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WEIGHT FUNCTION APPROACH TO A CRACK
PROPAGATING ALONG A BIMATERIAL INTERFACE

UNDER ARBITRARY LOADING IN AN ANISOTROPIC SOLID

LEWIS PRYCE, LORENZO MORINI AND GENNADY MISHURIS

The focus of this paper is the study of the dynamic steady-state propagation of interfacial cracks in
anisotropic bimaterials under general, nonsymmetric loading conditions. Symmetric and skew-symmetric
weight functions, defined as singular nontrivial solutions of a homogeneous traction-free crack problem,
have been recently derived for a quasistatic semiinfinite crack at the interface between two dissimilar
anisotropic materials. In this paper, the expressions for the weight functions are generalized to the
case of a dynamic steady-state crack between two anisotropic media. A functional matrix equation,
through which it is possible to evaluate the stress intensity factors and the energy release rate at the crack
tip, is obtained. A general method for calculating the asymptotic coefficients of the displacement and
traction fields, without any restrictions regarding the loading applied on the crack faces, is developed.
The proposed approach is applied for the computing stress intensity factors and higher-order asymptotic
terms corresponding to two different example loading configurations acting on the crack faces in an
orthotropic bimaterial.

1. Introduction

Evaluation of stress intensity factors and higher-order asymptotic terms of displacement and stress fields
represents a crucial issue for perturbative analysis of many interfacial crack problems [Bercial-Velez et al.
2005; Piccolroaz et al. 2010]. Recently, using a procedure based on Betti’s reciprocal theorem together
with weight functions [Bueckner 1985; 1989], a general method for calculating the coefficients of the
asymptotic displacements and stresses corresponding to an arbitrary loading acting on crack faces has
been developed in [Piccolroaz et al. 2009] for quasistatic cracks between dissimilar isotropic media, and
in [Morini et al. 2013] for interfacial cracks in two-dimensional anisotropic bimaterials. The aim of this
paper is to generalize these results to the case of dynamic steady-state crack propagation at the interface
between two dissimilar anisotropic media, and to develop a general method for explicitly computing the
coefficients in the asymptotic representations of the displacements and stresses and the energy release
rate for dynamic interfacial crack problems, without any restrictions regarding the loading applied at the
crack faces.

The article is organized as follows: Section 2 includes some preliminary results which are used in the
proposed analysis. The Stroh representation [Stroh 1962] of displacements and stress fields is reported
together with the Riemann–Hilbert formulation of interfacial cracks in anisotropic bimaterials developed
in [Suo 1990; Yang et al. 1991]. Explicit expressions for symmetric and skew-symmetric weight func-
tions for quasistatic plane crack problems derived in [Morini et al. 2013] and the Betti integral formula
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are introduced. In Section 3, weight function matrices for a semiinfinite crack propagating at a constant
speed at the interface between two dissimilar orthotropic materials under plane deformation are derived.
In Section 4, using explicit weight functions together with Betti’s integral theorem, general formulas
for stress intensity factors and higher-order asymptotic terms are obtained. By means of the developed
approach, both symmetric and skew-symmetric loading configurations acting on the crack faces can be
considered, and higher-order asymptotic terms can also be computed for nonsmooth loading functions.
The derived stress intensity factors are then used to evaluate the energy release rate. Two illustrative
examples of numerical computations for a specific asymmetric load are presented in Section 5. The
effects of the loading asymmetry on the energy release rate and the dependence of stress intensity factors
on the crack tip velocity are finally discussed, and possible physical implications of these results on the
continuing propagation of the crack are explored.

2. Preliminary results

In this section the mathematical framework of the model is introduced. Preliminary results concerning
interfacial cracks in two-dimensional anisotropic elastic bimaterials used for further analysis in this paper
are also reported. A semiinfinite crack propagating at a constant speed, v, along a perfect interface
between two semiinfinite anisotropic materials is considered. The crack is said to be occupying the
region x1− vt < 0, x2 = 0, as illustrated in Figure 1.

Considering the Cartesian coordinate system shown in Figure 1, the traction on the crack faces is
defined as

σ2 j (x1− vt, 0±)= p±j (x1− vt), for x1− vt < 0, (1)

and the body forces are assumed to be zero. The only restriction on the loading considered in this paper
is that it must vanish within the region of the crack tip.

The closed-form solution to the problem of a semiinfinite crack at an interface between two dissimilar
anisotropic materials has been derived by means of Stroh formalism [1962] in both the static [Suo 1990]
and the steady-state [Yang et al. 1991] cases, where the variation of angular stresses for different crack
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Figure 1. Geometry.
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velocities was plotted. The expressions for the stress field along the interface and the displacement along
the crack line derived in these papers, which are used in further analysis, are reported in Section 2.1.
In Section 2.2 the weight function defined in [Willis and Movchan 1995] is introduced and, finally, in
Section 2.3, it is shown how the Betti formula can be used to relate the weight functions and the physical
solutions for a problem concerning a propagating crack.

2.1. Steady-state interfacial crack: Stroh formalism. For both anisotropic elastic media, occupying the
upper and lower half-planes in Figure 1, Hooke’s law is given by

σi j = Ci jklεkl = Ci jkl
∂uk

∂xl
, for i, j, k, l = 1, 2, (2)

where σ is the stress, ε is the strain, C is the stiffness tensor for the material, v is the speed at which
the crack is moving, and ρ is the material density. The following relationship relating the stress and
displacement is also used:

2∑
j=1

∂σi j

∂x j
= ρ

∂2ui

∂t2 . (3)

Combining (2) and (3) gives

Ci jkl
∂2uk

∂x j∂xl
= ρ

∂2ui

∂t2 . (4)

A new coordinate system is now introduced: (x̃1 = x1− vt, x̃2 = x2). The following relationship is
therefore found in this new coordinate system:

C̃i jkl
∂2uk

∂ x̃ j∂ x̃l
= 0, (5)

where C̃i jkl = Ci jkl − ρv
2δikδ1 jδ1l .

From here on, for convenience, the moving coordinates will be written as x̃1 = x and x̃2 = y. In order
to find expressions for the displacement and stress fields in both of the materials, the Stroh formalism
can be applied, and a solution in the form ui = Ai f (x + py) derived. Introducing this expression into
the balance equations (5), the following eigenvalue problem is obtained:

(Q+ p(R+ RT )+ p2T )A= 0, (6)

where Q = Ci1k1− ρv
2δik depends on the material constants and the crack speed. However, R = Ci1k2

and T = Ci2k2 depend only on elastic constants of the material. This eigenvalue problem was solved in
[Ting 1996], and general expressions for the traction and displacement fields can be found therein. At
this stage the following matrices are also defined:

L = (RT
+ pT )A, B = i AL−1,

where B is the surface admittance tensor of the material. It is also important, for further analysis, to
introduce the bimaterial matrices H and W :

H = BI+ BII, W = BI− BII, (7)
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where the subscript I or II determines which material the matrix relates to. It is important to note that,
in the considered dynamic steady-state case, the matrices A, L, B, H , and W all depend on both the
elastic constants for the materials and the crack speed, v.

The analysis performed in [Suo 1990] considered the static, homogeneous traction-free form of the
physical problem shown in Figure 1, with continuous traction and displacement across the interface
(x1 > 0). Suo’s work has been extended to the steady-state crack in [Yang et al. 1991] using the new
coordinates x and y. Considering the traction-free condition, the following Riemann–Hilbert problem is
satisfied along the negative portion of the real axis [Suo 1990]:

h+(x)+ H−1 Hh−(x)= 0, −∞< x < 0. (8)

Here, h(z) is a function found in the form

h(z)= wz−1/2+iε .

The branch cut of h(z) is placed along the negative real axis. Combining this solution with (8) gives the
eigenvalue problem

Hw = e2πεHw, (9)

which can be used to find ε and w, both of which depend on the crack velocity [Yang et al. 1991].
For the positive part of the real axis the following expression for the physical traction was found in

[Suo 1990]:
t(x)= h+(x)+ H−1 Hh−(x), 0< x <∞. (10)

Combining this with the results from (9), Suo found the following expression for the traction ahead of
the crack tip:

t(x)=
1
√

2πx
Re(K x iεw), (11)

where K = K1 + i K2 is the complex stress intensity factor, and includes both mode I and mode II
contributions to the traction.

The displacement jump across the crack, defined as [u] = u(x, 0+)−u(x, 0−), was also found in [Suo
1990] for x < 0:

[u](x)=
(

2(−x)
π

)1
2 (H + H)

coshπε
Re
(

K (−x)iεw
1+ 2iε

)
. (12)

For the physical problem with forces acting on the crack faces the asymptotic expansions of the
physical traction and the jump in displacement across the interface, as x→ 0, can be written as follows
[Morini et al. 2013]:

[u](x)=
(−x)1/2
√

2π
U(x)K +

(−x)3/2
√

2π
U(x)Y2+

(−x)5/2
√

2π
U(x)Y3+O((−x)7/2), (13)

t(x)=
x−1/2

2
√

2π
T(x)K +

x1/2

2
√

2π
T(x)Y2+

x3/2

2
√

2π
T(x)Y3+O(x5/2), (14)

where K = [K , K ] and Yi = [Yi , Y i ]. The Yi are constants derived in the same manner as the stress
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intensity factor K in order to find further terms in the asymptotic expansions. The matrices U(x) and
T(x) are represented as

U(x)=
2(H + H)

coshπε

[
w(−x)iε

1+ 2iε
,
w(−x)−iε

1− 2iε

]
, T(x)= 2[wx iε,wx−iε

]. (15)

An explicit formula for computing the stress intensity factor for symmetric loading was given in [Suo
1990]. It was shown that

K S
=−

( 2
π

)1/2
coshπε

∫ 0

−∞

(−x)−1/2−iε
〈 p1〉(x) dx, (16)

where the vector 〈 p1〉(x) is related to the applied traction p(x) in the following way:

〈 p1〉 =
wT H〈 p〉
wT Hw

.

Note here that the work in [Suo 1990] only studied symmetric loading, which is why the formula above
only shows the part of the stress intensity factor corresponding to the symmetric part of the loading 〈 p1〉.
For symmetric loading the asymmetric contribution to the loading, [ p1], is equal to 0.

Another key component in the analysis of fracture mechanics is the determination of the energy release
rate (ERR) when a unit area of interface is cracked. An expression was found for the ERR, denoted G,
in [Irwin 1957]:

G = 1
21

∫ 1

0
tT (1− r)[u](r) dr, (17)

where 1 is an arbitrary length scale. It was stated in [Yu and Suo 2000] that this equation can still be
used with an arbitrary 1 as long as the crack is moving at subsonic speeds. It was shown in [Suo 1990],
using (11) and (12), that the ERR can be written as

G =
wT (H + H)w|K |2

4 cosh2(πε)
. (18)

The value of G will change as the crack moves at different speeds. This is one of the key features this
paper will be studying, with the results shown in Section 5.

2.2. Weight functions. The weight function U is now defined in the same vein as in [Willis and Movchan
1995]. We now consider U = (U1,U2)

T , the singular displacement field obtained in the problem where
the steady-state crack occupies the region of the x-axis with x > 0. Thus U is discontinuous over the
positive portion of the real axis. The symmetric and skew-symmetric parts of the weight function are
given by

[U](x)= U(x, 0+)−U(x, 0−), (19)

〈U〉(x)= 1
2(U(x, 0+)+U(x, 0−)). (20)

The traction field associated with the displacement field, U , is denoted by ϒ = (ϒ1, ϒ2)
T and is taken

to be continuous over the interface (x < 0); the zero traction condition is imposed on the crack faces.
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Therefore, the following Riemann–Hilbert problem stands along the positive section of the real axis for
this problem, as seen in [Morini et al. 2013]:

h+(x)+ H−1 Hh−(x)= 0, 0< x <∞. (21)

A solution for h(z) is found in the form

h(z)= vz−3/2+iε, (22)

where the branch cut is now said to be along the positive x-axis. This gives the eigenvalue problem

Hv = e−2πεHv. (23)

H is positive-definite hermitian, and therefore it is clear, by comparing (23) with (9), that v = w.
An expression for ϒ along the negative real axis is given by

ϒ(x)= h+(x)+ H−1 Hh−(x), −∞< x < 0. (24)

Therefore the singular traction in the steady state has the form [Morini et al. 2013]

ϒ(x)=
(−x)−3/2
√

2π
Re(R(−x)iεw), (25)

where R = R1+ i R2 is an arbitrary, complex number in a similar fashion as the stress intensity factor for
the physical problem. By considering the results obtained for ϒ when {R1 = 1, R2 = 0} and {R1 = 0,
R2= 1} it is possible to obtain two linearly independent vectors, and therefore a 2×2 matrix, representing
ϒ [Piccolroaz et al. 2009].

An expression relating the Fourier transform, defined as

f̂ (χ)=
∫
∞

−∞

f (x)eiχx dx,

of the symmetric and skew-symmetric weight functions was found in [Morini et al. 2013] following from
the work seen in [Piccolroaz et al. 2007]:

[Û]+(χ)=
1
|χ |
(i sign(χ)Im(H)−Re(H))ϒ̂−(χ), (26)

〈Û〉(χ)=
1

2|χ |
(i sign(χ)Im(W)−Re(W))ϒ̂−(χ). (27)

Here the superscripts ± denote whether the function is analytic in the upper or lower half-plane.

2.3. The Betti formula. It was mentioned previously that there are now two displacement fields to con-
sider: the physical displacement, u, and the singular displacement, U . However, U is discontinuous
across the x-axis for x > 0 whereas u is discontinuous across the x-axis for x < 0. Also considered is the
traction associated with U , given by ϒ , which is continuous when x < 0, and the traction t associated
with u, which is continuous when x > 0.

It was shown in [Willis and Movchan 1995] that the Betti formula still holds for a steady-state crack
in isotropic materials. Using the same method it can be shown that the Betti formula still holds for the
moving coordinate system in anisotropic materials. Therefore, the following expressions are found along
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the upper and lower parts of the real axis, respectively:∫
∞

−∞

{U T (x ′− x, 0+)Rσ (x, 0+)−ϒT (x ′− x, 0+)Ru(x, 0+)} dx = 0, (28)∫
∞

−∞

{U T (x ′− x, 0−)Rσ (x, 0−)−ϒT (x ′− x, 0−)Ru(x, 0−)} dx = 0, (29)

where

R=

(
−1 0
0 1

)
.

The homogeneous case of (8) is now considered. Combined with the applied traction on the crack
faces, p(x), we obtain for the traction

σ (x, y = 0+)= p+(x)+ t(x), σ (x, y = 0−)= p−(x)+ t(x). (30)

Subtracting (29) from (28) and using (30), along with the definition of the symmetric and skew-symmetric
parts of the weight function, the following formula is obtained:∫
∞

−∞

{[U]T (x ′− x)Rt(x)−ϒT (x ′− x, 0)R[u](x)} dx

=−

∫
∞

−∞

{[U]T (x ′− x)R〈 p〉(x)+〈U〉T (x ′− x)R[ p](x)} dx . (31)

Here, 〈 p〉 and [ p] refer to the symmetric and skew-symmetric parts of the loading, respectively.
Using the Fourier convolution theorem the following identity, which relates the Fourier transforms

of the weight functions and the solutions of the physical problem, is obtained [Piccolroaz et al. 2007;
Morini et al. 2013]:

[Û]+T R t̂+− ϒ̂−T R[û]− =−[Û]+T R〈 p̂〉− 〈Û〉T R[ p̂], (32)

where the ± denotes whether the transform is analytic in the upper or lower half-plane.
Further work performed in [Piccolroaz et al. 2007] and [Morini et al. 2013], combining (26), (27), and

(32), found an explicit expression for finding the stress intensity factor, K , using the weight functions
and the loading applied on the crack faces. The expression obtained was

K = 1
2π i

Z−1
1

∫
∞

−∞

[Û]+T (τ )R〈 p̂〉(τ )+〈Û〉T (τ )R[ p̂](τ ) dτ, (33)

where Z1 is a constant matrix derived from the asymptotic representation of (32). It can be shown that
both expressions for K , (16) and (33), are equivalent when the loading considered is symmetric.

Following the method developed in [Piccolroaz et al. 2007] and [Morini et al. 2013] an expression for
further asymptotic coefficients can be found depending on whether the applied loading is smooth and has
a Fourier transform that vanishes at a fast enough rate at infinity. If this is the case the general expression
for the asymptotic coefficients can be found using

Y j =
1

2π i
Z−1

j

∫
∞

−∞

τ j−1
{[Û]+T (τ )R〈 p̂〉(τ )+〈Û〉T (τ )R[ p̂](τ )} dτ. (34)

Here, Z j is also derived from the asymptotic representation of (32) and is found in Section 4.
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3. Steady-state weight functions for orthotropic bimaterials

In this section, expressions for the symmetric and skew-symmetric weight function matrices correspond-
ing to a steady-state plane strain interfacial crack in orthotropic bimaterials are reported. Substituting the
solution for w found in [Yang et al. 1991], and shown in the Appendix of this paper, into (25), and using
the method used in [Piccolroaz et al. 2009], yields the following linearly independent traction vectors
for −∞< x < 0:

ϒ1(x)=
(−x)−3/2

2
√

2π

 i[(−x)iε − (−x)−iε
]√

H11
H22
[(−x)iε + (−x)−iε

]

 , (35)

ϒ2(x)=
(−x)−3/2

2
√

2π

 −[(−x)iε + (−x)−iε
]

i
√

H11
H22
[(−x)iε − (−x)−iε

]

 , (36)

where H11 and H22 are parameters depending on the crack tip speed and elastic constants of both con-
sidered materials. Explicit expressions for H11 and H22 have been introduced in [Yang et al. 1991] and
are given in the Appendix. The branch cut for these vectors is situated along the positive real axis and
polar coordinates with angle between −2π and 0 are taken. The Fourier transforms obtained are

ϒ̂1−(χ)=
(iχ)1/2

√
2

(1+ 4ε2)
√
π

 i
[(
−

1
2 − iε

)
0
( 1

2 + iε
)
(iχ)−iε

−
(
−

1
2 + iε

)
0
( 1

2 − iε
)
(iχ)iε

]√
H11
H22

[(
−

1
2 − iε

)
0
(1

2 + iε
)
(iχ)−iε

+
(
−

1
2 + iε

)
0
( 1

2 − iε
)
(iχ)iε

]
, (37)

ϒ̂2−(χ)=
(iχ)1/2

√
2

(1+ 4ε2)
√
π

 −
[(
−

1
2 − iε

)
0
( 1

2 + iε
)
(iχ)−iε

+
(
−

1
2 + iε

)
0
( 1

2 − iε
)
(iχ)iε

]
i
√

H11
H22

[(
−

1
2 − iε

)
0
( 1

2 + iε
)
(iχ)−iε

−
(
−

1
2 + iε

)
0
( 1

2 − iε
)
(iχ)iε

]
, (38)

where 0(·) is the gamma function and the branch cut of ϒ̂− is situated along the positive imaginary
axis. Note that the expressions (37) and (38) are written using a different representation than was used
in [Morini et al. 2013]. The reason behind this will become clearer in Section 4.

The Fourier transforms (26) and (27) can now be computed, for χ ∈ R, with the expressions for H
and W found in [Yang et al. 1991] and [Morini et al. 2013], respectively:

[Û]+(χ)=
1
|χ |

(
−H11 −iβ sign(χ)

√
H11 H22

iβ sign(χ)
√

H11 H22 −H22

)
ϒ̂−(χ), (39)

〈Û〉(χ)=
1

2|χ |

(
−δ1 H11 iγ sign(χ)

√
H11 H22

−iγ sign(χ)
√

H11 H22 −δ2 H22

)
ϒ̂−(χ), (40)

where the branch cuts are now situated along the negative imaginary axis. Here β, γ , δ1, and δ2 are
all dimensionless parameters depending on the elastic coefficients of the bimaterial and the crack tip
velocity [Yang et al. 1991]. Full expressions for both matrices, H and W , are given in the Appendix,
including full expressions for the parameters β, γ , δ1, and δ2. It can be clearly seen from the results of
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[Yang et al. 1991] that β is of great importance when considering oscillations near the crack tip as ε = 0
when β = 0.

4. Evaluation of the coefficients in the asymptotic expansion
of the displacement and stress fields for the steady-state crack

4.1. Determination of the stress intensity factor. It is now possible to develop a method in order to find
the stress intensity factor for an orthotropic bimaterial, similar to that seen for the static crack in [Morini
et al. 2013]. In the case of orthotropic materials, the matrix T(x) in (14) is given by

T(x)=

 −i x iε i x−iε√
H11
H22

x iε
√

H11
H22

x−iε

 . (41)

Note that this result is equivalent to (15) with the known value of w inserted. The Fourier transform of
this expansion is computed in order to find the asymptotic expansion as χ→∞, with Im(χ) ∈ (0,∞).
The result is

t̂(χ)=
(−iχ)−1/2

2
√

2π
T1(χ)K +

(−iχ)−3/2

2
√

2π
T2(χ)Y +O((χ)−5/2), (42)

where

T1(χ)=

 −i(−iχ)−iε0
( 1

2 + iε
)

i(−iχ)iε0
( 1

2 − iε
)√

H11
H22

(−iχ)−iε0
( 1

2 + iε
) √H11

H22
(−iχ)iε0

( 1
2 − iε

)
 , (43)

T2(χ)=

 −i(−iχ)−iε0
( 3

2 + iε
)

i(−iχ)iε0
( 3

2 − iε
)√

H11
H22

(−iχ)−iε0
( 3

2 + iε
) √H11

H22
(−iχ)iε0

( 3
2 − iε

)
 . (44)

These expressions differ from those seen in [Morini et al. 2013] and [Piccolroaz et al. 2007] in that they
incorporate the different branch cut used in this paper. It is now possible to find the asymptotic expansion
of the members of Betti’s identity from (32), using expressions (39) and (40), as χ→∞:

[Û]+T R t̂+ = χ−1 Z1 K +χ−2 Z2Y2+χ
−3 Z3Y3+O(χ−4), where Im(χ) ∈ (0,∞), (45)

ϒ̂−T R[û]− = χ−1 Z1 K +χ−2 Z2Y2+χ
−3 Z3Y3+O(χ−4), where Im(χ) ∈ (−∞, 0). (46)

The matrices Z1 and Z2 are given by

Z1 =−
H11

4s+s−(1+ 4ε2)

−(β−1)(1−2iε)
E2 E2(β + 1)(1+ 2iε)

i(β−1)(1−2iε)
E2 i E2(β + 1)(1+ 2iε)

 ,

Z2 =−
H11

4(1+ 4ε2)

−
(β−1)(1−2iε)

g+s−E2
E2(β+1)(1+2iε)

s+g−

i(β−1)(1−2iε)
g+s−E2

i E2(β+1)(1+2iε)
s+g−

 ,
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where

E = eε(π/2), s± =
(1+ i)

√
π

20
( 1

2 ± iε
) , g± =

(1− i)
√
π

20
( 3

2 ± iε
) .

Following the method of Morini et al. [2013], (32) is rewritten as

ψ+(χ)−ψ−(χ)=−[Û]+T R〈 p̂〉− 〈Û〉T R[ p̂]. (47)

Using the Plemelj formula it is possible to find ψ±(χ) using the formula

ψ±(χ)=
1

2π i

∫
∞

−∞

ψ(τ )

τ −χ
dτ, (48)

where ψ(τ )=−[Û]+T (τ )R〈 p̂〉(τ )−〈Û〉T (τ )R[ p̂](τ ). The solution of (47) is given by

[Û]+T R t̂+ = ψ+, where Im(χ) ∈ (0,∞),

ϒ̂−T R[û]− = ψ−, where Im(χ) ∈ (−∞, 0).

The asymptotic expansion of the Plemelj formula as χ→∞± is given by

ψ±(χ)=
1

2π i

∫
∞

−∞

ψ(τ )

τ −χ
dτ = χ−1V±1 +χ

−2V±2 +O(χ−3). (49)

Comparing the terms of this asymptotic expansion with the terms of the expansions (45) and (46) it is
clear that V±j = Z j Y j , where Y1 = K . Using (49) it is easily seen that the stress intensity factor, K , is
given by

K = lim
χ→∞±

1
2π i

Z−1
1

∫
∞

−∞

χ(−[Û]+T (τ )R〈 p̂〉(τ )−〈Û〉T (τ )R[ p̂](τ ))
τ −χ

dτ, (50)

where the explicit expression for Z−1
1 is given by

Z−1
1 =

2s+s−(1+ 4ε2)

H11


E2

(β−1)(1−2iε)
i E2

(β−1)(1−2iε)

−
1

(β+1)(1+2iε)E2
i

(β+1)(1+2iε)E2

 .
Assuming that the loading disappears in the region of the crack tip the limit in (50) exists and therefore
the general expression for the stress intensity factor, K , for the steady state is identical to that found in
[Morini et al. 2013] (see (33)).

Now that an expression for the stress intensity factor has been found it is possible to determine the
energy release rate (ERR). Using (18) the following expression is obtained for the ERR in orthotropic
materials:

G = 1
4 H11(1−β2)|K |2. (51)
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4.2. General expression for the coefficients of the higher-order terms. Using the asymptotic expan-
sions (45) and (46) and the corresponding terms of (49) a general expression for the j-th coefficient of
the asymptotic expansions, Yi , is found

V±j = lim
χ→∞±

[
χ j (−1) j−1

2π i( j − 1)!

∫
∞

−∞

ψ(τ )
d j−1

dχ j−1

(
χ j−1

τ−χ

)
dτ
]
. (52)

This gives a general expression for the coefficients of the asymptotic expansion of the displacement and
stress fields as

Y j = lim
χ→∞±

1
2π i

Z−1
j

∫
∞

−∞

τ j−1([Û]+T (τ )R〈 p̂〉(τ )+〈Û〉T (τ )R[ p̂](τ ))
(
χ

χ−τ

) j
dτ. (53)

If the loading is applied in such a way that the limit exists it is clearly seen that (53) is identical to (34).
The limit in (53) can only be computed directly for j ≥ 2 if the loading is given by a particularly smooth
function which is therefore differentiable. However, this paper considers a general loading system in
which case (34) cannot always be used. An example of loading for which (34) cannot be used is when
point forces are applied on the crack faces [Piccolroaz et al. 2009]. To find further asymptotic terms, for
arbitrary loading, an alternate method must be used.

As the function p only exists on the negative real x-axis its Fourier transform is analytic in the lower
half χ-plane. Therefore, [ p̂] and 〈 p̂〉 are also analytic in the lower half-plane. As long as the applied
loading p vanishes within a region of the crack tip it is clearly seen that [ p̂] and 〈 p̂〉 decay exponentially
as χ tends to −i∞. It is also known that both [Û]+ and 〈Û〉 are analytic in the lower half-plane apart
from the negative imaginary axis.

For computing Y j the contour of integration shown in Figure 2 is used. However, due to exponential
decay as χ goes to −i∞, L−∞ and L∞ do not contribute to the total integral. Equation (53) now becomes

Y j = lim
χ→∞±

(
−

1
2π i

Z−1
j

[∫
L̃l

τ j−1ψ(τ )
(
χ

χ−τ

) j
dτ −

∫
L̃r

τ j−1ψ(τ )
(
χ

χ−τ

) j
dτ
])
. (54)

The limit of (54) can be taken to give

Y j =−
1

2π i
Z−1

j

∫ 0

−i∞
τ j−1
[ψ(τ )] dτ, (55)

where [ψ(τ )] refers to the jump of the function ψ over the negative imaginary axis.

L l Lr

L̃ l L̃r

L−∞ L∞

Figure 2. Integration shift in the χ -plane.
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The expression (55) can be simplified further by considering the continuity of (39) and (40). The
first term in both equations is analytic in the lower half-plane and therefore continuous over the negative
imaginary axis. For this reason they do not contribute to the general expression for the asymptotic
coefficients, (55). Therefore, (55) simplifies to give

Y j =−
1

2π i
Z−1

j

∫ 0

−i∞
τ j−1
[φ(τ )] dτ, (56)

where φ(τ ) is given by

φ(τ )=
Re(H){ϒ̂−(τ )R〈 p̂〉(τ )}

|τ |
+

Re(W){ϒ̂−(τ )R[ p̂](τ )}
2|τ |

.

5. Specific examples

Specific examples for computing the stress intensity factors for orthotropic materials are now considered.
Firstly, the loading on the crack faces is given by a point force of magnitude F acting perpendicular to the
upper crack face a distance a behind the crack tip and two point forces, both of magnitude F/2, acting
perpendicular to the lower crack face a distance b away from the point force acting upon the upper crack
face. The loading moves at the same speed and in the same direction that the crack is propagating. This
example is shown in Figure 3. The forces are represented mathematically using the Dirac delta function
[Piccolroaz et al. 2009]:

p+(x)=−Fδ(x + a), p−(x)=−
F
2
δ(x + a+ b)− F

2
δ(x + a− b). (57)

It is now possible to decompose the loading into its symmetric and skew-symmetric components:

〈p〉(x)= 1
2
[p+(x)+ p−(x)] = −

F
2
δ(x + a)− F

4
δ(x + a− b)− F

4
δ(x + a− b),

[p](x)= p+(x)− p−(x)=−Fδ(x + a)+ F
2
δ(x + a+ b)+ F

2
δ(x + a− b).

(58)

F

a

F
2

F
2

2b

y

x

I

II

(a)

Figure 3. Mode I-dominant loading.
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In order to compute the stress intensity factors the Fourier transforms of the skew-symmetric and sym-
metric parts of the loading are required. These are given by

〈 p̂〉(χ)=−F
2

e−iχa
−

F
4

e−iχ(a+b)
−

F
4

e−iχ(a−b), (59)

[ p̂](χ)=−Fe−iχa
+

F
2

e−iχ(a+b)
+

F
2

e−iχ(a−b). (60)

It is now possible to compute expressions for the first and second-order asymptotic coefficients, K and
Y2, using expressions (50) and (56), respectively.

To find an expression for K (50) is used, which is identical to using the dynamic equivalent of (33).
The solution is split into parts corresponding to the symmetric and antisymmetric parts of the loading,
denoted K S and K A, respectively:

K S
(a) = F

E2

(1−β)

√
H22

H11

√
2
π
3(1, a, b, ε), K A

(a) = F
E2δ2

(1−β)

√
H22

H11

√
2
π
4(1, a, b, ε), (61)

where

3(c, a, b, ε)= a−c/2−iε[ 1
2 +

1
4(1+ b/a)−c/2−iε

+
1
4(1− b/a)−c/2−iε],

4(c, a, b, ε)= a−c/2−iε[ 1
2 −

1
4(1+ b/a)−c/2−iε

−
1
4(1− b/a)−c/2−iε].

Regarding higher-order asymptotic coefficients for the loading shown in Figure 3, the alternate method
developed in Section 4.2 must be used. Once again the coefficient is split into symmetric and antisym-
metric parts. The second-order term is given by

Y S
2(a) = F

E2

(β − 1)

√
H22

H11

√
2
π
3(3, a, b, ε), Y A

2(a) = F
E2δ2

(β − 1)

√
H22

H11

√
2
π
4(3, a, b, ε). (62)

A different configuration has also been considered. This other point loading system consists of point
forces acting on the crack faces at the same points as previously considered but the forces are now running
parallel to the crack, as opposed to the perpendicular system shown in Figure 3. This different loading
is shown in Figure 4.

For this loading the following expressions are found for the symmetric and antisymmetric parts of the
stress intensity factors:

K S
(b) = i F

E2

(1−β)

√
2
π
3(1, a, b, ε), K A

(b) = i F
E2δ1

(1−β)

√
2
π
4(1, a, b, ε). (63)

Using the method developed in Section 4.2, the symmetric and antisymmetric components of the second-
order asymptotic coefficient are found:

Y S
2(b) = i F

E2

(β − 1)

√
2
π
3(3, a, b, ε), Y A

2(b) = i F
E2δ1

(β − 1)

√
2
π
4(3, a, b, ε). (64)

Having computed expressions for the stress intensity factors it is now possible to calculate the ERR
for two given materials. The velocity is normalized by dividing by cR , the lowest of the two Rayleigh
wave speeds for the given materials. This is done because the Rayleigh wave speed is a limiting velocity
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Figure 4. Mode II-dominant loading.

for which the steady-state coordinate system can be used. In the results shown the ERR is normalized
as GC (1)

66 /F2. Here, C (1)
66 is taken as the value of C66 for the material above the crack. In all figures in

this paper graphs labeled (a) correspond to the mode I-dominant loading whereas those labeled (b) refer
to the case with mode II-dominant loading. For the purpose of calculations, a is set as 1.

Material I is the piezoceramic barium titanate. Information on this material has been obtained from
[Geis et al. 2004] which states that the material is transverse isotropic, which is a subgroup of orthotropic
materials. Material II is set as monocrystalline aluminum, with a cubic structure, where the material
parameters have been obtained from [Bower 2009]. The properties of these materials are shown in
Table 1. Using the method outlined in the Appendix it can be shown that the Rayleigh wave speed of
barium titanate is 1,771 ms−1 while for aluminum it is 2,941 ms−1. Therefore the normalizing velocity,
cR , used is that of barium titanate.

Figure 5 shows the variation of the normalized ERR, as a function of the velocity, for both loadings
considered. Figures 6 and 7 illustrate the symmetric and antisymmetric contributions to the ERR, corre-
sponding to K S and K A, respectively. Both GS and G A are normalized by the total ERR G, which is
associated with K = K S

+ K A.
It can be observed in Figure 5 that the ERR increases as the velocity increases and tends towards

infinity as the velocity approaches the Rayleigh wave speed. This behavior is observed regardless of the
asymmetry of the loading acting on the crack faces. It is important to note that, as velocity increases,
asymmetry gives a larger ERR; therefore it can be said that symmetric loading is more energetically
beneficial than any asymmetric load.

Figures 6 and 7 show that for b/a = 0, when both loadings become symmetric, GS/G = 1 and
G A/G = 0; therefore, the ERR only consists of its symmetric part, regardless of velocity, which agrees

Material C11 (GPa) C22 (GPa) C12 (GPa) C66 (GPa) ρ (kgm−3)

I. Barium titanate 120.3 120.3 75.2 21.0 6,020
II. Aluminum 107.3 107.3 60.9 28.3 2,700

Table 1. Material properties.
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Figure 5. The normalized ERR, as a function of the velocity, for different positions of
the self-balanced point forces applied to the crack surfaces, described by the ratio b/a.
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Figure 6. The normalized symmetric part of the ERR, as a function of the velocity,
for different positions of the self-balanced point forces applied to the crack surfaces,
described by the ratio b/a.

with the results found for isotropic and anisotropic bimaterials in [Piccolroaz et al. 2009] and [Morini et al.
2013]. When asymmetry is introduced into the loading it is observed that the symmetric contribution to
the ERR is higher than the total ERR and the ratio increases as the velocity increases. Upon approaching
the Rayleigh wave speed there is an unexpected sharp decrease in the ratio GS/G. This effect should be
studied further by performing experiments on crack propagation at near-Rayleigh speeds.
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Figure 7. The normalized antisymmetric part of the ERR, as a function of the velocity,
for different positions of the self-balanced point forces applied to the crack surfaces,
described by the ratio b/a.
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Figure 8. The ratio of antisymmetric and symmetric parts of the ERR, as a function of
the velocity, for different positions of the self-balanced point forces applied to the crack
surfaces, described by the ratio b/a.

In comparison to the symmetric contribution shown in Figure 6, the asymmetric part of the ERR, illus-
trated in Figure 7, is very small, in particular for low velocities. As the velocity starts to increase the asym-
metric contribution to G becomes larger. This result is supported by Figure 8, showing the ratio G A/GS ,
which also shows an increased contribution by the asymmetric part of the loading at higher velocities.
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Figure 9. The ratios K2/K1 and K1/K2 for the mode I and mode II loadings, respec-
tively. The graphs of β and ε, as functions of velocity, are also shown.

The dependence of the stress intensity factor, K , on the normalized crack tip speed is illustrated in
Figure 9. The first graph shows the ratio K2/K1 for mode 1-dominant loading. Here, K1 and K2 are the
mode 1 and 2 contributions to the stress intensity factor, respectively. For symmetric loading there is no
mode 2 contribution to K , due to the fact that there is only mode 1 opening of the crack. It is important to
observe that if asymmetry is introduced, for all values of b/a, there exists a velocity at which K2 changes
sign. The second image in Figure 9 shows a similar result for the mode 2-dominant loading considering
the ratio K1/K2. In this case, it is the K1 component which changes sign. The velocity at which this
change takes place is the same for both types of loading and does not depend on the asymmetry. This
velocity corresponds to the value of the crack tip speed at which the Dundurs parameter, β, vanishes.
This characteristic velocity can be found by solving the algebraic equation β(v)= 0 and depends only
on the elastic properties of the materials and the speed at which the crack is propagating; the asymmetry
of the load does not affect the value at which the stress intensity factors have a change in sign. It is
also clear from (A.7) that when β vanishes the oscillatory term, ε, vanishes; this has also been shown in
Figure 9. This agrees with the obtained results as, when ε = 0, it can be observed that (61) consists only
of real terms and (63) only has imaginary components.

It can be said that, when the crack tip speed reaches this characteristic value of the velocity associated
with β = 0, the propagation should continue along the interface in a straight line. Instead, when neither
K1 or K2 is 0 there is a possibility of kinking or branching of the propagation. Increased magnitudes of
the ratios considered in Figure 9 lead to an increased probability of crack redirection. As the velocity
increases the ratios exhibit this behavior, which explains why straight propagation along the interface is
unlikely for high crack speeds. These results are in agreement with many theoretical and experimental
studies which have demonstrated that there exists a specific sub-Rayleigh velocity which is related to the
stability of the crack propagation [Obrezanova et al. 2002a; 2002b].

The behavior of the stress intensity factor is also observed in Figure 10 for different materials in the
lower half-plane. The asymmetry of the load was fixed at b/a = 0.8. The results in these graphs show
that the previously mentioned speed at which the direction of the crack propagation changes does not
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Figure 10. The change in behavior of the crack propagation when the material below
the crack is changed, for fixed asymmetry of the loading.

exist for all bimaterials. This is due to the fact that there does not always exist a velocity at which
β = 0. For bimaterials which do not have this characteristic velocity the change of behavior of the crack
propagation would not be expected. However, the increased probability of kinking/branching at higher
velocities is still observed.

Figure 11 shows the variation in the real and imaginary parts of the normalized stress intensity factor
when v = 0 and the asymmetry of the loading is varied. The loading considered here is mode I-dominant
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Figure 11. The normalized components of K S and K A for v = 0 with mode I-dominant loading.
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so a comparison can be made to the results obtained for this system in [Morini et al. 2013]. The results
shown agree with the ones there, with only the real part of the symmetric stress intensity factor existing
for symmetric loading and the magnitude of all components increasing as the asymmetry becomes more
profound. The behavior is not identical to that seen in [Morini et al. 2013] due to the different materials
considered in this paper.

6. Conclusions

A general method for calculating stress intensity factors and higher-order terms in the asymptotic expan-
sions of the displacement and stress fields for a dynamic steady-state crack at the interface between two
dissimilar anisotropic materials has been developed. The proposed approach, based on weight functions
theory and the Betti integral formula, can be applied to many crack problems in a wide range of materials,
for example, several classes of anisotropic elastic media (monoclinic, orthotropic) and piezoceramics.
As a particular case, a steady-state plane interfacial crack in orthotropic bimaterials has been studied.
Expressions for the stress intensity factor and further higher-order asymptotic coefficients have been
found for two different configurations of loading acting on the crack faces.

It has been shown in the considered examples that greater asymmetry of the loading configuration
leads to an increase in the energy release rate at the crack tip and has a particularly large effect for
high crack velocities. Moreover, the analysis of the stress intensity factors for both loadings shows the
existence of a sub-Rayleigh velocity at which the stress intensity factor changes sign, which could lead
to a change in the direction of the crack propagation. This effect was only observable when asymmetric
loading was applied and may give some explanation for the fact that kinking/branching is more probable
at certain velocities. As different materials for the lower half-plane are considered, it has been shown that
this characteristic velocity does not exist for every bimaterial; therefore experimental study is of great
importance in order to clearly detect the presence of this critical value and its physical implications on
crack propagation stability.

Acknowledgments

Lewis Pryce and Gennady Mishuris acknowledge support from the FP7 IAPP project “INTERCER2”,
project reference PIAP-GA-2011-286110-INTERCER2. Lorenzo Morini gratefully acknowledges finan-
cial support from the Italian Ministry of Education, University and Research in the framework of the FIRB
2010 project “Structural mechanics models for renewable energy applications”. The authors would also
like to acknowledge the pleasant work environment provided at Enginsoft, Trento.

Appendix: Orthotropic Stroh matrices for a dynamic crack

For orthotropic materials the matrices Q, R, and T are given by

Q =
(

C11− ρv
2 0

0 C66− ρv
2

)
, R =

(
0 C12

C66 0

)
, T =

(
C66 0
0 C22

)
. (A.1)
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Previously, expressions were found for the Stroh matrices for an orthotropic bimaterial with a crack
propagating at a constant speed, v, in [Yang et al. 1991], where the following parameters were defined:

κγβ =
Cγβ
C66

, α1 =

√
1− ρv

2

C11
, α2 =

√
1− ρv

2

C66
,

ξ = α1α2

√
κ11

κ22
, s =

α2
2 + κ11κ22α

2
1 − (1+ κ12)

2

2α1α2
√
κ11κ22

.

It is seen that the eigenvalues, with positive imaginary parts, of (6) are given by

p1,2 =


i
√
ξ

(√
s+1

2
±

√
s−1

2

)
, for s ≥ 1,

√
ξ

(
±

√
1−s

2
+ i

√
1+s

2

)
, for − 1< s < 1.

(A.2)

Using the same normalization as used in [Yang et al. 1991] the matrices A and L are given by

A=
(

1 −λ−1
2

−λ1 1

)
, (A.3)

L = C66

(
p1− λ1 1− p2λ

−1
2

κ12− κ22 p1λ1 κ22 p2− κ12λ
−1
2

)
, (A.4)

where

λµ =
κ11α

2
1 + p2

µ

(1+ κ12)pµ
.

It is now possible to find an expression for the hermitian matrix B:

B = i AL−1
=

1
C66 R

(
κ22α

2
2
√

2(1+ s)/ξ i(κ22− κ12α
2
2/ξ)

−i(κ22− κ12α
2
2/ξ) κ22

√
2ξ(1+ s)

)
, (A.5)

where R is the generalized Rayleigh wave function given by

R = κ22(κ22ξ − 1+α2
2)− κ

2
12α

2
2/ξ.

The Rayleigh wave speed of a material can be found by solving the equation for R = 0.
The bimaterial matrix H , from (7), has the form

H =
(

H11 −iβ
√

H11 H22

iβ
√

H11 H22 H22

)
. (A.6)
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From (A.5) it is seen that

H11 =

[
κ22α

2
2
√

2(1+ s)/ξ
C66 R

]
I
+

[
κ22α

2
2
√

2(1+ s)/ξ
C66 R

]
II
,

H22 =

[
κ22
√

2ξ(1+ s)
C66 R

]
I
+

[
κ22
√

2ξ(1+ s)
C66 R

]
II
,

β
√

H11 H22 =

[
κ22− κ12α

2
2/ξ

C66 R

]
II
−

[
κ22− κ12α

2
2/ξ

C66 R

]
I
.

In order to compute the weight functions the eigenvalues and eigenvectors of (9) are required. Using the
representation (A.6) it is found that

w =

 −
i
2

1
2

√
H11
H22

 , ε =
1

2π
ln
(1−β

1+β

)
. (A.7)

Another key component for calculating the weight functions is the bimaterial matrix W , defined in
(7). Using (A.5) it is seen that

W =
√

H11 H22

δ1

√
H11
H22

iγ

−iγ δ2

√
H22
H11

 , (A.8)

where

γ =

[
κ22− κ12α

2
2/ξ

C66 R

]
I
+

[
κ22− κ12α

2
2/ξ

C66 R

]
II

√
H11 H22

,

δ1 =

[
κ22α

2
2
√

2(1+ s)/ξ

C66 R

]
I
−

[
κ22α

2
2
√

2(1+ s)/ξ

C66 R

]
II

H11
,

δ2 =

[
κ22
√

2ξ(1+ s)

C66 R

]
I
−

[
κ22
√

2ξ(1+ s)

C66 R

]
II

H22
.
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