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CONTINUOUS CONTACT PROBLEM FOR TWO ELASTIC LAYERS
RESTING ON AN ELASTIC HALF-INFINITE PLANE

ERDAL ÖNER AND AHMET BIRINCI

The continuous contact problem for two elastic layers resting on an elastic half-infinite plane and loaded
by means of a rigid stamp is presented. The elastic layers have different heights and elastic constants. An
external load is applied to the upper elastic layer by means of a rigid stamp. The problem is solved under
the assumptions that all surfaces are frictionless, body forces of elastic layers are taken into account,
and only compressive normal tractions can be transmitted through the interfaces. General expressions
of stresses and displacements are obtained by using the fundamental equations of the theory of elastic-
ity and the integral transform technique. Substituting the stress and the displacement expressions into
the boundary conditions, the problem is reduced to a singular integral equation, in which the function
of contact stresses under the rigid stamp is unknown. The integral equation is solved numerically by
making use of the appropriate Gauss–Chebyshev integration formula for circular and rectangular stamp
profiles. The contact stresses under the rigid stamp, contact areas, initial separation loads, and initial
separation distances between the two elastic layers and the lower-layer elastic half-infinite plane are
obtained numerically for various dimensionless quantities and shown in graphics and tables.

1. Introduction

Contact problems have been widely carried out in the literature. Their areas of application include
pavements of highways and airfields, foundations, railway ballasts, foundation grillages, roller bearings,
joints, and support elements (see, for example, [Garrido and Lorenzana 1998; Birinci and Erdöl 2001;
Ozsahin 2007]). General methods for contact problems may be seen in [Hertz 1895; Galin 1961; Uffliand
1965]. Keer et al. [1972] analyzed the smooth receding contact problem between an elastic layer and a
half-space formulated under the assumptions of plane stress, plane strain, and axisymmetric conditions.
The plane smooth contact problem for an elastic layer lying on an elastic half-space with a compressive
load applied to the layer through a frictionless rigid stamp was considered in [Ratwani and Erdogan 1973].
Civelek and Erdogan [1975] investigated the continuous and discontinuous contact problems between
an elastic layer and a rigid half-plane for the case of a single load in tension. Geçit [1980] analyzed
a tensionless contact without friction between an elastic layer and an elastic foundation. Geçit [1981]
also studied the axisymmetric contact problem for an elastic layer and an elastic foundation. Çakıroğlu
et al. [2001] analyzed the continuous and discontinuous contact problems of two elastic layers resting
on an elastic semiinfinite plane. Dini and Nowell [2004] considered the problem of plane elastic contact
between a thin strip and symmetric flat and rounded punches. El-Borgi et al. [2006] analyzed a receding
contact plane problem between a functionally graded layer and a homogeneous substrate. The contact
problem for multilayered composite structures was studied in [Ke and Wang 2006; 2007]. Kahya et al.
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[2007] investigated a frictionless receding contact problem between an anisotropic elastic layer and an
anisotropic elastic half-plane, when the two bodies were pressed together by means of a rigid circular
stamp. A receding contact axisymmetric problem between a functionally graded layer and a homoge-
neous substrate was examined in [Rhimi et al. 2009]. Rhimi et al. [2011] studied a double receding
contact axisymmetric problem between a functionally graded layer and a homogeneous substrate. A
frictional contact problem for a rigid cylindrical stamp and an elastic layer resting on a half-plane was
solved in [Çömez 2010]. Argatov and Mishuris [2010] examined an axisymmetric contact problem for
a biphasic cartilage layer with allowance for tangential displacements on the contact surface. Chen et al.
[2011] investigated the singular integral equation method for a contact problem of rigidly connected
punches on an elastic half-plane. The contact problem for a layer was studied for the case when the
elastic properties of the medium are arbitrary continuously differentiable functions of its thickness in
Trubchik et al. [2011]. Adibnazari et al. [2012] investigated the contact of an asymmetrical rounded
apex wedge with a half-plane. The two-dimensional contact problem of a rigid cylinder indenting an
elastic half-space with surface tension was examined in [Long et al. 2012]. Aleksandrov [2012] solved
the axisymmetric contact problem for a prestressed incompressible elastic layer. Chidlow et al. [2013]
analyzed the two-dimensional solutions of both adhesive and nonadhesive contact problems involving
functionally graded materials. Kumar and DasGupta [2012] studied the mechanics of contact of an in-
flated spherical nonlinear hyperelastic membrane pressed between two rigid plates. A quadratic boundary
element formulation for continuously nonhomogeneous, isotropic, and linear elastic functionally graded
material contact problems was carried out in Gun and Gao [2014]. Vollebregt [2014] presented a new
solver, called BCCG+FAI, for solving elastic normal contact problems.

Although there is much research available in the literature related to contact problems of multiple
layers and half-planes, there are not enough studies about initial separation loads and distances in contact
mechanics. This paper aims to obtain initial separation loads and initial separation distances between
two layers and a lower-layer elastic half-plane for a continuous contact problem. This paper also presents
the contact stresses under the rigid stamp, and the contact areas.

2. General expressions for stresses and displacements

Figure 1 shows two elastic, homogeneous, isotropic layers with different elastic constants and heights,
resting on an elastic half-infinite plane and subjected to a concentrated load with magnitude P by means
of a rigid stamp. The thickness in the z direction is taken to be unit. Since x = 0 is the symmetry plane,
it is sufficient to consider the problem in the region 0 ≤ x <∞ only. For numerical calculations, two
types of stamp profiles are used, circular and rectangular.

Consider a plane strain problem and let ρ1g and ρ2g be body forces acting vertically in the layers. The
body force of the elastic half-infinite plane is neglected. The stress and the displacement components
may be obtained as

ui (x, y)= ui p(x)+ uih(x, y), (1a)
vi (x, y)= vi p(y)+ vih(x, y), (1b)
σi x(x, y)= σi xp(y)+ σi xh(x, y), (2a)
σiy(x, y)= σiyp(y)+ σiyh(x, y), (2b)
τi xy(x, y)= τi xyh(x, y), (2c)
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     (a) (b)

Figure 1. Geometry of the problem and loading condition. (a) Circular and (b) rectan-
gular stamp cases.

where i = 1, 2, 3, the subscripts p and h refer to the particular part of the stress and the displacement com-
ponents corresponding only to existing body forces, and the components of displacements and stresses
for the layers and half-infinite plane without body forces, respectively. The particular part of the stress
and the displacement components corresponding to ρ1g and ρ2g for the layers and the elastic half-infinite
plane may be obtained as [Çakıroğlu 1990]

u1p(x)=
(

3−χ1

8µ1

)(
ρ1gh1

2

)
x, (3a)

v1p(y)=−
ρ1gy
2µ1

[
1+χ1

8
h1+

χ1− 1
χ1+ 1

(h2+ h− y)
]
, (3b)

u2p(x)=
(

3−χ2

8µ2

)(
ρ2gh2

2
+ ρ1gh1

)
x, (3c)

v2p(y)=
χ2− 1
χ2+ 1

ρ2gy
2µ2

(y− h2)−
1+χ2

8µ2
y
(
ρ1gh1+ ρ2g

h2

2

)
, (3d)

u3p(x)=
(

3−χ3

8µ3

)
(ρ2gh2+ ρ1gh1)x, (3e)

v3p(y)=−
1+χ3

8µ3
(ρ1gh1+ ρ2gh2)y, (3f)

σ1xp(y)=
3−χ1

1+χ1

ρ1g
2
(2y− h− h2), (3g)

σ1yp(y)= ρ1g(y− h), (3h)

σ2xp(y)=
3−χ2

1+χ2

ρ2g
2
(2y− h2), (3i)

σ2yp(y)=−ρ1gh1+ ρ2g(y− h2), (3j)

σ3yp(y)=−(ρ1gh1+ ρ2gh2), (3k)

σ3xp = τ1xyp = τ2xyp = τ3xyp = 0, (3l)
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where u = u(x, y) and v = v(x, y) represent displacement components in the x and y directions, respec-
tively; µi is the shear modulus, χi is an elastic constant, with χi = (3− 4νi ) for plane strain, and νi is
the Poisson’s ratio (i = 1, . . . , 3). The subscripts 1, 2, and 3 refer to the upper layer, the lower layer, and
the elastic half-infinite plane, respectively.

The components of the displacements and stresses for the layers and the half-infinite plane without
body forces may be expressed as follows [Çakıroğlu 1990]:

uih(x, y)= 2
π

∫
∞

0
{[Ai + Bi y]e−αy

+ [Ci + Di y]eαy
} sin(αx) dα, (4a)

vih(x, y)= 2
π

∫
∞

0

{[
Ai + Bi

(
χi

α
+ y

)]
e−αy
+

[
−Ci + Di

(
χi

α
− y

)]
eαy
}

cos(αx) dα, (4b)

1
2µi

σi xh(x, y)= 2
π

∫
∞

0

{[
α(Ai + Bi y)−

(
3−χi

2

)
Bi

]
e−αy

+

[
α(Ci + Di y)+

(
3−χi

2

)
Di

]
eαy
}

cos(αx) dα, (4c)

1
2µi

σiyh(x, y)= 2
π

∫
∞

0

{
−

[
α(Ai + Bi y)+

(
1+χi

2

)
Bi

]
e−αy

+

[
−α(Ci + Di y)+

(
1+χi

2

)
Di

]
eαy
}

cos(αx) dα, (4d)

1
2µi

τi xyh(x, y)= 2
π

∫
∞

0

{
−

[
α(Ai + Bi y)+

(
χi − 1

2

)
Bi

]
e−αy

+

[
α(Ci + Di y)−

(
χi − 1

2

)
Di

]
eαy
}

sin(αx) dα, (4e)

u3h(x, y)= 2
π

∫
∞

0
{[C3+ D3 y]eαy

} sin(αx) dα, (4f)

v3h(x, y)= 2
π

∫
∞

0

{[
−C3+ D3

(
χ3

α
− y

)]
eαy
}

cos(αx) dα, (4g)

1
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π

∫
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0
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α(C3+ D3 y)+

(
3−χ3

2

)
D3

]
eαy
}

cos(αx) dα, (4h)

1
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σ3yh(x, y)= 2
π

∫
∞

0

{[
−α(C3+ D3 y)+

(
1+χ3

2

)
D3

]
eαy
}

cos(αx) dα, (4i)

1
2µ3

τ3xyh(x, y)= 2
π

∫
∞

0

{[
α(C3+ D3 y)−

(
χ3− 1

2

)
D3

]
eαy
}

sin(αx) dα, (4j)

where Ai , Bi , Ci , Di (i = 1, 2) and C3, D3 are unknown coefficients which will be determined from the
boundary conditions prescribed for y = 0, y = h2, and y = h.

3. Boundary conditions and solution of the singular integral equation

The continuous contact problem for two elastic layers resting on an elastic half-infinite plane and sub-
jected to a concentrated load with magnitude P by means of a rigid stamp will be investigated. The
contact stresses under the rigid stamp, the contact areas, the distribution of the contact stresses between
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the layers and the lower-layer half-infinite plane until the occurrence of the initial separation, the initial
separation loads, and the initial separation distances will be examined.

The boundary conditions for the frictionless contact problem outlined above can be defined as follows:

τ1xy(x, h)= 0, 0≤ x <∞, (5a)

σ1y(x, h)=
{
−p(x),
0,

0≤ x < a,
a ≤ x <∞,

(5b)

τ1xy(x, h2)= 0, 0≤ x <∞, (5c)

τ2xy(x, h2)= 0, 0≤ x <∞, (5d)

σ1y(x, h2)= σ2y(x, h2), 0≤ x <∞, (5e)
∂

∂x
[v1(x, h2)− v2(x, h2)] = 0, 0≤ x <∞, (5f)

τ2xy(x, 0)= 0, 0≤ x <∞, (5g)

τ3xy(x, 0)= 0, 0≤ x <∞, (5h)

σ2y(x, 0)= σ3y(x, 0), 0≤ x <∞, (5i)
∂

∂x
[v2(x, 0)− v3(x, 0)] = 0, 0≤ x <∞, (5j)

∂

∂x
[v1(x, h)] = f (x), 0≤ x < a, (5k)

where a is the half-width of the contact area between the rigid stamp and the upper layer, p(x) is the
unknown contact stress under the rigid stamp, and f (x) is the derivative of the function F(x) which
characterizes profile of the rigid stamp. In the case of a circular stamp, f (x) can be obtained as follows:

F(x)= h− δ− [(R2
− x2)1/2− R], (6a)

f (x)= d
dx
[F(x)] = −

x
(R2− x2)1/2

, (6b)

where δ is the maximum displacement, which occurs on the layer under the stamp on the axis of symmetry
(x = 0), and R is the radius of the rigid circular stamp.

In the case of rectangular stamp, because F(x) is equal to a constant, f (x) can be obtained as follows:

f (x)= d
dx
[F(x)] = 0. (6c)

Applying the boundary conditions (5a)–(5j) to the stress and displacement expressions, the coefficients
Ai , Bi , Ci , Di (i = 1, 2), C3, and D3 can be determined in terms of the unknown contact stress p(x);
by substituting these coefficients into (5k), after some routine manipulations and using the symmetry
condition p(x)= p(−x), one may obtain the following singular integral equation for p(x):∫ a

−a

[ 1
t−x
+ k(x, t)

]
p(t) dt =−

4πµ1

1+χ1
f (x), −a < x < a, (7)

where the kernel k(x, t) is given by (A.1). The equilibrium condition of the problem may be expressed
as ∫ a

−a
p(t) dt = P. (8)
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In order to obtain the initial separation load and initial separation distance between the two elastic layers
and the lower-layer half-infinite plane, the contact stresses σ1y(x, h2) and σ2y(x, 0) need to be determined.
Substituting the values of Ai , Bi , Ci , and Di (i = 1, 2) as evaluated in terms of p(x) into (2b) and after
some algebraic manipulation, the contact stresses are obtained as follows:

σ1y(x, h2)=−ρ1gh1−
1
πh

∫ a

−a
k∗2(x, t)p(t) dt, 0≤ x <∞, (9a)

σ2y(x, 0)=−ρ1gh1

[
1+

ρ2h2

ρ1h1

]
−
µ2

µ1

1
πh

∫ a

−a
k∗3(x, t)p(t) dt, 0≤ x <∞, (9b)

where the kernels k∗2(x, t) and k∗3(x, t) are given by (A.2) and (A.3). In order to simplify the solution of
the singular integral equation, the following dimensionless quantities are introduced:

x = as, t = ar, φ(r)=
p(ar)
P/h

, M(s)=
m(as)
P/h

, m(as)=−
4πµ1

1+χ1
f (as). (10)

Substituting from (10), then (7), (8), (9a), and (9b) may be obtained as follows:∫ 1

−1

[ 1
r−s
+ N (s, r)

]
φ(r) dr = M(s), −1< s < 1, N (s, r)= ak(as, ar), (11a)

a
h

∫ 1

−1
φ(r) dr = 1, (11b)

σ1y(x, h2)

P/h
=−

1
λ
−

1
π

a
h

∫ 1

−1
k2(x, ar)8(r) dr, 0≤ x <∞, (11c)

σ2y(x, 0)
P/h

=−
1
λ

[
1+

ρ2h2

ρ1h1

]
−
µ2

µ1

1
π

a
h

∫ 1

−1
k3(x, ar)8(r) dr, 0≤ x <∞, (11d)

where λ is called the load factor, and defined as

λ=
P

ρ1ghh1
. (12)

3.1. Circular stamp case. The contact stress p(x) vanishes at the ends because of the smooth contact
at the end points, and therefore the index of the integral equation (11a) is −1. Noting this, the solution
of integral equation can be found as follows [Erdogan and Gupta 1972]:

φ(r)= g(r)(1− r2)1/2, −1< r < 1. (13)

Using the appropriate Gauss–Chebyshev integration formula, (11a) and (11b) may be reduced to the
following forms:

n∑
i=1

(1− r2
i )
[ 1

ri−s j
+ N (s j , ri )

]
g(ri )=

n+1
π

M(s j ), j = 1, . . . , n+ 1,

a
h

n∑
i=1

(1− r2
i )g(ri )=

n+1
π

,

(14)



CONTINUOUS CONTACT FOR TWO ELASTIC LAYERS ON AN ELASTIC HALF-INFINITE PLANE 111

where

ri = cos
( iπ

n+1

)
, i = 1, . . . , n, (15a)

s j = cos
(2 j−1

n+1
π

2

)
, j = 1, . . . , n+ 1. (15b)

The extra equation in (14) corresponds to the consistency condition of the original integral equation in
(11a). In this case, the (n + 1/2)-th equation in (14) is satisfied automatically. Hence, the equations
in (14) constitute a system of n + 1 equations for n + 1 unknowns. Note that the system is highly
nonlinear in a and an interpolation scheme is required to determine this unknown. Solving this system
of equations and using (13), φ(r), the normalized contact stress distribution, and a half-width of the
contact area are obtained. By using (13), substituting the results into (11c) and (11d) and using the
Gauss integration formula, the contact stresses σ1y(x, h2) and σ2y(x, 0) are determined. In order to be
valid for the singular integral equation given in (11a), the contact stresses σ1y(x, h2) and σ2y(x, 0) must
be compressive everywhere and no sign changing is allowed. So, the critical load value can be calculated
numerically by equating (11c) and (11d) to zero. Then λcr (the initial separation load) and xcr (the initial
separation distance) can be obtained.

3.2. Rectangular stamp case. Since the contact stress under the rigid stamp goes to infinity at the cor-
ners, that is, g(±1)→∞, the index of the singular integral equation is +1. Assuming the solution of
integral equation as [Erdogan and Gupta 1972]

φ(r)= g(r)(1− r2)−1/2, −1< r < 1, (16a)

and using the appropriate Gauss–Chebyshev integration formula, (11a) and (11b) may then be replaced
by

n∑
i=1

Wi

(
1

ri−s j
+ N (s j , ri )

)
g(ri )= 0, j = 1, . . . , n− 1, (16b)

a
h

n∑
i=1

Wi g(ri )= 1, (16c)

where

W1 =Wn =
π

2n−2
, Wi =

π

n−1
, i = 2, . . . , n− 1, (16d)

ri = cos
( i−1

n−1
π
)
, i = 1, . . . , n, (16e)

s j = cos
(2 j−1

n−1
π

2

)
, j = 1, . . . , n− 1. (16f)

Equations (16b) and (16c) constitute n linear algebraic equations for n unknowns, g(ri ), i = 1, . . . , n.
Solution of these algebraic equations and use of (16a) gives the unknown contact stress function under the
rigid stamp, p(x). In order to obtain the initial separation load and distance in the case of a rectangular
stamp, the same method as in the case of the circular stamp is followed.
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4. Results and discussion

Some of the calculated results obtained from the solution of the continuous contact problem described in
the previous sections for various dimensionless quantities such as R/h, µ1/(P/h), µ2/µ1, and µ3/µ2

are shown in Tables 1–5 and Figures 2–6. Table 1 and Figure 2 show the variation of the half-width of
the contact area for a circular stamp with µ1/(P/h) and R/h. As it can be seen in Table 1 and Figure 2,
the half-width of the contact area a/h increases with increasing R/h, but decreases with increasing load
ratio µ1/(P/h). The variation of the contact stress under the rigid stamp for a rectangular stamp with
µ2/µ1 is given in Figure 3. It may be observed in this figure that as µ2/µ1 increases, the normalized
contact stress increases in the interior region of the rigid stamp and decreases in the region close to the
corners. Figure 4 shows the variation of the contact stress distribution under a rigid circular stamp with
µ2/µ1. It appears that the maximum value of the contact stress is always at x = 0, and it increases with
increasing µ2/µ1.

In Figure 5, the contact stress distribution under the rectangular stamp is given. As expected, the
contact stresses become infinite at the corners of the stamp. The normalized contact stress increases
with decreasing (a/h). Variation of the initial separation load λcr and the initial separation distance xcr

between the layers and the lower-layer half-infinite plane with µ2/µ1 for various values of µ3/µ2 in case

a/h
µ1/(P/h) R/h=10 R/h=50 R/h=100 R/h=250 R/h=500 R/h=750 R/h=1000

10 0.6541 1.3043 1.7382 2.5392 3.3912 4.0241 4.5486
50 0.3069 0.6541 0.8861 1.3043 1.7382 2.0552 2.3149

100 0.21806 0.4762 0.6541 0.9747 1.3043 1.5433 1.7382
250 0.13815 0.3069 0.4287 0.6541 0.8861 1.0529 1.1883
500 0.0977 0.21806 0.3069 0.4762 0.6541 0.7822 0.8861
750 0.07978 0.17824 0.25142 0.39304 0.5442 0.6541 0.7429

1000 0.0691 0.15443 0.21806 0.3421 0.4762 0.5743 0.6541

Table 1. Variation of the half-width of the contact area for a circular stamp with
µ1/(P/h) and R/h (χ1 = χ2 = χ3 = 2, h2/h1 = 1, µ2/µ1 = 2, and µ3/µ2 = 2).

µ3/µ2 = 0.5 µ3/µ2 = 1 µ3/µ2 = 2
µ2/µ1 xcr λcr xcr λcr xcr λcr

0.1 4.10 166.95 3.31 118.343 2.80 83.5115
0.25 3.10 139.777 2.53 99.2449 2.17 69.8606
0.5 2.59 139.172 2.11 94.9923 1.82 64.8572
4 1.21 96.3381 1.16 55.4769 1.13 42.5852

10 1.04 43.3536 1.03 37.0934 1.02 33.6179
50 0.97 29.9315 0.97 29.1694 0.97 28.6559

Table 2. Variation of the initial separation load λcr and the initial separation distance xcr

between layers for a circular stamp with µ2/µ1 and µ3/µ2 (χ1=χ2=χ3= 2, h2/h1= 1,
R/h = 100, µ1/(P/h)= 500, and ρ2/ρ1 = 1).



CONTINUOUS CONTACT FOR TWO ELASTIC LAYERS ON AN ELASTIC HALF-INFINITE PLANE 113

         

        

e 

Figure 2. Variation of the half-width of the contact area for a circular stamp with
µ1/(P/h) (χ1 = χ2 = χ3 = 2, h2/h1 = 1, µ2/µ1 = 2, and µ3/µ2 = 2).

       
Figure 3. Variation of the contact stress distribution under the rigid stamp for a rectan-
gular stamp with µ2/µ1 (χ1 = χ2 = χ3 = 2, h2/h1 = 1, a/h = 0.7, and µ3/µ2 = 1).
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Figure 4. Variation of the contact stress distribution under the rigid stamp for a circular
stamp withµ2/µ1 (χ1=χ2=χ3=2, h2/h1=1, µ3/µ2=2, R/h=500, andµ1(P/h)=
100).
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Figure 5. Variation of the contact stress distribution under the rigid stamp for a rectan-
gular stamp with a/h (χ1 = χ2 = χ3 = 2, h2/h1 = 1, µ3/µ2 = 1, and µ2/µ1 = 1).
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µ3/µ2 = 0.5 µ3/µ2 = 1 µ3/µ2 = 2
µ2/µ1 xcr λcr xcr λcr xcr λcr

0.1 4.11 306.572 3.32 219.487 2.81 156.831
0.25 3.11 229.880 2.55 167.793 2.19 121.864
0.5 2.61 195.927 2.15 142.534 1.86 103.65
4 1.92 150.064 1.58 102.83 1.40 73.6904

10 1.82 143.238 1.51 96.6480 1.34 69.1730
50 1.77 139.115 1.47 92.8876 1.30 67.53

Table 3. Variation of the initial separation load λcr and the initial separation distance
xcr between the lower layer and the elastic half-infinite plane for a circular stamp with
µ2/µ1 and µ3/µ2 (χ1 = χ2 = χ3 = 2, h2/h1 = 1, R/h = 100, µ1/(P/h) = 500, and
ρ2/ρ1 = 1).

µ3/µ2 = 0.5 µ3/µ2 = 1 µ3/µ2 = 2
µ2/µ1 xcr λcr xcr λcr xcr λcr

0.1 3.76 91.2134 3.64 76.8386 3.16 35.5079
0.25 3.44 87.0030 2.91 63.6723 2.56 32.8831
0.5 2.98 80.4193 2.50 54.4106 2.22 32.6244
1 2.57 70.5130 2.15 46.2382 1.94 32.5297
4 1.67 49.8831 1.61 32.118 1.58 26.0751

10 1.51 27.9614 1.50 24.2309 1.49 22.3332

Table 4. Variation of the initial separation load λcr and the initial separation distance
xcr between layers for a rectangular stamp with µ2/µ1 and µ3/µ2 (χ1 = χ2 = χ3 = 2,
h2/h1 = 1, a/h = 0.7, and ρ2/ρ1 = 1).

µ3/µ2 = 0.5 µ3/µ2 = 1 µ3/µ2 = 2
µ2/µ1 xcr λcr xcr λcr xcr λcr

0.1 3.86 96.1742 3.65 86.8571 3.17 66.6502
0.25 3.47 93.7733 2.93 73.7035 2.59 57.2691
0.5 2.99 84.9483 2.55 66.6905 2.27 52.1141
1 2.65 78.6212 2.28 61.3007 2.05 48.06
4 2.29 70.7674 1.99 54.4808 1.82 43.0774

10 2.19 68.2357 1.91 52.4519 1.76 41.6836

Table 5. Variation of the initial separation load λcr and the initial separation distance xcr

between the lower layer and the elastic half-infinite plane for a rectangular stamp with
µ2/µ1 and µ3/µ2 (χ1 = χ2 = χ3 = 2, h2/h1 = 1, a/h = 0.7, and ρ2/ρ1 = 1).

of a circular stamp is given in Tables 2 and 3. As it can be seen in these tables, the initial separation load
and distance between the layers and the lower-layer half-infinite plane decrease with increasing µ2/µ1

and µ3/µ2.
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Figure 6. Variation of the contact stress distribution between two elastic layers. Left:
variation with R/h for a circular stamp with χ1 = χ2 = χ3 = 2, µ1/(P/h) = 500,
h2/h1 = 1, µ2/µ1 = 2, µ3/µ2 = 2, and ρ2/ρ1 = 1. Right: Variation with a/h for a
rectangular stamp with χ1 = χ2 = χ3 = 2, h2/h1 = 1, µ2/µ1 = 1, µ3/µ2 = 1, and
ρ2/ρ1 = 1.

Figure 6, left, shows the variation of the initial separation load and the initial separation distance
between layers for a circular stamp with R/h. It appears that the initial separation load and the initial
separation distance increase with increasing R/h. The variation of the initial separation load and the
initial separation distance between layers for a rectangular stamp with a/h is shown in Figure 6, right.
It appears that the initial separation load and the initial separation distance increase with increasing a/h.
In Tables 4 and 5, variations of the initial separation load and distance between the two elastic layers and
the lower-layer elastic half-infinite plane for a rectangular stamp with µ3/µ2 and µ2/µ1 are given. As
it can be seen in Tables 4 and 5, the initial separation load and distance decrease with increasing µ3/µ2

and µ2/µ1.

5. Conclusions

This paper considers the continuous contact problem for two elastic layers resting on an elastic half-
infinite plane. The results presented in this paper show that the elastic properties of the layers and
intensity of the applied load have considerable effect on the contact stress distribution, the contact areas,
the initial separation load, the and the initial separation distance. Additionally, the rigid stamp width
(in the rectangular stamp case) and the radius of the rigid stamp (in the circular stamp case) play a
very important role in the contact stress distribution, contact areas, initial separation load, and initial
separation distance.
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Appendix

Expressions of the kernels k(x, t), k∗2(x, t), and k∗3(x, t) appearing in (7), (9a), and (9b) are given as
follows:

k(x, t)= 1
h

∫
∞

0

{
1
1∗∗

[
[e−5z−4zξ (−4z2ξ 2ez+2zξ (m1(1+χ1)(e4z

− 2e2z+2zξ
+ e4zξ )

+ 4e2z+2zξ (1+χ2))(1+χ3)−4zξ(1+χ2)ez+2zξ (m2(−m1(1+χ1)(e4z
−2e2z+2zξ

+e4zξ )

+ (1+χ2)e2z(1− 2e2zξ
+ e4zξ ))+ (−e2z

+ e4zξ
− e4z

+ e2z+4zξ
− 4ze2z+2zξ )(1+χ3)

+ ez(m1(1+χ1)(e4z
− 2e2z+2zξ

+ e4zξ )(m2(1+χ2)(−1+ e4zξ )

+ (1+χ3)(1−2e2zξ
+e4zξ ))+(1+χ2)(e4z

−e4zξ
+4ze2z+2zξ )(m2(1+χ2)(1−2e2zξ

+e4zξ )

+ (1+χ3)(−1+ e4zξ ))
)]
− 1

}
sin
[
(t − x) z

h

]
dz, (A.1)

k∗2(x, t)=
∫
∞

0

2
1∗∗

[
−m1(1+χ1)e−4z−5zξ (−4(ez+6zξ

+ e3z+4zξ )z3ξ 3(1+χ3)

+ ez+2zξ (e2zξ (−1+z)+e2z(1+z))
(
−m2(1+χ2)(−1+e4zξ

−(1+χ3)(1−2e2zξ
+e4zξ ))

+ ez+2zξ zξ
(
−(e2z

+e2zξ
−e6zξ

−e2z+4zξ
+4(z−1)e4zξ

+4(z+1)e2ze2zξ )m2(1+χ2)

+ (1− 2e2zξ
+ e4zξ )(e2z

+ e2zξ )(1+χ3)
)
+ 4z2ξ 2ez+4zξ (m2(1+χ2)(e2z

+ e2zξ )

+ (e2zξ (z− 1)+ e2z(z+ 1))(1+χ3))
)]

cos
[ z

h
(t − x)

]
dz, (A.2)

k∗3(x, t)=
∫
∞

0

4
1∗∗

[
−e−3z−2zξ (−1+ e2zξ

+ zξ(1+ e2zξ ))((1− z)e2zξ

− (1+ z)e2z
+ zξ(e2z+2zξ ))m2(1+χ1)(1+χ2)

]
cos
[ z

h
(t − x)

]
dz, (A.3)

where

1∗∗ = e−4z−4zξ [16e2z+4zξ z3ξ 3(−(1+χ2)+m1(1+χ1))(1+χ3)− (−e4z
+ e4zξ

− 4ze2z+2zξ )

×m1(1+χ1)((−1+ e4zξ )m2(1+χ2)+ (1− 2e2zξ
+ e4zξ )(1+χ3))+ (e4z

+ e4zξ
− 2e2z+2zξ )

× (1+ 2z2))(1+χ2)((1− 2e2zξ
+ e4zξ )m2(1+χ2)+ (−1+ e4zξ )(1+χ3))

− 4z2(e2z+4zξ (1+χ2)((1− 2e2zξ
+ e4zξ )m2(1+χ2)+ (−1+ e4zξ

− 8ze2zξ )(1+χ3))

−m1(1+χ1)(−4e2z+4zξm2(1+χ2)+ (e6zξ
− e4z+2zξ

− 4ze2z+4zξ )(1+χ3))
)

− 4zξe2zξ (m1(1+χ1)
(
(−e4z

+ e4zξ
− e2z

− 4ze2z+2zξ
+ e2z+4zξ )m2(1+χ2)

+ (e2z(1− 2e2zξ
+ e4zξ )(1+χ3))− (1+χ2)

(
2e2z(1− 2e2zξ

+ e4zξ )m2z(1+χ2)

+ (e4z
+ e4zξ

− 2ze2z
+ 2ze2z+4z

− 2e2z+2zξ (1+ 2z2ξ 2))(1+χ3)
))]
.
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