�C 1

4
AC 2˛1C

5
2
˛2C˛3C

1
2
˛5

�
e

C
�
5�C 7

4
AC 5˛1C 5˛2C 5˛3C 3˛4C

15
4
˛5C 3˛6C˛7C

7
4
˛8C˛10C

3
4
˛11

�
e2: (24)

This formula was obtained in [Vinh and Merodio 2013]. Furthermore, the result given in [Destrade et al.
2010a] is a special case of the approximation (24) when ˛k D 0 and k D 6; 11.

4. Conclusions

The motivation behind this analysis is the possibility of capturing the mechanical properties of soft
transversely isotropic incompressible nonlinear elastic materials, such as certain soft biological tissues,
using acoustoelasticity theory. The constitutive model is given as a strain-energy density function that
depends on the invariants of the right Cauchy–Green tensor. The equations governing infinitesimal mo-
tions superimposed on a finite deformation have been used in conjunction with the constitutive law to
examine the propagation of homogeneous plane waves. The speeds of homogeneous plane waves have
been derived. Furthermore, the differences between this theoretical framework and the parallel one
obtained for constitutive models that depend on the Green strain tensor have been highlighted. The use
of both acoustoelastic wave speed framework formulations may help to scrutinize the nature of the elastic
constants as well as to decide which elastic constants must be retained in the development of models.

Appendix: Derivatives of the invariants and the elasticity tensor

The expressions for the stress and elasticity tensors require the calculation of

@�

@F
D

NX
iD1

�i

@I�i
@F

(A.1)

and

@2�

@F @F
D

NX
iD1

�i

@2I�i
@F @F

C

NX
iD1

NX
jD1

�ij

@I�i
@F
˝
@I�j

@F
; (A.2)

where we have used the shorthand notations �i D @�=@I
�
i , �ij D @

2�=@I�i @I
�
j , i; j D 1; 2; : : : ;N .

For the considered incompressible material the nominal stress is

S D
@�

@F
�pF �1

D

5X
iD1; i¤3

�i

@I�i
@F
�pF �1; (A.3)

and the corresponding Cauchy stress is

� D F
@�

@F
�pI D

5X
iD1
i¤3

�iF
@I�i
@F
�pI : (A.4)
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The elasticity tensor is given by

AD
@2�

@F @F
D

X
1�i�5

i¤3

�i

@2I�i
@F @F

C

X
1�i�5

i¤3

X
1�j�5

j¤3

�ij

@I�i
@F
˝
@I�j

@F
: (A.5)

This requires expressions for the derivatives of the invariants, which are

@I�
1

@Fi˛
D 2Fi˛;

@I�
2

@Fi˛
D 2.I�1 Fi˛ �Fk˛FkıFiı/;

@I�
4

@Fi˛
D 2M˛FiıMı;

@I�
5

@Fi˛
D 2.M˛FiıCıM CC˛MFiıMı/;

@2I�
1

@Fi˛@Fjˇ

D 2ıijı˛ˇ;

@2I�
2

@Fi˛@Fjˇ

D 2.2Fi˛Fjˇ�FiˇFj˛CC ıijı˛ˇ�Bijı˛ˇ�C˛ˇıij /;
@2I�

4

@Fi˛@Fjˇ

D 2ıij M˛Mˇ;

@2I�
5

@Fi˛@Fjˇ

D 2ıij .M˛Cˇ CMˇC˛ /M C 2Bij M˛Mˇ

C 2ı˛ˇFiMFjıMıC 2.FiˇFjM˛CFj˛FiMˇ/M :

(A.6)

The pushed-forward quantity from the initial reference configuration to the finitely deformed equilib-
rium configuration of A is denoted A0. We give its specialization to the situation in which there is no
finite deformation and B0 coincides with Br . The components of A0 in the reference configuration for
� using (A.6), the chain rule, and the conditions (8) can be arranged in the form

A0piqj

D Fp˛Fqˇ

@2�

@Fi˛@Fjˇ

D 2�1ıij BpqC2�2.2BipBjq �BiqBjpCI�1 ıij Bpq �Bij Bpq � ıij .B
2/pq/C2�4ıij mpmq

C 2�5Œıij .mpBqr mr CmqBpr mr /CBij mpmqCmimj BpqCBiqmj mpCBpj mimq �

C 4�11BipBjqC 4�22.I
�
1 Bip � .B

2/ip/.I
�
1 Bjq � .B

2/jq/C 4�44mimj mpmq

C 4�55ŒmpBir mr CmiBpr mr �ŒmqBjr mr Cmj Bqr mr �

C 4�12ŒBip.I
�
1 Bjq � .B

2/jq/CBjq.I
�
1 Bip � .B

2/ip/�C 4�14ŒBipmj mqCBjqmimp �

C 4�15

�
Bip ŒmqBjr mr Cmj Bqr mr �CBjq ŒmiBpr mr CmpBir mr �

�
C 4�24Œ.I

�
1 Bip � .B

2/ip/mj mqC .I
�
1 Bjq � .B

2/jq/mimp �

C4�25

�
.I�1 Bip � .B

2/ip/ŒmqBjr mr Cmj Bqr mr �C .I
�
1 Bjq � .B

2/jq/ŒmiBpr mr CmpBir mr �
�

C 4�45

�
mimp ŒmqBjr mr Cmj Bqr mr �Cmj mq ŒmiBpr mr CmpBir mr �

�
: (A.7)
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