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EFFECTS OF TRANSVERSE SHEAR DEFORMATION
ON THERMOMECHANICAL INSTABILITIES

IN PATCHED STRUCTURES WITH EDGE DAMAGE

PEINAN GE AND WILLIAM J. BOTTEGA

The problem of a patched structure under uniform thermal loading is studied, where geometric nonlin-
earity and shear deformation are considered. The formulation is based on the calculus of variations with
propagating boundaries, and yields the governing equations, boundary conditions, matching conditions
and transversality condition. Closed form analytical solutions are obtained in terms of an (unknown)
membrane force parameter, the angle of rotation due to bending and the transverse displacement. Results
of numerical simulations based on those solutions are presented and critical phenomena of the composite
structure are unveiled. Results of the current work are compared with previously published results where
transverse shear deformation was neglected. It is seen that shear deformation plays an important role
in certain situations. In particular, the effects of shear deformation on the phenomena of “slingshot
buckling” and “buckle trapping” are demonstrated and discussed. The influence of the relative size of
the detached region and of the difference between the material properties of the base plate and of the
patch (in particular, shear moduli) on the thermomechanical instabilities are elucidated.

1. Introduction

Patched structures are widely used in a variety of engineering systems. Such a structure consists of a
secondary component adhered to a primary structure. Engineers have been using patches on aircraft in
recent years to alleviate the stress intensity in the vicinity of cracks in the primary structures. It is neces-
sary to predict and characterize the functionality of a patched structure during its servicing period. In the
structures of this class, the mechanical properties of the composite structure change with respect to the
properties of the patch and base components. With varying the temperature environments, with ensuing
increased stress and buckling, transverse shear deformation may affect the system greatly. Therefore the
characterization of the shear effect is of critical importance.

It is well known that the composite structure will eventually buckle when it is subjected to temperature
change. The classic papers on thermal buckling include [Timoshenko 1925; Wittrick et al. 1953; Wahl
1944]. Karlsson and Bottega [1999] studied the presence of edge contact in patched cylindrical panels,
and found that edge contact often occurs, and that it can influence the debonding behavior of the structure.
Karlsson and Bottega [2000a; 2000b] and Rutgerson and Bottega [2002] subsequently studied the behav-
ior of patched plates and layered shells, respectively, subjected to uniform temperature change. Their
results showed that the structure will dynamically sling to an equilibrium configuration associated with
deflections in the opposite sense of the original. The phenomenon is referred to as “slingshot buckling”

Keywords: beam, buckle trapping, buckling, patch, patched structure, contact zone, plate, slingshot buckling, stability,
temperature, thermal buckling, thermal load, transverse shear deformation.

501

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2013.8-8-10
http://msp.org


502 PEINAN GE AND WILLIAM J. BOTTEGA

by the authors. Those studies are united and compared in [Bottega 2006b]. Recently, Bottega and Cara-
betta [2009] studied the detachment and separation failure of layered structures under thermal loading.
The behaviors of several representative structures and loadings were studied. Carabetta and Bottega
[2012; 2014] studied the instability of patched structures with edge damage where a new phenomenon
referred to as “buckle trapping” was unveiled. A detailed review of the pertinent literature is presented
therein. In addition, Carabetta [2011] studied the interaction of thermal buckling and detachment of
patched structures. The existence of intermediate propagating contact was discussed for different bond
zone sizes and edge supports. These representative results significantly advance the understanding of
engineering structures. However, a more sophisticated elastic theory containing shear deformation will
further elucidate the phenomena of interest.

Timoshenko [1921] was the first to introduce shear deformation as well as rotatory inertia into beam
theory. Shen [1998] presented a post-buckling analysis for laminated composite plates subjected to
uniform or nonuniform temperature loading. Reddy [1984] adopted higher order shear deformation in
the formulation to show that the characteristics of thermal post-buckling are significantly influenced by
transverse shear deformation. Aydogdu [2007] applied the Ritz method and performed an analysis of
thermal buckling behavior on cross-ply laminated beams. In that work, a shear deformable theory was
used in conjunction with a shape function to fulfill geometric and material constraints. Zenkour and
Sobhy [2010] used a sinusoidal shear deformation plate theory to model thermal buckling phenomena
of sandwich plates. Different thermal loads were applied under various configurations of the plates.

The present work focuses on the response of patched plates subjected to a uniform temperature field for
a variety of support conditions and material properties. We extend the model and analysis of [Carabetta
and Bottega 2014] to include transverse shear deformation. The formulations are based on [Mindlin
1951, Plate Theory], a generalization of [Timoshenko 1921, Beam Theory], and the calculus of variations.
Numerical simulations are performed to elucidate representative behavior of the composite structure. Of
particular interest is how the inclusion of transverse shear deformation in the overall formulation affects
the response of the composite structure. In addition, the effects that the length of the patch, the proportion
of Poisson’s ratio and Young’s modulus between the patch and the base plate have on the behavior of the
structure are also examined.

2. Problem statement

In this work, we study the instability of a patched structure with a preexisting detached region emanating
from each edge of the patch. We advance the work of [Carabetta and Bottega 2014] and include the
effect of transverse shear deformation to examine its influence on critical phenomena. In the formulation
we allow for three configurations: (1) no contact of the debonded segments of the substructures; (2) the
“free” edge of the debonded segment of the patch maintains sliding contact with the base plate (“edge
contact”); (3) a contact zone (a region of sliding contact) adjacent to the bonded region. Each of these
configurations are shown in Figure 1.

The thin patched plate is comprised of two substructures: a base plate of half-span length L , and a
patch of half-span L p centrally and partially adhered to the base structure (Figure 2). The thicknesses of
the base plate and the patch are hb and h p, respectively. The coordinate x originates at the centerspan
and runs along the reference surface — the upper surface of the base plate. All the length scales are
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Figure 1. Deformed plate showing various configurations: (a) panel with no contact of
debonded segments; (b) plate with edge contact of debonded segments; (c) plate with
full contact of debonded segments of patch plate and base.

 

Figure 2. Half-span of structure.

normalized with respect to the half-length of the base plate and other pertinent parameters are normalized
in accordance with [Bottega and Carabetta 2009]. Thus, for the structure of interest, the half-span length
of the base plate is L = 1. The structure is mathematically partitioned into three domains: the bond
zone S1 : x ∈ [0, a], the contact zone S2 : x ∈ [a, b] and the lift zone S3 : x ∈ [b, 1]. The functions w(x)
and wp(x) (positive downward) represent the normalized transverse displacements of the base plate and
of the patch, respectively. The functions u(x) and u p(x) (positive outward from centerspan) denote the
corresponding normalized in-plane displacements of material particles located at the centroid of the base
plate and of the patch, respectively. Correspondingly, the functions φ(x) and φp(x) represent the angle
of rotation of the cross section due to bending for the base plate and of the patch, respectively. In addition,
the functions γ (x) and γp(x) represent the shear angles of the base plate and of the patch, respectively.

Paralleling the developments in [Carabetta and Bottega 2014], the membrane strain of the base plate
and of the patch, ei (x) and ep(x), respectively, are given by

ei = u′bi +
1
2w
′

bi
2
−αb2 (i = 1, 2, 3), (1)

ep = u′p2

2
+

1
2w
′

p2

2
−αp2, (2)
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where ( )′ = d( )/dx and αb, αp are described in what follows. We next adopt the normalized temperature
scale of [Rutgerson and Bottega 2002; Carabetta and Bottega 2014]:

2= α
2−20

20
, (3)

αb = ᾱb2, αp = ᾱp2 (plane stress), (4)

αb = ᾱb2(1+ ν), αp = ᾱp2(1+ ν) (plane strain), (5)

where the parameters 2 and 20 represent the present dimensional temperature and the reference temper-
ature of the system, respectively, and ν is Poisson’s ratio. The nondimensional coefficients of thermal
expansion of the base plate and patch, ᾱb and ᾱp respectively, are defined in terms of their dimensional
counterparts, αb and αp, in (4) and (5).

Paralleling the developments in [Carabetta and Bottega 2014], but now incorporating transverse shear
deformation, we next formulate an energy functional in terms of the membrane energies, bending energies
and shear energies of each substructure for each segment of the base panel and of the patch, and we also
include constraint functionals which match the transverse displacements in the contact zone and the
transverse and in-plane displacements and the angle of rotation due to bending in the bond zone. We
thus formulate the energy functional 5 as

5=

3∑
1

(
U (i)

B +U (i)
Bp +U (i)

M +U (i)
Mp +U (i)

S +U (i)
Sp

)
−3 (6)

where

U (i)
B =

∫
Si

1
2 Dbκ

2
i dx, U (i)

Bp =

∫
Si

1
2 Dpκ

2
pi dx (i = 1, 2, 3) (7)

are the bending energies in the base plate and patch in region Si ,

U (i)
M =

∫
Si

1
2Cbe2

i dx, U (i)
Mp =

∫
Si

1
2C pe2

pi dx (i = 1, 2, 3) (8)

are the membrane energies in the base plate and patch in region Si . Further

U (i)
S =

∫
Si

1
2 Gbγ

2
i dx, U (i)

Sp =

∫
Si

1
2 G pγ

2
pi dx (i = 1, 2, 3) (9)

are the shear energies in the base plate and in the patch in region Si . The constraint functional 3 in (6)
is given by

3=

2∑
1

∫
Si

σi (wpi −wi ) dx +
∫

S1

τ(u∗p1− u∗1) dx +
∫

S1

λ(φ∗p1−φ
∗

1) dx . (10)

In (7)–(10), Db and Dp are the nondimensional bending stiffnesses of the base plate and the patch,
respectively, Cb and C p are the corresponding nondimensional membrane stiffnesses, and Gb and G p

are the nondimensional shear stiffnesses. In addition, σi represents the interfacial normal stress, τ is
the interfacial shear stress, and λ is the interfacial moment couple. According to [Mindlin 1951, Plate
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Theory; Timoshenko 1921, Beam Theory; Bottega 2006a], where a shear correction and rotatory inertia
are considered, the strain-displacement relation is given by

dw
dx
= φ+ γ, (11)

γ =
V

kGh
, (12)

where w is the transverse displacement, φ is the angle of rotation due to bending and γ is the transverse
shear angle of the cross section. In (12), the parameter G is the shear modulus and V is the transverse
shear force. In addition, k is the “shape factor” or “shear coefficient” of the structure, which depends on
the shape of the cross section. In the past decades, the shear coefficients for various cross sections
of beams were derived. Examples of related work may be found in [Mindlin 1951; Cowper 1966;
Ritchie et al. 1973; Hutchinson 1981; Wittrick 1986]. Incorporating (11) into the development through
Equations (6)–(10), the problem is expressed in terms of the in-plane displacement, u(x), the transverse
displacement, w(x), and the angle of rotation due to bending, φ(x). The parameters shown in the above
formulation of the total potential energy of the system are defined in terms of their dimensional versions
as follows:

x = x̄/L, Db = 1,

u(x)= ū(x̄)/L, Cb = Cb/Db,

w(x)= w̄(x̄)/L, Dp = D p/Db,

φ(x)= φ̄(x̄), C p = C p/Db,

Gb = kbGbh̄b L2/Db, G p = kpG ph̄ p L2/Db, (13)

σi = σ̄i L3/Db, τ = τ̄ L3/Db,

hb = h̄b/L, λ= λ̄L2/Db,

h p = h̄ p/L, L = 1,

where length scales have been normalized with respect to the dimensional half-span L of the base plate.
Invoking the principle of stationary potential energy, which is described in the present context as δ5= 0,
we take the appropriate variations and allow the boundary b to vary along with the displacements. This
results in the corresponding governing equations, boundary and matching conditions, and transversality
condition. After eliminating the Lagrange multipliers, we arrive at the self-consistent equations and
conditions for the composite structure presented next.

2.1. Governing equations. Adopting the procedure presented in [Carabetta and Bottega 2014], we first
obtain the relation

N ∗1 = N2 = N3 =−N0 = constant, Np2 = Np3 = 0, (14)

where N0 is yet to be determined. With this important result, the problem is recast into a mixed formula-
tion, expressed in terms of the transverse displacement, w(x), the angle of rotation due to bending, φ(x),
and the uniform membrane force, N0.
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The equations of transverse motion and rotation then take the form

D∗φ′′b1+ (Gb+G p)(w
′

b1−φb1)= 0,

−N0w
′′

b1+ (Gb+G p)(w
′

b1−φb1)
′
= 0, x ∈ [0, a].

(15)

We next rearrange the above equations, eliminate wb1 and decouple the governing equations in terms
of the angle of rotation due to bending, φb1, and the uniform membrane force, N0. Applying the same
procedure for other regions gives the following governing equations. Hence,

g∗φ′′′b1+ N0φ
′

b1 = 0 (0≤ x ≤ a), (16)

g3φ
′′′

b2+ N0φ
′

b2+ Dpφ
′′′

p2 = 0 (a ≤ x ≤ b), (17)

g3φ
′′′

b3+ N0φ
′

b3 = 0 (b ≤ x ≤ 1), (18)

g4φ
′′′

p3 = 0 (b ≤ x ≤ L p), (19)

where

g∗ = D∗
(

1−
N0

Gb+G p

)
, g3 = Db

(
1−

N0

Gb

)
, g4 = Dp

(
1−

N0

G p

)
, (20)

w′′b1(x)=−
D∗

Gb+G p
φ′′b +φb, w′b2(x)=−

Db

Gb
φ′′b2+φb2, w′b3(x)=−

Db

Gb
φ′′b3+φb3, (21)

w′p2(x)=−
Dp

G p
φ′′p2+φp2, w′p3(x)=−

Dp

G p
φ′′p3+φp3. (22)

2.2. Boundary and matching conditions. The associated boundary and matching conditions are ob-
tained from the variational operation as

φb1(0)= 0, φ′′b1(0)= 0, φb3(1)= 0, wb3(1)= 0, φ′p3(L p)= 0, φ′′p3(L p)= 0, (23)

Mλ(a)= [D∗φ′b− Dbφ
′

b2− Dpφ
′

p2]x=a, φb1(a)= φb2(a)= φp2(a),

[g∗φ′′b1+ N0φb1]x=a = [g3φ
′′

b2+ N0φb2+ Dpφ
′′

p2]x=a, wb1(a)= wb2(a)= wp2(a),
(24)

φ′b2(b)= φ
′

b3(b), φ′p2(b)= φ
′

p3(b),

φb2(b)= φb3(b), φp2(b)= φp3(b),

[g3φ
′′

b2+ N0φb2+ Dpφ
′′

p2]x=b = [g3φ
′′

b3+ N0φb3+ Dpφ
′′

p3]x=b,

wb2(b)= wb3(b)= wp3(b)= wp2(b)

(25)

where
Mλ = m∗2+

(
ρ∗+ 1

2 hb
)
N0. (26)

The parameter Mλ in the matching condition is denoted as the transverse loading parameter, which
is first introduced by Karlsson and Bottega [2000a], from which the external thermal loading enters the
problem for the composite structure. The two components of the loading parameter compete with each
other when they have opposite sign, which is central to the “slingshot buckling” and other related issues
presented in [Bottega 2006b]. The parameters m∗ and ρ∗ are given in Appendix A. Finally, integrating
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the strain-displacement relations and imposing the boundary and matching conditions for the in-plane
displacements result in the integrability condition

ub2(1)− ub(0)=−N0

(1−a
Cb
+

a∗

C p

)
+

(
1− a+ a n∗

C∗
)
2−

( 1
2 hb+ ρ

∗
)
φb(a)

−
1
2

∫ a

0
w′2b dx −

1
2

∫ b

a
w′2b2 dx −

1
2

∫ 1

b
w′2b3 dx . (27)

2.3. Transversality condition. The partially debonded structure discussed on page 503 (see especially
Figure 2) is divided into 3 segments — bonded zone, contact zone and lift zone. The location of the
boundary between the contact zone and the lift zone is determined by the corresponding transversality
condition that is derived by taking the appropriate variations and allowing the boundary b to vary along
with the displacements. This condition reduces to the equality of the total angular displacement of the
patch and the base plate at the contact zone boundary. Therefore, a propagating contact boundary may
occur only if the following condition is satisfied

w′b3(b)= w
′

p3(b), (28)

w′b3(b) > 0, (29)

where (29) is added to prohibit penetration of the patch to the base plate. If (28) and (29) are not satisfied,
the system will possess either a full contact zone (b= L p), no contact zone (b= a), or edge point contact,
whichever possesses the lowest system energy.

2.4. Condition for (full) contact or lift. To establish whether full contact between, or lift off of, the
detached segment of the patch and the base plate occurs for clamped-fixed, we establish a kinematic
criterion based on physical arguments. For lift off to occur, a pseudo inflection point must occur at the
bond zone boundary, x = a. This can be characterized by the product of the gradients of total rotations
of the composite plate in the bond zone and in the contact zone, evaluated at the bond zone boundary.
That is,

Ja ≡ w
′′

1(a) ·w
′′

2(a). (30)

If
Ja < 0, (31)

a full contact zone is possible. If
Ja > 0, (32)

lift is possible. The above is coupled with the sense of the deflections when making an assessment.

2.5. Stability criterion. For a given value of the applied thermal loading, if multiple equilibrium config-
urations exist, it is necessary to determine which of the configurations are stable and which are unstable.
In this regard, we utilize the second variation of the potential energy functional to assess the stability
of each equilibrium configuration (the approach implemented in [Karlsson and Bottega 2000a]). The
configuration is considered stable if the second variation of the total potential is positive definite (δ25> 0).
We adopt the approach discussed in [Karlsson and Bottega 2000b], in which the transverse displacements
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and the axial strains are perturbed via their coefficients. Doing this, we obtain the second variation of
the total potential energy in the following form,

δ25= F̂(δMλ)
2
+ ζ(δN0)

2 (33)

where 5 is the total potential energy, δ is the variational operator,

ζ =
1
2

( a
C∗
+

a∗

Cb

)
and F̂ = F̂(N0, a, b). (34)

As discussed in [Carabetta and Bottega 2014], the form of the function F̂ depends on the particular
support conditions for the specific structure. Since ζ > 0, the requirement of positive definiteness of the
second variation reduces to the stability criterion

F̂ > 0. (35)

In this regard, a configuration is stable when (35) is satisfied. The function F̂ is therefore referred to
as the stability function.

3. Analysis

Solving Equations (16)–(19), subject to the boundary and matching conditions of Equations (23)–(25),
yields the solutions for the angle of rotation due to bending in each region. The solutions are presented
for two extreme support conditions: hinged-fixed and clamped-fixed ends. The general solutions to the
governing equations of Section 2, Equations (16)–(19), are found to be

φb1(x)= C1+C2 cos(Kbx)+C3 sin(Kbx), (36)

φb2(x)= A1 cosh(µ1x)+ A2 sinh(µ1x)+ A3 sin(β1x)+ A4 cos(β1x)+ A5, (37)

φp2(x)= P1[A1 cosh(µ1x)+ A2 sinh(µ1x)] + P2[A3 sin(β1x)+ A4 cos(β1x)] + A5, (38)

φb3(x)= C4+C5 cos(Kb3x)+C6 sin(Kb3x). (39)

The parameters µ1, Kb, Kb3, β1, P1, and P2 are given in Appendix B. Note that, for both support
conditions, the rotations for the base plate and patch within the contact zone are not identical (P1 6= 1, and
P2 6= 1) when the shear deformation is included. The relations between transverse deflection and the angle
of rotation due to bending are described by (21) and (22). The expressions for the constants C1, . . . ,C6

and A1, . . . , A5 depending on the specific support conditions imposed at x = 1, are cumbersome, and are
omitted for brevity. It is noted that the equations presented above reduce to the solutions for a perfectly
intact structure in the limiting scenario when Gb,G p→∞.

With the analytical solution and stability criterion established, we next present the results of numerical
simulations based on these solutions.

4. Results and discussion

The purpose of this study is to demonstrate the influence of transverse shear deformation on the behavior
of the structure under thermal loading. This is done by comparing results of the present model with
those found in [Carabetta and Bottega 2014] using the corresponding model neglecting transverse shear
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deformation. In this section, numerical results are presented for structures with hinged-fixed edges and
for structures with clamped-fixed ends, under uniform thermal loading. The effect of changing the shear
modulus of the patch and base plate will be analyzed to reveal characteristic behavior. The corresponding
thickness ratio is taken as h0 = 1 and the ratio of coefficient of thermal expansion of the patch to the
base is α0

p = 0.5, which are consistent with those used in [Carabetta and Bottega 2014].

4.1. Hinged ends. We first consider the structure with hinged-fixed supports. That is, the edges of the
base plate are hinged with respect to rotation and fixed with respect to in-plane translation. For such
support conditions, no contact zone exists when the partially detached structure deflects upward, due
to the lack of an inflection point or pseudo-inflection point. When in this configuration, the partially
detached structure is equivalent to the intact structure having the same bond zone size in terms of global
stiffness and energy. This is consistent with previous studies [Bottega and Carabetta 2009; Carabetta and
Bottega 2012; Carabetta 2011]. In contrast, the structure possesses a full contact zone when it deflects
downwards. Thus, as discussed in [Carabetta and Bottega 2014], a “dual nature” exists for a partially
debonded structure with hinged-fixed supports. In order to appropriately capture the overall behavior of
the structure under thermal loading, results of simulations for a structure with no contact zone (b= a) and
a structure having a full contact zone (b = L p) are presented together. To show the effect of transverse
shear on the behavior of the structure, two cases are presented: (1) equal shear stiffness for the two layers;
(2) unequal shear stiffness for the base plate and patch.

Case 1: Equal shear stiffness (Gb = G p). The shear stiffnesses of the base plate and of the patch
are identical, for equal thickness, if both the Young’s modulus and Poisson’s ratio are equal, per the
well-known relation

G =
E

1+ ν
. (40)

The results for a structure possessing a bond zone of length a = 0.6 and a patch length L p = 0.9 are
displayed in Figures 3 and 5. The papers [Carabetta and Bottega 2012; 2014; Carabetta 2011] studied the
behavior of the same structure with the transverse shear deformation neglected. The results displayed in
Figure 3 are regenerated according to [Carabetta and Bottega 2014]. The load-deflection path is shown in
Figure 3(b) as the applied temperature change as a function of the center point deflection. The membrane
force, total energy and stability function are shown as a function of the applied temperature change in
parts (a), (c) and (d) of Figure 3, with the shear deformation neglected. The corresponding results,
with shear deformation accounted for, are displayed in Figure 4. Comparison of Figures 3 and 4 shows
virtually no difference in the response of the structure, indicating that the transverse shear has little effect
for the case when Gb = G p. In these figures, red color indicates the stable equilibrium configurations
and blue color indicates the unstable equilibrium configurations. It is seen from Figure 4(b) that, as the
temperature change is increased from zero, the structure initially deflects upward and continues to do
so until the critical temperature is achieved, 2cr = 2.2. At this point, the configuration associated with
Branch 1 becomes unstable and the structure slingshots to an alternate stable configuration on Branch 2.
As the structure deflects downward, the detached “flap” of the patch comes into contact with the base plate
when w(0)≥ 0 and a full contact configuration appears. Thus the rightmost path shown in Figure 4(b)
is dismissed on physical grounds.
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Figure 3. Behavior of hinged-fixed structure with shear deformation neglected, for a
fully lifted flap, with a = 0.6, L p = 0.9: (a) membrane force vs. temperature difference;
(b) temperature difference vs. center-span transverse deflection; (c) total potential energy
vs. temperature difference; (d) stability function vs. temperature difference. Red circles
represent stable configurations and blue lines indicate unstable ones.
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Figure 4. Behavior of hinged-fixed structure, Gb = G p, for a fully lifted flap, with
a = 0.6, L p = 0.9: (a) membrane force vs. temperature difference; (b) temperature
difference vs. center-span transverse deflection; (c) total potential energy vs. temperature
difference; (d) stability function vs. temperature difference. Red circles represent stable
configurations and blue lines indicate unstable ones.
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Figure 5. Thermal load-deflection paths (top) and total energy as a function of the tem-
perature change (bottom) for hinged-fixed total structure with Gb = G p, a = 0.6, and
L p = 0.9.

Figure 5 displays profiles of the temperature difference vs. centerspan displacement and the total
energy vs. temperature difference, respectively for the structure. In these figures, red color corresponds
to the full contact configuration and blue color to the fully lifted configuration. The squares indicate
the stable equilibrium positions and the dots indicate the unstable positions. In these figures, the gap
between the critical temperatures of the two configurations is shown. When the structure switches from
the fully lifted configuration to the full contact configuration, there is no stable equilibrium position in
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Figure 6. Comparison of thermal load-deflection paths for hinged-fixed structures with
G p 6= Gb (νb/νp = 0.3/0.2) with those for G p = Gb, a = 0.6, L p = 0.9. Dashed lines
represent stable configurations and circles indicate the unstable configurations.

either configuration. Thus, the structure is trapped between the two. This phenomenon, called buckle
trapping, was established by Carabetta and Bottega [2012; 2014], who proposed the existence of an
energy cusp, and hence a stable equilibrium configuration, when w = 0 (2cr1 ≤2≤2cr2). Simulations
for a bond zone of half-length a = 0.8 with the same patch length are also studied, but the results are
omitted for brevity. However, It is observed that the “buckle trapping” phenomenon exists even with the
shear correction for this case. It is thus seen that, in this regard, the effects of transverse shear deformation
are not apparent when the base plate and the patch possess equal shear stiffness.

Case 2: Unequal shear stiffnesses (Gb 6= G p). We next consider the case when the base plate and the
patch possess unequal shear stiffness (Gb 6= G p). Selected results of simulations based on the solutions
discussed in Section 3 are presented in what follows.

Results for a structure possessing a bond zone of half-length a = 0.6 and a patch half-length L p = 0.9
are displayed in Figures 6 and 7. A comparison of the thermal load-deflection paths is displayed in
Figure 6 for both cases: (1) equal shear stiffness (Gb/G p = 1) and (2) unequal shear stiffness (Gb/G p =

2.2/2.6), between the base plate and the patch. The profile for equal shear stiffness was already discussed
under Case 1. In Figure 6, the black curves correspond to Gb 6=G p case and the colored curves correspond
to Gb = G p case. The dashed lines indicate stable equilibrium configurations and the circles indicate the
unstable states. Although the critical temperature for both cases is the same (2cr = 2.2), the deflection
corresponding to the structure with unequal shear stiffnesses is seen to be much larger than that of the
structure with equal shear stiffnesses, as 2 increases. Thus, the effect of shear deformation on the
behavior of the structure is apparent in this case.



THERMOMECHANICAL INSTABILITIES IN PATCHED STRUCTURES WITH EDGE DAMAGE 513

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

w
0

Θ

fully lifted

full contact

Θ
cr

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Π

Θ

Figure 7. Thermal load-deflection paths (top) and total energy as a function of the tem-
perature change (bottom) for hinged-fixed structure with νb/νp = 0.3/0.2, a = 0.6,
L p = 0.9.

Figure 7 shows the dual load-deflection curve and the total energy profile as a function of the tempera-
ture change (both the full contact and fully lifted configurations are presented). It was shown previously,
for Case 1, that at the critical temperature, the structure buckles from the fully lifted configuration,
and buckle trapping occurs before it reaches the full contact configuration. However, it is seen from
Figure 7 that the partially detached structure buckles from a fully lifted configuration to a full contact
configuration at the critical temperature 2cr = 2.2 where it is stable for the full contact configuration.
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Thus, the buckle trapping phenomenon disappears for this case. We also examined the partially debonded
structure with differing shear stiffnesses for a bond zone size a = 0.8 and observed similar behavior. The
results are omitted for brevity. Comparing these results to those for the case of a structure with equal
shear stiffnesses, we observe that the “buckle trapping” phenomenon does not occur when the base plate
and the patch posses unequal shear stiffnesses for the case considered. This is in contrast to what was
predicted by Carabetta and Bottega [2014], with the transverse shear neglected. We next proceed to the
case of structures with clamped-fixed edges under uniform temperature change.

4.2. Clamped ends. We next consider the situation when the edges of the base-plate are clamped-fixed.
That is, when the edges of the structure are clamped with respect to rotation and fixed with respect to
both transverse and in-plane translation. The general behavior of the whole structure will be seen to be
notably different from that of the structure with hinged-fixed supports described earlier. It was estab-
lished in [Bottega and Carabetta 2009; Carabetta and Bottega 2014; Carabetta 2011] that a propagating
intermediate contact zone is possible for certain bond zone sizes. For the present case, we demonstrate
the existence of fully lifted, full contact, intermediate contact and edge contact configurations, with
transverse shear effect included. As the structure deflects upward, edge contact may occur as discussed
by Karlsson and Bottega [1999] for patched cylindrical panels. It is observed for the present case that,
in contrast to what was observed for hinged supports, contact occurs in prebuckling and lift occurs in
postbuckling. When intermediate contact occurs, the transversality condition (28) and its caveat (29) are
used to determine the location of the contact zone/lift zone boundary under a certain temperature change.
In this section, some representative examples will be presented to demonstrate the variety of behaviors.
The first example is for the case when the shear stiffnesses of the base plate and the patch are equal.

Case 1: Equal shear stiffness (Gb = G p). Results for a structure possessing a bond zone of half-length
a= 0.6 and a patch half-length L p = 0.9 are presented in Figures 8–11. For a structure with clamped ends,
edge contact as well as full contact configurations are possible when the structure deflects upward. Unlike
the situation when shear deformation is neglected, it is found presently that, when shear deformation is
accounted for, an edge contact configuration may occur when the structure deflects upward. In situations
when the patched structure has more than one admissible configuration for a given bond zone size, the one
with the lowest total potential energy will be considered as the “preferred” configuration for a particular
patch and base structure [Carabetta and Bottega 2012; 2014]. The total energies for three different
configurations (full contact, no contact and edge contact) are presented in Figure 8. Based on the results
of the junction rotation gradient product, Ja , presented in Figure 9, it is observed that at 2= 2.4, the full
contact configuration is no longer valid as the sign of Ja becomes the same. The structure, thus, has two
possible configurations — no contact or edge contact. However, it is seen from Figure 8 that the edge
contact configuration has a lower potential energy at this temperature. Thus, we take the edge contact con-
figuration as the “preferred” configuration for the system. As the temperature increases, the total energy
of the edge contact configuration exceeds that of the no contact configuration, and the patched structure
switches to the no contact configuration at 2= 5.5, with the patch lifting away from the base plate.

The final load-deflection profile and the total energy of the structure (only stable configurations) are
presented in Figures 10 and 11, respectively. It is noticed that the structure first possesses a full contact
zone and then, at 2= 2.4 it “jumps” to edge contact, and then to no contact configuration when 2≥ 5.5.
The simulation results for a bond zone half-length of a = 0.8 are summarized in Table 1. At this point, it
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temperature difference for clamped-fixed structure with Gb = G p, a = 0.6, L p = 0.9.
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Figure 9. Junction parameter, Ja , as a function of the temperature difference for
clamped-fixed structure with Gb = G p, a = 0.6, L p = 0.9.

is concluded that, for the case with equal shear stiffness, the patched plate possesses three configurations
during the temperature increases: full contact, edge contact and no contact. Intermediate contact does
not occur.

Next, let us consider the case when the base plate and the patch have different shear stiffnesses.
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Figure 10. Thermal load-deflection paths for clamped-fixed structure with Gb = G p,
a = 0.6, L p = 0.9.
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Figure 11. Clamped-fixed structure, Gb = G p, total energy vs. temperature difference;
a = 0.6, L p = 0.9.

Case 2: Unequal shear stiffnesses (Gb 6= G p). In this section, we consider the case when the shear
stiffnesses of the patch and of the base plate are unequal. We remark that this is equivalent to the
substructures possessing different Poisson’s ratios and/or different Young’s moduli per the well known
relation (40).
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Eb = E p νb = νp
Eb = E p
νb = νp

νb

νp
=

0.3
0.25

νb

νp
=

0.25
0.3

νb

νp
=

0.1
0.3

Eb

E p
= 0.1

Eb

E p
= 10 Gb = G p

Full Full Full Full Full Full
a = 0.8 ⇓ θ = 4.3 ⇓ θ = 4.2 ⇓ θ = 4.2 ⇓ θ = 3.3 ⇓ θ = 2.5 ⇓ θ = 4

No No No No No No

Full Full Full Full Full Full
⇓ θ = 1.8 ⇓ θ = 2 ⇓ θ = 2.6 ⇓ θ = 3.2 ⇓ θ = 2.5 ⇓ θ = 2.4

a = 0.6 Edge Edge Edge No No Edge
⇓ θ = 5.6 ⇓ θ = 5.5 ⇓ θ = 5.5 ⇓ θ = 5.5

No No No No

Table 1. Summary of the simulation results for clamped-fixed edge. “Full” represents
“full contact”, and likewise for “Edge” and “No”.

As discussed in the previous section, the analytical solution for this situation differs substantially from
that of the case with equal shear stiffness. It is anticipated some interesting behaviors of the patched
structure will be unveiled.

1. Different Poisson’s ratios and equal Young’s moduli. Results for a structure possessing a bond zone
size of a = 0.6 and a patch half-length L p = 0.9 are presented in Figures 12–15. To identify the existence
of the contact zone and edge contact configurations, we combine the results of the junction rotation
gradient product, Ja , in Figure 13 with those for the total potential energy of the three configurations
presented in Figure 12. In Figure 13, the full contact configuration is no longer valid when the sign of
Ja ≡ Ja ≡w

′′

1(a) ·w
′′

2(a) changes. Thus, the structure “jumps” to a configuration with edge contact when
the temperature achieves the value 2= 1.7. At this point, the system assumes a configuration with edge
contact, which has a lower total potential energy. The structure then switches to a configuration with no
contact, when 2 = 5.3. The trend is similar to that for the case of equal shear stiffness, however the
critical “jump” temperature changes substantially. The results displayed in Figures 14 and 15 show the
“actual” load-deflection paths and the total energy, respectively. It is noticed that the structure initially
possesses a full contact zone, but at 2= 1.7, it “jumps” to a configuration with edge contact, and then
to a configuration with no contact when 2= 5.3. Results are also obtained for the case of a contact zone
length of a = 0.8 and for different Poisson’s ratios of the two layers. Characteristic behavior for this
case is summarized in Table 1 along with those for a structure with a bond zone half-length of a = 0.6.
Based on these results, we see that for different Poisson’s ratios, the structure follows a similar trend as
for a = 0.8. We next consider the effect of Young’s modulus on the behavior of the structure.

2. Different Young’s moduli and equal Poisson’s ratio. Different Young’s moduli will result in different
shear stiffnesses between the patch and the base plate, per (40). However, unlike for Poisson’s ratio,
Young’s modulus will also affect the membrane energy and bending energy of the system.
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Figure 12. Comparison of total energy (full contact, fully lifted and edge contact) as a
function of the temperature difference for clamped-fixed structure with νb/νp = 0.3/0.2,
a = 0.6, L p = 0.9.
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Figure 13. Junction parameter, Ja , as a function of the temperature difference for
clamped-fixed structure with νb/νp = 0.3/0.2, a = 0.6, L p = 0.9.

It is therefore essential to study the behavior of the patched structure when Young’s modulus for
the patch and that of the base plate differ. Results for the case when the ratio of Young’s modulus of
the base plate to that of the patch is Eb/E p = 0.1 are displayed in Figures 16–18 for a structure that
possesses a bond zone half-length of a = 0.6. The transversality condition is then examined to check
the existence of an intermediate contact zone and to determine the location of the contact point. It is
seen from Figure 16 that when the structure deflects upward, it will initially possess a full contact zone
until the critical temperature is reached. At this temperature, the structure buckles downward. We note
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Figure 14. Thermal load-deflection paths for clamped-fixed structure with νb/νp =

0.3/0.2, a = 0.6, L p = 0.9.
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Figure 15. Clamped-fixed structure, νb/νp = 0.3/0.2, total energy vs. temperature dif-
ference; a = 0.6, L p = 0.9.

that, for this range of temperatures, the sign of Ja is negative, which indicates that the structure will
not possess a contact zone when it deflects downward. For this case, we also find that there is no edge
contact configuration during the temperature increase. Therefore, at the critical temperature, the structure
slingshots from a configuration with full contact to a configuration with no contact. The “actual” load-
deflection curve and the total energy profile (stable configurations) of the system are shown in Figures 17
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Figure 17. Clamped-fixed structure, Eb/E p = 0.1, center-span displacement vs. tem-
perature difference; a = 0.6, L p = 0.9.

and 18, respectively. It is seen that, as the temperature is increased, the structure first possesses a full
contact zone and then “jumps” to a no contact configuration at 2= 3.2.

A summary of characteristic behavior, and its relation to bond zone size, Young’s modulus, and Pois-
son’s ratio of the layers is presented in Table 1. The morphological “transition” temperatures, at which
the structure will switch from one type of configuration to another type of configuration (e.g., full contact,
edge contact, no contact) are shown separately for each case. It is seen that edge contact will not occur,
for the larger bond zone size considered, a = 0.8. In contrast, it seen that edge contact often occurs for
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Figure 18. Clamped-fixed structure, Eb/E p = 0.1, total energy vs. temperature differ-
ence; a = 0.6, L p = 0.9.

the other bond zone size considered, a = 0.6, except for the case when the two layers have the same
Young’s modulus, but different Poisson’s ratio. Thus, the morphology of the partially detached patched
structure is very sensitive to the material properties of the constituent structures.

5. Conclusions

The current work includes transverse shear deformation and, in this regard, advances on specific prior
studies concerning thermal instabilities in patched beam-plates with partial edge detachment. The result-
ing governing equations, internal and external boundary conditions, transversality condition and stability
criterion are derived using a variational formulation. Closed form analytical solutions to the governing
equations are determined and simulations based on these solutions are performed. The associated analysis
and numerical simulations reveal representative and critical behavior of the partially detached structure
under uniform temperature change for both hinged-fixed and clamped-fixed edges. The influence of
transverse shear on critical behavior is assessed through examination of these results. For structures with
hinged-fixed supports, when the shear moduli of the patch and of the base plate are equal, it is observed
that transverse shear deformation has minimal influence for the representative cases considered. It is
also seen that the phenomenon of “buckle-trapping” still exists (first revealed in a prior study using a
classical model — no transverse shear deformation). However, behavior is altered and “buckle trapping”
is not observed to occur when the shear moduli of the substructures are unequal. This is in contrast
to prior results predicted using the simpler (no transverse shear) model. One concludes from this that
the simpler model for the structure, that which neglects transverse shear deformation, is inadequate in
this case. Structures with clamped-fixed supports allow for several possible local configurations of the
detached segment of patch and base plate: full contact, no contact and edge contact. Those that are not
physically realizable are disqualified, based on local kinematic conditions and the relative magnitudes of
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the total potential energies for each case. For these structures, we also consider the situation where the
patch and base plate possess the same shear stiffnesses but have different Poisson’s ratios and different
Young’s moduli. Results for structures with clamped-fixed supports are seen to differ significantly from
those of previous studies using the simpler (no transverse shear) model. For the cases considered here,
propagating intermediate contact zone configurations (predicted by the model without shear deformation)
are not observed. However, edge contact configurations not observed with the simpler model, are often
seen to occur for structures with relatively small bond zone sizes in the results of the present analysis. To
conclude, based on the results of the present study, it is found that transverse shear deformation generally
has substantial influence on critical behavior of the structures of interest.

Appendix A. Stiffnesses of composite structure in bond zone

A∗ = Db+ Dp + (hb/2)2Cb+ (h p/2)2C p, (A.1)

B∗ = (h p/2)C p − (hb/2)Cb, (A.2)

C∗ = C p +Cb, D∗ = A∗− ρ∗B∗, (A.3)

ρ∗ = B∗/C∗, (A.4)

n∗ = Cbαb+C pαp, (A.5)

µ∗ = 1
2 h pC pαp −

1
2 hbCbαb, (A.6)

m∗ = µ∗− ρ∗n∗. (A.7)

The quantity ρ∗ is seen to give the transverse location of the centroid of the composite structure with
respect to the reference surface.

Appendix B. Solution parameters

µ1 =
b̂−
√

R
−2â

, β1 =
b̂+
√

R
−2â

, P1 =
1− Db

Gb
α2

1

1− Dp
G p
α2

1

, P2 =
1− Db

Gb
β2

1

1− Dp
G p
β2

1

(general case), (B.1)

µ1 =

√
Gb

Db
, β1 =

√
N0

Db
(
2− N0

Gb

) , P1 =−1, P2 = 1 (special case G p = Gb), (B.2)

b̂ =−
(
Db+ Dp − N0

( Db
Gb
+

Dp
G p

))
, ĉ =−N0, Kb =

√
N0/g∗, (B.3)

â =
Db Dp

GbG p
(Gb+G p − N0), R = b̂2

− 4âĉ, Kb3 =
√

N0/g3. (B.4)
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