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ANALYTICAL SOLUTION FOR DUCTILE AND FRC PLATES ON ELASTIC
GROUND LOADED ON A SMALL CIRCULAR AREA

ENRICO RADI AND PIETRO DI MAIDA

The problem of a large FRC slab resting on a Winkler-type elastic foundation and subject to a transversal
load distributed over a small circular area is investigated in the present work. The mechanical behavior
is described by the Kirchhoff theory of elastic-perfectly plastic plates obeying Johansen’s yield criterion
and associative flow rule. The governing equations within both the inner elastic-plastic circular region
near to the loaded area and the outer elastic region are found in terms of the transversal displacement and
solved in closed form, under the hypothesis of proportional loading. After the formation of positive yield
lines, namely radial cracks at the bottom side of the plate, the onset of a negative yield line, namely a
circumferential crack at the upper side of the, defines the load-carrying capacity of the slab on grade. Two
possible configurations are envisaged, depending on whether the circumferential crack occurs within the
inner elastic-plastic region, where radial cracks take place on the bottom side thus activating a plastic
mechanism, or within the outer uncracked elastic region. The ratio between the subgrade modulus and
flexural rigidity of the plate allows introducing a characteristic length. The influence of both material
and geometrical parameters on the load-carrying capacity of the plate is then investigated. Based on the
analytical results, a simplified method for the calculation of the load-carrying capacity of FRC slabs on
grade is also proposed and compared with previously developed models.

1. Introduction

Concrete slabs on ground floor of factory buildings are designed to support heavy concentrated loads
transmitted by columns, vehicle wheels and machinery arranged on them. To prevent cracking and
collapse of concrete industrial floors, the introduction of steel reinforcement and/or welded wire meshes
is a current practice. Alternatively, the addition of steel or polymeric fibers in the concrete mix may
totally or partially substitute the steel reinforcement. The latter solution is becoming widely used in the
construction of concrete slabs on grade, since it has proved to be efficient and cost-effective. Indeed, it can
provide crack control for shrinkage and temperature effects. Moreover, it may improve the mechanical
properties of concrete, as well as the flexural behavior and the fracture toughness of the slab, resulting
in significant load-carrying capacity after the concrete has cracked [Falkner et al. 1995]. Full advantage
of the addition of fibers to the concrete mix occurs for statically indeterminate structures, where plastic
hinges and redistribution of stress take place. In particular, the post cracking capacity of the FRC slabs
allows for a redistribution of moments after initial cracking, which let the FRC slab behave in a ductile
manner thus increasing its carrying capacity [Barros and Figueiras 1998; 1999; 2001]. However, a
valuable increase in the load-carrying capacity of the slab occurs only for a proper dosage of fibers.

Keywords: Kirchhoff plate theory, Winkler elastic subgrade, load-carrying capacity, yield lines, elastic-perfectly plastic
material, Johansen’s yield criterion, fiber reinforced concrete.

313

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2014.9-3
http://dx.doi.org/10.2140/jomms.2014.9.313
http://msp.org


314 ENRICO RADI AND PIETRO DI MAIDA

Indeed, the results of large scale load tests [Bischoff et al. 2003] predict that a low dosage of fibers
provides little improvement when compared with unreinforced concrete slab and thus is not an effective
substitute for welded wire reinforcement in slabs on grade.

Due to the damping effect of the soil out of the loaded region, the problem of a concentrated load
acting on the top of a FRC slab on grade, or uniformly distributed over a small circular area, can be
modeled by considering an infinitely large Kirchhoff plate resting on an elastic foundation. Within these
assumptions, the elastic theory developed by Westergaard [1948] provides an approximate solution that
is reliable for small loads only. Westergaard approach is also not suitable for FRC slabs because it does
not take into account the post crack behavior. For a better evaluation of the load-carrying capacity of
FRC slabs, the nonlinear behavior of fiber reinforced concrete must necessarily be taken into account.
Following this approach, Meyerhof [1960; 1962] performed a limit analysis of the problem, by consid-
ering rigid-perfectly plastic behavior of the material. This author assumed that the slab is driven into
the subgrade until a conical plastic mechanism develops in the slab, consisting of an infinite number
of radial positive yield lines (centered fan) and an ultimate circumferential crack (i.e., a negative yield
line), whose radius is determined in an approximate way. According to the upper-bound theorem of limit
analysis, this kind of analysis should predict an upper bound to the collapse load, being performed under
the assumption of a kinematically admissible collapse mechanism, which does not necessarily coincide
with the effective one.

Generally, investigations based on the limit analysis theory [Meyerhof 1960; 1962; Gazetas and Tas-
sios 1978; Losberg 1978, Baumann and Weisgerber 1983, Rao and Singh 1986] supply statically inadmis-
sible distributions of bending moments and shear forces and/or introduce some degrees of arbitrariness
in the choice of the plastic mechanism, e.g., in the radius of the circumferential crack and distribution
of the subgrade reaction. Moreover, the limit analysis theory does not provide the plate deflection under
the ultimate load. Later, the finite element method was employed by Shentu et al. [1997] in order to
analyze the stress and deformation fields in concrete slabs on ground, by considering Ottosen’s failure
criterion. On the basis of these numerical investigations, a new analytical method was proposed [ibid.] for
computing the ultimate load-carrying capacity of concrete slabs on ground. However, the model requires
the measurement of the direct tensile strength of the concrete, which may introduce a high degree of
uncertainness. Belenkiy [2007] proposed an application of the principle of stationary total energy in
order to obtain an upper bound solution of bending problems for plates on elastic foundation.

A limited amount of work also exists on elastic-perfectly plastic plates on elastic foundations [Sokól-
Supel 1985; 1988; Kocatürk 1997]. By extending the analysis developed by Tekinalp [1957] for a ductile
plate under bending, Sokól-Supel performed analytical studies on the behavior of a metallic circular plate
with clamped, hinged or free edge on a tensionless Winkler foundation under axisymmetric, statically
increasing loading. In a preliminary work [Sokól-Supel 1985], the material is assumed to obey the
Johansen’s yield criterion with the associative flow rule. Then, a Tresca-type yield criterion is considered
in a following study [Sokól-Supel 1988]. Later, the investigations have been extended to elastic-plastic
subgrade under column load [Kocatürk 1997]. More general yielding criteria that can be adopted for
concrete and FRC have been recently formulated by Bigoni and Piccolroaz [2004], Piccolroaz and Bigoni
[2009] and Poltronieri et al. [2014]. These elastic-plastic constitutive models may correctly represent
triaxial test results at high confining pressure and thus they can be efficiently adopted to describe the
stress state arising under and in proximity of the loaded region.
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A refined analytical investigation of the load-carrying capacity for a large FRC slabs on grade loaded
on a small internal area is presented here. The model assumes elastic-perfectly plastic behavior of
the material in order to simulate the post cracking behavior of FRC. As well known, concrete is an
inhomogeneous and brittle material. Its stress-strain curve is nonlinear and appears somewhat ductile.
However, with a proper dosage of fibers, the degree of ductility in FRC concrete can be opportunely
improved [Concrete Society 2003]. After initial diffusion of radial cracks from the loaded area to the
outer elastic region, the post cracking capacity of the FRC slabs allows for a redistribution of moments,
which let the FRC slab behave in a ductile manner, thus remarkably increasing its carrying capacity with
respect to plain concrete. Failure of the plate is then due to the onset of a circumferential crack on the
top of the slab.

The governing ODEs for adjacent regions of the plate are derived and solved in closed form in
Section 2. Accordingly, the boundary conditions between adjacent regions at the onset of the circumfer-
ential crack are set in Section 3. Two admissible configurations are envisaged, depending on whether the
circumferential crack occurs within the inner radially cracked region or the outer elastic region. Some
details on the calculation of ultimate bending moments in FRC slab are recalled in Section 4, according
to the recommendations of the Concrete Society [2003]. Analytical results are presented in Section 5 for
different material and geometrical parameters. By matching the analytical results, a simplified equation
is also proposed for the calculation of the load-bearing capacity of FRC slab on grade and compared with
already known solutions. The obtained analytical results thus improve the findings of the rigid-plastic
analyses based on the upper-bound theorem of limit analysis and agree with widely adopted relations
derived from loading tests.

2. Governing equations

In the following, the load carrying capacity of an infinite FRP-concrete plate resting on a Winkler-type
elastic foundation is investigated by assuming elastic-perfectly plastic behavior of the plate obeying
Johansen’s yield criterion and associative flow rule. Moreover, bilateral contact is considered between
plate and subgrade, so that the plate cannot lift off the subgrade.

Reference is made to a polar coordinate system (r, θ) whose origin lays at the center of the loaded area
of radius a (Figure 1). The external load P is applied on the upper plate surface as a uniform pressure p
over a small circle of radius a centered at the origin of the polar coordinates system (Figure 1), so that
the distributed load intensity is p = P/πa2. In order to avoid punching failure, the radius a should not
be less than the thickness of the slab [Meyerhof 1960].

Both in the elastic and elastic-plastic regions of the plate, the equilibrium equations under axisymmet-
rical conditions require

(rmr )
′
−mθ + r tr = 0, (1)

(r tr )′+ r(kw− p)= 0, (2)

where the apex denotes derivative with respect to r , mr and mθ are the bending moments per unit length,
tr is the transverse shear force per unit length, whose positive directions are shown in Figure 2, right, w is
the out-of-plane displacement, positive if directed towards the subgrade, and k is the subgrade modulus.
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Figure 1. Loaded plate on elastic foundation, yield lines and plastic collapse mecha-
nism: (1) elastic-plastic loaded region; (2) elastic-plastic unloaded region; (3) elastic
region.

Under axisymmetrical conditions, all field variables depend on r only and, thus, they are independent of
the angular coordinate θ .

Johansen’s square yield criterion is assumed to hold for the plate (Figure 2, left), namely

−m−0 ≤ mr ≤ m+0 , −m−0 ≤ mθ ≤ m+0 , (3)

where m+0 and m−0 are the positive and negative yield moments per unit length.
According to the Kirchhoff plate theory, the material fibers orthogonal to the midplane do not change

their length but they just undergo a rigid rotation about the axes orthogonal to the radial direction, namely

φθ =−w
′

3. (4)

 

mr 

mT 

m0

+
 

m0

�
 

m0

�
 m0

+
 

A B 

D C 

 . 
kT 

p
 

 . 
kr 

p
 

 

 

 tr + dtr 

mr + dmr

mr 

mT

tr 

mT  

Figure 2. Left: Johansen’s yield locus for plates and flow rule for plastic curvatures k p
θ

and k p
r . Right: positive bending moments and shear force for unit length.



DUCTILE AND FRC PLATES ON ELASTIC GROUND LOADED ON A SMALL CIRCULAR AREA 317

If the plate is driven into the soil by increasing the load, at first positive plastic moments occur along
radial yield lines up to a distance c to the center of the loaded area, where the yield condition

mθ (r) = m+0 for r ≤ c (5)

is attained. Correspondingly, radial cracks form and propagate along the radial direction at the bottom
of the slab. In line with Meyerhof [1962], the ultimate bearing capacity of the plate is attained as a
circumferential crack takes place on the top of the slab at a distance b, which can be smaller, equal or
larger than c, where the radial bending moment becomes equal to the negative yield moment, namely

mr (b)=−m−0 , (6)

so that a circumferential crack originates on the top of the slab (Figure 1). Accordingly, the bending
moment mr attains a minimum at the radial distance r = b to the center, namely:

m′r (b)= 0. (7)

Outside the circular region of radius c, the plate behaves elastically. Therefore, the distance c of the
inner border of the elastic region is defined by the fulfillment of the yield condition (3), namely

mθ (c) = m+0 . (8)

Actually, the load-carrying capacity of the slab on grade is not exhausted after the formation of the
circumferential crack, since the grade may carry further load. However, the usefulness and serviceability
of the slab may be greatly impaired.

2.1. Elastic-perfectly plastic region. Let us consider the inner region of the plate for r ≤ c, which
undergoes elastic-perfectly plastic deformation and is subject to radial cracking at its bottom. Within
this region, the bending moment mθ attains its positive limit value m+0 according to the yield condition
(5), which corresponds to the side AB of the yield locus (Figure 2, left). Under proportional loadings,
the elastic-plastic constitutive equations for the bending moments are assumed in the integrated form

mr = D(ke
r + νke

θ ), mθ = D(ke
θ + νke

r ), (9)

being D= Eh3/12(1−ν2) the flexural rigidity of the plate, where h is the plate thickness, E is the Young
modulus and ν is the Poisson coefficient of the material (approximately 0.15). The curvature tensor has
been split into elastic and plastic contributions according to

kr = ke
r + k p

r =−w
′′(r), kθ = ke

θ + k p
θ =−w

′(r)/r. (10)

From (9) the following inverse constitutive relations can be derived for the elastic components of the
curvature tensor

ke
r =

mr − νmθ

D(1− ν2)
, ke

θ =
mθ − νmr

D(1− ν2)
, (11)

whereas the plastic components are given by the associative flow rule for the side AB of the yield locus,
namely

k p
r = 0, k p

θ ≥ 0, (12)
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where no previous plastic yielding is assumed to occur. Therefore, from (5), (10)–(12) and (1) the bending
moment and the transverse shear force per unit length in the elastic-plastic region turn out to be

mr = νm+0 − D(1− ν2)w′′, (13)

tr =
1− ν

r
[m+0 + D(1+ ν)(w′′+ rw′′′)], (14)

respectively. From equilibrium Equations (1) and (2) and yield condition (5) it follows that

(rmr )
′′
− r(kw− p)= 0. (15)

Introduction of (13) into (15) then provides

D(1− ν2)(rw′′)′′+ r(kw− p)= 0, (16)

namely

w′′′′+
2
r
w′′′+

1
`4(1− ν2)

(
w−

p
k

)
= 0, (17)

where

l = 4

√
D
k
, (18)

is the characteristic length of plates on elastic foundation. The general solution of the fourth-order linear
ODE (17) may be found by using the singular Frobenius method, implemented in Mathematica, in terms
of the generalized hypergeometric function 0 F3 and Meijer G function G20

04 defined in the Appendix,
namely

w1(r)=
p
k
+

m+0 `
2

D

{
b0 0 F3

(1
2
,

3
4
,

3
4
;−

(1− ν2)r4

256`4

)
+ b1

r
4` 0 F3

(3
4
, 1, 5

4
;−

(1− ν2)r4

256`4

)
+ b2

( r
4`

)2
0 F3

(5
4
,

5
4
,

3
2
;−

(1− ν2)r4

256`4

)
+ b3 G20

04

( 0 0 0 0
1/4 1/4 1/2 0

∣∣∣− (1− ν2)r4

256`4

)}
. (19)

The displacement field (19) holds for r ≤ a, namely within the inner circular region loaded by p,
whereas the displacement field

w2(r)=
m+0 `

2

D

{
c0 0 F3

(1
2
,

3
4
,

3
4
;−

(1− ν2)r4

256`4

)
+ c1

r
4` 0 F3

(3
4
, 1, 5

4
;−

(1− ν2)r4

256`4

)
+ c2

( r
4`

)2
0 F3

(5
4
,

5
4
,

3
2
;−

(1− ν2)r4

256`4

)
+ c3 G20

04

( 0 0 0 0
1/4 1/4 1/2 0

∣∣∣− (1− ν2)r4

256`4

)}
, (20)

holds for a ≤ r ≤ c, namely within the elastic-plastic annular region subject to the subgrade reaction
only (p = 0). The general solutions (19) and (20) of the ODE (17) agree with the results obtained by
Sokól-Supel [1985; 1988] and Kocatürk [1997] in terms of infinite power series. The derivatives up to
the third order of the functions w1(r) and w2(r) are supplied in the Appendix.



DUCTILE AND FRC PLATES ON ELASTIC GROUND LOADED ON A SMALL CIRCULAR AREA 319

2.2. Elastic region. Under axisymmetric bending, the Kirchhoff theory of elastic plates resting on a
Winkler-type elastic foundation [Timoshenko and Woinowsky-Krieger 1959] provides the following
ODE for the out-of-plane displacement w(r)

w′′′′+
2
r
w′′′−

1
r2w

′′
+

1
r3w

′
+

1
`4w = 0. (21)

The general solution of the ODE (21) vanishing as r becomes very large are given by Timoshenko
and Woinowsky-Krieger [1959] in the form

w3(r)=
m+0 `

2

D

(
d1 ker

r
`
+ d2 kei

r
`

)
, for r ≥ c, (22)

where ker and kei are the Kelvin functions [Abramowitz and Stegun 1964] and d1 and d2 are nondimen-
sional arbitrary constants of integration. The derivatives up to the third order of the function w3(r) are
supplied in the Appendix.

In agreement with the constitutive relations (9), bending moments per unit length for purely elastic
response of the plate can be written in terms of the total curvatures as

mr =−D
(
w′′3 +

ν

r
w′3

)
, (23)

mθ =−D
(
w′3
r
+ νw′′3

)
, (24)

whereas the transverse shear force per unit length can be obtained from the introduction of the bending
moments (23) and (24) into the equilibrium condition (1) as

tr = D
(
w′′′3 +

1
r
w′′3 −

1
r2w

′

3

)
. (25)

3. Boundary conditions

The nondimensional constants of integration bk , ck (k = 0, 1, 2, 3), d1 and d2 introduced in (19), (20)
and (22) can be determined by imposing the boundary conditions at r = 0 and r →∞ and continuity
conditions for the displacement w, rotation φθ , bending moment mr and shear force tr between the three
different regions delimited by the radii a and c, together with the yield condition (8) at the inner border
of the elastic region.

The yield condition (5) and symmetry at r = 0 require mr (0)= m+0 and tr (0)= 0. By using (13), (14)
and (19) both of these conditions provide

D(1+ ν)w′′1(0)+m+0 = 0, (26)

thus implying

b2 =−
8

1+ ν
. (27)

Moreover, boundedness of the rotation φθ at r = 0 necessarily requires

b3 = 0. (28)
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Continuity of displacement w, rotation φθ , bending moment mr and shear force tr across the bound-
aries at r = a and r = c, by using (4), (13), (14), (23) and (25) then requires the eight conditions

w1(a)= w2(a), w′1(a)= w
′

2(a), w′′1(a)= w
′′

2(a), w′′′1 (a)= w
′′′

2 (a), (29)

w2(c)= w3(c), w′2(c)= w
′

3(c), (30)

νm+0
D
− (1− ν2)w′′2(c)=−w

′′

3(c)−
ν

c
w′3(c), (31)

(1− ν)
m+0
D
+ (1− ν2)[w′′2(c)+ cw′′′2 (c)] = cw′′′3 (c)+w

′′

3(c)−
1
c
w′3(c). (32)

By using (24), fulfillment of the yield condition (8) as r approaches c from above then implies

νw′′3(c)+
1
c
w′3(c)=−

m+0
D
. (33)

The ultimate distributed load p = p0 is attained as soon as the bending moment mr obeys the yield
condition (6) at a distance b determined by the minimum condition (7). Let us first assume that the
circumferential crack occurs within the elastic plastic unloaded region, namely for a < b < c. Then, by
using (13), conditions (6) and (7) become

D(1− ν2)w′′2(b)= (ν+µ)m
+

0 , w′′′2 (b)= 0, (34)

with b ≤ c, where

µ= m−0 /m+0 , (35)

is the ratio between negative and positive yield moments. If conditions (34) provide b > c then the
minimum value of the radial bending moment mr =−m−0 is attained within the elastic region at r = b,
where a circumferential crack occurs on the top of the slab. In this case, by using (23) conditions (6) and
(7) require

w′′3(b)+
ν

b
w′3(b)= µ

m+0
D
, w′′′3 (b)+

ν

b
w′′3(b)−

ν

b2w
′

3(b)= 0, (36)

with c < b, instead of (34).
By introducing the derivatives of function wk (k = 1, 2, 3) provided in the Appendix, the boundary

conditions (29)–(33) yield a linear system of nine equations for the eight constants of integration b0, b1,
c0, c1, c2, c3, d1, d2 and the ultimate distributed load p0, which can be solved by using Mathematica.
Once these nine constants are known in terms of the parameters b and c, the two Equations (34) can
be solved numerically (using the command FindRoot in Mathematica) in order to obtain the last two
unknowns b and c. If conditions (34) provide b > c then conditions (36) must replace the former. Once
the values of b and c have been obtained, all the unknown constants can be consequently calculated. In
particular, the ultimate load is then given by

P0 = πa2 p0. (37)
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 Figure 3. Equivalent flexural strength (vertical axis) versus deflection determined from
a third-point loading beam.

4. Moment-carrying capacity for FRC slabs

As remarked, for design purposes it is assumed that the limiting criterion is the onset of cracking on the
top surface. While fibers increase the post-cracking behavior and thus the ductility of the slab they do not
affect the cracking stress, namely they do not increase the negative bending moment capacity [Soutsos
et al. 2012] which is therefore the same of the plain concrete

m−0 = mPC
0 = fct

h2

6
, (38)

where fct the maximum tensile stress derived from a third-point flexural test on a FRC beam.
According to the design method for industrial floor proposed by the Concrete Society [2003], the

difference between plain concrete and FRC slabs can be attributed to the post-cracking strength due to
the presence of the fibers, which provide an additional contribution to the bending moment capacity,
namely

mFRC
0 =

Re,3

100
fct

h2

6
, (39)

where Re,3 is the residual flexural strength ratio

Re,3 =
feq

fct
100, (40)

and feq is the equivalent flexural strength for a deflection of 1/150 of the test beam span (Figure 3), namely
δ = 3 mm for a span of 450 mm. The ratio Re,3 is related to the rate of improvement in the flexural
strength of FRC compared to plain concrete, according to standard third-point flexural test [Concrete
Society 2003].

The ductility of FRC slabs becomes effective after the first crack, namely in the plastic phase when
a positive plastic hinge is formed under loading. In this case due to the post-cracking behavior of the
fibers, the FRC slab can bear a further increase in the value of the positive bending moment with respect
to the plain concrete, so that the total value of the moment-carrying capacity is given by the sum

m+0 = mPC
0 +mFRC

0 =

(
1+

Re,3

100

)
fct

h2

6
, (41)
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where m+0 is the ultimate positive bending moment. Therefore, for FRC slabs the ratio µ between negative
and positive yield moments introduced in (35) turns out to be

µ=
100

100+ Re,3
. (42)

5. Results

The nondimensional variations of displacement w and bending moments mr and mθ along the radial
direction under the ultimate load p0 are plotted in Figure 4 for different sizes a of the loaded area, for
v = 0.15 and for two different values of the ratio µ between negative and positive yield moments, namely
µ= 0.5 and µ= 1. Figure 4 shows that the displacement w and thus the reaction kw of the subgrade
increase with the size a of the loaded area. Figure 4 also shows that all quantities of interest (deflection,
tangential and radial moments) become negligible at a distance larger than 4 to 5 times ` (denoted by
4–5`) from the applied load. Therefore, the assumption of an infinitely large plate is reliable also for
plates of finite size, if they are loaded at a distance larger than 4–5` from their edges.

The nondimensional variations of the ultimate load P0 and radii b and c with the radius a of the loaded
area are plotted in Figures 5 and 6, respectively, both for µ= 1 and µ= 0.5. From these figures it can be
observed that the ultimate load P0 increases with the radius a of the loaded area. Moreover, the radius
b of the circumferential crack turns out to be smaller than 2`. It must be remarked that the minimum of
the radial bending moment predicted by the elastic analyses of Meyerhof [1960] and Timoshenko and
Woinowsky-Krieger [1959] is attained at a distance 2` to the center of the loaded area, and this value
has been adopted as the radius of the circumferential crack in several investigations based on the limit
analysis theory [Westergaard 1948; Baumann and Weisgerber 1983].

As the size a of the loaded area becomes larger, the radius b of the circumferential crack increases more
rapidly than the length c of the radial cracks (Figure 6) and the latter two distances become coincident
for a special value of a. Then, the circumferential crack occurs within the elastic region for a larger
then this special value. In this case, however, the onset of the circumferential crack does not imply the
activation of a conical plastic mechanism as observed for a small value of a. However, the formation
of a circumferential crack on upper side of the plate defines the serviceability limit of industrial ground
floors according to current design standards [Concrete Society 2003].

For use in practice, the following simplified equation for calculating the load-carrying capacity of
slabs on grade is proposed on the basis of the analytical results here obtained:

P∗0 = 2πm+0 (1+µ)
(

1+ (1+µ)a
`

)
, (43)

where µ assumes the value in (42) for FRC slabs. From Figure 5 it can be established that the approximate
value P∗0 introduced in (43) approaches the load carrying capacity P0 obtained from the present exact
analysis. From Table 1, where the values of P0 and P∗0 are reported for different sizes of the loaded area,
it can be observed that the agreement between analytical and approximate results is excellent for µ= 1,
whereas for µ= 0.5 the approximate value P∗0 underestimates to some extent the ultimate load P0, thus
providing more conservative results.
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Figure 5. Nondimensional variations of the ultimate load P0, approximate value P0* and Meyerhof 
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Figure 6. Nondimensional variations of the radii b and c with the radius a of the loaded area 
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5.1. Comparison with previous methods. In the following, the load-carrying capacities found in previ-
ous investigations are reported in order to compare them with the predictions of the present analysis. For
a large slab Meyerhof [1962] found the ultimate load

PML
0 =

4π(m+0 +m−0 )
1− a

3`
, for a > 0.2`, (44)

where the assumption b ≈ 3.9–4` is made. It must be specified that in the rigid-plastic analysis of
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µ= 1

a/` P0/m+0 P∗0 /m+0
0.01 13.6942 12.8177
0.05 14.8298 13.8230
0.10 15.9689 15.0796
0.20 18.0721 17.5929
0.30 20.1759 20.1062
0.40 22.3747 22.6195
0.50 24.7162 25.1327
0.70 29.9581 30.1593
0.80 32.9149 32.6726
1.00 39.5404 37.6991

µ= 0.5

a/` P0/m+0 P∗0 /m+0
0.01 10.2513 9.4247
0.05 11.0604 10.1316
0.10 11.8682 10.8385
0.20 13.3502 12.2522
0.30 14.8202 13.6659
0.40 16.2143 15.0796
0.50 17.5310 16.4934
0.70 20.3785 19.3208
0.80 21.9421 20.7345
1.00 25.4027 23.5619

Table 1. Ultimate load P0 and its approximate value P∗0 for different radii a of the
loaded area, for µ= 1 (left) and µ= 0.5 (right).

[Meyerhof 1962], the cracking radius b is assumed to coincide with the radius of the circular area loaded
by the subgrade reaction pressure. In the present elastic-perfectly plastic analysis the circumferential
crack is found to occur much inside the area loaded by the subgrade reaction pressure. The results
depicted in Figure 6 show that the assumption b≈ 3.9–4` [Meyerhof 1962] made in the derivation of (44)
may be acceptable for the size of the area loaded by the subgrade reaction pressure (see Figures 5(a) and
5(d)), but is rather inaccurate for the cracking radius. The present analysis, indeed, predicts a cracking
radius b about 1–1.5` (see Figure 6) and thus much smaller than the value assumed in the derivation
of (44). The load-carrying capacity (44) predicted by Meyerhof [1962] would remarkably increases if
values of b smaller than 4` are considered, e.g., b ≤ 2`, thus providing non conservative and unrealistic
results.

The load-carrying capacity of the plate under a concentrated load provided by Meyerhof [1962] is

PML
0 = 2π(m+0 +m−0 ) for a = 0. (45)

It can be observed that for a vanishing small size a of the loaded area, Equation (43) coincides with
the result (45) obtained by Meyerhof under a concentrated force.

The use of m−0 = 0 in Equations (44) and (45) is recommended for small slabs that can not develop
a negative bending moment along the negative circumferential yield line [Meyerhof 1962]. In this case,
the load-carrying capacity of small slabs PMS

0 is reduced to about one-half with respect to a large slab,
and thus expressions (44) and (45) may be too conservative if adopted for sufficiently large slabs with
m−0 = 0. However, similar expressions have also been accepted by the Concrete Society [2003], with no
specification about the extension of the slab.

On the basis of the results of both limit analysis theory and loading tests, the following simple and
conservative formula is suggested in [Meyerhof 1962] for a central load

P M
0 = 6(m+0 +m−0 )

(
1+ 2a

`

)
, (46)
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with a > h in order to avoid punching failure. Moreover, the following approximate relation for the
radius of the circumferential crack

b
`
= 1.63

√
a
`
, (47)

was also proposed by Meyerhof [1960]. Relations (46) and (47) reasonably agree with the analytical
results here obtained for elastic-perfectly plastic behavior of the plate, with µ= 1, as it can be verified
by comparing Equations (46) and (43) and the results plotted in Figures 5(a) and 7(b). In particular, the
difference between relations (46) and (43) is less than 5%, for µ= 1. On the contrary, the load carrying
capacity (44) predicted by Meyerhof for large slabs turns out to be much higher than the findings of the
present analysis. As already discussed, this result is expected according to the upper-bound theorem of
limit analysis, since the Meyerhof analysis is based on the assumption of a rigid-plastic mechanism.

The ultimate load proposed by Baumann and Weisgerber [1983] is

PBW
0 =

8π(m+0 +m−0 )
3(1− a

3`)
2

(
1− 11

32
a
`

)
, (48)

where the same cracking radius b = 2` predicted by the elastic solution [Westergaard 1948; Timoshenko
and Woinowsky-Krieger 1959] has been considered.

The ultimate load found by Rao and Singh [1986] for a single plastic hinge centered under the loaded
area becomes

PRS
0 = 2π(m+0 +m−0 )

1.8+ 6.9a/`
1.8+ 2.9a/`

. (49)

These authors evaluated the cracking radius b throughout the following relation

b
`
= 0.6+ 2.3

a
`
, (50)

derived from a hundred experimental observations made for plain and reinforced concrete.
The load-carrying capacities P0 and the cracking radius b predicted by the present model and by

previously developed analyses are compared for µ= 1 in Figures 7(a) and 7(b), respectively. From these
plots it can be observed that the present model provides higher load-carrying capacities than the other
models, except for the result (44) obtained by Meyerhof [1962] for large slabs. Moreover, the radius b
of the circumferential crack predicted by the present analysis closely agrees with the approximation (47)
proposed by Meyerhof [1960], at least for µ= 1, whereas it is clearly smaller than the value 2` predicted
by the elastic analyses and that adopted by Rao and Singh [1986] for the derivation of (50).

Unfortunately, experimental results are not easily available in the literature for slabs larger than 8–10`,
thus allowing the formation of a circumferential crack. Most of the performed tests concern small slabs
whose collapse mechanism consists of radial cracks reaching the edges of the slab, with no formation of
the circumferential crack on the top surface [Chen 2004; Roesler et al. 2004; 2006].

6. Conclusions

A refined model for the evaluation of the load-carrying capacity of large FRC slabs on ground has been
presented here. The model takes into account the post-crack strength of FRC slabs and the associated
ductile behavior. Compared with the approaches based on the limit analysis theory, the present model is
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Figure 7. Comparison between the load-carrying capacity P0 and cracking radius b 
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Figure 7. Comparison between the load-carrying capacity P0 and cracking radius b
predicted by the present model and by previous theories.

more accurate and complete, since it does not require the introduction of rough approximations on the
collapse mechanism and location of the yield lines. The proposed approach provides more conservative
results with respect to the prediction of the Meyerhof model for large slabs. However, it is in reasonable
agreement with the approximate formula (46) suggested by Meyerhof [1962] on the basis of loading
tests. Moreover, the load-carrying capacity provided by the present method turns out to be higher than
those recommended by conventional codes for industrial ground floors [Concrete Society 2003], which
are generally based on the results of Meyerhof analysis for small slabs on grade.

Differently from the investigations based on limit analysis, the present model is also able to predict the
deflection under the ultimate load, and thus it can be validated by comparison with experimental results.
Moreover, being deflection a crucial aspect for the design of ground slab, deflection limiting criteria can
be easily implemented within the framework of the present method.

The interaction between slab and subgrade has been here modeled by adopting the simple Winkler
elastic model. However, more refined approaches can be envisaged within the same framework, which
can take into account for tensionless subgrade reaction [Gazetas 1981; Silva et al. 2001], frictional contact
[Chen 2004] and nonlocal response of the foundation, like the model adopted by Nobili et al. [2014] and
Lanzoni et al. [2014] for the study of cracked elastic plates on Pasternak foundation.

Finally, it must be remarked that a large moment-rotation capacity after yielding must be assured, the
present approach being based on the yield line method, commonly used to determine the load capacity
of ductile and RC slabs. However, application of the present results to materials exhibiting brittle or
softening behavior, like lightly reinforced concrete, may be questionable.

Appendix

By using the following derivative rule for the hypergemeotric function 0 F3 and Meijer G function G20
04



328 ENRICO RADI AND PIETRO DI MAIDA

[Luke 1969; Lardner 1969]

d
dx 0 F3(α, β, γ ; x)=

1
αβγ

0 F3(α+ 1, β + 1, γ + 1; x),

d
dx

G20
04

(
0 0 0 0
α α β 0

∣∣∣ x
)
= G20

04

(
0 0 0 0

α− 1 α− 1 β − 1 0

∣∣∣ x
)
,

(A.1)

the derivatives up to the third order with respect to r of the function w1(r) introduced in (19) can be
written as

w′1(r)=
m+0 `

D

{
− b0

(1− ν2)r3

18`3 0 F3

(
3
2
,

7
4
,

7
4
;−

(1− ν2)r4

256`4

)
+ b1

[
1
4 0 F3

(
3
4
, 1, 5

4
;−

(1− ν2)r4

256`4

)
−
(1− ν2)r4

240`4 0 F3

(
7
4
, 2, 9

4
;−

(1− ν2)r4

256`4

)]
+ b2

[
r
8` 0 F3

(
5
4
,

5
4
,

3
2
;−

(1− ν2)r4

256`4

)
−
(1− ν2)r5

2400`5 0 F3

(
9
4
,

9
4
,

5
2
;−

(1− ν2)r4

256`4

)]
− b3

(1− ν2)r3

64`3 G20
04

(
0 0 0 0
−3/4 −3/4 −1/2 0

∣∣∣− (1− ν2)r4

256`4

)}
, (A.2)

w′′1(r)=
m+0
D

{
b0
(1− ν2)r2

6`2

[
(1− ν2)r4

882`4 0 F3

(
5
2
,

11
4
,

11
4
;−

(1− ν2)r4

256`4

)
− 0 F3

(
3
2
,

7
4
,

7
4
;−

(1− ν2)r4

256`4

)]
+ b1

(1− ν2)r3

48`3

[
(1− ν2)r4

2520`4 0 F3

(
11
4
, 3, 13

4
;−

(1− ν2)r4

256`4

)
− 0 F3

(
7
2
, 2, 9

4
;−

(1− ν2)r4

256`4

)]
+

b2

2400

[
300 0 F3

(
5
4
,

5
4
,

3
2
;−

(1− ν2)r4

256`4

)
− 7

(1− ν2)r4

`4 0 F3

(
9
4
,

9
4
,

5
2
;−

(1− ν2)r4

256`4

)
+
(1− ν2)2r8

810`8 0 F3

(
13
4
,

13
4
,

7
2
;−

(1− ν2)r4

256`4

)]
− b3

(1− ν2)r2

64`2

[
3G20

04

(
0 0 0 0
−3/4 −3/4 −1/2 0

∣∣∣− (1− ν2)r4

256`4

)
−
(1− ν2)r4

64`4 G20
04

(
0 0 0 0
−7/4 −7/4 −3/2 0

∣∣∣− (1− ν2)r4

256`4

)]}
, (A.3)

w′′′1 (r)=
m+0
D`

{
b0
(1− ν2)r

3`

[
−
(1− ν2)2r8

2134440`8 0 F3

(
7
2
,

15
4
,

15
4
;−

(1− ν2)r4

256`4

)
+
(1− ν2)r4

196`4 0 F3

(
5
2
,

11
4
,

11
4
;−

(1− ν2)r4

256`4

)
− 0 F3

(
3
2
,

7
4
,

7
4
;−

(1− ν2)r4

256`4

)]
+ b1

(1− ν2)r2

10080`2

[
−
(1− ν2)2r8

20592`8 0 F3

(
15
4
, 4, 17

4
;−

(1− ν2)r4

256`4

)
+
(1− ν2)r4

`4 0 F3

(
11
4
, 3, 13

4
;−

(1− ν2)r4

256`4

)
− 630 0 F3

(
7
4
, 2, 9

4
;−

(1− ν2)r4

256`4

)]
+ b2

(1− ν2)r3

129600`3

[
−
(1− ν2)2r8

35490`8 0 F3

(
17
4
,

17
4
,

9
2
;−

(1− ν2)r4

256`4

)
+
(1− ν2)r4

`4 0 F3

(
13
4
,

13
4
,

7
2
;−

(1− ν2)r4

256`4

)
− 1620 0 F3

(
9
4
,

9
4
,

5
2
;−

(1− ν2)r4

256`4

)]



DUCTILE AND FRC PLATES ON ELASTIC GROUND LOADED ON A SMALL CIRCULAR AREA 329

− b3
(1− ν2)r

4096`

[
384G20

04

(
0 0 0 0
−3/4 −3/4 −1/2 0

∣∣∣− (1− ν2)r4

256`4

)
+ 9

(1− ν2)r4

`4 G20
04

(
0 0 0 0
−7/4 −7/4 −3/2 0

∣∣∣− (1− ν2)r4

256`4

)
−
(1− ν2)2r8

64`8 G20
04

(
0 0 0 0

−11/4 −11/4 −5/2 0

∣∣∣− (1− ν2)r4

256`4

)]}
, (A.4)

respectively. Similar expressions hold for the derivatives of w2(r), but the constants bk are replaced by
ck (k = 0, 1, 2, 3). The derivatives of w3(r) with respect to r up to the third order are
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