
Journal of

Mechanics of
Materials and Structures

WORST-CASE LOAD IN PLASTIC LIMIT
ANALYSIS OF FRAME STRUCTURES

Yoshihiro Kanno

Volume 8, No. 8-10 October-December 2013

msp



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 8, No. 8-10, 2013

dx.doi.org/10.2140/jomms.2013.8.415 msp

WORST-CASE LOAD IN PLASTIC LIMIT
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This paper addresses the plastic limit analysis of a frame structure under uncertainty in the external
load. Given a bounded set in which an external load can vary, we attempt to find the worst load that
minimizes the limit load factor. It is shown that this problem can be formulated as a mixed-integer
linear programming problem. The global optimal solution of this optimization problem can be found
by using an existing algorithm, e.g., a branch-and-cut method. Guaranteed convergence to a global
optimal solution is important because it implies that the proposed method yields neither overestimation
nor underestimation in this uncertainty analysis problem. Two numerical examples illustrate that the
worst scenario problem can be solved with modest computational effort. They also show that not only
does the limit load factor depend on the level of uncertainty in the external load, but the collapse mode
as well.

1. Introduction

This paper presents a numerical method for finding the worst-case loading in plastic limit analysis of a
frame structure. Possibilistic (or bounded-but-unknown) models, rather than probabilistic models, are
employed to represent the uncertainty in the external load. Then the worst scenario is defined as the
external load with which the plastic limit load factor attains the minimum value.

Since real-world structures inevitably encounter various uncertainties stemming from manufacturing
variability, aging, limitation of knowledge of input disturbance, etc., the concept of robustness to uncer-
tainty is central in structural design [Zang et al. 2005; Beyer and Sendhoff 2007; Schuëller and Jensen
2008; Valdebenito and Schuëller 2010]. Probabilistic and possibilistic methods for analysis and design
of structures under uncertainties have been compared in the literature [Langley 2000; Nikolaidis et al.
2004]. If a reliable statistical property of uncertainty is available, then probabilistic reliability analysis
can be performed. In contrast, a possibilistic model of uncertainty might be applicable to problems
without reliable stochastic information, because it requires only bounds for the input data to define the
uncertainty and hence is often less information intensive. In this case, the key is to analyze the worst
scenario, that is, the most severe scenario among a given set of scenarios, in order to assess the robustness
of the structure [Ben-Haim and Elishakoff 1990; Hlaváček et al. 2004; Ben-Haim 2006]. The problem of
finding the worst scenario, called the worst scenario problem, is formulated as an optimization problem,
and the worst scenario corresponds to its optimal solution. It is worth noting that the worst scenario
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problem should be solved by an algorithm with guaranteed global convergence, because, obviously, a
local (but not global) optimal solution is not necessarily the worst scenario. In this paper attention is
focused on development of a global optimization method for the worst scenario problem.

There exists a vast literature on numerical methods for worst scenario problems. The so-called convex
modeling approach [Ben-Haim and Elishakoff 1990] is one of the best-known methods and has been
applied in many areas. Interval arithmetic, originally developed for finding bounds on round-off errors
[Neumaier 1990; Alefeld and Mayer 2000], has also been applied to various problems in mechanics
[McWilliam 2001; Chen et al. 2002; De Gersem et al. 2007; Neumaier and Pownuk 2007; Degrauwe
et al. 2010]. It finds a conservative bound, i.e., an outer bound, for the response of a structural system with
uncertainty; for details, as well as surveys on other nonprobabilistic uncertainty analyses, see [Moens
and Vandepitte 2005], [Möller and Beer 2008], and [Moens and Hanss 2011]. Since the worst scenario
problem is formulated as an optimization problem, it might be natural to use an optimization algorithm
for finding the worst scenario. However, direct use of a conventional nonlinear programming approach
is not guaranteed to provide a conservative solution, unless the worst scenario problem is convex. Also,
metaheuristics including genetic algorithms, which have been applied to complex engineering systems
[Biondini et al. 2004; Catallo 2004], do not necessarily converge to the global optimal solution and
hence their solutions are on the unsafe side in general. For nonconvex worst scenario problems, two
nontraditional approaches have been recently developed to ensure conservativeness: one is to construct
a convex approximation problem that provides a conservative bound, while the other is to reformulate
the original worst scenario problem to another equivalent optimization problem for which an algorithm
with guaranteed convergence to the global optimal solution is available. Taking the former approach,
semidefinite programming approximations have been developed for static problems [Kanno and Takewaki
2006; 2008; Guo et al. 2009; 2011] and a dynamic steady-state problem [Kanno and Takewaki 2009].
With the latter approach, mixed-integer linear programming (MILP) formulations have been studied for
static analysis [Guo et al. 2008] and plastic limit analysis of trusses [Kanno and Takewaki 2007; Kanno
2012]. Although this MILP approach is applicable only in some specific cases, its distinguishing feature
is guaranteed convergence to the exact worst case; in other words, it returns neither overestimation nor
underestimation.

In [Kanno and Takewaki 2007] an MILP formulation was developed to solve the worst scenario
problem in the plastic limit analysis of a truss, where the external load was considered uncertain and
assumed to be included in a given convex set. In a continuation of this work, we extend the result to
frame structures. It is shown that the worst scenario problem of a frame structure can also be converted
to an MILP problem, provided that the yield surface is represented by a piecewise linear function of the
axial force and the end moment. The global optimal solution of an MILP problem can be found with, e.g.,
a branch-and-cut algorithm; several well-developed software packages, e.g., Gurobi Optimizer [Gurobi
2013] and CPLEX [IBM ILOG 2011], are available for this purpose. Guaranteed convergence to a
global optimal solution implies that the exact worst case can be found by the proposed method. Since we
restrict ourselves to the case of piecewise linear yield functions, the problem for frame structures in this
paper is not much different from the one for trusses in [Kanno and Takewaki 2007] from a mathematical
point of view. For instance, the limit analysis problems of both structures can be formulated as linear
programming (LP) problems, although, due to the effect of interaction between the axial force and the
end moment, the formulation for frame structures is slightly more complicated. From an engineering
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point of view, however, limit analysis that can deal with frame structures has more significance than
analysis that is limited to trusses. Also, in [Kanno and Takewaki 2007] the worst-case load is found
by solving a MILP problem with generation of some disjunctive cuts and a subsequent naive branch-
and-bound method with depth-first search. Accordingly, the size of problems that could be solved was
limited. In contrast, in this paper the efficiency of a commercial software package, CPLEX [IBM ILOG
2011], is examined.

Note that an MILP problem is a minimization, or maximization, problem of a linear function under
linear constraints, where some of the variables are constrained to be integers and the remaining variables
are considered to be continuous real variables. Specifically, the MILP problem solved in this paper is of
the form

Minimize cTx+ gT y (1a)

subject to Ax+ F y = b, (1b)

x ∈ {0, 1}n, (1c)

y ≥ 0. (1d)

Here x ∈ Rn and y ∈ Rp are variables to be optimized, A ∈ Rm×n and F ∈ Rm×p are constant matrices,
and c ∈ Rn , g ∈ Rp, and b ∈ Rm are constant vectors. Problem (1) is also called a mixed 0-1 linear
programming problem, because the integer variables, x1, . . . , xn , are restricted to being either 0 or 1. If
we replace the binary constraints, (1c), with linear inequality constraints, 0 ≤ x j ≤ 1 ( j = 1, . . . , n),
then the resulting relaxation problem is an LP problem. By virtue of this property, a global solution
of (1) can be found by enumerating all possible realizations of binary variables, x1, . . . , xn . To make
this enumeration more efficient, a branch-and-bound method discards hopeless candidates by making
use of upper and lower bounds on the objective function. Efficient software packages for solving MILP
usually implement a branch-and-cut method, which is a combination of a branch-and-bound method and
a cutting-plane method. A cutting-plane method iteratively generates valid inequalities of (1), called cuts,
to refine the feasible set of the relaxation problem; see, for example, [Wolsey 1998], [Faigle et al. 2002],
and [Aardal et al. 2005] for fundamentals of MILP and related algorithms.

Limit analysis under probabilistic uncertainties has been studied within several frameworks. For eval-
uating the probability of plastic collapse, the first and second-order methods in reliability analysis were
employed in [Bjerager 1989; Wang et al. 1994; Staat and Heitzer 2003; Trần et al. 2009] and the stochastic
programming approach was applied in [Sikorski and Borkowski 1990; Marti and Stoeckl 2004; Marti
2008]. When the yield strengths are assumed to be stochastic variables, the conditional probability of
collapse, that is, the probability of plastic collapse under the given load, was evaluated in [Caddemi et al.
2002; Alibrandi and Ricciardi 2008]. The classical optimal plastic design is to find a structural design
that minimizes the total structural volume under the constraint on the plastic limit load factor. For this
problem, fuzzy LP approaches were proposed in [Munro and Chuang 1986; Jung and Pulmano 1996],
where uncertainty was modeled by employing fuzzy set theory. Unlike those studies, this paper addresses
possibilistic uncertainty models in the external load and attempts to find the worst loading scenario.

This paper is organized as follows. Section 2 prepares LP formulations for the conventional limit
analysis of frame structures. Section 3 presents our main result: The worst scenario problem in limit
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analysis is reformulated to an MILP problem. Two numerical experiments are performed in Section 4.
We conclude in Section 5. Proofs of propositions appear in the Appendix.

A few words regarding notation. All vectors are assumed to be column vectors. The (m+n)-dimensional
column vector (vT, xT)T consisting of v ∈Rm and x ∈Rn is often written simply as (v, x). For two vectors
x = (x1, . . . , xn)

T
∈Rn and y= (y1, . . . , yn)

T
∈Rn , we write x ≥ y if xi ≥ yi (i = 1, . . . , n). Particularly,

x ≥ 0 means xi ≥ 0 (i = 1, . . . , n). The `1-norm and the `∞-norm of vector x ∈ Rn are defined by

‖x‖1 =
n∑

i=1

|xi |, ‖x‖∞ = max
i=1,...,n

|xi |.

We use 1= (1, 1, . . . , 1)T to denote the all-ones vector.

2. Fundamentals of limit analysis

This section summarizes LP formulations of the conventional limit analysis of frame structures. Section 2A
describes the yield conditions that we adopt in this paper. Section 2B presents an LP formulation of the
lower bound principle. The dual problem which corresponds to the upper bound principle is presented
in Section 2C.

2A. Yield conditions. In this paper we consider only planar frame structures for simplicity. Spatial
frames can be dealt with in the same manner.

Suppose that the frame structure consists of E beam elements. Let se ∈ R3 denote the generalized
stress vector of member e (e = 1, . . . , E). For example, the components of se ∈ R3 can be chosen as

se =

 qe

m(1)
e

m(2)
e

 ,
where qe is the axial force and m(1)

e and m(2)
e are the end moments. The yield condition of member e is

assumed to be written in the form

‖Ae, j se‖1 ≤ Re, j , j = 1, . . . , J. (2)

Two concrete examples of (2) are given in Examples 2.1 and 2.2.

Example 2.1. Suppose that the dependence of the yield condition on the shear force is negligible. Con-
sider a piecewise linear yield surface in Figure 1, which involves the simple effect of interaction between
the axial force and the end moment. This yield condition is written as

|qe|

qy
e
+
|m(1)

e |

my
e
≤ 1, (3a)

|qe|

qy
e
+
|m(2)

e |

my
e
≤ 1, (3b)
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Figure 1. Yield surface of a beam element in Example 2.1.

where qy
e and my

e are admissible absolute values of the axial force and the end moment, respectively. Let
J = 2. Define matrices Ae, j ( j = 1, 2) by

Ae,1 =

[
1/qy

e 0 0
0 1/my

e 0

]
, Ae,2 =

[
1/qy

e 0 0
0 0 1/my

e

]
,

and constants Re, j ( j = 1, 2) by
Re,1 = Re,2 = 1.

Then yield condition (3) is written in the form of (2).

Example 2.2. As a piecewise linear model slightly more complex than Example 2.1, consider the yield
surface depicted in Figure 2. Here κ ∈ (1,

√
2) is a constant.1 This yield condition is formulated as

|qe|

κqy
e
+
|m(1)

e |

κmy
e
≤ 1,

∣∣∣∣ qe

2qy
e
+

m(1)
e

2my
e

∣∣∣∣+ ∣∣∣∣−qe

2qy
e
+

m(1)
e

2my
e

∣∣∣∣≤ 1, (4a)

|qe|

qy
e
+
|m(2)

e |

my
e
≤ 1,

∣∣∣∣ qe

2qy
e
+

m(2)
e

2my
e

∣∣∣∣+ ∣∣∣∣−qe

2qy
e
+

m(2)
e

2my
e

∣∣∣∣≤ 1. (4b)

Let J = 4 and define Ae, j by

Ae,1 =

[
1/κqy

e 0 0
0 1/κmy

e 0

]
, Ae,3 =

[
1/2qy

e 1/2my
e 0

−1/2qy
e 1/2my

e 0

]
, (5a)

Ae,2 =

[
1/κqy

e 0 0
0 0 1/κmy

e

]
, Ae,4 =

[
1/2qy

e 0 1/2my
e

−1/2qy
e 0 1/2my

e

]
, (5b)

and Re, j by
Re,1 = Re,2 = Re,3 = Re,4 = 1.

Then (4) is expressed by (2).

1If κ ≤ 1, then (4) is reduced to (3) in Example 2.1. On the other hand, if κ ≥
√

2, (4) is reduced to a box constraint, i.e.,
|qe| ≤ qy

e , |m(1)e | ≤ my
e , and |m(2)e | ≤ µ

y
e , which does not involve interaction between the axial force and the end moment.
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Figure 2. Piecewise linear yield surface in Example 2.2.

2B. Lower bound principle. Suppose that the external load consists of a constant part, denoted by p,
and a proportionally increasing part, expressed as λ f . The constant vector f ∈ Rd

\ {0} is called the
reference load, where d is the number of displacement degrees of freedom. The parameter λ ∈R is called
the load factor. The force-balance equation is written as

Hs = p+ λ f , (6)

where H ∈ Rd×3E is the equilibrium matrix and s = (sT
1 , . . . , sT

E) ∈ R3E .
From the lower bound principle, the limit load factor, denoted λ̄, is defined as the maximum value of

λ under the yield condition (2) and the force-balance equation (6). Specifically, λ̄ is the optimal value of
the following optimization problem:

Maximize λ over λ, s
subject to Hs = p+ λ f ,

‖Ae, j Tes‖1 ≤ Re, j , e = 1, . . . , E, j = 1, . . . , J.

(7)

Here for each e = 1, . . . , E , Te ∈ R3×3E is a constant matrix satisfying

Tes =

 qe

m(1)
e

m(2)
e

 .
Throughout the paper we assume that problem (7) is feasible and its optimal value is bounded above.

Remark 2.3. Problem (7) can be solved as an LP problem. To see this, it suffices to show that constraint
‖Ae, j Tes‖1 ≤ Re, j can be converted to some linear inequality constraints. We begin with the following
slightly simpler form:

‖x‖1 =
n∑

i=1

|xi | ≤ b. (8)

For each i = 1, . . . , n, let ξi be an additional variable that serves as an upper bound for |xi |, that is,
|xi | ≤ ξi . This relation is written as the following linear inequality constraints:

−ξi ≤ xi ≤ ξi , i = 1, . . . , n. (9)
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Then
n∑

i=1
ξi becomes an upper bound for ‖x‖1. Therefore, (8) is rewritten as (9) and

n∑
i=1

ξi ≤ b. (10)

In the same manner, the constraint ‖Ae, j Tes‖1 ≤ Re, j in problem (7) can be converted to finitely many
linear inequality constraints. Let |Ae, j Tes| be a vector of the absolute values of the components of
Ae, j Tes. Use a vector of additional variables, ηe, j , to express upper bounds for components of |Ae, j Tes|,
that is, |Ae, j Tes| ≤ ηe, j . Then, the sum of components of ηe, j , that is, 1Tηe, j , serves as an upper bound
for ‖Ae, j Tes‖1. Therefore, problem (7) can be rewritten as

Maximize λ over λ, s, η

subject to Hs = p+ λ f ,

Re, j ≥ 1Tηe, j , j = 1, . . . , J, e = 1, . . . , E,

−ηe, j ≤ Ae, j Tes ≤ ηe, j , j = 1, . . . , J, e = 1, . . . , E,

(11)

which is clearly an LP problem.

2C. Upper bound principle. In Section 2B we have formulated the limit analysis problem, (7), based
on the lower bound principle. The upper bound principle corresponds to the dual problem. In Section 3
we shall use the upper bound principle to formulate the worst scenario problem.

Let u ∈ Rd denote the vector of nodal displacements. We use ze, j to denote the generalized strain
vector that is conjugate to Ae, j T Ts. The dual problem of problem (7) can be formulated in variables u,
γe, j , and ze, j (e = 1, . . . , E and j = 1, . . . , J ) as

Minimize −pTu+
E∑

e=1

J∑
j=1

Re, jγe, j over u, γ , z

subject to f Tu = 1,
E∑

e=1

J∑
j=1

(Ae, j Te)
Tze, j = HTu,

γe, j ≥ ‖ze, j‖∞, e = 1, . . . , E, j = 1, . . . , J.

(12)

See Section A.1 for the derivation of (12). At the optimal solution we obtain γe, j =‖ze, j‖∞ (e= 1, . . . , E ;
j = 1, . . . , J ), because Re, jγe, j is minimized under constraint γe, j ≥ ‖ze, j‖∞. Thus γe, j becomes equal
to the sum of the absolute values of the generalized plastic strain at the j-th end of member e.

Remark 2.4. Problem (12) can be solved as an LP problem. Indeed, the constraint γe, j ≥ ‖ze, j‖∞ of
(12) can be rewritten as

−γe, j 1≤ ze, j ≤ γe, j 1,

which is a system of linear inequalities.

With reference to Remarks 2.3 and 2.4, the duality theory of LP implies that problems (7) and (12)
share the same optimal value, because we assume that (7) has an optimal solution. In short, the optimal
value of (12) is equal to λ̄.
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3. Worst scenario detection

In Section 3A we formally define the worst-case load, where the `∞-norm of uncertain parameters is
bounded. Section 3B shows that the worst-case load can be obtained as the optimal solution of an MILP
problem. This problem can be solved globally by using an existing algorithm, e.g., a branch-and-bound
method. Section 3C explores the worst scenario problem in which the `1-norm of uncertain parameters
is bounded.

3A. Definition of worst-case load. As summarized in Section 2, the limit load factor, λ̄, of a given frame
structure is determined when the load vectors, p and f , are specified. In the following, λ̄ is considered
a function of p, i.e., λ̄( p), while f is assumed to be fixed. In other words, we suppose that only p is
uncertain.

Uncertainty in p is modeled as follows. Let p̃ ∈ Rd denote the nominal value, or the best estimate, of
p. We use an unknown vector ζ ∈ RL (L ≤ d) to express uncertainty in p. Suppose that p depends on
ζ affinely as

p= p̃+ Qζ (13)

and that the norm of ζ is known to be bounded. Here Q ∈Rd×L is a constant matrix satisfying rank Q= L .
The unknown vector Qζ ∈Rd corresponds to the difference between the actual load, p, and the estimated
load, p̃. The number of independently varying components of uncertain load, Qζ , is L . The set of all
such loading scenarios is given by

P(α, p̃)= { p̃+ Qζ | ‖ζ‖∞ ≤ α}, (14)

where α ≥ 0 is a constant. We call P(α, p̃) the uncertainty set of the load. Parameter α, called the
uncertainty parameter, expresses the level of uncertainty in the following sense [Ben-Haim 2006]:

(i) P(0, p̃)= { p̃} and

(ii) α ≤ α′ implies P(α, p̃)⊆ P(α′, p̃).

Namely, (i) only the nominal loading scenario is considered at α = 0 and (ii) the range of possible
scenarios of external loads increases as α increases.

For given α and p̃, vector p takes any value in P(α, p̃). The limit load factor in the worst scenario
is then defined as the minimum value of λ̄( p). Formally, the worst-case limit load factor, denoted
λmin(α, p̃), for a given α and p̃ is defined by

λmin(α, p̃)=min{λ̄( p) | p ∈ P(α, p̃)}. (15)

Accordingly, the worst-case load, denoted pw, is defined as the optimal solution of this maximization
problem, i.e.,

pw ∈ arg min{λ̄( p) | p ∈ P(α, p̃)}. (16)

It is worth noting that this optimization problem should be solved by an algorithm with guaranteed
convergence to a global optimal solution, because, obviously, a local (but not global) optimal solution
is not the most severe scenario. In Section 3B, we shall reduce problem (16) to an MILP problem, the
global optimal solution of which can be found with an existing algorithm.
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Remark 3.1. Since both the set of admissible (generalized) stress vectors and the set of uncertain ex-
ternal loads are polytopes, the worst-case load, pw, in (16) can be found by enumerating all vertices of
polytope P(α, p̃). Actually this is similar to what is often done in shakedown analysis; see, for example,
[Polizzotto 1982], [Ngo and Tin-Loi 2007], [Simon and Weichert 2012], and references therein. However,
enumeration of all vertices immediately becomes inexecutable when L , i.e., the number of independently
varying components of the uncertain load, increases, because P(α, p̃) has 2L vertices. For instance, in
the numerical example of Section 4A we suppose L = 55, which results in 255

' 3.6× 1016 vertices. We
use an MILP approach to deal with such problems.

Remark 3.2. The notion of the worst-case load has been introduced as the loading scenario when uncer-
tainty is pernicious. Alternatively, uncertainty may be propitious, in the sense that the limit load factor
can possibly increase with some p belonging to P(α, p̃). Finding such a case, called the opportune case
by some authors [Ben-Haim 2006], together with the worst case will provide us with the range of the
structural response under uncertainty. The opportune-case limit load factor is defined by

λmax(α, p̃)=max{λ̄( p) | p ∈ P(α, p̃)}, (17)

where minimization in (15) has been replaced by maximization. Computing λmax(α, p̃) is much easier
than computing λmin(α, p̃). Recall that, for a fixed p, the lower bound principle is given by problem (14),
the optimal value of which is λ̄( p). From this and the definition in (14) of P(α, p̃), we immediately see
that λmax(α, p̃) is the optimal value of the following problem:

Maximize λ over λ, s, ζ
subject to Hs = p̃+ Qζ + λ f ,

‖Ae, j Tes‖1 ≤ Re, j , e = 1, . . . , E, j = 1, . . . , J,

α ≥ ‖ζ‖∞.

(18)

Here λ, s, and ζ are variables to be optimized. In a manner similar to Remark 2.3, we can rewrite
problem (18) as

Maximize λ over λ, s, ζ , η
subject to Hs = p̃+ Qζ + λ f ,

Re, j ≥ 1Tηe, j , j = 1, . . . , J, e = 1, . . . , E,

− ηe, j ≤ Ae, j Tes ≤ ηe, j , j = 1, . . . , J, e = 1, . . . , E,

−α1≤ ζ ≤ α1,

(19)

which is an LP problem in variables λ, s, ζ , and η. Let (λ̄, s̄, ζ̄ , η̄) denote the optimal solution of (19). The
opportune-case load, defined as the optimal solution of problem (17), is then obtained straightforwardly
as p̃+ Qζ̄ . In short, λmax(α, p̃) and the corresponding load can be obtained by solving LP problem (19).

Remark 3.3. In this paper we assume that only the fixed load, p, is uncertain and that the reference
load, f , is known precisely. Introducing uncertainties in f might require more careful consideration.
The worst case is characterized as the case with the minimum value of the limit load factor, and f is
multiplied by the load factor. Therefore, if we allow that the norm of f can change due to uncertainty,
then it affects the limit load factor. For instance, suppose that f is proportionally increased as β f



424 YOSHIHIRO KANNO

(β > 1). Then the limit load factor is multiplied by 1/β, i.e., it is decreased. From a physical point of
view, however, this does not mean that load β f is worse than load f ; the collapse loads in these two cases
are the same. This observation may suggest that, when we consider uncertainty in f , the loads included
in the uncertainty set should be normalized in some manner. The method of normalization suitable for
worst-case analysis may possibly be nontrivial and an interesting subject of study. This issue, however,
is not pursued further in this paper.

3B. MILP formulation. In Section 3A we defined the worst-case limit load factor by (15). The uncer-
tainty model of p has been given by (14). The following proposition presents a nonlinear programming
formulation of the worst scenario problem.

Proposition 3.4. The worst-case limit load factor, λmin(α, p̃), is equal to the optimal value of the follow-
ing optimization problem:

Minimize −α‖QTu‖1− p̃Tu+
E∑

e=1

J∑
j=1

Re, jγe, j over u, γ , z

subject to f Tu = 1,
E∑

e=1

J∑
j=1

(Ae, j Te)
Tze, j = HTu,

γe, j ≥ ‖ze, j‖∞, e = 1, . . . , E, j = 1, . . . , J.

(20)

Here u, γ , and z are variables to be optimized.

A proof of Proposition 3.4 appears in Section A.2.
Let (ū, γ̄ , z̄) be an optimal solution of problem (20). Here ū is the collapse mode corresponding to

the worst-case load. The worst-case load itself is obtained from ū as follows. As shown in the proof of
Proposition 3.4 (see (42)), ζ̄ satisfies

ζ̄ ∈ arg min
ζ
{−(QTū)Tζ | α ≥ ‖ζ‖∞}. (21)

This is an LP problem in terms of ζ and its optimal solution is given by

ζ̄l ∈


{α} if qT

l ū > 0,

[−α, α] if qT
l ū = 0,

{−α} if qT
l ū < 0.

(22)

Here q1, . . . , qL ∈ Rd are column vectors of Q, i.e.,

Q =
[

q1 q2 · · · qL
]
.

Accordingly, from definition (13) of p, the worst-case load, denoted p̄, is obtained as

p̄= p̃+ Qζ̄ .

Problem (20) is a nonconvex optimization problem, because −α‖QTu‖1 is a nonconvex function of u.
This problem should be solved by an algorithm with guaranteed global convergence, because, obviously,
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a local (but not global) optimal solution is not the worst scenario. Unfortunately, it is difficult to solve
problem (20) globally due to its nonconvexity. This difficulty motivates the following proposition, which
converts problem (20) to an MILP problem.

Proposition 3.5. The optimal solution of problem (20) is also optimal for the following optimization
problem:

Minimize −α
L∑

l=1

wl − p̃Tu+
E∑

e=1

J∑
j=1

Re, jγe, j over t, u, γ , z,w

subject to f Tu = 1,
E∑

e=1

J∑
j=1

(Ae, j Te)
Tze, j = HTu,

γe, j ≥ ‖ze, j‖∞, e = 1, . . . , E, j = 1, . . . , J,

w ≤ QTu+M t,

w ≤−QTu+M(1− t),

t ∈ {0, 1}L ,

(23)

where M � 0 is a sufficiently large constant.

A proof of Proposition 3.5 appears in Section A.3. In problem (23), w and t are additional variables
used for reformulation. At an optimal solution, these variables are related to the collapse mode, ū, as

w̄l = |qT
l ū|, t̄l ∈


{0} if qT

l ū > 0,

{0, 1} if qT
l ū = 0,

{1} if qT
l ū < 0.

(24)

Problem (23) is an MILP problem, because all the constraints other than the integrality constraints
on t are linear constraints and the objective function is a linear function. Therefore, it can be solved by
using an algorithm with guaranteed convergence to a global optimal solution. A branch-and-cut method
is an example of such algorithms [Wolsey 1998; Aardal et al. 2005]. Moreover, several well-developed
software packages, e.g., Gurobi Optimizer [Gurobi 2013] and CPLEX [IBM ILOG 2011], are available
for solving this optimization problem.

3C. Another uncertainty set. In Sections 3A and 3B we assumed that the uncertainty of the external
load, p, is defined by (14). Instead of the `∞-norm used in (14), this section addresses an uncertain
model defined by using the `1-norm, that is,

P(α)= { p̃+ Qζ | ‖ζ‖1 ≤ α}. (25)

In (14), the components of ζ can perturb independently; for instance, when ζi = α, ζ j ( j 6= i) can take
any value in [−α, α]. In contrast, (25) takes into account some sort of correlation; for instance, ζi = α

implies ζ j = 0 ( j 6= i). In other words, (14) is somewhat more pessimistic (or more conservative) than
(25). In the following we show that uncertainty set (25) also allows MILP reformulation of the worst
scenario detection problem.
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The worst scenario detection problem is defined by (15) with (25). Analogous to Proposition 3.4, we
can show that this problem is converted to the following nonlinear programming problem:

Minimize −α‖QTu‖∞− p̃Tu+
E∑

e=1

J∑
j=1

Re, jγe, j over u, γ , z

subject to f Tu = 1,
E∑

e=1

J∑
j=1

(Ae, j Te)
Tze, j = HTu,

γe, j ≥ ‖ze, j‖∞, e = 1, . . . , E, j = 1, . . . , J.

(26)

Compared with problem (20), nonconvex term −α‖QTu‖1 in the objective function is replaced by
−α‖QTu‖∞. This is because the `1-norm (in (25)) is the dual norm of the `∞-norm (in (14)).

In a manner similar to Proposition 3.5, problem (26) also can be reformulated as an MILP problem.
The result is formally stated as follows.

Proposition 3.6. The optimal solution of problem (26) is also optimal for the following optimization
problem:

Minimize −αv− p̃Tu+
E∑

e=1

J∑
j=1

Re, jγe, j over t, y, u, γ , z,w, v

subject to f Tu = 1,
E∑

e=1

J∑
j=1

(Ae, j Te)
Tze, j = HTu,

γe, j ≥ ‖ze, j‖∞, e = 1, . . . , E, j = 1, . . . , J,

w ≤ QTu+M t,

w ≤−QTu+M(1− t),
v ≤ wl +M(1− yl), l = 1, . . . , L ,

L∑
l=1

yl = 1,

t ∈ {0, 1}L , y ∈ {0, 1}L .

(27)

A proof of Proposition 3.6 is slightly more complicated than one for Proposition 3.5; see Section A.4.
Let ( t̄, ȳ, ū, γ̄ , z̄, w̄, v̄) denote the optimal solution of problem (27). Auxiliary variables, w̄l and t̄l ,

are related to ū by (24). Moreover, v̄ and w̄ satisfy v̄ =max{w̄1, . . . , w̄L} and ȳl = 1 implies v̄ = w̄l .

4. Numerical experiments

The worst loading scenarios of two planar frame structures were found by solving MILP problem (23).
Computation was carried out on a Core i5 (2.6 GHz) processor with 8.0 GB RAM. The data of the MILP
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problems were prepared in the CPLEX LP file format [IBM ILOG 2011] with MATLAB 7.13. Then the
MILP problems were solved with CPLEX Version 12.4 under the parameter setting “aggressive cuts”.

4A. Eccentrically braced five-story frame. Consider the five-story plane frame in Figure 3. The nominal
load, p̃, is defined as vertical point forces as shown in Figure 3, where p̃a = 180 kN and p̃b = 90 kN.
The proportionally increasing load, λ f , is given as horizontal forces (in kN) as shown in Figure 3. The
frame consists of E = 65 beam elements and d = 120 degrees of freedom, where each of the long beams
is divided into two Euler–Bernoulli beam elements.

We adopt the following steel sections:

• A beam has cross-sectional area 7,000 mm2 and plastic section modulus 850,000 mm3, which ap-
proximately corresponds to an H-section with depth 294 mm, width 200 mm, web thickness 8 mm,
and flange thickness 12 mm.

• A column has cross-sectional area 10,000 mm2 and plastic section modulus 1,150,000 mm3, which
approximately corresponds to a square hollow section with edge length 300 mm and thickness 9 mm.

• A brace has cross-sectional area 10,000 mm2 and plastic section modulus 825,000 mm3, which ap-
proximately corresponds to a circular hollow section with external diameter 267.4 mm and thickness
12.7 mm.

The yield condition is defined by (4) with κ = 0.85
√

2. Here qy
e and my

e are defined by qy
e = σ

yae and
my

e = σ
y Zp

e , where ae and Zp
e denote the cross-sectional area and the plastic section modulus, respectively,

and σ y
= 300 N/mm2 is the material yield strength.

The nominal limit load factor of the frame is λ̄( p̃)= λmin(0)= 1126.5710. The uncertainty model of
p is defined by (14). The coefficient matrix Q is defined so that uncertain horizontal and vertical forces
within the range [−α, α] (in kN) possibly present at the nodes subjected to p̃a. However, at the leftmost
nodes only vertical forces are considered uncertain, because horizontal proportionally increasing forces
are applied to these nodes. We suppose that no external moments are applied. Then Q results in a
120× 55 matrix, the components of which are either 0 or 1 kN. For a given level of uncertainty α > 0,
the worst-case limit load factor, λmin(α), is computed by solving problem (23).
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Figure 3. A five-story braced frame.
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Figure 4. The variation of λmin for the five-story frame.

The variation of λmin(α) with respect to α is depicted as a solid line in Figure 4. The dotted line shows
the variation of the maximum limit load factor, λmax(α), which was obtained by solving problem (19).
In this example, λmax(α) is constant within the range 0 ≤ α ≤ 25 kN. Concerning the worst-case limit
load factor, at α = 18 and 25 kN we obtain λmin(18)= 1126.2593 and λmin(25)= 1113.3987. CPLEX
needed 7.4 s and 3.5 s to solve these two problems. Figure 5 depicts the collapse modes in the worst

α = 0 kN α = 18 kN α = 25 kN

Figure 5. The collapse modes of the five-story frame, for various values of α.

α = 18 kN α = 25 kN

Figure 6. The worst-case loads for the five-story frame.
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cases for α = 0, 18, and 25 kN. It is observed that the collapse mode at α = 18 kN is the same as that
at α = 0, while the collapse mode at α = 25 kN is very different. Figure 6 shows the worst-case loads
for α = 18 kN and α = 25 kN. Here the worst-case load is obtained using (22), choosing ζ̄l = 0 for l
satisfying qT

l ū = 0. In accordance with the difference of collapse modes, the worst-case loads of these
two cases are also different.

4B. Seven-story portal frame. We next consider the seven-story plane frame in Figure 7. The nominal
load, p̃, is defined as vertical point forces with p̃a = 3000 kN. The proportionally increasing load, λ f ,
is given as horizontal forces λ kN applied at the leftmost nodes. The frame consists of E = 49 beam
elements and d = 105 degrees of freedom, where each beam is divided into two beam elements.

We use the following steel sections:

• A beam on the lower three stories has cross-sectional area 5,000 mm2 and plastic section modulus
370,000 mm3, which approximately corresponds to an H-section with depth 175 mm, width 175 mm,
web thickness 7.5 mm, and flange thickness 11 mm.

• A beam on the upper stories has cross-sectional area 2,000 mm2 and plastic section modulus 90,000
mm3, which approximately corresponds to an H-section with depth 100 mm, width 100 mm, web
thickness 6 mm, and flange thickness 8 mm.

• A column on the lower three stories has cross-sectional area 24,000 mm2 and plastic section modu-
lus 2,970,000 mm3, which approximately corresponds to a square hollow section with edge length
350 mm and thickness 19 mm.

• A column on the upper stories has cross-sectional area 13,000 mm2 and plastic section modulus
1,440,000 mm3, which approximately corresponds to a square hollow section with edge length
300 mm and thickness 12 mm.

The yield condition is defined by (4) with κ = 0.85
√

2 and σ y
= 300 N/mm2 in the same manner as in

Section 4A.
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Figure 7. A seven-story portal frame.
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Figure 8. The variation of λmin for the seven-story frame.

The nominal limit load factor of the frame is λ̄( p̃) = λmin(0) = 2313.6687. The uncertainty model
of p is defined by (14). The coefficient matrix Q is defined so that uncertain horizontal and vertical
forces within the range [−α, α] (in kN) possibly present at the nodes. However, at the leftmost nodes
only vertical forces are considered uncertain. Then Q results in a 105× 63 matrix.

The solid line in Figure 8 shows the variation of the worst-case limit load factor, λmin(α), with respect
to α. The dotted line shows the variation of the maximum limit load factor, λmax(α), which is constant
within the range 0≤ α ≤ 100 kN. Concerning the worst-case limit load factor, at α = 20, 80, and 100 kN
we obtain λmin(20)= 2303.7830, λmin(80)= 2263.3615, and λmin(100)= 2125.5923. CPLEX needed
0.8 s, 4.0 s, and 10.4 s, respectively, to solve these three problems. Figure 9 collects the collapse modes
in the worst scenarios obtained . The mode at α = 20 kN is the same as that in the nominal case (α = 0).
However, the modes at α = 80 kN and α = 100 kN are different from that in the nominal case. Thus the
collapse mode in the most severe scenario depends on the level of uncertainty, α. The worst-case loads,
pw, are shown in Figure 10. It may be observed in Figure 8 that the graph of λmin(α) has two angular

α = 0 kN α = 20 kN α = 80 kN α = 100 kN

Figure 9. The collapse modes of the seven-story frame.
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α = 20 kN α = 80 kN α = 100 kN

Figure 10. The worst-case loads for the seven-story frame.

points. Similarly, the curve in Figure 4 has one angular point. It seems that these sudden changes of the
slope of the curve are due to changes of the collapse modes corresponding to λmin(α).

5. Conclusions

Evaluating robustness against uncertainty is a key to many design methodologies of structures. In some
engineering problems including severe uncertainty, e.g., uncertainty in large earthquakes [Takewaki et al.
2013], knowledge of uncertain parameters is fundamentally limited and reliable stochastic data on un-
certain parameters is unavailable. Nonprobabilistic uncertainty analysis, rather than probabilistic, might
be applicable in grasping the critical response of a structure to estimate the safety level. This paper has
developed a solid numerical method for finding the worst-case load at which the plastic limit load factor
of a given frame structure attains the worst value.

Finding the worst scenario among a given set of possible scenarios is formulated in general as an
optimization problem. In this paper this worst scenario problem has been converted to a mixed-integer
linear programming (MILP) problem. Several well-developed software packages are available for finding
a global optimal solution of an MILP problem. Guaranteed convergence to a global optimal solution
warrants that the proposed method provides the precisely worst response of the structure; that is, nei-
ther overestimate nor underestimate arises. In addition, algorithms specifically designed for uncertainty
analysis are not required. Also, implementation of optimization algorithms is not necessary.

This paper has assumed that yield conditions are represented as piecewise linear functions in terms
of generalized stresses. Moreover, the uncertainty set of external loads has been restricted to polyhedra
with specific forms. Extensions to curved yield surfaces and/or more general uncertainty sets remain
to be explored. Also, extensions to shakedown analysis, possibly taking into account work-hardening
effects [Maier 1970; Polizzotto et al. 1991] and dynamic loads [Corradi and Maier 1973–1974; Polizzotto
et al. 1993], could be made. In the numerical examples it has been shown that the collapse mode in the
worst case can possibly depend on the level of uncertainty in the external load. Numerical analysis using
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more realistic structural designs could be performed for in-depth study of the influence of uncertainty on
real-world structures.

Appendix: Proofs

A.1 Derivation of dual limit analysis problem. This section shows that problem (12) is derived as the
Fenchel dual problem of problem (7).

For notational convenience, suppose that A1,1, . . . , AE,J are all a× 3 matrices. Define vectors x and
y by

x =
[
λ

s

]
, y =



ya

yb

yc
1,1
...

yc
E,J


,

with λ ∈ R, s ∈ R3E , ya
∈ Rd , yb

∈ RE J , and yc
e, j ∈ Ra for all e and j . We write

X = R×R3E , Y = Rd
×RE J

×RaE J ,

for simplicity, where x ∈ X and y ∈ Y . Define functions f : X→ R and g : Y → R∪ {+∞} by

f (x)=−λ, (28)

g( y)=

{
0 if ya

= p, yb
e, j + Re, j ≥ ‖ yc

e, j‖1 for all e and j,

+∞ otherwise,
(29)

which are proper convex functions. Define a matrix Λ by

Λ=



− f H

0 O

0 −A1,1T1
...

...

0 −AE,J TE


. (30)

With this setting, problem (7) is equivalently rewritten as

max{− f (x)− g(Λx) | x ∈ X}. (31)

From standard results in Fenchel duality theory [Rockafellar 1970], the Fenchel dual problem of (31)
is given by

min{ f ∗(ΛT y∗)+ g∗(− y∗) | y∗ ∈ Y }. (32)

Here f ∗ : X→ R and g∗ : Y → R∪ {∞} are conjugate functions of f and g, respectively, and
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y∗ =



ya∗

yb∗

yc∗
1,1
...

yc∗
E,J


.

In the following we show that problem (32) with f , g, and Λ defined by (28), (29), and (30) is equivalent
to problem (12).

With the notation x∗ = (λ∗, s∗) ∈ X , f ∗ is explicitly written as

f ∗(x∗)= sup{〈x, x∗〉− f (x) | x ∈ V }

= supλ{λ(λ
∗
+ 1)}+ sups{s

Ts∗}

=

{
0 if λ∗ =−1 and s∗ = 0,
+∞ otherwise.

(33)

The conjugate function of g in (29) is obtained as follows. For notational convenience, define K ⊆ Ra+1

by

K = {(r0, r1) ∈ R×Ra
| r0 ≥ ‖r1‖1}.

By the definition of a conjugate function, we obtain

g∗( y∗)= sup{〈 y, y∗〉 | y ∈ dom g}

= sup
ya
{( ya)T ya∗

| ya
= p}+ sup

yb, yc

E∑
e=1

J∑
j=1

{[
yb

e, j
yc

e, j

]T [
yb∗

e, j
yc∗

e, j

] ∣∣∣∣∣
[

yb
e, j + Re, j

yc
e, j

]
∈ K

}

= pT ya∗
−

E∑
e=1

J∑
j=1

Re, j yb∗
e, j+

E∑
e=1

J∑
j=1

sup
yb

e, j , y
c
e, j

{[
yb

e, j+Re, j

yc
e, j

]T[
yb∗

e, j
yc∗

e, j

]∣∣∣∣∣
[

yb
e, j+Re, j

yc
e, j

]
∈K

}
.

(34)

Since the dual cone of K is given by (see, for example, [Boyd and Vandenberghe 2004, Example 2.25])

K ∗ = {(r∗0 , r∗1 ) ∈ R×Ra
| r∗0 ≥ ‖r

∗

1‖∞},

we have that

sup
r0,r1

{[
r0

r1

]T [
r∗0
r∗1

] ∣∣∣∣ [r0

r1

]
∈ K

}
=

0 if −

[
r∗0
r∗1

]
∈ K ∗,

+∞ otherwise.

With this observation we see that (34) is reduced to

g∗( y∗)=

 pT ya∗
−

E∑
e=1

J∑
j=1

Re, j yb∗
e, j if − yb∗

e, j ≥ ‖− yc∗
e, j‖∞ for all e and j,

+∞ otherwise.
(35)
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From definition (30) of Λ, ΛT y∗ is written as

ΛT y∗ =

 − f T ya∗

HT ya∗
−

E∑
e=1

J∑
j=1
(Ae, j Te)

T yc∗
e, j

 . (36)

By using (33), (35), and (36), we obtain

f ∗(ΛT y∗)=

0 if − f T ya∗
=−1, HT ya∗

−

E∑
e=1

J∑
j=1
(Ae, j Te)

T yc∗
e, j = 0,

+∞ otherwise,
(37)

g∗(− y∗)=

−pT ya∗
+

E∑
e=1

J∑
j=1

Re, j yb∗
e, j if yb∗

e, j ≥ ‖ yc∗
e, j‖∞ for all e and j,

+∞ otherwise.
(38)

From (37) and (38), the Fenchel dual problem in (32) is explicitly written as

Minimize − pT ya∗
+

E∑
e=1

J∑
j=1

Re, j yb∗
e, j

subject to f T ya∗
= 1,

E∑
e=1

J∑
j=1

(Ae, j Te)
T yc∗

e, j = HT ya∗,

yb∗
e, j ≥ ‖ yc∗

e, j‖∞, e = 1, . . . , E, j = 1, . . . , J.

(39)

By rewriting the dual variables as

ya∗
= u, yb∗

= γ , yc∗
= z,

we see that problem (39) indeed coincides with problem (12). Thus problem (12) is obtained as the
Fenchel dual problem of (7).

Note that problems (7) and (12) can be converted to LP problems; see Remarks 2.3 and 2.4. As
mentioned in Section 2B, we assume that problem (7) has an optimal solution. Then the duality theory
of LP guarantees that problems (7) and (12) share the same optimal value.

A.2 Proof of Proposition 3.4. Since λ̄( p) is the optimal value of problem (12), (15) can be rewritten as

λmin(α, p̃)= min
p∈P(α, p̃)

{
min
u,γ ,z

{
−pTu+

E∑
e=1

J∑
j=1

Re, jγe, j

∣∣∣ (u, γ , z) ∈U
}}
, (40)

where U is the feasible set of problem (12). By reversing the order of the two minimizations in (40), we
obtain

λmin(α, p̃)= min
(u,γ ,z)∈U

{
min

p

{
−pTu

∣∣∣ p ∈ P(α, p̃)
}
+

E∑
e=1

J∑
j=1

Re, jγe, j

}
. (41)
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By using (14) and the Hölder inequality [Steele 2004, Chapter 9], the inner minimization problem of
(41) can be reduced to

min
p
{−pTu | p∈ P(α, p̃)} =min

ζ
{−(QTu)Tζ | α ≥ ‖ζ‖∞}− p̃Tu

=min
ζ
{−‖QTu‖1‖ζ‖∞ | α ≥ ‖ζ‖∞}− p̃Tu

=−α‖QTu‖1− p̃Tu.

(42)

Here the last equality is actually attained by choosing ζ as

ζl =


α if qT

l u > 0,
0 if qT

l u = 0,
−α if qT

l u < 0,

where q1, . . . , qL ∈ Rd are column vectors of Q, i.e.,

Q =
[

q1 q2 · · · qL
]
.

Substitution of (42) into problem (41) results in problem (20).

A.3 Proof of Proposition 3.5. In the objective function of problem (20), only −α‖QTu‖1 is a noncon-
vex term. This term is explicitly written as

−α‖QTu‖1 =−α
L∑

l=1

|qT
l u|, (43)

where q1, . . . , qL ∈ Rd are column vectors of Q. For each l = 1, . . . , L , let wl be an additional variable
that serves as a lower bound for |qT

l u|, i.e., wl ≤ |qT
l u|. Then minimizing (43) is equivalent to minimizing

−α

L∑
l=1

wl (44)

under the constraints

(wl ≤ qT
l u)∨ (wl ≤−qT

l u), l = 1, . . . , L . (45)

Here ∨ denotes the logical “or”. For each l = 1, . . . , L , constraint (45) can be rewritten as

wl ≤ qT
l u+Mtl, (46a)

wl ≤−qT
l u+M(1− tl), (46b)

tl ∈ {0, 1}, (46c)

where M � 0 is a sufficiently large constant. The upshot is that minimizing (43) is equivalent to mini-
mizing (44) under constraint (46), and hence problem (20) is reduced to problem (23).
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A.4 Proof of Proposition 3.6. In the objective function of problem (26), only the term

−α‖QTu‖∞ =−αmax{|qT
l u| | l = 1, . . . , L} (47)

is nonconvex. To rewrite this term we introduce additional variables wl (l = 1, . . . , L) and v, where
wl is a lower bound for |qT

l u| and v is a lower bound for max{w1, . . . , wL}. Then minimizing (47) is
equivalent to minimizing

−αv (48)

under the constraints

(v ≤ w1)∨ · · · ∨ (v ≤ wL), (49a)

wl ≤ |qT
l u|, l = 1, . . . , L , (49b)

where ∨ denotes the logical “or”. Furthermore, by introducing 0-1 variables y1, . . . , yL , (49a) can be
replaced with

v ≤ wl +M(1− yl), l = 1, . . . , L , (50a)
L∑

l=1

yl = 1, (50b)

yl ∈ {0, 1}, l = 1, . . . , L , (50c)

where M � 0 is a sufficiently large constant. Indeed, (50b) and (50c) imply that there exists unique
l̂ ∈ {1, . . . , L} satisfying yl̂ = 1 and yl = 0 for all l 6= l̂. Then (50a) reads

v ≤ wl̂,

v ≤ wl +M for all l 6= l̂,

which allows v > wl for all l 6= l̂. . Next, observe that (49b) can be rewritten as

(wl ≤ qT
l u)∨ (wl ≤−qT

l u), l = 1, . . . , L . (51)

By using 0-1 variables, (51) is rewritten as

wl ≤ qT
l u+Mtl, l = 1, . . . , L , (52a)

wl ≤−qT
l u+M(1− tl), l = 1, . . . , L , (52b)

tl ∈ {0, 1}, l = 1, . . . , L . (52c)

As a consequence, we see that (49) is rewritten as (50) and (52). By using this, problem (26) is reduced
to problem (27).
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