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RAPID SLIDING CONTACT IN THREE DIMENSIONS
BY DISSIMILAR ELASTIC BODIES: EFFECTS

OF SLIDING SPEED AND TRANSVERSE ISOTROPY

LOUIS MILTON BROCK

An isotropic elastic sphere slides on the surfaces of transversely isotropic elastic half-spaces. In one
case the material symmetry axis coincides with the half-space surface normal. In the other, the axis
lies in the plane of the surface. In both cases sliding proceeds with constant subcritical speed along a
straight path at an arbitrary angle to the principal material axes. A 3D dynamic steady state is considered.
Exact solutions for contact zone traction are derived in analytic form, as well as formulas for contact
zone geometry. Although a sphere is involved, the solution process is not based on the assumption of
symmetry. Anisotropy is found to largely determine zone shape at low sliding speed, but direction of
sliding becomes a major influence at higher speeds.

1. Introduction

The literature on the mechanics of contact is vast; see, for example, [Johnson 1985; Kalker 1990; Hills
et al. 1993]. An important category is contact between dissimilar elastic bodies; see, for example, [Hertz
1882; Hartnett 1980; Ahmadi et al. 1983; Hills et al. 1993]. For sliding contact, if speed and resultant
forces are constant, a dynamic steady state may be achieved for which contact zone and surface traction
do not vary in the frame of the moving sphere. In [Brock 2012] the 3D problem of rapid sliding by a rigid
ellipsoidal die on an isotropic half-space in the presence of friction is studied. Analytical solutions show
that contact zone shape does not necessarily replicate a projection of the die profile onto the half-space
surface. As sliding speed increases, the shape elongates in the direction of sliding, a result also seen in
[Rahman 1996]. This problem is generalized by considering a transversely isotropic half-space [Brock
2013] and a die that slides in any direction with respect to the principal axes of the material. Again,
contact zone shape may not replicate the die profile projection, but for low sliding speeds it is largely
defined in terms of the principal axes. For higher speeds, the elongation effect seen in [Brock 2012] is
exhibited. That is, as speed increases, the zone appears to rotate while undergoing elongation. In contrast
to [Brock 2012], moreover, the Rayleigh speed may not be critical.

To ascertain whether the results of [Brock 2012; 2013] are a phenomenon of the rigid die, aspects of
both studies are adapted here for two 3D cases of sliding by an isotropic elastic sphere on a transversely
isotropic half-space. It is assumed (compare [Hills et al. 1993]) that the maximum contact zone width is
much smaller than the radius r0 of the sphere prior to deformation. Thus, the sphere is also treated as a
half-space. With regard to the transversely isotropic half-space, the material symmetry axis is normal to
the surface in one case, but lies in the plane of the surface in the other [Brock 2013]. In both cases, the
sphere slides in an arbitrary direction with respect to the principal material axes. Sliding can be resisted
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by friction, and sliding speeds are constant and subcritical. The solution for the unmixed boundary
value problem of specified surface traction reduces the mixed contact problem to the solution of integral
equations. To this end, governing equations for the elastic half-space, subjected to a translating zone of
(somewhat) arbitrary traction over its surface, are given in Appendix A and in Section 2. Translation
speed is constant and subcritical, and zone geometry and traction do not change during translation. There-
fore, see [Brock 2012; 2013], a dynamic steady state is assumed. Cartesian coordinates are used, and
an exact transform solution is obtained. Quasipolar coordinates, both in transform and spatial planes,
are employed during the inversion process. These are defined by a polar angle that sweeps through
180◦ (π radians) and a radial coordinate that has both positive and negative directions. For points in
the contact zone, the resulting displacement expressions reduce to double integrals whose limits are
independent of the points. The imposed displacement conditions require that the integrands be solutions
of Cauchy singular integral equations. The contact zone normal traction is then extracted analytically as
a function of the quasipolar coordinates. This traction is required to vanish continuously on the contact
zone boundary, and to render the resultant compression force as a stationary value for a given sliding
speed. These requirements lead to expressions that define the contact zone geometry, and calculations
for aspects of the geometry are given.

Solution expressions for anisotropic elasticity are often [Ting 1996] more complicated than for their
isotropic counterparts. A cancellation of common factors in the numerator and denominator of solution
transform terms is used for the 2D [Brock 2002] and 3D [Brock 2013] problems. The resulting expres-
sions yield, upon inversion, more compact solution forms. The procedure is therefore used here for both
the isotropic and transversely isotropic components of the transform solution.

2. General equations for the traction distribution problem

A linear elastic, anisotropic, and homogeneous half-space is defined as the region x3 > 0. Here Cartesian
coordinates x(xk) also define the principal axes of the material. The half-space is undisturbed until a
traction distribution is applied to a finite, simply connected area C of surface x3 = 0. Its boundary is
defined by contour =(X, Y )= 0, where

X = x1 cos θ + x2 sin θ, Y = x2 cos θ − x1 sin θ, |θ |< π/2. (1)

Here = = 0 defines a continuous closed curve that exhibits continuously varying tangent direction, and
normal direction, and radius of curvature. Moreover, any span of C through origin x1 = x2 = 0 does
not cross its boundary. Area C is then translated in the positive X-direction at constant subcritical speed
V . This does not change the area, and the traction distribution remains invariant with respect to it. This
suggests that a dynamic steady state can arise in which half-space response is invariant in the frame of
translating C . It is therefore convenient to translate the Cartesian system with C , so that displacement
u(uk) and traction T (σik) vary with x(xk) and time differentiation becomes −V ∂X , where ∂X signifies
the X-derivative and is given by

∂X = ∂1 cos θ + ∂2 sin θ. (2)

Here ∂k signifies xk-differentiation. The governing equations for the general anisotropic solid are given
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in Appendix A. For x3 = 0 the boundary conditions are

σ33 = σ, σ31 = τ1, σ32 = τ2, (x1, x2) ∈ C, (3a)

σ33 = σ31 = σ32 = 0, (x1, x2) /∈ C. (3b)

Here (σ, τ1, τ2) are piecewise continuous, bounded functions of (x1, x2). It is reasonable then to require
that |u| remains bounded for x3 > 0, |x| →∞.

3. Transverse isotropy: Material symmetry axis normal to surface

Traction distribution problem: Transform. For this case the results in Appendix A involve five elastic
constants [Jones 1999]:

C22 = C11, C44 = C55, C23 = C13, C33, C11−C12− 2C66 = 0. (4)

The spherical die is isotropic, with only two elastic constants, so it is convenient to use its shear modulus
µ0, mass density ρ0, and rotational wave speed v0 as reference parameters, where

v0 =

√
µ0

ρ0
. (5)

Dimensionless parameters can then be defined:

d1 =
C11

µ0
, d3 =

C33

µ0
, d5 =

C55

µ0
, d6 =

C66

µ0
, d12 =

C12

µ0
, d13 =

C13

µ0
, (6a)

d1− d12− 2d6 = 0, c =
√
ρ

ρ0
c0, c0 =

V
v0
. (6b)

In view of (A.3) and (6) the linear momentum balance (A.5a) takes the form d5∂
2
3 +X1 (d6+ d12)∂1∂2 (d5+ d13)∂1∂3

(d6+ d12)∂1∂2 d5∂
2
3 +X2 (d5+ d13)∂2∂3

(d5+ d13)∂1∂3 (d5+ d13)∂2∂3 d3∂
2
3 +X3


u1

u2

u3

= 0, (7a)

X1 = d1∂
2
1 + d6∂

2
2 − c2∂2

X , X2 = d6∂
2
1 + d1∂

2
2 − c2∂2

X , X3 = d5(∂
2
1 + ∂

2
2 )− c2∂2

X . (7b)

The set of (3) and (7) is addressed by the double bilateral Laplace transform [Sneddon 1972]:

F̂ =
∫∫

F(x1, x2) exp(−p1x1− p2x2) dx1 dx2. (8)

In (8) integration is over the entire x1x2-plane and transform variables (p1, p2) are imaginary. Its appli-
cation to (7) for x3 > 0 leads to the homogeneous solution

û = U+ exp(−�+x3)+U− exp(−�−x3)+U6 exp(−�6x3). (9)
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Exponential arguments (�±, �6) are roots of the determinant of transformed (7a), that is,

(�2
+ω2

6)[(d5�
2
+ω2

1)(d3�
2
+ω2

5)−�
2 P(d5+ d13)

2
] = 0, (10a)

ω1 =

√
d1 P − c2 p2

X , ω5 =

√
d5 P − c2 p2

X , ω6 =

√
d6 P − c2 p2

X , (10b)

P = p2
1 + p2

2, pX = p1 cos θ + p2 sin θ. (10c)

They are given by

�± =
ω+±ω−

2
√

d3d5

√
−1, �6 = ω6

√
−1, (11a)

ω± =

√(
ω1
√

d3±ω5
√

d5
)2
− P(d5+ d13)2, (11b)

�+�− =−
ω1ω5
√

d3d5
. (11c)

The components of the vector coefficients (U±,U6) in (9) are

(U±1 ,U
±

2 )= (d5+ d13)(p1, p2)�±U±, U±3 = (d5�
2
±
+ω2

1)U±, (12a)

U 6
1 =−p2U6, U 6

2 = p1U6, U 6
3 = 0. (12b)

Here (U±,U6) are arbitrary functions of (p1, p2). Result (9) is bounded for x3 > 0 if Re(�+ +�−,
�+−�−, ω1, ω5, ω6) > 0 in the cut p1 and p2-planes. Use of (A.1), (6), (9), and (12) gives the traction
transforms for x3 = 0:

1
µ0

σ̂33

σ̂31

σ̂32

=
 C+3 �+ C−3 �− 0

d5 p1 D+3 d5 p1 D−3 d5 p2�6

d5 p2 D+3 d5 p2 D−3 −d5 p1�6


U+

U−
U6

 , (13a)

C±3 = d13(d5+ d13)P − d3(d5�
2
±
+ω2

1), D±3 = ω
2
1− d13�

2
±
. (13b)

Use of (13) in the transform of (3) gives equations for (U±,U6). Application of the traction distribu-
tion solution to the sliding contact problem requires the normal displacement u0

3 on surface x3 = 0.
Equation (9) and the solutions for (U±,U6) are combined in Appendix B to construct its transform û0

3.
The construction involves a factor cancellation procedure similar to that used in [Brock 2002; 2013] and
some isotropic limit results are also given. In light of (11), (B.2b), and (B.3b), then, one can write the
compact expressions for, respectively, the transversely isotropic and isotropic half-spaces:

û0
3 =−

ω1ω+
√
−1

√
d3d5 M

σ̂

µ0
+

N
M

(
p1
τ̂1

µ0
+ p2

τ̂2

µ0

)
, (14a)

(û0
3)
′
=−

c2
DωD

M0
√
−1
(ωD +ω)

σ̂ ′

µ0
+

N0

M0

(
p1
τ̂ ′1

µ0
+ p2

τ̂ ′2

µ0

)
, (14b)

M0 = 4(c2
D − 1)ω− c2

D(ωD +ω)c2
0 p2

X , N0 = c2
DωD + (2− c2

D)ω. (14c)
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Traction distribution problem: Transform inversion. In view of (7) and [Sneddon 1972] the inversion
operation for each traction term in (14) has the general form

1
2π i

∫
dp1

1
2π i

∫
dp2 C6

∫∫
C

dξ1 dξ26 exp[p1(x1− ξ1)+ p2(x2− ξ2)]. (15)

In (15), 6 = 6(ξ1, ξ2) is a given traction term in (14) and C6 = C6(p1, p2) is its coefficient, for
example, C6 = N p1/µ0 M for 6 = τ̂1 in (14a). Integration is along the entire Im(p1) and Im(p2)-axes,
and suggests the transformations [Brock 2012; 2013]

p1 = p cosψ, p2 = p sinψ, (16a)

x = x1 cosψ + x2 sinψ, y = x2 cosψ − x1 sinψ, (16b)

ξ = ξ1 cosψ + ξ2 sinψ, η = ξ2 cosψ − ξ1 sinψ. (16c)

In (16), Re(p) = 0+, −∞ < [Im(p), x, y, ξ, η, ξ1, ξ2] <∞, and |ψ − θ | < π/2. Parameters (p, ψ),
(x, ψ; y = 0), and (ξ, ψ; η = 0) constitute quasipolar coordinate systems, that is,

dx1 dx2 = |x | dx dψ, dξ1 dξ2 = |ξ | dξ dψ, dp1 dp2 = |p| dp dψ. (17)

Use of (16a) in (11) and (12) leads to formulas related to (14a):

�± = B±
√
−p2, �6 = B6

√
−p2, (18a)

ω1 = A1 p, ω5 = B5 p, ω6 = B6 p, (18b)

ω± = P± p, M =Mp3, N = Np2, P = p2. (18c)

Equation (18) involves dimensionless terms

B± =
P+±P−
2
√

d3d5
, P± =

√(√
d3 A1±

√
d5 B5

)2
− (d5+ d13)2, (19a)

A1 =

√
d1− c2

X , B5 =

√
d5− c2

X , B6 =

√
d6− c2

X , cX = c cos(ψ − θ), (19b)

M= A1 B5

(
B5+

√
d3
d5

A1

)
− d5 A1−

d2
13 B5
√

d3d5
, N= A1−

d13 B5
√

d3d5
. (19c)

For (14b)

ωD = Ap, ω = Bp, M0 =M0 p3, N0 = N0 p2, (20a)

A =

√
1−

(
c0

X

cD

)2

, B =
√

1− (c0
X )

2, c0
X = c0 cos(ψ − θ), (20b)

M0 = 4(c2
D − 1)B− c2

D(A+ B)(c0
X )

2, N0 = c2
D A+ (2− c2

D)B. (20c)

Critical speed. The terms in (19) are functions of ψ − θ . Because cX < c, both B+ and A1 are real and
positive for 0< c <

√
d1, and vanish at branch point cX =

√
d1. Terms (N, B−, B5) are real and positive

for 0 < c <
√

d5 and (B−, B5) vanish at branch point cX =
√

d5. In addition, M→ 0+ when cX = 0
and vanishes for cX = (cX )R , 0< (cX )R <

√
d5, that is, M and (cX )R correspond to a Rayleigh function

and its nonzero root; see Appendix B. For ψ = θ this root gives the dimensionless Rayleigh speed cR .
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Although not present in (14a), term �6 does appear in (û0
1, û0

2), and its counterpart B6 vanishes at branch
point cX =

√
d6. Parameter c0

X < c0 and (A, B) in (20) are real for, respectively, c0 < cD and c0 < 1.
Term M0 exhibits root c0

X = (c
0
X )R (see Appendix B) that gives Rayleigh speed (c0)R when ψ = θ . In

summary, if sliding speed V is such that c or c0 exceed a branch-point value, the corresponding term
becomes imaginary, which represents a transonic situation, as in [Brock 2002; 2012; 2013]. If c or c0

reaches its Rayleigh value, then (14a) or (14b) is singular. Thus, the critical sliding speed is here defined
as the maximum V such that (c, c0) do not exceed any branch point or Rayleigh values. It is noted that
the possibility of a non-Rayleigh critical speed does not arise in the plane strain analysis of transverse
isotropy, as in [Brock 2002].

Inversion for subcritical speed. In light of (16)–(20), general result (15) takes the form∫∫
C
6 dξ dη

1
π i

∫
9

C6 dψ
1

2π i

∫
|p|
p

(
1,
√
−p
√

p

)
exp p(x − ξ) dp. (21)

Now 6 =6(ξ, η), C6 = C6(ψ, cX ), or C6 = C6(ψ, c0
X ), and subscript 9 signifies integration over the

range θ −π/2<ψ < θ +π/2. The p-integration is over the positive side of the entire Im(p)-axis (see
Appendix B). For (x1, x2) ∈ C the inverses of (14) follow as

u0
3 =−

1
π

∫
9

dψ
∫

N
dη
[

A1P+
µ0M
√

d3d5π
(vp)

∫
4

σ(ξ, η)
dξ
ξ−x

+
N
µ0M

T(x, η)
]
, (22a)

(u0
3)
′
=−

1
π

∫
9

dψ
∫

N
dη
[

c2
D A(A+ B)
µ0M0π

(vp)
∫
4

σ ′(ξ, η)
dξ
ξ−x

+
N0

µ0M0
T′(x, η)

]
, (22b)

T(ξ, η)= τ1(ξ, η) cosψ + τ2(ξ, η) sinψ, (22c)

T′(ξ, η)= τ ′1(ξ, η) cosψ + τ ′2(ξ, η) sinψ. (22d)

Here (vp) signifies principal value integration and (N, 4) signify integration over the ranges η−(ψ) <
η < η+(ψ) and x−(η, ψ) < ξ < x+(η, ψ), respectively. Limits η±(ψ) are points on the contour
=[X (ξ, η), Y (ξ, η)] = 0 where dη/dξ = 0, and limits x±(η, ψ) locate the ends of a line parallel to
the ξ -axis that spans C for a given η. The restrictions on (C,=) imply that (x±, η±) exist and are
continuous in ψ .

Sliding contact with friction. It is assumed that the maximum deflections of the half-space and sphere
surfaces caused by mutual indentation during sliding, and the maximum width of the resulting contact
zone, are orders of magnitude less than the original radius r0 of the sphere. Thus (22b) is a valid approx-
imation for a sphere. For both (22a) and (22b), the contact zone translates in the positive X-direction
and x3 < 0 defines the outward normal to the surface. Thus, the condition on x3 = 0 that the deformed
surfaces of the two bodies conform in the contact zone can be written for small deformations as

u0
3+ (u

0
3)
′
=U3−

X2

2r0
(x1, x2) ∈ C. (23)

The form of (23) is based on measuring (x1, x2) from the center of the translating sphere in its rest
configuration. Thus U3 is the rigid-body normal displacement of the sphere, and (x1, x2) = 0 is the
initial contact point. If sliding is resisted by friction with kinetic coefficient γ , and sphere sliding and
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slip are assumed to coincide, the resultant force system on the sphere is (FX , FY , F3) where FX = γ F3

and FY = 0. Thus in (22)

τ1 = τX cos θ, τ2 = τX sin θ, τX = γ σ (σ < 0), (24a)

τ ′1 =−τX cos θ, τ ′2 =−τX sin θ, σ ′ = σ. (24b)

In view of (1), (16), and (24), (23) becomes

−
1
µπ

∫
9

dψ
∫

N
dη
[

K
π
(vp)

∫
4

σ(ξ, η)
dξ
ξ−x

+0σ(x, η)
]
=U3−

X2

2r0
, (25a)

K=
A1P+

M
√

d3d5
+

c2
D A
M0

(A+ B), (25b)

0 = γ
(N

M
+

N0
M0

)
cos(ψ − θ). (25c)

In light of (16) and Appendix B the right-hand side of (25a) can be written as

−
1
π

∫
9

dψ
∫

N
dη
∫
4

dξ d
dx
δ(x − ξ)

[
U3−

1
2r0

X2(ξ, η)
]
, (26a)

X (ξ, η)= ξ cos(ψ − θ)+ η sin(ψ − θ). (26b)

Here δ is the Dirac function, and so (25a) reduces to matching the integrands of double integration in
(ψ, η). Parameter ξ in σ(ξ, η) is an integration variable representing parameter x , which itself depends
on coordinate (x1, x2) and integration variable ψ . However, as noted in light of (16) for y = 0, (x1, x2)

can be replaced by quasipolar coordinates (x, ψ − θ). Thus traction σ itself can be found by dropping
η, and (25a) is reduced to

K
π
(vp)

∫
4

σ(ξ, ψ − θ)
dξ
ξ−x

+0σ(x, ψ − θ)= µ0
x
r0
. (27)

Equation (27) is a Cauchy singular integral equation [Erdogan 1978]. Following a procedure used in
[Brock 2012; 2013] and requiring that contact zone traction be bounded on C gives the solution

σ(x, ψ − θ)=−
µ0M0M

r0

√
A2

K +A2
0

(x+− x)1+�(x − x−)−�, (28a)

x+ =−�L , x− =−(1+�)L . (28b)

In (28) terms (�,AK ,A0) are defined as

�=−
1
2
+

1
π

tan−1 0

K
, (29a)

AK =M0
A1P+
√

d3d5
+ c2

DMA(A+ B), (29b)

A0 = γ (M0N+MN0) cos(ψ − θ). (29c)

It is noted that −1
2 <�< 0 and (M,M0)≥ 0 for subcritical V , so that (28a) also guarantees contact and

does not involve tensile stress.
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Contour of C. Equation (28b) defines, in part, contour = and, because �=−1
2 when |ψ− θ | = π/2 and

is an even function of ψ − θ , C exhibits the symmetry of the sphere with respect to X . The unknown
contact zone span L depends on c0 (or c) and is also an even function of ψ − θ . It is determined by
requiring that (28a) be consistent with the resultant force system acting on the die. Therefore, here
(x±, σ ) are even functions of ψ − θ , and also Y . Thus condition FY = 0 is automatically satisfied. The
condition that there are resultant forces FX = γ F3 and F3 is met when∫

9

dψ
∫
4

σ(ξ, ψ)|ξ | dξ =−F3. (30)

Here F3 is specified and (30), therefore, is an integral equation for L . For given (c0, θ), F3 should be
stationary with respect to (28a); that is,∫

9

dψ
∫
4

δσ (ξ, ψ)|ξ | dξ = 0. (31)

This requirement is satisfied when at every x− < x < x+, |ψ − θ |< π/2

δσ =
∂σ

∂x
δx + ∂σ

∂ψ
δψ = 0. (32)

Here ψ and x are held constant in the first and second coefficients, respectively, and (δx, δψ) are arbitrary.
Differentiation of (28a) shows that

x =−(1+ 2�)L : ∂σ

∂x
= 0,

∂2σ

∂x2 > 0. (33a)

The second term then vanishes for x =−(1+ 2�)L if

−
∂

∂ψ

(
M0M√

A2
K+A2

0

QL
)
= 0, Q = (1+�)1+�(−�)−�. (33b)

Separation of variables and integration gives

L =
Q X

Q
(M0M)X

M0M

√
A2

K+A2
0√

(A2
K)X + (A2

0)X

L X . (34)

Subscript X signifies that a parameter is evaluated for ψ = θ , that is, c0
X = c0 (or cX = c). For L = LY ,

that is, |ψ − θ | = π/2, (34) gives

LY =
Q X (M0M)X√
(A2

K)X + (A2
0)X

[
c2

D +
2
√

d1
√

2d5+
√

d1d3+ d13(√
d1d3+ d13

)√
d5
√√

d1d3− d13

]
L X

c2
D − 1

. (35)

Lengths (L X , LY ) are the span of contact zone C respectively along and perpendicular to the sliding path.
The profile projected prior to sliding by a sphere on the plane x3 = 0 is a circle. Equations (34) and (35)
show that this shape is not preserved in the contact zone C . In addition, (28b) shows that only symmetry
with respect to the sliding (positive X-)direction is preserved in the contact zone. Results (28) and (35),
moreover, are sensitive to the dimensionless die sliding speed (c0 6= 0). To illustrate this behavior values
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of the ratio LY /L X are given in Table 1 for values of (γ, c0). The sphere is ASTM-A913 Grade 450
steel with these properties [Beer et al. 2012]:

µ0 = 77.2 GPa, ρ0 = 7860 kg/m3, v0 = 3134 m/s.

The transversely isotropic half-space is a graphite epoxy with properties [Jones 1999]

C11 = 13.9 GPa, C33 = 160.7 GPa, C13 = 6.44 GPa, C12 = 6.92 GPa,

C55 = 7.07 GPa, C66 = 3.5 GPa, ρ = 1688 kg/m3.

In view of (5) and (6), the corresponding dimensionless parameters are

d1 = 0.1803, d3 = 2.0816, d13 = 0.0834, d12 = 0.0896,

d5 = 0.0916, d6 = 0.0453,

cD = 1.8554, c = 0.4634c0.

For ψ = θ the Rayleigh roots of (M,M0) are c0 = 0.9268 and c0 = 0.6387, respectively. Among terms
(A, B, A1, B5, B6), the branch point of B6 is the minimum, which corresponds to c0 = 0.4595. Thus,
this value of c0 is the maximum for subcritical sliding, that is, V < 1440 m/s. Entries in Table 1 show
contact zone geometry consistent with that for a rigid die sliding on an isotropic solid [Brock 2012] and
on the surface of axial material symmetry for a transversely isotropic solid [Brock 2013]. That is, the
contact zone is a noncircular oval, elongated in the direction of sliding. Such elongation is also found for
an isotropic solid [Rahman 1996]. Table 1 entries show that, as in [Brock 2012; 2013], the elongation
increases with sliding speed (c0). Substitution of (28) and (34) in (30) gives, finally, an equation for L X

as a function of c0:

F3 =
µ0

r0

(
QM0M√
A2

K+A2
0

)3

X
L3

X

∫
9

dψ
Q2

A2
K+A2

0

(M0M)2

∫ 1+�

�

(1+�− t)1+�(t −�)−�|t | dt. (36)

4. Transverse isotropy: Material symmetry axis in plane of surface

Traction distribution problem: Transform. In this case the material symmetry axis aligns with the pos-
itive x2-direction, and elastic constants [Jones 1999] and related dimensionless parameters are given by

c0 = 0.05 c0 = 0.1 c0 = 0.2 c0 = 0.3 c0 = 0.4
γ = 0.1 0.5333 0.5282 0.5061 0.469 0.4102
γ = 0.2 0.5321 0.5271 0.5054 0.4678 0.4089
γ = 0.5 0.5197 0.5191 0.4974 0.4596 0.4007

Table 1. Ratio LY /L X for values of γ and c0 < 0.4595 (c <
√

d6 = 0.2129).
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(5) and

C33 = C11, C66 = C44, C23 = C12, C22, C11−C13− 2C55 = 0, (37a)

d1 =
C11

µ0
, d2 =

C22

µ0
, d4 =

C44

µ0
, d5 =

C55

µ0
, d12 =

C12

µ0
, d13 =

C13

µ0
, (37b)

d1− d13− 2d5 = 0, c =
√
ρ

ρ0
c0, c0 =

v

v0
. (37c)

Equations (A.5) and (37) give the homogeneous equation set d5∂
2
3 +X1 (d6+ d12)∂1∂2 (d5+ d13)∂1∂3

(d6+ d12)∂1∂2 d6∂
2
3 +X2 (d6+ d12)∂2∂3

(d5+ d13)∂1∂3 (d6+ d12)∂2∂3 d1∂
2
3 +X3


u1

u2

u3

= 0, (38a)

X1 = d1∂
2
1 + d6∂

2
2 − c2∂2

X , X2 = d6∂
2
1 + d2∂

2
2 − c2∂2

X , X3 = d5∂
2
1 + d6∂

2
2 − c2∂2

X . (38b)

The same procedure based on (8) gives, for x3 = 0, in place of (9), (12), and (13):

û = U+ exp(−�+x3)+U− exp(−�−x3)+U5 exp(−�5x3), (39a)

(U±1 ,U
±

3 )= (d6+ d12)p2(−p1, �±)U±, U±2 =
(

A6−
1
2 d1 P±

)
U±, (39b)

U 5
1 =�5U5, U 5

2 = 0, U 5
3 = p1U5, (39c)

1
µ0

σ̂33

σ̂31

σ̂32

=
 p2C+3 p2C−3 −2d5 p1�5

d6 D13�+ d6 D13�− T5

D+32�+ D−32�− d6 p1 p2


U+

U−
U5

 . (39d)

The matrix coefficients in (39d) are given by

C±3 = (d6+ d12)T5− d1(�
2
±
+ p2

1)− A6, (40a)

D13 = 2d5 p1 p2(d6+ d12), (40b)

D±32 = (d6+ d12)p2
2 − d1(�

2
±
+ p2

1)− A6. (40c)

For both (39) and (40) the following definitions hold:

�± =

√
p2

1 +
P±

2d1d6

√
−1, �5 = ω5

√
−1, (41a)

P± = d1 A2+ d6 A6− (d6+ d12)
2 p2

2 ±

√
[d1 A2+ d6 A6− (d6+ d12)2 p2

2]
2− 4d1d6 A2 A, (41b)

A6 = p2
2 − c2 p2

X , A2 = d2 p2
2 − c2 p2

X , ω5 =

√
p2

1 +
A6

d5
. (41c)

As in the first problem, coefficients (U±,U5) are obtained as functions of (p1, p2) by imposing the
transform of condition (3) on the transforms given by (39). The transform û0

3 of the normal displacement
for x3 = 0 can then be written.
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Transform inversion and sliding contact problem. Results (40) and (41) are relatively complicated in
comparison with (10) and (11). For the purposes of illustration, therefore, the frictionless limit (γ = 0)
is treated. Results analogous to those in Appendix A obtain, and the same transform inversion process
used above is then used to reduce the sliding contact problem to a singular integral equation. The result
is a normal contact zone traction that is bounded for x3 = 0, (x1, x2) ∈ C :

σ(x, ψ,ψ − θ)=
µ0

2Kr0

√
L2− 4x2, x± =±

L
2
. (42)

In (42), definition (19c) and (25b) are replaced with

K=
∣∣∣∣A6

M

∣∣∣∣B+B−(B++B−)+
c2

D A
M0

(A+ B), (43a)

M= 4d2
5 B5 B+B−(B++B−) cos2 ψ − d6 A6(B2

1 +B+B−) sin2 ψ − QBT2
5. (43b)

Terms that arise in (42) and (43) are

T5 = A6+ 2d5 cos2 ψ, QB =
1

d1d6
(d6+ d12)

2 sin2 ψ − cos2 ψ −
A2

d6
−B+B−, (44a)

B5 =

√
cos2 ψ +

A6

d5
, B1 =

√
cos2 ψ +

A6

d1
, B± =

√
cos2 ψ +

P±
2d1d6

, (44b)

P± = d1A2+ d6A6− (d6+ d12)
2 sin2 ψ ±

√
[d1A2+ d6A6− (d6+ d12)2 sin2 ψ]2− 4d1d6A2A6, (44c)

A6 = d6 sin2 ψ − c2
X , A2 = d2 sin2 ψ − c2

X , cX = c cos(ψ − θ). (44d)

Here B+B−(B++B−) > 0 for (B1, B5,B±) real, and (M,A6) vanish for |ψ, θ |< π/2 if

tanψ +
c cos θ

c sin θ ±
√

d6
= 0. (45)

Thus, the first term in (43a) always gives a finite value. The second term in (43a) shows that A6 cancels
from u0

3 in the isotropic limit. In any event (42) is finite and continuous, and guarantees a nontensile
contact zone.

The anisotropy of the half-space surface is manifest in the definition (42)–(44). In particular, solution
behavior now depends on orientation with respect to principal axes of both points in C and the path of the
sliding sphere. Moreover, the definition of the critical sliding speed in terms of branch-point values and
roots of (M,M0) is θ -dependent. The branch points of (B5,B±) are relevant and are given, respectively,
in terms of dimensionless speed c0 as

(c0)56 =

√
ρ0

ρ

√
d6 sin2 θ + d5 cos2 θ, (46a)

(c0)± =
1
2

√
ρ0

ρ

[√
d6+P+P6±

√
d6+P−P6

]
, (46b)

P= d1 cos2 θ + d2 sin2 θ, (46c)

P6 =

√
4P2+ [d2

6 − 2d1d2− (d6+ d12)2] sin2 2θ. (46d)
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θ = 0◦ 30◦ 45◦ 60◦ 90◦

(c56)0 0.4595 0.5147 0.5646 0.6104 0.653
(c+)0 0.9163 1.6743 2.2576 2.7193 3.113
(c−)0 0.653 0.8222 0.7719 0.7153 0.653

Table 2. Values of c0 associated with solution branch points for various θ . Note that
A(1.8554)= 0, B(1)= 0, and M0(0.9268)= 0.

Contour C. Expressions analogous to (34) and (36) can be obtained for this case:

L = K
KX

L X , F3 =
L3

X

12K3
X

µ0

r0

∫
4

dψ K2. (47)

In (47) subscript X signifies a quantity evaluated for ψ = θ . In this case, however, terms in (43) and
(44) are not, in general, even functions with respect to the X-direction; for example, for M(ψ,ψ − θ)
we have M(θ +φ, φ) 6=M(θ −φ, φ) for φ 6= π/2. Thus contact zone C symmetry may not involve the
(X, Y )-axes. In this case, therefore, it is perhaps more illustrative to study the ratio

L8/L X = K8/KX . (48)

As in (34) and (47) L X is the contact zone span along the direction θ of sliding. Length L8 is the span
along lines that make an angle φ with respect to the X-direction, that is, ψ = θ + φ where |φ| ≤ π/2.
The sphere has the same properties as used for the first problem, but orientation of the graphite epoxy
[Jones 1999] now gives dimensionless parameters

d1 = 0.1831, d2 = 2.0816, d13 = 0.0896, d12 = 0.0834, d5 = 0.0453, d6 = 0.0916.

Based on these, Table 2 presents dimensionless parameters (c0)56 and (c0)± associated with various
values of θ . It is noted that (c0)56 ≤ (c0)±. It can also be shown that ratio |M/A6| 6= 0 for 0< c0 < (c0)56

and that the second (isotropic) term in (43a) does not become singular until c0 = 0.9268. Therefore
v = (c0)56v0 defines the critical sliding speed. Table 3 presents values of ratio (48) for θ = 45◦ and
various values of φ. Table 2 shows that critical sliding speed for this direction is 1769 m/s. In the first
problem the value was 1440 m/s for all sliding directions.

Entries in Table 1 depicted the contact zone as a noncircular oval, elongated in the direction of sliding.
In this problem φ = 0◦ and φ =±90◦ define the direction of sliding and its normal, and φ =±45◦ define
the (x2, x1)-principal material axes. Entries in Table 3 show that the contact zone for c0 = 0.05 has an
oval shape, but elongation is defined in terms of the principal axes, not the sliding direction (θ = 45◦). As
c0 is increased, however, the contact zone “rotates” and forms an oval elongated in the sliding direction,
as in the first problem. This behavior is consistent with that for the rigid sliding sphere [Brock 2013];
that is, for low sliding speed the contact zone contour is largely determined by the orientation of the
in-plane principal axes. For higher speeds, the direction of sliding becomes important.

5. Summary and comments

Combining quasipolar coordinates with an analysis defined in terms of Cartesian coordinates does result
in solutions of a hybrid nature. However, analytical expressions for contact zone traction in the quasipolar
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φ◦ c0 = 0.05 c0 = 0.1 c0 = 0.2 c0 = 0.3 c0 = 0.4

90 1.0218 1.0002 0.9113 0.7917 0.5945
67.5 0.8743 0.856 0.7859 0.6913 0.5279
45 0.823 0.8098 0.7536 0.6797 0.5403
22.5 0.8778 0.8668 0.8233 0.7748 0.6657
0 1.0 1.0 1.0 1.0 1.0

−22.5 1.2124 1.21 1.2103 1.257 1.4348
−45 1.2274 1.2168 1.1705 1.1286 1.023
−67.5 1.2058 1.1842 1.0937 0.973 0.7557
−90 1.2168 1.191 1.0852 0.9428 0.7079

Table 3. Ratio L8/L X for γ = 0, θ = 45◦, φ and c0 < (c0)56 = 0.5646. Note that ψ = θ +φ.

system are readily extracted. In any event, the approach is adopted here in order to address problems
that may not exhibit axial symmetry. The factor cancellation procedure adopted here follows that of
the 2D analysis of sliding on a transversely half-plane surface [Brock 2002]. A more compact solution
expression is the result, but care must then be used in comparing it with that for the isotropic limit case,
for example, as in [Rahman 1996].

The assumption that key geometric features of the projection of die profile onto the contact surface are
preserved in the contact zone shape, or that the zone is essentially elliptical, is often accurate [Johnson
1985; Hills et al. 1993]. Here, however, in addition to requiring a bounded traction on the zone boundary,
the resultant compressive force is required to be stationary with respect to the traction. The expressions
for contact zone geometry that result from these requirements, and calculations based on them, indicate
that the contact zone is often a distortion of the projection. This result is consistent with those in [Brock
2012; 2013].

For the case of the material symmetry axis for a transversely isotropic material coinciding with the
half-space surface normal, the contact zone shape represents in a sense an elongation of a sphere profile
along the line of sliding; see [Rahman 1996; Brock 2012; 2013]. The effect is sensitive to sliding speed,
and the presence of friction prevents replication by the contact zone of projection symmetry, other than
that with respect to this line.

For the case of the material symmetry axis lying in the surface plane, solution response in the contact
zone depends on both sliding direction orientation and location in the contact zone with respect to the
principal material axes. Contact zone elongation is along a principal material axis for low sliding speeds.
As sliding speed is increased, however, elongation is more consistent with isotropic behavior, that is,
elongation is in the sliding direction. This behavior is also consistent with [Brock 2013] but the changes
in shape during the transition from one behavior to the other are more pronounced here. This contrast
suggests that analysis based on the rigid die is indeed a first step.

For frictionless sliding by a sphere, calculations for LY /L X in Table 1 could be used to provide
semiminor and semimajor axis measures for the elliptical contact zone model, for example, as in [John-
son 1985]. As noted above, friction may preserve profile symmetry only with respect to translation
direction. However, the data in Table 1 indicates that the elliptical contact zone model may still be a
useful approximation. In the second problem treated here, contact zone symmetry may not coincide with
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that exhibited by the circular profile for the sphere. Calculations in Table 3 might still prove useful for
the contact zone shape that is assumed; similar conclusions are reached in [Brock 2012; 2013].

This study also shows that, in a 3D analysis of transverse isotropy, Rayleigh speeds may not be critical.
Specifically, the Rayleigh speeds for both a sphere and a half-space whose surface normal is the axis of
material symmetry can be obtained. However, for the graphite epoxy material [Jones 1999] chosen for
calculation, the value corresponds to a transonic speed, and the speed for steel exceeds that value. For
the surface that contains the material symmetry axis, the Rayleigh function for such a material does not
vanish in the subsonic sliding speed range. Again, moreover, the Rayleigh speed for steel corresponds
to a transonic speed in the half-space.

In closing, it is recognized that sliding contact between an isotropic sphere and a transversely isotropic
half-space with a surface that coincides with a principal material plane is a special case. A more tractable
mathematical problem arises and, as a result, so does a solution in a simple analytical form. Nevertheless,
anisotropic bodies are often composites, and shaped so that their surfaces do coincide with a principal
plane [Jones 1999]. Moreover, the second problem may give insight into the response of materials with
greater degrees of anisotropy.

Appendix A

For the homogeneous and linear elastic anisotropic solid, the stress and strain measure (σk, εk) in con-
tracted notation is related by [Jones 1999]:

σk = Cklεl, Ckl = Clk . (A.1)

Indices (k, l) take on values (1, 2, 3, 4, 5, 6) and the 21 elastic parameters are constants. These measures
correspond to those in the Cartesian basis, for k = (1, 2, 3), as

σk = σkk, εk = ∂kuk . (A.2)

For k = (4, 5, 6), the correspondence is

σ4 = σ23 = σ32, ε4 = ∂2u3+ ∂3u2, (A.3a)

σ5 = σ31 = σ13, ε5 = ∂3u1+ ∂1u3, (A.3b)

σ6 = σ12 = σ21, ε6 = ∂1u2+ ∂2u1. (A.3c)

Here (uk, ∂k) are k-components of the displacement and gradient vector (u,∇). The strain energy density
is positive for (A.1) when εT

k Cklεl > 0. This condition, in turn, is satisfied when [Hohn 1965; Ting 1996]

∣∣∣∣∣∣∣∣∣
C11 C21 · · · C1n

C21 C22 · · · C2n
...

...
. . .

...

Cn1 C2n · · · Cnn

∣∣∣∣∣∣∣∣∣> 0 (n ≤ 6). (A.4)
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In view of (1), (2), and (A.1)–(A.3), the linear momentum balance in the translating Cartesian basis takes
the form

∇klεl − ρv
2∂2

X uk = 0, (A.5a)∇1l

∇2l

∇3l

=
Cl1 Cl6 Cl5

Cl6 Cl2 Cl4

Cl5 Cl4 Cl3

∂1

∂2

∂3

 . (A.5b)

Here ρ is the mass density, k = (1, 2, 3), l = (1, 2, 3, 4, 5, 6), and the summation convention applies.

Appendix B

For x3 = 0, (9) and (12) give the formal result

û0
3 = (d5�

2
+
+ω2

1)U++ (d5�
2
−
+ω2

1)U−. (B.1)

In view of (13) the solutions for (U±,U6) and, therefore, the coefficients in (B.1) are functions of poly-
nomials in (�±, �6). These can be factored so that

û0
3 = d2

5 (d5+ d13)(�+−�−)�6ω1
P
1

[
N
(

p1
τ̂1

µ0
+ p2

τ̂2

µ0

)
−ω1(�++�−)

σ̂

µ0

]
, (B.2a)

N = ω1−
d13ω5
√

d3d5
. (B.2b)

Term 1 is the determinant of the matrix in (13a) and can also be factored:

1= d2
5 (d5+ d13)ω1�6 P(�+−�−)M, (B.3a)

M = ω1ω5

(
ω5+

√
d3
d5
ω1

)
−

(
d5ω1+

d2
13ω5
√

d3d5

)
P. (B.3b)

Use of (B.3a) in (B.2a) leads, upon factor cancellation, to a more compact form. Similar results hold for
the isotropic solid with mass density ρ0, the shear modulus µ0, and the rotational wave speed v0, that is,

d2 = d1 = c2
D, d5 = d6 = 1, d12 = d13 = c2

D − 2. (B.4)

It can be shown that (11) and (12) reduce to

�+ = ωD
√
−1, �− =�6 = ω

√
−1, T = 2P − c2

0 p2
X , (B.5a)

ωD =

√
P −

c2
0

c2
D

p2
X , ω5 = ω =

√
P − c2

0 p2
X , (B.5b)

C+3 =−(c
2
D − 1)TωD

√
−1, D+3 = 2(c2

D − 1)ω2, (B.5c)

C−3 =−2(c2
D − 1)ωP

√
−1, D−3 = (c

2
D − 1)T . (B.5d)

Parameter cD is the dimensionless dilatational wave speed, and the determinant corresponding to 1 is

ωDωP(c2
D − 1)2(4PωDω− T 2). (B.6)
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The last term is the isotropic Rayleigh function [Brock 2012]. This term and the isotropic limit of (B.3b)
can be written as, respectively,

ωD −ω

c2
D − 1

×ω[c4
Dω

2
D − (c

2
D − 1)2 P] −ωDc2

Dc2
0 p2

X , (B.7a)

ω

cD
[c4

Dω
2
D − (c

2
D − 1)2 P] −ωDcDc2

0 p2
X . (B.7b)

Equation (B.7a) demonstrates that the nonzero roots of the isotropic Rayleigh function are also roots of
the second factor. This implies that 1 is the transversely isotropic Rayleigh function, and that its nonzero
roots will also be roots of factor M , where dimensionless sliding speeds (c, c0) are related by (6b).

Appendix C

Consider integrals involving real parameters (X, Y ) over the entire Im(p)-axis P:

1
2π i

∫
P
|p|
(

1,
√
−p
√

p

)
exp[pX − Y

√
−p
√

p ]dp
p

(Y ≥ 0). (C.1)

Re(
√
±p) ≥ 0 in the p-plane with, respectively, branch cuts Im(p) = 0,Re(p) < 0 and Im(p) = 0,

Re(p) > 0. Specifically, for Re(p)= 0+ and, respectively, Im(p)= q > 0 and Im(p)= q < 0:

√
−p =

∣∣∣q2 ∣∣∣1/2(1∓ i),
√

p =
∣∣∣q2 ∣∣∣1/2(1± i). (C.2)

Use of (C.2) reduces (C.1) to

1
iπ

∫
∞

0
(cos q X, sin q X) exp(−Y q) dq. (C.3)

From the standard [Peirce and Foster 1956] tables (C.3) is evaluated as

1
iπ

(
Y

X2+ Y 2 ,
X

X2+ Y 2

)
. (C.4)

It is noted in [Stakgold 1967] that

1
π

Y
X2+ Y 2 → δ(X) (Y → 0). (C.5)

Here δ is the Dirac function.
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