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RANDOM VIBRATION OF SHEAR DEFORMABLE FGM PLATES

VEDAT DOGAN

In this research, the vibration of the functionally graded material (FGM) plates under random excitation
is presented. The FGM plate is assumed to be moderately thick. One of the refined plate theories, the first-
order shear deformable theory (FSDT) is adopted to account for the transverse shear strain. The refined
form of shear correction factor is used. The plate is assumed to be simply supported along all edges with
movable ends. The mechanical properties of the FGM plate are graded in the thickness direction only
according to a simple power-law distribution in terms of volume fraction of constituents. Mechanical
properties of constituents (ceramic and metal) of the FGM plate are assumed temperature-dependent.
The FGM plate is subjected to the random pressure that is considered as a stationary and homogenous
random process with zero mean and Gaussian distribution. Both the spectral density method and Monte
Carlo method are used for the linear responses. Thermal effects are only included in the Monte Carlo
method. The root mean square (RMS) and mean responses of the FGM plate for different plate sizes,
sound pressure levels, volume fractions and temperature distributions are presented.

1. Introduction

Functionally graded materials (FGMs) are advanced inhomogeneous composite materials. The compo-
sitions of the constituents of FGMs vary smoothly and continuously in certain directions (particularly in
the thickness direction), and consequently, the FGMs eliminate the interface problems such as cracks and
stress concentrations encountered in the traditional laminated composite plates. FGM plates are typically
made of a metal and ceramic mixture and used as structural elements in high-temperature environments.

The FGMs have attracted the considerable attention of many researchers since they were first devel-
oped in Japan three decades ago [Koizumi 1997]. To the present, extensive research has been conducted
on the dynamic, static, buckling, vibration and thermal stress analysis of FGM plates. Among them,
Praveen and Reddy [1998] analyzed the static and dynamic response of FGM plates by using the first-
order shear deformation theory (FSDT) and the von Karman strains. The stresses and deflections of the
FGM plates are examined under mechanical and thermal loadings. They found that grading of material
properties is very important for the plate responses. Reddy [2000] presented a formulation for the simply
supported FGM plates based on the third-order shear deformation theory and developed the associated
finite element model, which includes thermomechanical coupling and geometric nonlinearities. Praveen,
Chin and Reddy [Praveen et al. 1999] investigated the response of FGM cylinders to rapid heating of
the inner surface with temperature-dependent material properties. The finite element formulation and
axisymmetric heat equation are used. The temperature and radial/hoop stress distributions versus radial
distance due to rapid heating are reported. Alijani, Bakhtiari and Amabili [Alijani et al. 2011] analyzed
the nonlinear vibrations of simply supported moderately thick FGM plates in a thermal environment by
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using the first-order shear deformation theory. Zhang, Hao, Guo and Chen [Zhang et al. 2012] investi-
gated the nonlinear responses of FGM plates subjected to combined in-plane and transverse excitations
by using Reddy’s third-order plate theory. They found that the nonlinear responses of the FGM plates
are more sensitive to transverse excitation.

Effects of the micromechanics Voigt and Moni–Tanaka models on the vibration responses of FGM
plates are investigated by Shen and Wang [2012]. They used a high-order shear deformation plate theory
to develop the governing equations. Since the differences between two micromechanics models were
small, the Voigt model can be reasonable for finding the responses of FGM plates and shells. Nguyen-
Xuan, Tran, Thai and Nguyen-Thoi [Nguyen-Xuan et al. 2012] presented a finite element approach for
analysis of FGM plates subjected to mechanical and thermal loading. This method is applied in several
static/dynamic problems of FGM plates.

Hosseini and Fazelzadeh [2010] presented the nonlinear vibration and the aerothermoelastic postcrit-
ical analysis of the FGM panels in a supersonic airflow. Temperature-dependent material properties
are considered, and the first-order piston theory is used for the aerodynamics loading. Prakash, Singha
and Ganapathi [Prakash et al. 2012] investigated the nonlinear vibration of the FGM plates by a shear
flexible finite element approach. The FGM plate is modeled with the FSDT, and third-order piston theory
is employed for the aerodynamics loading.

Zhao, Lee and Liew [Zhao et al. 2009] examined the mechanical and thermal buckling behavior of the
FGM plates using the element-free kp-Ritz method. Solid plates and plates with holes are analyzed. It
was determined that the hole size and volume fraction greatly influenced the buckling loads and modes.
Hosseini-Hashemi, Taher, Akhavan and Omidi [Hosseini-Hashemi et al. 2010] analyzed the free vibra-
tion of the moderately thick FGM plates on elastic foundations by using the FSDT. Parametric studies
regarding the elastic foundation stiffness, aspect ratios, gradient indices and thickness to length ratios are
conducted. Ghannadpour, Ovesy and Nassirnia [Ghannadpour et al. 2012] presented a finite strip method
for analyzing the thermal buckling of the FGM plate. The classical plate theory (CPT) is used for the for-
mulations, and three types of thermal loadings are considered. Mohammadi, Saidi and Jomehzadeh [Mo-
hammadi et al. 2010] studied the Levy solution for the mechanical buckling of the FGM plate based on the
CPT. Thai and Choi [2012] presented a refined shear deformation theory, which is used for free vibration
analysis of FGM plates on Pasternak-type foundation. Closed-form solutions for natural frequency with
different boundary conditions are obtained and compared to the natural frequencies found in the literature.
Dynamic, bending, thermal and vibration analysis of FGM plates by using different-order plates theories
are conducted by H.-S. Shen and his associates [Yang and Shen 2003; 2002; Huang and Shen 2004].
Extensive nonlinear analysis of shear deformable FGM plates and shell can be found in [Shen 2009].

Hasheminejad and Gheshlaghi [2012] studied the transient vibration of thick FGM plates resting on the
elastic foundations under blast and moving loads using the linear elasticity theory. Yang and Gao [2013]
studied dynamic stress analysis of the FGM plates with a circular hole under an in-plane compressive
load at infinity. Fakhari, Ohadi and Yousefian [Fakhari et al. 2011] investigated the vibrations of FGM
plates with piezoelectric layers under thermal, electrical and mechanical loadings. They used the finite
element method based on HSDT with geometric nonlinearity. Elishakoff and Gentilini [2005] developed
a three-dimensional linear elasticity solution using the Ritz minimum energy principle for the FGM plates
with all edges clamped. Mantari and Soares [2012] analytically analyzed the bending of the FGM plates
by using a newly developed HSDT. Comparison studies are carried out to validate the present theory.
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Lee, Zhao and Reddy [Lee et al. 2010] analyzed the postbuckling behavior of the FGM plates under
mechanical in-plane edge compressive and thermal loading by using the element-free kp-method. The
FSDT and von Karman–type nonlinearity are employed.

In the present study, the linear vibration of the functionally graded material (FGM) plates under random
excitation is presented. One of the shear deformable plate theories, FSDT, is employed for the formula-
tion. A modified shear correction factor is used to take into account the transverse shear strain effects. It
is assumed that the FGM plate is simply supported with movable edges. The FGM plates are considered
as ceramic–metal mixtures whose mechanical properties vary exponentially through the thickness only.
Temperature dependency of mechanical properties of the constituents are also taken into account for
the random vibration in the thermal environment. Two approaches are used for random responses in
this study. The first approach is based on the normal mode method to determine the spectral density of
the response, and the second approach is based on the Monte Carlo simulation of the external random
pressure, the multimode Galerkin technique and the numerical integration procedure. The temperature
effect is taken into account only in the second approach.

2. Structural formulation

The equations of motion of an FGM plate shown in Figure 1 using the first-order shear deformation
theory (FSDT) in terms of the mid-plane displacements u0(x, y, t), v0(x, y, t) and w0(x, y, t) in the x , y
and z directions, respectively, and the rotations φx(x, y, t) and φy(x, y, t) of the transverse normal about
the y and x axes, respectively, can be written as [Reddy 2004]

A11u0,xx + A12v0,xy + B11φx,xx + B12φy,yy + A66(u0,yy + v0,yx)

+ B66(φx,yy +φy,yx)− N T
xx,x = I0(ü0+ cu̇0)+ I1(φ̈x + cφ̇x), (1)

A22v0,yy + A12u0,yx + B22φy,yy + B12φx,yx + A66(u0,xy + v0,xx)

+ B66(φx,xy +φy,xx)− N T
yy,y = I0(v̈0+ cv̇0)+ I1(φ̈y + cφ̇y), (2)

κA55(w0,xx +φx,x)+ κA44(w0,yy +φy,y)+ θ(w0)+ pr (x, y, t)= I0(ẅ0+ cẇ0), (3)

B11u0,xx + B12v0,xy + D11φx,xx + D12φy,xy + B66(u0,yy + v0,xy)

+ D66(φx,yy +φy,yx)− κA55(w0,x +φx)−MT
xx,x = I2(φ̈x + cφ̇x)+ I1(ü0+ cu̇0), (4)

B22v0,yy + B12u0,xy + D22φy,yy + D12φx,yx + B66(u0,yx + v0,xx)

+ D66(φx,xy +φy,xx)− κA44(w0,y +φy)−MT
yy,y = I2(φ̈y + cφ̇y)+ I1(v̈0+ cv̇0), (5)

where
θ(w0)= (Nxxw0,x + Nxyw0,y),x + (Nxyw0,x + Nyyw0,y),y (6)

with

Nxx(x, y, t)= A11u0,x + A12v0,y + B11φx,x + B12φy,y − N T
xx , (7)

Nyy(x, y, t)= A12u0,x + A22v0,y + B12φx,x + B22φy,y − N T
yy, (8)

Nxy(x, y, t)= A66(u0,y + v0,y)+ B66(φx,y +φy,x), (9)

in which a subscript comma denotes the partial derivative with respect to the indicated coordinates and
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Figure 1. Shear deformable FGM plate geometry, loading and coordinate system.

time t , κ is the shear correction factor, pr (x, y, t) is the random pressure, c is the viscous damping
coefficient and I0, I1 and I2 are the mass inertias defined as

(I0, I1, I2)=

∫ h/2

−h/2
ρ(z, T ) · (1, z, z2) dz, (10)

in which ρ is the mass density and h is the thickness of the FGM plate. Furthermore,

(Ai j , Bi j,Di j )=

∫ h/2

−h/2
Qi j · (1, z, z2) dz, i, j = 1, 2, 6, (11)

Ai j =

∫ h/2

−h/2
Qi j dz, i, j = 4, 5, (12)

where

Q11 = Q22 =
E(z, T )

1− ν2(z, T )
, Q12 =

ν(z, T )E(z, T )
1− ν2(z, T )

,

Q16 = Q26 = 0, Q44 = Q55 = Q66 =
E(z, T )

2[1+ ν(z, T )]
,

(13)

where the elasticity modulus E(z, T ), the density of the plate ρ(z, T ), Poisson’s ratio ν(z, T ) and the
thermal expansion coefficient α(z, T ) are all assumed to be functions of temperature T and coordinate z
in the thickness direction according to a power law distribution as [Praveen and Reddy 1998; Reddy
2000; Shen 2009]

E(z, T )= (Et(T )− Eb(T ))
(2z+ h

2h

)n
+ Eb(T ), (14)

ρ(z, T )= (ρt(T )− ρb(T ))
(2z+ h

2h

)n
+ ρb(T ), (15)

ν(z, T )= (νt(T )− νb(T ))
(2z+ h

2h

)n
+ νb(T ), (16)

α(z, T )= (αt(T )−αb(T ))
(2z+ h

2h

)n
+αb(T ), (17)
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Figure 2. Volume fraction of ceramic through the thickness for the different volume
fraction n.

where subscripts t and b denote the top and bottom of the plate and n is the material distribution parameter.
When the material distribution parameter n increases, the volume fraction of ceramic diminishes and
the FGM plate becomes more metal-rich as shown in Figure 2. The temperature dependent material
properties P(T ) of the constituents of the FGM plate can be expressed by [Reddy and Chin 1998]

P(T )= P0(P−1T−1
+ 1+ P1T + P2T 2

+ P3T 3), (18)

where P0, P−1, P1, P2 and P3 are the coefficients of temperature T (in K) in the cubic fit of the material
property and are unique to the materials.

The shear correction factor for an FGM plate can be defined as [Efraim and Eisenberger 2007; Efraim
2011]

κ(T )=
5

6− (ν1(T )V1− ν2(T )V2)
, (19)

where V1 and V2 are the volume fractions of constituents in the whole cross-section.
In this study, a simply supported FGM plate with movable ends is considered. For an FSTD plate, the

boundary conditions are given as follows. At x = 0, a,

v0(x, y, t)= w0(x, y, t)= φy(x, y, t)= 0, (20)

Nxx(x, y, t)= A11u0,x + A12v0,y + B11φx,x + B12φy,y − N T
xx = 0, (21)

Mxx = B11u0,x + B12v0,y + D11φx,x + D12φy,y −MT
xx = 0. (22)

At y = 0, b,

u0(x, y, t)= w0(x, y, t)= φx(x, y, t)= 0, (23)

Nyy(x, y, t)= A12u0,x + A22v0,y + B12φx,x + B22φy,y − N T
yy = 0, (24)

Myy = B12u0,x + B22v0,y + D12φx,x + D22φy,y −MT
yy = 0, (25)
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where the thermal force and moment resultants are
N T

xx
N T

yy
N T

xy

 ,


MT
xx

MT
yy

MT
xy


= ∫ h/2

−h/2


(Q11+ Q12)α(z, T )
(Q12+ Q22)α(z, T )

0

 ·1T (x, y, z) · (1, z) dz, (26)

where 1T is the temperature change from a stress-free state.

3. Solution procedure

For undamped free vibration analysis, by setting all mechanical and thermal loads to zero, it can be
shown that the following functions satisfy the boundary conditions (20)–(25) [Reddy 2000]:

u0(x, y, t)= Û cos(αm x) sin(βn y)eiωt , (27)

v0(x, y, t)= V̂ sin(αm x) cos(βn y)eiωt , (28)

w0(x, y, t)= Ŵ sin(αm x) sin(βn y)eiωt , (29)

φx(x, y, t)= X̂ cos(αm x) sin(βn y)eiωt , (30)

φy(x, y, t)= Ŷ sin(αm x) cos(βn y)eiωt , (31)

where
αm =

mπ
a

and βn =
nπ
b
. (32)

By substituting (27)–(31) into the equations of motion, (1)–(5), one can obtain

([K ] −ω2
[M]){ψ} = 0, (33)

where
{ψ} = {Û , V̂ , Ŵ , X̂ , Ŷ }T (34)

and [K ] and [M] are the stiffness and mass matrices, and ω is the natural frequency of the vibration.
Elements of the stiffness and mass matrices are given in Appendix A.

For each (m, n), there are five natural frequencies ω2
mni and corresponding natural modes {Ûmni , V̂mni ,

Ŵmni , X̂mni , Ŷmni }
T (i = 1, 2, 3, 4, 5).

Random vibration.

Isothermal case. For the random forced vibration without thermal effect, the responses are expanded in
terms of natural modes [Cederbaum et al. 1992; Elishakoff 1999]

u0(x, y, t)=
∑

m

∑
n

5∑
i=1

Umni (x, y)qmni (t), (35)

v0(x, y, t)=
∑

m

∑
n

5∑
i=1

Vmni (x, y)qmni (t), (36)

w0(x, y, t)=
∑

m

∑
n

5∑
i=1

Wmni (x, y)qmni (t), (37)
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φx(x, y, t)=
∑

m

∑
n

5∑
i=1

Xmni (x, y)qmni (t), (38)

φy(x, y, t)=
∑

m

∑
n

5∑
i=1

Ymni (x, y)qmni (t), (39)

where

Umni (x, y)= Ûmni cos(αm x) sin(βn y), (40)

Vmni (x, y)= V̂mni sin(αm x) cos(βn y), (41)

Wmni (x, y)= Ŵmni sin(αm x) sin(βn y), (42)

Xmni (x, y)= X̂mni cos(αm x) sin(βn y), (43)

Ymni (x, y)= Ŷmni sin(αm x) cos(βn y) (44)

by introducing (35)–(39) into (1)–(5); and using free vibration analysis and orthogonality of eigenmodes,
one can obtain

q̈mni + 2ξmniωmni q̇mni +ω
2
mni qmni = Qr

mni , (45)

where

2ξmniωmni = c (46)

and the generalized random force

Qr
mni (t)=

1
Mmni

∫ a

0

∫ b

0
pr (x, y, t)Wmni (x, y) dx dy, (47)

where the generalized mass

Mmni =

∫ a

0

∫ b

0

{
I0(U 2

mni +V 2
mni +W 2

mni )+2I1(XmniUmni +Ymni Vmni )+ I2(X2
mni +Y 2

mni )
}

dx dy. (48)

By using random vibration theory [Lin 1976; Elishakoff 1999; Maymon 1998], the deflection response
spectral density for w0(x, y, t) can be derived as

SW W (x1, y1, x2, y2, ω)=
∑
mni

∑
rs j

Wmni (x1, y1)Wrs j (x2, y2)Hmni (ω)H∗rs j (ω)SQr
mni Qr

rs j
(ω), (49)

where

SQr
mni Qr

rs j
(ω)=

1
Mmni

1
Mrs j

∫ a

0

∫ b

0

∫ a

0

∫ b

0
Sp(x1, y1, x2, y2, ω)Wmni (x1, y1)Wrs j (x2, y2) dx1 dy1 dx2 dy2

(50)
and

Hmni (ω)=
1

ω2
mni [ω

2
mni −ω

2+ 2iξmniωmniω]
, (51)
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and ∗ indicates a complex conjugate. We define

RW W (x1, y1, x2, y2, τ )=

∫
∞

−∞

SW W (x1, y1, x2, y2, ω)eiωτ dω. (52)

The root mean square (RMS) values of deflection at a point (x = x1 = x2 and y = y1 = y2) can be
computed from

RMS=

√∫
∞

−∞

Sww(x, y, ω) dω. (53)

Thermal case. When thermal effects are included, due to multiplication of thermal terms and deflection
terms, a time domain approach is used to develop the solution. For the time domain solution, displace-
ments are expanded into double Fourier series as

u0(x, y, t)=
∑

m

∑
n

Umn(t) cos(αm x) sin(βn y), (54)

v0(x, y, t)=
∑

m

∑
n

Vmn(t) sin(αm x) cos(βn y), (55)

w0(x, y, t)=
∑

m

∑
n

Wmn(t) sin(αm x) sin(βn y), (56)

φx(x, y, t)=
∑

m

∑
n

Xmn(t) cos(αm x) sin(βn y), (57)

φy(x, y, t)=
∑

m

∑
n

Ymn(t) sin(αm x) cos(βn y), (58)

where
αm =

mπ
a

and βn =
nπ
b
. (59)

Temperature in (26) is also expanded in a double Fourier sine series as

T (x, y, z)=
∑
m=1

∑
n=1

Tmn(z) sin(αm x) sin(βn y), (60)

where

Tmn(z)=
4

a · b

∫ a

0

∫ b

0
T (x, y, z) sin(αm x) sin(βn y) dx dy. (61)

It is also assumed that temperature varies only in the z direction or uniformly throughout the plate. Then
the temperature change can be written in the form

1T (x, y, z)=1T (z)
∑

m

∑
n

1
m · n

sin(αm x) sin(βn y), (62)

where
1T (z)= T (z)− T0, (63)

where T0 is a stress-free reference temperature (T0 = 300 K is taken).
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The following temperature distributions through the thickness (z direction) in (63) are considered. For
linear distribution,

T (z)= Tb+ (Tt − Tb)
(2z+ h

2h

)
, (64)

where Tb and Tt are the temperatures of the bottom and top of the FGM plate, respectively. For nonlinear
distribution of the temperature through the thickness, the heat conduction equation

−
d
dz

(
k(z)

dT
dz

)
= 0 (65)

is solved, where the temperature dependency of the thermal conductivity k is not considered. Solution
of (65) is carried out by using polynomial series as [Javaheri and Eslami 2002]

T (z)= Tb+
Tt − Tb

Ctb

[
V −

ktb

(n+ 1)kb
V n+1

+
k2

tb

(2n+ 1)k2
b

V 2n+1

−
k3

tb

(3n+ 1)k3
b

V 3n+1
+

k4
tb

(4n+ 1)k4
b

V 4n+1
−

k5
tb

(5n+ 1)k5
b

V 5n+1
]
, (66)

where

Ctb = 1−
ktb

(n+ 1)kb
+

k2
tb

(2n+ 1)k2
b
−

k3
tb

(3n+ 1)k3
b

+
k4

tb

(4n+ 1)k4
b
−

k5
tb

(5n+ 1)k5
b

(67)

and

V =
2z+ h

2h
and ktb = kt − kb, (68)

where kb and kt are the thermal conductivity of the bottom and top surfaces of the plate, respectively.
Above, n is the material distribution parameter as used in (14)–(17).

The assumed solutions that satisfy the boundary conditions, (20)–(25), are substituted into (1)–(5),
then Galerkin’s method is employed and the following sets of equations in time domain are obtained:

Ümn + 2ξmnωmnU̇mn +
I1
I0
(Ẍmn + 2ξmnωmn Ẋmn)

+
1
I0

(
k11Umn + k12Vmn + k14 Xmn + k15Ymn + N T

xx
π

n ·a

∣∣∣
n odd

)
= 0, (69)

V̈mn + 2ξmnωmn V̇mn +
I1
I0
(Ÿmn + 2ξmnωmnẎmn)

+
1
I0

(
k21Umn + k22Vmn + k24 Xmn + k25Ymn + N T

yy
π

m ·b

∣∣∣
m odd

)
= 0, (70)

Ẅmn + 2ξmnωmnẆmn +
1
I0
(k33Wmn + k34 Xmn + k35Ymn)

+ N T
xx

∑
k odd

∑
l odd

∑
r

∑
s

Wrs
αr

k · l
ξ1(l, s, n)[αrγ1(k, r,m)−αkγ2(k, r,m)]

+ N T
yy

∑
k odd

∑
l odd

∑
r

∑
s

Wrs
βs

k · l
γ1(k, r,m)[βsξ1(l, s, n)−βlξ2(l, s, n)] = Qmn(t), (71)
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Ẍmn + 2ξmnωmn Ẋmn +
I1
I2
(Ümn + 2ξmnωmnU̇mn)

+
1
I2

(
k41Umn + k42Vmn + k43Wmn + k44 Xmn + k45Ymn +MT

xx
π

n ·a

∣∣∣
n odd

)
= 0, (72)

Ÿmn + 2ξmnωmnẎmn +
I1
I2
(V̈mn + 2ξmnωmn V̇mn)

+
1
I2

(
k51Umn + k52Vmn + k53Wmn + k54 Xmn + k55Ymn +MT

yy
π

m ·a

∣∣∣
m odd

)
= 0, (73)

where the generalized random load

Qmn(t)=
4

a · b · I0

∫ a

0

∫ b

0
pr (x, y, t) sin(αm x) sin(βn y) dx dy (74)

the coefficients γ1, γ2, ξ1 and ξ2 are given in Appendix B and
N T

xx
N T

yy
N T

xy

 ,


MT
xx

MT
yy

MT
xy


= ∫ h/2

−h/2


(Q11+ Q12)α(z, T )
(Q12+ Q22)α(z, T )

0

 ·1T (z) · (1, z) dz. (75)

In order to solve (69)–(73), the random pressure is first simulated in the space-time domain and then the
generalized random load in (74) is evaluated numerically. The integration can be carried out in a closed
form for some special cases. In this study, uniformly distributed random pressure is considered.

4. Numerical examples and discussion

A moderately thick square FGM plate shown in Figure 1 is considered in this section. The square
plate has a length of a = b = 0.5 m and a thickness of h = 0.025 m. The FGM plate is assumed
to be simply supported with movable edges. First nine modes are retained in the serial expansion to
estimate the deflection responses. Deflection responses are computed at the center of the plate (i.e.,
x = a/2 and y = b/2). The plate is made of the functionally graded material that is a mixture of the
material combination of zirconia (ZrO2) and titanium alloy (Ti-6Al-4V). Temperature-dependent material
properties of these constituents are presented in Table 1 and used in (18).

Materials Property P0 P−1 P1 P2 P3

Zirconia E 244.27× 109 0 −1.371× 10−3 1.214× 10−6
−3.681× 10−10

ν 0.2882 0 −1.133× 10−4 0 0
α 12.766× 10−6 0 −1.491× 10−3 1.006× 10−5

−6.778× 10−11

ρ 5700 0 0 0 0

Ti-6Al-4V E 122.56× 109 0 −4.586× 10−4 0 0
ν 0.2884 0 1.121× 10−4 0 0
α 7.5788× 10−6 0 6.638× 10−4

−3.147× 10−6 0
ρ 4429 0 0 0 0

Table 1. Temperature-dependent material properties of ceramic (zirconia) and metal
(titanium) [Praveen et al. 1999; Shen 2009; Reddy and Chin 1998].
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Figure 3. Displacement time histories for uniform random pressure (SPL= 160 dB and
n = 0.7).

The random pressure acting on the top of the plate (ceramic-rich part) is simulated by using the Monte
Carlo simulation technique. Uniformly distributed stationary Gaussian random pressure can be simulated
as [Shinozuka and Jan 1972]

pr (tq)= Re

[
M−1∑
r=0

Ar eiφr eiωr tq

]
, (76)

where the φr are independent random phase angles uniformly distributed between 0 and 2π , the ωr are
the frequencies at which the values of spectral density are selected, M = 2m is the number of simulated
points in time, m is a positive integer, tq = q1t , where1t is time interval and q = 0, 1, 2, . . . ,M−1, and

Ar = [2Sp(ω)1ω]
1/2, (77)

where Sp is the spectral density corresponding to random pressure and 1ω is the frequency bandwidth.
The spectral density of the random pressure that is considered uniformly distributed stationary truncated
Gaussian white noise is

Sp =

{
S0 for 0≤ ω ≤ ωu,

0 otherwise,
(78)

where S0 represents random loading intensities, ω is the frequency and ωu is the upper cut-off frequency.
The random load intensities are expressed as

S0 =


p2

0

1ω
10SPL/10 for 0≤ ω ≤ ωu,

0 otherwise,
(79)

where p0 is the reference pressure (p0 = 2× 10−5 Pa) and SPL is the sound pressure level expressed in
decibels.

In the numerical examples, the random pressure is simulated by using M = 32768, 1t = 0.0000305 s,
ωu = 2π × 8192 rad/s and 1ω = 2π rad/s.
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Figure 4. Spectral density of deflection response under random pressure of SPL =
160 dB (n = 0.7).

Figure 3 shows the midpoint deflection response history of the FGM plate for SPL= 160 dB without
a temperature effect (i.e., at a reference temperature of T0 = 300 K). The random response peak can
reach wmax/h = 0.053 at t = 0.65 s and wmin/h =−0.056 at t = 0.058 s; and “the average values” of
the responses are RMS/h = 0.00148 and MEAN/h ∼= 0. It is evident that the plate vibrates about the
plate neutral position since the random input pressure has a Gaussian distribution with zero mean.

The spectral density of the deflection response is displayed in Figure 4. This figure is plotted using (49).
There are three peaks that correspond to four natural frequencies of ω11 = 3048 rad/s, ω13 = ω31 =

14816 rad/s and ω33 = 25911 rad/s. Even modes do not contribute to the response at the midpoint since
the plate is a square. To demonstrate the contribution of different modes to the RMS response, the area
under SW W (as in (53)) is plotted in Figure 5 by integrating the curve in Figure 4 in the frequency domain.
It is clear that contribution of the higher modes is very small since the area is not notably increased by
increased frequencies beyond the fundamental frequency ω11.
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Figure 5. Integration of spectral density function.
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Figure 6. Displacement time history for uniform elevated temperature (1T = 300 K)
and random pressure (SPL= 160 dB and n = 0.7).

The deflection response for random pressure of SPL= 160 dB at the uniformly elevated temperature
throughout the plate (1T = 300 K) is presented in Figure 6. As can be seen from the figure, temperature
rise in the inhomogeneous FGM plate with movable ends causes the plate to bend, and consequently,
the mean value of the vibration is no longer zero. The plate first is bent due to elevated temperature to
MEAN/h =−0.0424, and then it continues to vibrate about this mean value with RMS/h = 0.049 due
to the random pressure.

Similar behavior is seen under the linearly varying temperature through thickness at the same random
pressure (SPL= 160 dB) as displayed in Figure 7. In this case, temperature at the top face of the plate
is Tt = 850 K and temperature at the bottom face of the plate is Tb = 350 K, and temperature variation
from top to bottom is linear with ambient temperature T0 = 300 K. In this case too, the plate bends due
to temperature rise in the inhomogeneous FGM plate to a new position where it continues to vibrate
randomly. The response averages are MEAN/h =−0.0086 and RMS/h = 0.024.
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Figure 7. Displacement time history for linear temperature rise (Ttop = 850 K and Tb =

350 K) and uniform random pressure (SPL= 160 dB, n = 0.7 and T0 = 300 K).
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Figure 8. Displacement time history for uniform elevated temperature (1T = 300 K)
and random pressure (SPL= 140 dB and n = 0.7).

The displacement response history of the FGM plate under the random pressure (SPL= 140 dB) at
uniformly elevated temperature (1T = 300 K) is illustrated in Figure 8. In this case, the temperature rise
is the same, but random pressure is lower compared to Figure 6. Therefore, the mean deflection response
of the FGM plate is the same, but the amplitudes of the random vibration are much smaller. It turns to
be like a static response as time goes. Similar behavior, but to a lesser degree, is observed for linearly
varying temperature rise as shown in Figure 9. This can be realized by comparing Figures 7 and 9. It is
obvious that the response is dominated by the thermal deflections when the random load density is low.

The deflection average responses of the FGM plate under different random loading at different uni-
formly elevated temperature are plotted in Figure 10. For without thermal effect, the mean response
is almost zero, and the RMS value varies linearly with random sound pressure level as is expected for
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350 K) and uniform random pressure (SPL= 140 dB, n = 0.7 and T0 = 300 K).
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Figure 10. Deflection RMS and MEAN values versus sound pressure levels at different
uniformly elevated temperatures (n = 0.7).

a linear structure. For other elevated temperature cases, when the SPL is less than 140 dB, thermal
deflection dominates the response with the mean. However, random loading response turns out to be
predominant after SPL= 140 dB at 1T = 100 K and after SPL= 160 dB at 1T = 500 K.

Similar RMS responses are obtained for linearly elevated temperatures as shown in Figure 11. The
bottom temperature is kept constant at Tb = 350 K, and the top temperature is elevated from the ambient
temperature (i.e., 1Tt = Tt − T0). The results reveal that the RMS responses increase for all linearly
elevated temperatures when the sound pressure level is greater than 140 dB.

The effect of the material distribution parameter n on the RMS/h response under random pressure
without thermal influence is presented in Table 2. Both the Monte Carlo method and spectral density
method results are tabulated. It is obvious that the two methods agree quite well. The FGM plate trans-
forms from the ceramic-rich plate to the metal-rich plate with increased material distribution parameter n.
Consequently, it yields greater RMS responses.
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Figure 11. Deflection RMS values versus sound pressure levels at different linearly
elevated temperatures (n = 0.7).
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Method SPL n = 0.1 n = 0.5 n = 1 n = 5 n = 10

Monte Carlo 160 dB 0.0130 0.0143 0.0152 0.0167 0.0172
Spectral density 160 dB 0.0129 0.0143 0.0151 0.0166 0.0172

Monte Carlo 180 dB 0.1302 0.1434 0.1523 0.1675 0.1728
Spectral density 180 dB 0.1296 0.1430 0.1517 0.1669 0.1729

Table 2. The effect of the material distribution parameter n on the RMS/h response
(1T = 0).

The effect of the material distribution parameter n on the nondimensional RMS and MEAN responses
under random loading in a thermal environment is given in Table 3. Temperature distribution through
thickness is assumed to be linear with Tt = 850 K and Tb = 350 K. The mean responses are due to
temperature since MEAN responses are almost the same for SPL= 160 dB and SPL= 180 dB for each
n value. The RMS values increase with increased n values as the FGM plate becomes more metal-rich.

The effect of the plate thickness to random response for SPL= 160 dB is presented in Table 4. Isother-
mal, uniformly elevated temperature and linearly elevated temperature cases are considered. For the
isothermal vibration case, MEAN responses are zero, and the RMS responses increase with the length-
to-thickness ratio. For vibration in a thermal environment, when the plate is very thick (e.g., a/h = 5),
the response is mainly MEAN response due to elevated temperature, and fluctuations about the mean
response due to random loading is very small. When the FGM plate is moderately thick, fluctuations
become relatively important for the linearly elevated temperature case but not important for uniformly
elevated temperatures.

Sound pressure n = 0.1 n = 0.5 n = 1 n = 5 n = 10

160 dB RMS/h 0.0218 0.0215 0.0271 0.0285 0.0306
MEAN/h 0.0114 −0.0034 −0.0139 −0.0079 0.0089

180 dB RMS/h 0.1868 0.2129 0.2325 0.2739 0.2926
MEAN/h 0.0115 −0.0034 −0.0138 −0.0079 0.0089

Table 3. The effect of the material distribution parameter n on the response averages
for linearly elevated temperature.

a/h = 5 a/h = 10 a/h = 20

Isothermal RMS/h 0.000132 0.00134 0.0148
1T = 0 K MEAN/h 0 0 0

Uniform temperature rise RMS/h 0.00127 0.00596 0.04893
1T = 300 K MEAN/h −0.00126 −0.00571 −0.04238

Linear temperature rise RMS/h 0.00036 0.00218 0.02326
Tt = 850 K, Tb = 350 K MEAN/h −0.00033 −0.00146 −0.00861

Table 4. Random responses of the FGM plates with various length-to-thickness ratios
(n = 0.7 and a = 0.5 m).
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Figure 12. Displacement time history for nonlinear temperature rise (Tt = 850 K and
Tb = 350 K) and random pressure (SPL= 160 dB, n = 0.7 and T0 = 300 K).

Random response with nonlinear temperature distribution across the thickness is shown in Figure 12.
In this case, temperatures of the top and bottom faces are taken to be the same as in the linear temperature
distribution case shown in Figure 6. That is, temperature at the top face of the plate is Tt = 850 K and
temperature at the bottom face of the plate is Tb = 350 K, and temperature variation from top to bottom is
nonlinear with ambient temperature T0 = 300 K, kb = 6.112 W/mK and kt = 1.775 W/mK in Figure 12.
The response averages are found as MEAN/h = −0.0058 and RMS/h = 0.021. It can be seen that
random deflection responses for linear temperature distribution (Figure 7) and nonlinear temperature
distribution (Figure 12) across the plate thickness are nearly identical. It is clear that the nonlinear
temperature distribution on the random response has no pronounced effect.

5. Conclusion

The transverse vibration of the functionally graded material plates under random excitation is presented.
The first-order shear deformation (FSDT) plate theory is used for the equation of motion. The FGM plates
are assumed as ceramic-metal mixtures, and their mechanical properties vary exponentially through the
thickness. All mechanical properties of the constituents are also considered temperature-dependent. Both
the spectral density method (frequency domain) and Monte Carlo method (time domain) are used for
investigation. It was found that when the input is uniformly distributed random pressure with zero mean
in an isothermal environment, the response is also random with zero mean. Both methods predict the
same average values (RMS and MEAN). It was shown that contribution to the random response is mostly
coming from the first mode. Therefore, a good estimate can be done by considering the fundamental mode
only. Temperature and distribution of temperature also significantly affect the response, particularly the
MEAN response. The effect of the material distribution parameter is investigated. When the FGM plate
becomes metal-rich (n > 1), deflection responses become greater. Influence of the length-to-thickness
ratio is also investigated. It was shown that when the FGM plate is very thick, the RMS response to
acoustic random pressure is very small. The effect of temperature is found only on the mean responses.
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Appendix A

The elements of the stiffness matrix [K ] = [ki j ] are

k11 = A11α
2
m + A66β

2
n , (A-1)

k12 = (A12+ A66)αmβn, (A-2)

k13 = 0, (A-3)

k14 = B11α
2
m + nB66β

2
n , (A-4)

k15 = (B12+ B66)αmβn, (A-5)

k22 = A22β
2
n + A66α

2
m, (A-6)

k23 = 0, (A-7)

k24 = (B12+ B66)αmβn, (A-8)

k25 = B22β
2
n + B66α

2
m, (A-9)

k33 = κ(A55α
2
m + A44β

2
n ), (A-10)

k34 = κA55αm, (A-11)

k35 = κA44βn, (A-12)

k44 = D11α
2
m + D66β

2
n + κA55, (A-13)

k45 = (D12+ D66)αmβn, (A-14)

k55 = D22β
2
n + D66α

2
m + κA44. (A-15)

The elements of the mass matrix [M] = [mi j ] are

m11 = m22 = m33 = I0, (A-16)

m44 = m55 = I2, (A-17)

m14 = m25 = I1. (A-18)

Others are zero.

Appendix B

The coefficients γ1, γ2, ξ1 and ξ2 are defined as

γ1(k, r,m)=
a

4π

{ 1
k+ r +m

((−1)k+r+m
− 1)−

1
k+ r −m

((−1)k+r−m
− 1)

−
1

k− r +m
((−1)k−r+m

− 1)+
1

k+ r +m
((−1)k+r+m

− 1)
}
, (B-1)

γ2(k, r,m)=
a

4π

{
−1

k+ r +m
((−1)k+r+m

− 1)+
1

k+ r −m
((−1)k+r−m

− 1)

−
1

k− r +m
((−1)k−r+m

− 1)+
1

k− r −m
((−1)k−r−m

− 1)
}
, (B-2)



RANDOM VIBRATION OF SHEAR DEFORMABLE FGM PLATES 383

ξ1(l, s, n)=
b

4π

{ 1
l + s+ n

((−1)l+s+n
− 1)−

1
l + s− n

((−1)l+s−n
− 1)

−
1

l − s+ n
((−1)l−s+n

− 1)+
1

l + s+ n
((−1)l+s+n

− 1)
}
, (B-3)

ξ2(l, s, n)=
b

4π

{
−1

l + s+ n
((−1)l+s+n

− 1)+
1

l + s− n
((−1)l+s−n

− 1)

−
1

l − s+ n
((−1)l−s+n

− 1)+
1

l + s+ n
((−1)l+s+n

− 1)
}
. (B-4)
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MECHANICAL BEHAVIOR OF BRICK MASONRY PANELS UNDER UNIAXIAL
COMPRESSION

HACER BILIR ÖZHAN AND ISMAIL HAKKI CAGATAY

Structural design in masonry requires clear understanding of the behavior of the composite unit-mortar
material under various loading conditions. The mechanical characteristics of brick masonry are influ-
enced by the individual properties of the bricks and the mortar. The results of an experimental study
focused on the properties of brick masonry using different combinations of bricks and mortars are pre-
sented in this paper. The strength and the elastic modulus of brick masonry under uniform concentric
vertical loads have been investigated for strong mortar (M:1:3 cement-sand) and weak mortar (M:1:6
cement-sand) arrangements. The failure mechanisms of the infill walls with horizontal coring bricks
have also been examined.

1. Introduction

Masonry walls are widely used in many types of buildings due to their low cost and good sound and
heat insulation properties, as well as the availability of local material and skilled labor. Mathematical
modeling of structures with masonry walls requires understanding of the material properties and the
interaction of the masonry and its constituents. Masonry is typically nonelastic, nonhomogeneous and
anisotropic material and is composed of two materials, stiffer bricks and relatively softer mortar. These
two have quite different mechanical properties. However, under lateral loads, masonry does not behave
elastically even in the range of small deformations. Masonry is very weak in tension since the bond
between the brick and the mortar is frail. Therefore, the main expectation from masonry is its resistance
against vertical (compressive) loading.

During compression of masonry panels constructed with stronger and stiffer bricks, mortar of the bed
joint has a tendency to expand laterally more than the bricks because of lesser stiffness [Atkinson and
Noland 1983]. However, mortar is confined laterally at the brick-mortar interface by the bricks because
of the bond between them. Therefore, shear stresses at the brick-mortar interface result in an internal
state of stress which consists of triaxial compression in mortar and bilateral tension coupled with axial
compression in bricks [McNary and Abrams 1985]. This state of stress initiates vertical splitting cracks
in bricks that lead to the failure of the panels [Drysdale et al. 1994].

Grenley [1969] studied the effect of various mortars on the flexural and compressive strength of
masonry and on the tensile bond strength of crossed brick assembly. His test results showed that, in
general, flexural and tensile bond strengths increased with the strength of brick and the strength of
mortar. The masonry compressive strength also showed a similar trend. The correlation between bond
adhesion and compressive strength of masonry seems to suggest the importance of brick-mortar bond
on masonry compressive strength. However, the increase in bond strength is also accompanied by an

Keywords: brick, brick masonry, mortar, masonry compressive strength, modulus of elasticity.

385

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2014.9-4
http://dx.doi.org/10.2140/jomms.2014.9.385
http://msp.org


386 HACER BILIR ÖZHAN AND ISMAIL HAKKI CAGATAY

increase in mortar compressive strength. Hence, the relative influence of the mortar-brick bond and
mortar compressive strength on the masonry compressive strength is not clear. The compressive strength
of masonry depends on several factors and the thickness of the mortar bed joint is one of the significant
factors influencing masonry strength. Houston and Grimm [1972] showed that the compressive strength
of brick masonry decreases with increase in mortar bed joint thickness for constant height of the brick.
Venkatarama Reddy et al. [2009] investigated the influence of bed joint thickness and elastic properties
of the soil-cement blocks, and the mortar on the strength and behavior of soil-cement block masonry
prisms. The major conclusions of their work are:

(1) Masonry compressive strength is sensitive to the ratio of modulus of block to that of the mortar
(Eb/Em) and masonry compressive strength decreases as the mortar joint thickness is increased for
the case where the ratio of block to mortar modulus is more than 1.

(2) The lateral tensile stresses developed in the masonry unit are sensitive to the Eb/Em ratio and the
Poisson’s ratio of mortar and the masonry unit.

(3) Lateral stresses developed in the masonry unit are more sensitive to the Poisson’s ratio of the mortar
than the Poisson’s ratio of the masonry unit.

Since masonry is an assemblage of bricks and mortar, it is generally believed that the strength and
stiffness of masonry would lie somewhere between that of bricks and mortar. When one component of
masonry, i.e., either bricks or mortar, is substantially weaker and softer, the other is stronger as suggested
by Dayaratnam [1987] and Sarangapani et al. [2002]. Based on an experimental study by Sarangapani
et al. [2002], the soft bricks’ modulus of elasticity (500 MPa) was responsible for the development of
triaxial compression in bricks and axial compression with lateral tension in mortar points of masonry
prism. Sarangapani et al. [2005] conducted a series of tests on masonry prisms constructed with very
soft bricks (modulus of elasticity ∼ 500 MPa) and a combination of different mortar grades. It was
observed that for the soft brick-stiff mortar masonry, the compressive strength of masonry increases
with the increase in bond strength. Using experimental data, Houston and Grimm [1972], Paulay and
Priestley [1992], and Binda et al. [1988] suggested several analytical relations for estimation of strength
and deformation characteristics of masonry, which depend upon the compressive and tensile strengths of
bricks and mortar along with several other factors.

Several experimental and theoretical studies were also carried out on axially loaded masonry walls.
Negro and Verzeletti [1996] conducted a series of tests on 1 to 1 scale reinforced concrete buildings with
and without infill walls. They determined an increase of 1.5 times more load carrying capacity of infill
walls over walls without any filling. Alshebani and Sinha [1999] tested brick wall panels under periodic
axial loading. Different types of loadings vertical and parallel to the joints were applied until failure
occurred. They concluded that the joint separation as well as the fractures in the bricks and in the joints
was due to the applied vertical loading. Gumaste et al. [2007] investigated the mechanical properties
such as the strength and the elasticity modulus of the walls having different brick-mortar combinations
under axial loading.

The compressive strength and the elastic modulus of brick and mortar are the major factors, which
influence the properties of brick masonry wall. Elasticity modulus of masonry wall, which affects the
wall rigidity, is the dominant factor influencing the behavior of masonry wall on the frame systems. The
behavior of brick masonry also depends on the other factors such as interfacial bond strength between
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Figure 1. Stress-strain relationship of the infill walls based on the prism test.

brick and mortar, moisture in the brick at the time of laying, thickness of mortar joints, arrangement of
bricks, workmanship. Modulus of elasticity changes with the direction (horizontal, vertical and diagonal)
because of non-homogeneity of the wall. Elasticity modulus of masonry wall is also determined by the
compressive strength of the material, the material height, the compressive strength of the mortar and the
layer of the mortar line. The computation of modulus of elasticity for infill walls is given by

Em =
σ0.33− σ0.05

ε0.33− ε0.05
, (1)

where ε0.33 is the strain corresponding to the stress (σ0.33), which is the compressive prism strength of
33% of masonry, and ε0.05 is the strain corresponding to the stress (σ0.05), which is the compressive prism
strength of 5% of masonry. A representation of this equation, following the American Concrete Institute
[ACI 1999], is shown in Figure 1.

The elasticity modulus estimated in this study was compared and verified with the moduli available
in the literature as presented in Table 1.

The aim of this study is to investigate the uniaxial monotonic compressive stress-strain behavior and
other characteristics of bricks, (horizontal coring bricks), two types of mortar and unreinforced masonry
panels (brick infill panel). In the comprehensive experimental study, tests were performed on 6 types
of mortar cube specimens (with two different strength values as weak and strong), two different grades
and 6 specimens of masonry panels (combination of one brick and two mortar types). Based on the
experimental results and the observations, stress strain relationship curves were developed for mortars,

Source Equation

[FEMA 1998] E = 550 fm

[Paulay and Priestley 1992] E = 700 fm

Canadian Standards Association [CSA 2004] E = 850 fm

American Concrete Institute [ACI 1999] Equation (1), Figure 1
Turkish Earthquake Code [TEC 2007] Average 1000 MPa

Table 1. Elasticity moduli from the literature.
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horizontal coring bricks panels. Finally, as explained in the following section, elasticity moduli obtained
from the experimental results were compared to the values reported in the literature.

2. Experimental program and discussions

In the present experimental study, several tests were carried out in order to evaluate the uniaxial compres-
sive stress-strain relationship of masonry panels constructed with different combinations of mortar grades.
Different types of mortar and bricks were utilized in the study. Masonry panels were subjected to mono-
tonically incremental strain controlled axial loading. The load was applied vertically by a 550 kN load
and ±10 mm displacement capacity hydraulic actuator in Hi-Tech Magnus loading frame (see Figure 2).
Also, mortar cubes were tested in a 2,500 kN ELE Press testing machine under stress controlled loading.
The specimens were built on 25 mm thick steel plates and cured under damp condition for 28 days and
covered with wet jute sacks to maintain damp condition. The experimental study included total of 6
specimens of masonry panels with two different grades mortar.

2.1. Mortar testing. Masonry panels were tested with two different grades of mortar (cement/sand by
volume) namely M:1:6 cement-sand mortar (weak), M:1:3 cement-sand mortar (strong). Since the me-
chanical properties of the mortar does influence the infill panel strength, mortar cubes of 150 mm size
were tested after 28 days of casting to obtain their compressive stress-strain relationship. Determinations
of compressive strength of mortar cubes, as as suggested by Turkish standards [TS 24 1985], are given
in Table 2.

Load distance

Test machine

Hydraulic press

Load distributers

Masonry wall

Transducer

Upper plate

Bottom plate

Load cell

Figure 2. Test set-up and instrumentation.

mortar compressive strength (MPa) modulus of elasticity (MPa) specimen dimensions (mm)

M:1:3 22.53 112.64 150× 150× 150
M:1:6 8.89 79.95 150× 150× 150

Table 2. Mechanical properties of mortars.
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Figure 3. Appearance cracking of weak mortar cubes after loading (Failure modes of
mortar cubes).

Figure 4. Appearance of failure modes of strong mortar cubes after the loading.

The appearances of fracturing of mortar cubes, after loading, for weak and strong samples are depicted
in Figures 3 and 4, respectively.

The test results for the stress strain relationship are plotted in Figure 5. The dots in Figure 5 represent
the test results. The best fitting curves obtained from statistical analyses are represented by the solid
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Figure 5. Comparison of compressive stress-strain curves for strong mortar cubes with
weak mortar cubes.
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Figure 6. Horizontal coring brick.

lines. Table 2 lists the mechanical properties for each type as determined.

2.2. Infill wall testing. Horizontal coring bricks shown in Figure 6 were used in constructing masonry
panels. Their average dimension (length × width × height) is 190× 190× 135 mm. Besides, bricks’
average compressive strength was determined to be 5.2 MPa, through uniaxial compressive strength tests.
Horizontal coring brick is used in experimental study because it is one of the widely used types in building
masonry panels in the region.

The test set-up employed in the study is given in Figure 2. The load cell and the transducers were
calibrated before they were used in the tests. The digital readings of uniaxial monotonic compressive
load and corresponding vertical displacements were recorded through electronic data acquisition system
during testing of each specimen.

The main focus of this study was to investigate the behavior of the brick infill wall, under vertical
concentric uniform load, as well as to estimate the modulus of elasticity. The results are graphically
illustrated in Figures 7 and 8.
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brick masonry panel with M:1:3 (strong) mortar.
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Figure 8. Compressive stress-strain curves (left) and load displacement curve (right) for
brick masonry panel with M:1:6 (weak) mortar.

The results show that there are no substantial differences between PG1, PG2 and PG3 panels. It
was observed that while PG1 and PG2 samples endured similar loading capacities, PG3 attained higher
loading levels and failed after corresponding greater displacement values. The differences in cracking
styles among these samples which were made up of similar strong mortars were believed to be because of
the fracturing mechanisms involved (Figure 9). The M:1:3 cement-sand mortar panels generally showed
better strength which was greater than the M:1:6 cement-sand mortar panels. When the mortar became
considerably stronger as in the case of M:1:3, the improvement in strength of brick masonry panel was
clearly achieved. The strength of masonry values ranged from 0.18 MPa to 0.38 MPa. Once again the
best fitting curves obtained from statistical analyses are plotted in Figures 7 and 8.

Various failure patterns were observed in the test conducted on brick masonry walls. The first sample
was a 1 m× 1 m panel (PG1) made up of horizontal coring bricks. The mortar rate employed was 1:3.
As a result, in parallel with the load applied, symmetrical cracks on the center and on the corners of
the panel were observed. These cracks, for all the panels tested, are shown in Figure 9. In the case of
masonry walls, mortar in the vertical joint can cause splitting failure in the brick below, since the stress
in the mortar is much higher because of its greater stiffness, the masonry wall is likely to split vertically
in the middle of the thickness. The cracks initiated at the loading level of approximately 10 t on the PG1,
PG2 and PG3 infill wall panels made up of strong mortar. The ultimate fracturing occurred around 20 t
to 30 t. Similarly initial fracturing in PZ1, PZ2 and PZ3 infill wall panels began in the mid sections in
the form of tiny cracks at 6 to 6.5 tons loading levels. As a result of this mechanism, which is thought
to be due to the lower mortar strengths in comparison to the other panels, bending cracks on the face
of the panels (around the mid sections) as shown in Figure 9 were observed. Test results showed that,
in general, flexural and tensile bond strengths increased with the strength of brick and the strength of
mortar. That’s why, the masonry compressive strength also showed a similar trend.

It was observed that the flexural cracks started to appear in a direction perpendicular to the infill wall
panel axis at a loading level of about 50% of the maximum load on the tensile side of the specimens. The
existing cracks propagated and new cracks were observed along the tensile side of the panel specimens
with the increase of loading level. Beyond the maximum load, major cracks appeared on the tensile side
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Sample Masonry panel with strong mortar Sample Masonry panel with weak mortar

PG1 PZ1

PG2 PZ2

PG3 PZ3

Figure 9. Cracks on the brick masonry panel with M:1.3 (strong) and M:1:6 (weak)
mortars after loading.

and the masonry infill wall crushed on the compression side at or close to mid-height of the masonry
infill wall panel. Also, significant drop was measured in the loading resistance. Failure occurred in the
most heavily compressed region for all the masonry infill wall panels. Cracking mechanisms depicted
in Figure 9 are not quite inconsistent. They are assumed to be due to varying loading durations, which
aimed to better observe the cracking behaviors, and due to the combined effects of several other factors
such as non-homogeneity of the panels.

Table 3 tabulates the values of elastic moduli of all panels with M:1:6 and M:1:3 mortars. From the
comparison of the values obtained for panels using horizontal coring bricks, it was observed that the



MECHANICAL BEHAVIOR OF BRICK MASONRY PANELS UNDER UNIAXIAL COMPRESSION 393

Methods Panels: PG1 PG2 PG3 PZ1 PZ2 PZ3

Experiment Result 490 499.52 453.33 202.05 190.76 268.24
TEC 1000 1000 1000 1000 1000 1000
Fema 126 128.21 207.78 115.77 115.77 104
Paulay and Priestly 160 163.18 264.44 147.33 133.53 132
ACI 490 499.52 453.33 202.05 190.76 268.24
CSA 194 198.14 321.11 179 162.14 161

Table 3. Modulus of elasticity, E (Mpa) results of all panels. For the abbreviations TEC,
ACI and CSA, see Table 1.

elastic moduli of PG1, PG2 and PG3 panels (with M:1:3) were in a very close range. The moduli of
elasticity of PZ1, PZ2 and PZ3 panels are much lower than the others, PGs.

In order to see the effect of mortar type on the infill wall strength, three wall panels, having the same
dimensions and properties, for each type were prepared and tested. The tested panels did have compatible
results within each category. Strong infill panels, in parallel to the increase in mortar strength, attained
higher loading and deformation values. Whereas the weaker ones, with decrease in mortar strength,
could achieve lower loading and deformation values. Although the mortar strength is not the single
parameter governing the panel strength, its influence cannot be ignored. The results obtained showed
perfect correlation with similar studies reported in the literature by Grenley [1969], Dayaratnam [1987],
Sarangapani et al. [2002], Gumaste et al. [2007] and Venkatarama Reddy et al. [2009].

The moduli of elasticity obtained, as shown in Table 3, were exactly same as the value proposed by
the American Concrete Institute, whereas the other standard values from the literature were below the
experimental results obtained.

3. Conclusions

In this research, tests were performed on 6 types of mortar cube specimens (with two different strength
values as weak and strong), two different grades mortar and 6 specimens of masonry panels (combination
of one brick and two mortar types). Based on the experimental results, modulus of elasticity of masonry
was found to vary between 190 MPa and 500 MPa. This variation, as expected, clearly shows that the
mechanical behavior of masonry infill panels depends on its constituents, mainly mortar type. Besides,
the compressive strength of masonry was observed to be increasing with the compressive strength of the
bricks and the mortar. Specimens with 1:6 cement-sand mortar failed due to the loss of the bond between
the brick and the mortar. The results show that there are no substantial differences between PG1, PG2
and PG3 panels. The moduli of elasticity of PZ1, PZ2 and PZ3 panels are much lower than the others,
PGs. The M:1:3 cement-sand mortar panels generally showed better strength which was greater than the
M:1:6 cement-sand mortar panels. Samples showed failure due to splitting of the bricks. The first crack
formation occurred to PGs when the loading level reached 10 tons during the tests. Further experimental
verification may be required for the extension of these results for different kind of bricks and mortar of
different grades. It was observed that the flexural cracks started to appear in a direction perpendicular to
the infill wall panel axis at a loading level of about 50% of the maximum load on the tensile side of the
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specimens. The existing cracks propagated and new cracks were observed along the tensile side of the
panel specimens with the increase of loading level. Beyond the maximum load, major cracks appeared
on the tensile side and the masonry infill wall crushed on the compression side at or close to mid-height
of the masonry infill wall panel. Stress-strain curves of masonry constructed with bricks and mortar
of comparable strengths and stiffness was observed to lie below the stress-strain curves of both bricks
and mortar, which is not in accordance with the generally accepted compressive behaviour of masonry.
Therefore, more experimental study is required with different combinations of brick types and mortar
grades to develop a generalized model for compressive behavior and elastic moduli of masonry.

4. Notation

The following symbols are used in this paper:

PG1 Infill wall panels 1 made up of strong mortar (1:3)
PG2 Infill wall panels 2 made up of strong mortar (1:3)
PG3 Infill wall panels 3 made up of strong mortar (1:3)
PZ1 Infill wall panels 1 made up of weak mortar (1:6)
PZ2 Infill wall panels 2 made up of weak mortar (1:6)
PZ3 Infill wall panels 3 made up of weak mortar (1:6)
σ Compressive stress
ε Strain
σmr Compressive stress for strong mortar cubes
εmr The strain for strong mortar cubes
fm Compressive prism strength of masonry
Em modulus of elasticity of masonry in compression
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COLLAPSE MECHANISMS OF METALLIC SANDWICH STRUCTURES WITH
ALUMINUM FOAM-FILLED CORRUGATED CORES

BIN HAN, LEI L. YAN, BO YU, QIAN C. ZHANG, CHANG Q. CHEN AND TIAN J. LU

The physical mechanisms underlying the beneficial effect of filling aluminum foams into the interstices
of corrugated plates made of stainless steel were explored with finite element (FE) simulations. Relative
to unfilled corrugated plates of equal mass, this effect was assessed on the basis of elevated peak stress
and enhanced energy absorption under quasistatic out-of-plane compression. Upon validating the FE
predictions against existing measurements, the influence of key geometrical and material parameters on
the compressive response of foam-filled corrugated plates was investigated. Different from the tradi-
tional buckling modes of empty corrugations, four new buckling modes were identified for foam-filled
corrugations. Based upon these deformation modes of post-buckling, collapse mechanism maps were
constructed. Due to the additional resistance provided by foam filling against buckling of the corrugated
plate and the strengthening of foam insertions due to complex stressing, both the load bearing capacity
and energy absorption of foam-filled sandwiches were greatly enhanced.

1. Introduction

Although not the best structural material, metallic and polymer foams with stochastic cellular topologies
have been widely exploited for energy absorption, heat dissipation, vibration damping and other func-
tional applications. In recent years, there is also a growing interest in exploiting the stochastic foams
as a filling material to enhance simultaneously the load-bearing and energy absorption capabilities of
traditional lightweight structures, such as hollow tubes and sandwich constructions having flow-through,
periodic lattice truss cores [Vaziri et al. 2006; Mamalis et al. 2008; Kazemahvazi and Zenkert 2009;
Kazemahvazi et al. 2009; Nia and Sadeghi 2010; Ostos et al. 2012; Zhang et al. 2013; Yan et al. 2013].
From the viewpoint of energy absorption, in the field of civil engineering (structural mechanics in par-
ticular), structures that deform plastically under static or dynamic compression have been characterized
into two main types [Calladine and English 1984; Tam and Calladine 1991]. A type I structure (radially
loaded arches and rings, say) exhibits a plateau-like stress versus strain curve and is able to absorb large
amount of energy at a constant stress level, thus a preferable candidate for energy absorption. In contrast,
the stress of a type II structure (axially loaded columns, for example) drops sharply after the peak value
is reached, thus less attractive for energy absorption applications because large forces are transferred
while limited amount of energy is absorbed. Under quasistatic out-of-plane compression, it has been
established that inserting close-celled aluminum foams into the interstices of a metallic corrugate-cored
sandwich panel increases significantly both its peak stress and energy absorption [Yan et al. 2013]. Fur-
ther, with foam insertion, the initially type II energy absorbing structure (i.e., empty corrugated cores)

Keywords: foam-filled corrugated core, finite element method, buckling, collapse mechanism.
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was transformed into a type I energy absorbing structure, enabling high crushing strength and high energy
absorption per unit mass.

1.1. Previous research on foam-filled sandwich constructions. Before discussing the effect of alu-
minum foam filling upon the mechanical properties of corrugated plates, consider first the case of com-
bining foam with various types of pin-reinforcement for sandwich constructions. The effect of titanium
and carbon fiber pin-reinforcements upon the out-of-plane compressive strength of polymethacrylimide
foam-cored sandwich panels was measured both quasistatically and dynamically [Cartié and Fleck 2003].
It was found that the compressive strength was governed by elastic buckling of the pins, with the foam
core behaving as an elastic Winkler foundation in supporting the pins. As a result, the pin-reinforced
core had a strength and energy absorption capacity in excess of the combined individual contributions
from the foam and unsupported pins. Subsequently, Marasco et al. [2006] measured the out-of-plane
properties of two different Z -pinned sandwich panels, both filled with Rohacell foam, under quasistatic
tension, shear, or compression. Compared with equivalent honeycomb cores, the foam supported Z -
pin cores exhibited higher specific stiffness but lower strength. Similar experimental measurements for
Z -pinned composite sandwich panels were carried out by Nanayakkara et al. [2011]. The collapse of X -
core sandwich panels consisting of a pin reinforced polymer foam core and carbon fiber face sheets were
assessed experimentally under three-point bending [Rice et al. 2006]. Compared with other sandwich
cores such as aluminum honeycombs and aluminum foams, it was found that such an X -core led to
higher bending stiffness and strength. Liu et al. [2008] developed a comprehensive analytical model to
characterize the collapse behavior of pin-reinforced foam sandwich beams under 3-point bending and
verified the model predictions against finite element (FE) simulation results. It was demonstrated that
sandwich beams with pin-reinforced polymer foam cores were structurally more efficient than foam-
cored sandwich beams without pin reinforcements.

Consider next the influence of foam filling upon the mechanical performance of sandwich panels
having other core types such as corrugated plates, honeycombs, egg boxes, and 3D lattice trusses. The
performance of a hierarchical all-composite corrugated sandwich core filled with PMI-foam (Rohacell)
was investigated analytically and experimentally [Kazemahvazi and Zenkert 2009; Kazemahvazi et al.
2009]. Dependent upon the geometrical dimensions and material properties of the sandwich, a multi-
tude of failure modes were identified. It was found that the weight specific strength of a well-designed
hierarchical structure could be 7 times higher than that of its monolithic counterpart. The enhancement
in strength was attributed mainly to the increased buckling resistance of the hierarchical core members
due to foam support, especially for core configurations with low overall density. As the core density
was increased, the monolithic core members became stockier and more resistant to buckling and thus the
benefits of the hierarchical structure were gradually lost.

Nia and Sadeghi [2010] investigated experimentally the effects of foam filling on the compressive
response of hexagonal cell aluminum honeycombs under axial compression and found that the mean
crushing strength and energy absorption were enhanced up to 300%. Subsequently, Mahmoudabadi and
Sadighi [2011] developed a theoretical model to determine the mean crushing strength of foam-filled
honeycombs under both quasistatic and dynamic compression, whilst Burlayenko and Sadowski [2010]
predicted the effective elastic properties of such foam-filled honeycombs using FE analysis.



COLLAPSE MECHANISMS OF SANDWICH STRUCTURES WITH FOAM-FILLED CORRUGATED CORES 399

Based upon FE simulations, Vaziri et al. [2006] assessed the mechanical properties of metallic sand-
wich plates having corrugated cores and square honeycomb cores, both filled with polymer foam (Diviny-
cell). Whilst the foam-filled cores showed greater out-of-plane shear strength, they were not comparable
to the equivalent unfilled cores in terms of compression strength; further, under quasistatic punch loads
and impulsive loads, the foam-filled cores only exhibited comparable structural performance in resisting
deformation to the unfilled ones with equal mass. Through hybridization of glass and carbon fibers as
well as foam filling, Zhang et al. [2013] attempted to improve the bending strength and energy absorption
of corrugated sandwich composite structures. Due to the better support of the web by the filling foam,
the peak load was increased, delaying debonding of the core and face sheets, and thus core failure.
However, the improvement in crashworthiness was not significant as the foam used was relatively weak
(low density).

Yoo et al. [2010] tested foam-filled composite egg-box sandwich panels under compression and found
that this construction showed good energy absorption capacity with stable collapse response. Further,
the filling with low density foams led to the best energy absorption performance of the sandwich. An
integrated orthogrid stiffened syntactic foam core was investigated with both low velocity impact tests and
compression after impact (CAI) tests [Li and Muthyala 2008]. The integrated core exhibited enhanced
impact energy absorption and positive composite action with higher CAI strength.

Recently, with the goal of combining the desirable attributes of stochastic foams and lattice truss struc-
tures, Ostos et al. [2012] inserted polyurethane foams with submillimeter pores into the centimeter-scale
interstices of low-density polymer lattices and assessed the concept in terms of quasistatic compressive
response. It was demonstrated that the filling of even a weak foam could double the crushing strength
of the lattice. Based upon X-ray computed tomography and FE analysis, the elevation was attributed to
the lateral support of the strut members against buckling provided by the surrounding foam.

Existing studies regarding the effects of foam filling upon the mechanical performance of sandwich
constructions focused mainly on polymer foams. Further, the unfilled sandwiches considered were con-
structed mainly with nonmetallic materials such as polymer or fiber-reinforced composites. One notable
exception was the work of Yan et al. [2013] who inserted close-celled aluminum foams into the interstices
of corrugated sandwich panels made of stainless steel and assessed the performance of the sandwich under
quasistatic compression. It was demonstrated that, relative to empty corrugated sandwiches, foam filling
could increase significantly not only the crushing strength but also the specific energy absorption. It was
further shown that the core web was considerably stabilized by the filling foam against lateral deflection.
In particular, the elasto-plastic buckling wavelength was significantly reduced and the transition from
axial deformation to bending of the core web was much delayed, both contributing to enhanced strength
and energy adsorption. As a result, the post-yielding response of the foam-filled sandwich was altered in
such a way that crushing occurred at a nearly constant stress, consistent with the finding of Ostos et al.
[2012] for polymer lattice structures filled with polymer foams.

1.2. Scope of present study. Built upon the mainly experimental work of Yan et al. [2013], the present
investigation aimed to model numerically the quasistatic out-of-plane compressive response of metallic
corrugated sandwich panels filled with close-celled aluminum foams, and then use the numerical mod-
els to explore the underlying physical mechanisms and construct the collapse mechanism maps. After
specifying the problem in Section 2, FE models for both empty and foam-filled corrugated plates were
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Figure 1. Schematic representation of foam-filled corrugated sandwich plate (top left),
unit cell (top right), typical as-fabricated sandwich (lower left), and interface between
foam and core web showing good bonding condition (lower right).

constructed in Section 3, and the validity of FE model predictions was checked against experimental
measurements. In Section 4, the effects of key geometrical and material parameters were systematically
investigated and the physical mechanisms underlying the strengthening effect of foam filling explored.
Further, based upon the different deformation modes of post-buckling identified, collapse mechanism
maps were constructed. Finally, in Section 5, the strength and energy absorption capabilities of the
foam-filled corrugated plates were compared with competing lightweight structures.

2. Specification of foam-filled sandwich plates

The foam-filled corrugated sandwich plate and the corresponding unit cell were shown schematically in
Figure 1 (top left and right, respectively). The sandwich structure was characterized by inclination angle
θ , core height H , face sheet thickness t f , width W , strut (core web) thickness t , length L , and foam
relative density ρ̄ f (nondimensional) or density ρ f (dimensional). For convenience, let the density ratio
ρ̄ be defined as the ratio of the average density ρc of the foam-filled corrugated core to the density ρs of
the strut material as

ρ̄ ≡ ρc/ρs = λ+ (1− λ)ρ f /ρs, (1)

where λ denoted the volume fraction of the core occupied by the solid struts. To calculate λ, it was
assumed that an overlap region was formed at the joint of two inclined struts, as illustrated in Figure 1 (top
right). Accordingly, the height and width of the half unit cell were H = L sin θ and B = L cos θ , whilst
the width of the overlap region was f = t/ sin θ . The overlap area may thence be expressed as

Aoverlap =
t2

2 sin 2θ
.
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With the area occupied by the overlap accounted for, one arrived at

λ=
t L − Aoverlap

H B
=

t/L
sin 2θ

(
2−

t/L
sin 2θ

)
. (2)

Previously, by considering the area occupied by each strut separately (i.e., ignoring the overlap of
Figure 1, top right), Vaziri et al. [2006] obtained an alternative expression as

λ=
t/L

t/L + 1
2 sin 2θ

. (3)

For illustration, consider the case of θ = 45◦ and ρ f = 648 kg/m3. The two predictions were nearly
identical for small slenderness (t/L < 0.05), but diverged at larger values (t/L > 0.05). Further, (2)
gave predictions closer to those measured experimentally (mass contribution of epoxy glue ignored; see
discussion below). Henceforth, (2) together with (1) were employed in the present study to calculate ρc

and ρ̄.
The fabrication procedures for all-metallic corrugate-cored sandwich plates filled with aluminum

foams were straightforward. Corrugated plates were firstly fabricated via a folding operation. Empty
(unfilled) corrugated sandwich plates were then assembled by laser welding the face sheets to the folded
plates. Subsequently, triangular foam prisms cut by electrodischarge machining (EDM) from close-celled
aluminum foam sheet were inserted into the interstices of the empty sandwich and fixed using epoxy glue.
As impaired bonding condition between the foam and the face sheets as well as the folded plates may
reduce the mechanical performance of the foam-filled sandwiches, the interfaces were treated carefully
to minimize the clearance before epoxy glue was applied to fill the gaps.

In the present study, both the face sheets and the corrugated plates were made of 304 stainless steel
with density ρs = 7900 kg/m3. The aluminum foam with closed cells was fabricated via the foaming
route, similar to the commercial Alporas foam that had been extensively studied. Aluminum foams with
two different relative densities were used, called here as foam I and foam II. Foam I had a relatively high
density of ρ f = 648 kg/m3 (porosity 0.76) whilst foam II had a relatively low density of ρ f = 324 kg/m3

(porosity 0.88).
Three kinds of empty sandwich plates having different strut thicknesses (t = 0.41 mm, 0.82 mm and

1.42 mm), with the remaining morphological parameters fixed at θ = 45◦, H = 17 mm, t f = 1.42 mm
and W = 20 mm, were fabricated. Correspondingly, foam-filled sandwiches using both foam I and
foam II were fabricated. A typical foam-filled sandwich plate was shown in Figure 1 (bottom left). The
interface between the foam and the core web was highlighted in Figure 1 (bottom right), indicating that
good bonding condition had been achieved. Both the empty and foam-filled sandwich plates were tested
under out-of-plane (direction-3 in Figure 1, top left) compression, with constant displacement loading
rate of 10−4 s−1 (corresponding to a loading speed of 0.12 mm/min) at room temperature. The measured
results were used later to compare with analytical predictions for the compressive strength of foam-filled
sandwiches and to validate FE simulations. More details of the experiments were referred to Yan et al.
[2013], who also provided preliminary FE simulation results.
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3. Finite element modeling

3.1. Constitutive model and material specifications. The parent material (as-brazed 304 stainless steel)
of the core webs and the face sheets was modeled as an isotropic and homogeneous elastic-plastic solid of
elastic modulus Es = 210 GPa, Poison ratio ν = 0.3, yielding stress σY = 210 MPa, and linear hardening
with tangent modulus Et ≡ dσ/dε ≈ 2.1 GPa. The classical theory of flow plasticity based on the
von Mises yield surface and isotropic hardening was applied, whilst the quasistatic tensile stress versus
strain curve of 304 stainless steel was taken directly from [Côté et al. 2006]. The steel was assumed
sufficiently ductile to sustain large strains without fracture, as confirmed by experiments.

The isotropic phenomenological constitutive model of Deshpande and Fleck [2000] for metallic foams
was employed to model the aluminum foam insertions. With isotropic hardening assumed, the yield
surface of the foam was defined as

σ̂ − Y = 0 (4)

where Y represented the size of the yield ellipse, and σ̂ was the equivalent stress given by

σ̂ 2
≡

1
1+ (β/3)2

[σ 2
e +β

2σ 2
m], (5)

Y = σe

√
1+

(
β

3

)2
. (6)

Here, σe =
√

3si j si j/2 was the von Mises equivalent stress, σm ≡ σkk/3 was the mean stress, si j was
the deviatoric stress, whilst β was a material parameter representing the ratio of deviatoric strength to
hydrostatic strength. The normalization factor on the right hand side of (5) ensured that σ̂ was equal
to the stress in a uniaxial tension or compression test. With the normality of plastic flow assumed, the
“plastic Poisson’s ratio” νp =−ε̇

p
22/ε̇

p
11 for uniaxial compression in direction 1 was given by

νp =
1/2− (β/3)2

1+ (β/3)2
, (7)

from which

β =
3
√

2

√
1− 2νp

1+ νp
. (8)

Figure 2 presented the experimentally measured uniaxial compressive stress versus strain curves of
foam I (porosity 0.76) and foam II (porosity 0.88). For foam I, the plastic Poisson ratio νp was measured
to be 0.21, thus β = 1.47. Other parameters were also measured for foam I, as: E f = 2.61 GPa, ν f = 0.3,
and σplateau ≈ 14.5 MPa. For foam II, νp ≈ 0 (and hence β ≈ 2.12), E f = 157 MPa, ν f = 0.3, and
σplateau ≈ 3.0 MPa. Note that, due to alloying, foam I exhibited somewhat brittleness as a result of
successive fracturing of cell membranes. This led to the wiggling of the stress versus strain curve once
initial yielding was initiated, yet a long plateau regime typical for aluminum foams was still present
(Figure 2). For the purpose of FE simulation with the commercial code Abaqus, the stress versus strain
curve of foam I was smoothed as illustrated in Figure 2.

For both foam I and foam II, the average cell size was approximately 2.5 mm, allowing at least seven
cells along each leading dimension of the foam-filled sandwich core. Consequently, it was considered
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Figure 2. Compressive stress versus strain curve of close-celled aluminum foams mea-
sured at strain rate of 10−4 s−1.

reasonable to use the phenomenological constitutive model to describe the macroscopic mechanical prop-
erties of the filling foam.

3.2. Finite element model. Experimentally it was observed that, at large nominal compressive strains
(direction 3; see Figure 1, top right), partial extrusion of the foam insertions occurred along direction-1
and the foam-filled sandwich plate exhibited slight transverse buckling along the same direction. Con-
sequently, three-dimensional (3D) FE models were developed using ABAQUS/Explicit (NLGEOM=YES
in ABAQUS notation), with eight-node linear brick elements having reduced integration (C3D8R) adopted.
Whilst the element size was set at about H/50 for the whole model, it was about t/6 for the core web
along the thickness direction. It was established that the accuracy of the calculations was not improved
appreciably with additional mesh refinements.

Geometrical imperfections were inevitable in corrugate-cored sandwich structures. However, for the
present foam-filled sandwich plates, it was found that good agreement between experimentally measured
uniaxial compressive stress versus strain curves and those predicted using FE simulations was achieved
without considering any initial geometrical imperfections (Figure 3). Therefore the influence of geomet-
rical imperfections was neglected in the present study.

As previously mentioned, to fabricate the sandwich plates, a thin film of epoxy glue was used to bond
the foam prisms to the core webs and face sheets. To investigate the influence of interfacial bonding
between stainless steel and aluminum foam on peak load and energy absorption, Yan et al. [2013] carried
out FE simulations for foam-filled sandwich panel having both perfectly bonded and unbonded interfaces.
It was demonstrated that the simulated results with perfect bonding matched better with experimental
measurements, suggesting that the use of epoxy glue provided good bonding between aluminum foam
and stainless steel (see Figure 1, bottom right). Although debonding was indeed observed when large
plastic deformation occurred, all subsequent FE simulations were based on perfect bonded interfaces as
the present mechanism analysis aimed to focus on the early stage of deformation (compressive strain not
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Figure 3. Comparison of FE simulated nominal compressive stress versus nominal
compressive strain curves with those measured: specimen 1 (t/L = 0.059) (top left);
specimen 2 (t/L = 0.034) (top right); specimen 3 (t/L = 0.017) (bottom). Both inserted
photo and FE simulation of deformation mode correspond to εn = 0.30. Curve A denoted
compressive response of foam-filled core, whilst curve B denoted the corresponding
empty core, with inclination angle fixed at θ = 45◦ and foam I used as insertions.

exceeding 0.30). In the FE model, the perfectly bonded interfaces between foam prisms and struts (as
well as face sheets) were modeled using the Tie option provided in ABAQUS.

To simplify the calculations, only half of the unit cell was employed as the representative volume
element (RVE), with symmetric boundary conditions applied on the two edge-planes parallel to direction-
3, as shown in Figure 4 (left). Both the top and bottom face sheets were set as rigid surfaces. The bottom
face was fixed while the top face was displaced in direction-3 only, with a constant loading rate of 1.0 s−1.
The loading rate was sufficiently low to ensure that the simulated crushing response was quasistatic. The
absence of significant oscillations in the resulting load versus deflection curves and the small kinetic
energy acquired by the sandwich core (less than 5% of the strain energy) confirmed the validity of the
approach, as suggested in the ABAQUS documentation [DSSC 2007]. Further, the lack of symmetry
about the centroid of either the empty or foam-filled core was sufficient to cause a preferential buckling
direction of the sandwich. Finally, as shown in Figure 4 (right), additional calculations with more unit
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Half cell

One cell

Whole model

Figure 4. FE model (left): half cell and one cell with symmetric edges, as well as
whole model with free edges (just like the specimen shown in Figure 1, bottom left). On
right: influence of cell number upon simulated compressive response of a foam-filled
corrugated sandwich with t/L = 0.0341, W/H = 1, θ = 45◦, and foam I as the fillers.

t/L
foam I-filled core Empty corrugated core

Test (MPa) FE (MPa) Test (MPa) FE (MPa) Theory† (MPa)

0.017 23.02 23.60 1.04 3.56 3.69
0.034 32.20 31.26 5.94 8.02 7.37
0.059 41.61 41.07 14.38 14.94 13.85

Table 1. Comparison of FE predictions with test results of compressive strength for
both empty and foam I-filled cores with θ = 45◦ and varying core web slenderness
ratios. †Analytical prediction for buckling of empty corrugated core was outlined in the
Appendix.

cells were performed, giving nearly identical results as those obtained by using the RVE model. Thus,
in all subsequent FE calculations, the half cell model with symmetric edges was employed as the RVE.

3.3. Validation against experimental measurement. Experimental measurements under quasistatic out-
of-plane compression were carried out following Yan et al. [2013]. Table 1 compared the FE simulation
results with experimental measurements for the compressive strength (peak compressive stress) of both
empty and foam I-filled corrugated cores, with the inclination angle fixed at θ = 45◦ and the strut
slenderness ratio t/L varied as 0.059, 0.034 and 0.017 (i.e., specimen 1, specimen 2 and specimen 3 in
Figure 3). The corresponding stress versus strain curves were presented in Figure 3, together with the
FE simulated and experimentally measured deformation modes of the foam-filled core at εn = 0.30.

Existing studies [Côté et al. 2006; Yan et al. 2013] suggested that the collapse of empty corrugated
plates under out-of-plane compression was governed by Euler buckling for thin plates and global plastic
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buckling for thick plates. In contrast, the foam-filled corrugated plates deformed by forming more plas-
tic hinges and exhibited no obvious softening after the peak stress was reached (Figure 3), increasing
significantly its specific strength and energy absorption, as previously mentioned by Yan et al. [2013].

For the peak compressive stress, the results of Table 1 demonstrated that, overall, good agreement was
achieved between FE simulation and measurement. In particular, the errors of the peak stress between FE
simulation and measurement for foam-filled corrugated cores were only 1.3%∼ 2.9%. There was also
good agreement between FE simulated and experimentally measured stress versus strain curves (Figure 3).
Further, the deformation and collapsing modes of the foam-filled cores were accurately captured by the
FE simulation. The results shown above served to confirm the fidelity of the FE simulations for the foam-
filled corrugated cores. As geometrical imperfections were neglected in the present FE modeling, the
results of Table 1 and Figure 3 also indicated that the compressive properties of foam-filled corrugated
cores were insensitive to the presence of geometrical imperfections.

For the empty corrugated cores, however, the discrepancy between simulation and measurement in-
creased as the core web thickness was reduced; see Table 1. This was understandable, as the compressive
properties of empty corrugated cores were sensitive to the presence of geometrical imperfections in
particular when the core web was relatively thin. As previously mentioned, the present FE simulations
ignored the effects of geometrical imperfections whilst, in reality, such imperfections were inevitable
during the fabrication of the corrugated core.

Under the assumption that the core webs were slender, its out-of-plane compressive strength may
be analytically predicted, as demonstrated in the Appendix. For the present empty corrugated cores
considered, the analytically predicted compressive strength was listed in Table 1. Whilst the analytical
prediction overestimated the experimentally measured compressive strength, it agreed quite well with that
calculated numerically. This was attributed to the fact that both the theory and FE simulation ignored
the effects of geometrical imperfections.

Finally, it should be mentioned that the present FE simulations were carried out up to the nominal
compressive strain of 0.30, beyond which the discrepancy between the simulation and the experiment
notably increased. This was because that, at large strains, the large rotation of the plastic hinges caused
foam/strut interfacial debonding and the foam insertions began to be squeezed out (along direction-1) of
the interstices of the corrugated core.

4. Results and discussion

In this section, using the experimentally validated FE methodology, we carried out a systematic study
over a wide range of corrugation configurations, characterized by 0.005≤ t/L ≤ 0.3, 35◦ ≤ θ ≤ 65◦, and
W/H = 1. For each configuration, three different kinds of sandwich panels having foam I-filled, foam II-
filled, and empty corrugated cores were considered. The aim was to explore in detail the physical mecha-
nisms underlying the strengthening effect of foam insertions and construct the collapse mechanisms map
for the foam-filled cores.

4.1. Strengthening effects of foam insertions.

4.1.1. Crushing response and strengthening mechanisms. Details concerning the FE calculated com-
pressive response of a typical foam-filled corrugated core (specimen 2), with inclination angle θ = 45◦,
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Figure 5. Finite element simulation results: nominal compressive stress versus nom-
inal compressive strain curves (left) and energy absorbed by foam-filled core and its
constituents plotted as functions of nominal compressive strain (right), with θ = 45◦,
t/L = 0.034 and foam I insertions.

slenderness ratio t/L = 0.034 and foam I insertions, were presented in Figure 5, which had all the
common features of foam-filled cores under quasistatic out-of-plane compression.

Figure 5 (left) presented the nominal compressive stress (σn) versus nominal compressive strain (εn)
curve up to εn = 0.30. The red and blue dash lines represented separately the crushing responses of the
empty core and foam I, the black dash line was the sum of the two, whilst the black solid line denoted
the response of the foam-filled core as a whole. The interaction effect (represented by the shaded area
in Figure 5, left) between the filling foam and the core web was strong, not only enhancing significantly
the peak stress but also reduced considerably core softening once the peak stress was reached.

It is seen from Figure 5 (left) that the nominal compressive stress of the foam-filled core increased
linearly with increasing strain till the first inflection point A (εn ≈ 0.0012), which signified core yielding.
Subsequently, the curve entered a nonlinear region, due to material nonlinearity of both the strut material
and foam I. In particular, the core behaved in a stable manner once the stress plateau of the foam insertions
was reached, exhibiting nearly linear plastic hardening over a large range of εn as a result of the plastic
hardening of 304 stainless steel. As the strain was further increased to εn ≈ 0.15, bifurcation was observed
at the intersection between the lines of extended trivial plastic response and the actual response. Note
from Figure 5 (left) that after the nonlinearity of the stress versus strain curve due to material nonlinearity,
there was a linear segment (within the range of compressive strain 0.07–0.15) of the curve before strut
buckling occurred. This linear response and its extension (dashed line in Figure 5, left) was defined here
as the trivial plastic response, just as the elastic trivial response shown in Figure 7 of [Wilbert et al. 2011].
At the bifurcation point marked on the curve, the strut started to buckle and hence the actual stress strain
curve deviated from such trivial response as shown in Figure 5 (left). Subsequently, the tangent modulus
started to drop and the nonlinearity at kinematic levels showed up as plastic bending was initiated in the
struts. With further compression, the extended bending deformation led to strut collapse at which point
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Figure 6. Contours of von Mises stress in foam insertions at specific strains correspond-
ing to the four specified points of Figure 5 (left).

the peak stress of the core was reached. In comparison with the empty core, the peak stress corresponding
to point C of Figure 5 (left) was considerably delayed due mainly to foam/strut interaction.

To explore further the strengthening effect of foam insertions, Figure 4 (right) presented the internal
energy (plastic dissipative energy and strain energy) for each constituting element of the foam-filled core;
corresponding results for the empty core and the foam itself were also presented. The internal energy,
defined here as the energy absorbed by each constituting element, was calculated by integrating stress
with respect to strain (up to overall nominal compressive strain of 0.3), which were extracted from the
post-processing of ABAQUS. The kinematic energy was neglected as the loading rate was sufficiently
low. From Figure 5 (right) it was clear that the strengthening was mainly attributed to the dramatic
enhancement of the strut, as its internal energy per unit volume was greatly enhanced relative to that in
the empty core. Simultaneously, the energy per unit volume of the foam insertions was also increased,
although not as dramatic.

For the foam insertions, Figure 6 presented a set of contours of the von Mises equivalent stress in
the central cross-section (x1 =W/2; Figure 1, top left) of the RVE for selected compressive strains as
marked in Figure 5 (top left). During the early stage of compression (contour A), the main regimes
of the equivalent stress originated from the core center, and expanded gradually to the top and bottom
faces with increasing compression. At εn = 0.10 (contour B), the distribution of the equivalent stress
was nearly layer-wise homogeneous, averaging to about 14.5 MPa, which equaled approximately the
plateau stress of foam I (Figure 2). This implied that the foam deformation was dominated by the
compressive stress along the loading direction (direction-3), resulting in almost the same response as
that of uniaxially compressed foam I (Figure 2). However, under out-of-plane compression, the stress
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Figure 7. Left: energy absorbed by corrugated plate and length reduction of its middle
line plotted as functions of nominal compressive strain, with θ = 45◦, t/L = 0.034,
and foam I insertions. Red square point defined as the “turning point” referred to the
peak stress of foam-filled corrugated plates. Right: Sketch of an inclined strut experi-
encing only axial compression: dotted and solid bold lines denoted separately initial and
deformed middle lines of the strut.

state in the foam insertion was asymmetric around the two ends of the corrugated plate, as shown in
contours A and B. Let the foam region adjacent to the face sheet be defined as region I and the others be
defined as region II, as shown in contour A of Figure 6. Initially, the stressing and foam densification in
region II was more intense than that in region I. As the compressive strain was increased, region I was
gradually enlarged, as shown in contour B. That the stress in region I was greater than that in region II
caused a rotational moment on the corrugated plate, inducing odd-symmetrical bending (see discussion
later concerning Figure 20). As a result of the bending deformation, severe stress localization occurred,
inducing complicated combination of compression, tension, and shear as well as localized densification
in the foam surrounding the bent corrugated plate, as illustrated in contours C and D. Correspondingly,
the amount of energy absorbed by the foam insertion noticeably increased.

Note that the deformation of the corrugated plate shown in contour D of Figure 6 was somewhat
different from that in Figure 3 (top right) at the same strain level of εn = 0.30. This was expected, as for
the present 3D sandwich configurations with finite width W (Figure 1), the constraints provided by the
foam insertions on the corrugated plates were not homogeneous along the direction-1, relatively weak
closer the free boundaries of the sandwich. Unless otherwise stated, the deformation and collapse modes
discussed latter were all referred to the central cross-section of the RVE.

Consider again specimen 2. Let Ecorru denote the energy absorption of the corrugated plate in the
foam-filled core per unit volume and L ′/L denote the normalized length change of the middle line (the
reference line) of the corrugated plate, representing the deformed state of the latter. Figure 7 (left)
plotted separately Ecorru and L ′/L as functions of the compressive strain εn . By assuming that the
strut experienced only axial compressive deformation (i.e., length change due to bending excluded) as
shown in Figure 7 (right), the normalized length of the middle line of the strut after deformation may be
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expressed as

L ′

L
=

√
H 2(1− εn)2+ B2

L2 =

√
sin2 θ(1− εn)2+ cos2 θ. (9)

For comparison, the prediction from the above equation was also plotted (dashed line) in Figure 7. The
actual length change of the corrugated plate coincided with that calculated with Equation (9) until the
bifurcation point was reached (see also Figure 5 (left)). This implied that, before bifurcation occurred,
the corrugated plate experienced only axial compression along its middle axial line. However, after
the bifurcation, the corrugated plate lost stability and collapsed, with its deformation gradually shifting
from axial compression to bending. Correspondingly, the rate at which its length decreased slowed
down (Figure 7, left). After the turning point corresponding to the peak stress of the foam-filled core
(point C in Figure 7, left), the length of the corrugated plate was almost unchanged, indicating that its
deformation was now dominated by bending. In comparison, the length of the corrugated plate in an
empty (unfilled) sandwich remained unchanged, as bending rather than axial compression dominated its
deformation under out-of-plane compression.

Before the turning point was reached, the energy absorbed by the corrugated plate, Ecorru, was domi-
nated by axial compression, exhibiting a slightly accelerated growth as the nominal compressive strain
εn was increased (Figure 7). Beyond the turning point, the energy absorption was mainly attributed to
plate bending, with decelerated growth. In other words, for foam-filled cores, whilst the deformation of
the corrugated plate was dominated by axial compression during the pre-buckling stage (before the peak
stress was reached), bending deformation played the dominant role in the post-buckling regime. Further,
with aluminum foam insertions, not only was the buckling of the corrugated plate greatly delayed, leading
to significantly enhanced peak stress of foam-filled cores, but also much less obvious softening in the
post-buckling regime. Similar results were recently observed experimentally in polymer lattice structures
filled with polyurethane foams [Ostos et al. 2012].

4.1.2. Effect of inclination angle. Figure 8 presented the predicted overall compressive responses of
both foam-filled and empty corrugated cores for selected inclination angles of θ and fixed core web
slenderness ratio of t/L = 0.02. In general, as θ was increased, both the strength and energy absorption
of the sandwich core increased. Further, the stress versus strain curves (up to εn = 0.30) of the foam-
filled cores with smaller inclination angles were smoother. For small inclination angles especially when
θ ≤ 35◦, the contribution by the core web to load bearing was relatively small in comparison with that
by the foam insertions; therefore, the foam insertions dominated the load bearing, leading to smoother
compressive curves of the sandwich cores (Figure 8). Irrespective of the inclination angle, the critical
strain at which the core web collapsed (plastically buckled; corresponding to the peak stress of Figure 8)
was remarkably delayed with foam filling, particularly so if the foam relative density was large (e.g.,
foam I). In comparison, in the absence of foam filling, the core web easily collapsed with a tiny critical
strain (ranging from 0.002 to 0.004; Figure 8, bottom).

With the core web slenderness ratio fixed at t/L = 0.02, the results of Figure 8 suggested that the
compressive properties of corrugated cores filled with either foam I or foam II were considerably superior
to those of empty cores. Further, the filling of a denser foam (i.e., foam I) led to larger specific strength
and energy absorption per mass, almost twice those obtained with foam II insertions.
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Figure 8. Normalized nominal compressive stress versus nominal compressive strain
curves for selected inclination angles: foam I-filled cores (top left); foam II-filled cores
(top right); empty cores (bottom). Core web slenderness ratio fixed at t/L = 0.02.

To explore further the strengthening mechanisms of foam insertions, the effects of inclination angle
on energy absorption per unit mass (up to εn = 0.30) were presented in Figure 9 (top left) for both empty
and foam-filled cores, in Figure 9 (top right) for corrugated plates only, and in Figure 9 (bottom) for
foam insertions only. As reference, the corresponding results for foam I and foam II were also plotted
in Figure 9 (bottom). With foam filling, not only was the energy absorption capability of the core webs
significantly enhanced, but also was the energy absorption capability of the foam itself enhanced (due
to complex stressing); see Figure 9 (top right and bottom). Moreover, as θ was increased, whilst the
amount of energy absorbed by the core webs in the foam-filled core increased appreciably, that absorbed
by the foam insertions remained more or less unchanged.

Figure 10 plotted separately the normalized length reduction and maximum lateral deflection of the
core web (up to εn = 0.30) as functions of the inclination angle for both foam-filled and empty corrugated
cores having fixed core web slenderness ratio of t/L = 0.02. Again, for empty cores, the length of the
core web remained almost unchanged (δ/L = 0; δ ≡ L − L ′ denoted the length reduction) as θ was
varied, with deformation dominated by plate bending. For foam-filled cores, whilst increasing θ led to
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Figure 9. Effect of inclination angle on energy absorption per unit mass (up to nominal
compressive strain of 0.30) for empty and foam-filled cores (top left), corrugated plates
only in empty and foam-filled cores (top right) and foam insertions only in foam-filled
cores (bottom), with corresponding results for foam I and foam II under out-of-plane
compression also plotted as reference. Core web slenderness ratio fixed at t/L = 0.02.

increasing axial compression (length reduction) of the core web, the length reduction was more severe in
the presence of denser foams. Although the maximum lateral deflection of the core web also increased
with increasing θ , the variation trend was opposite to that of its length reduction: for a fixed inclination
angle, the core web in an empty core exhibited the largest deflection whilst that in foam I-filled core had
the least deflection; see Figure 10 (right).

4.1.3. Effect of core web slenderness ratio. Let σp denote the peak compressive stress and E denote the
energy absorption per unit volume of the RVE up to εn = 0.30. For both foam-filled and empty corrugated
cores, Figure 11 (left) plotted the specific strength, σp/(ρ̄σY ), as a function of slenderness ratio t/L , with
the inclination angle fixed at θ = 45◦. Corresponding results for specific energy absorption, E/(0.3ρ̄σY ),
were presented in Figure 11 (right). Although not shown here, similar results for other inclination angles
were also obtained.

With increasing t/L , both the specific strength and specific energy absorption increased, and the
increase was more significant at large t/L values with or without foam filling. For empty cores, except
for the stable compression regime corresponding to sufficiently large values of t/L , the specific strength
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Figure 10. Normalized length reduction (left) and normalized maximum lateral deflec-
tion (right) of core web (up to nominal compressive strain of 0.30) plotted as functions of
inclination angle for both foam-filled and empty corrugated cores. Core web slenderness
ratio fixed at t/L = 0.02.

Figure 11. Specific strength (left) and specific energy absorption (right) plotted as func-
tions of core web slenderness ratio t/L for both foam-filled and empty cores, with fixed
inclination angle of θ = 45◦.

curve may be divided into two distinct regimes corresponding to elastic Euler buckling and plastic buck-
ling of the core web, respectively, the former considerably more steeper than the latter (Figure 11, left).
In contrast, with foam filling, the core web collapsed only with plastic buckling, although the types of
plastic buckling may be different (see the next section) and hence the specific strength curve was much
smoother than that of the empty core.

In terms of compressive strength and energy absorption, the superiority of foam-filled cores over
empty ones was the greatest when the core web slenderness ratio was relatively small (t/L ≤ 0.02). As
previously mentioned, within this regime, the collapse mode of the empty core was dominantly elastic
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Figure 12. Sides local-buckling: t/L = 0.007, θ = 45◦, foam I-filled corrugated core.

Euler buckling. In sharp contrast, at large values of t/L(> 0.1), stable compression with plastic hardening
occurred in both empty and foam-filled cores, and the strengthening effect of foam filling gradually
vanished (Figure 11).

The results of Figure 11 revealed that the beneficial effect of foam filling on specific energy absorption
was more obvious than that on specific strength. The foam fillers not only greatly delayed core web
buckling and elevated the compressive strength, but also improved significantly the flow stress of post-
buckling [Ostos et al. 2012].

4.2. Collapse modes and collapse mechanism maps. Under quasistatic out-of-plane compression, ex-
tensive FE simulations were carried out to explore how the collapse mode of an empty corrugated core
would vary when its interstices were filled with aluminum foams. For a given core type (filled or unfilled),
the dependence of its collapse mode on inclination angle θ and core web slenderness ratio t/L was also
determined. As the deformation state at peak load was not obvious especially for foam I-filled cores, the
selected collapse modes presented in Figures 12–16 all corresponded to εn = 0.30 in the post-buckling
regime. For comparison, the two typical collapse modes shown in Figures 17–18 for the empty core
were also calculated at εn = 0.30.

For simplicity, the middle axial line of the core web located at the central cross section of the RVE
was selected as the analysis object. In Figures 12–18, together with the collapse modes given in the
left-most parts, the evolution of deformation and von Mises stress along such middle line for each mode
were separately plotted in the middle and right-most parts for selected nominal strain levels. In these
figures, ξ/L denoted the relative location of an arbitrary point along the middle line of the core web,
whilst d/L and σ/σY represented the normalized lateral deflection and normalized equivalent stress of
the corresponding point, respectively.

It should be pointed out that the present study did not cover thin-walled (t/L < 0.005) and thick-
walled (t/L > 0.3) corrugated plates, as the buckling of thin plates was highly imperfection sensitive
whilst the use of thick plates was limited for weight-sensitive applications. Further, within the regime of
t/L < 0.005, the collapse was governed by plasticity-moderated elastic buckling and it was problematic
to obtain accurate FE results, analogous to thin-walled tubes [Pingle et al. 2011].

4.2.1. Collapse modes of foam-filled corrugated core. Under quasistatic out-of-plane compression, as
the values of t/L and θ were systematically varied, a total of five distinct collapse modes, denoted sepa-
rately as A, B, C, D and E, were identified for the foam-filled corrugated cores, as shown in Figures 12–16.
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Figure 13. Plastic wrinkling: t/L = 0.006, θ = 35◦, foam I-filled corrugated core.

For each collapse mode, its regime of dominance was marked on the collapse mechanism map, which
was plotted in Figure 19 on a chart of t/L and θ . The characteristics of each mode were discussed below.

Mode A: sides local-buckling. Such buckling mode may occur only in foam I-filled corrugated cores
having small values of t/L and inclination angle larger than 35◦ (Figure 19, top left). As shown in
Figure 12, localized plastic hinges emerged only near the ends of the corrugated plate and did not expand
to the middle region. Since t/L was small, the lateral support provided by the relatively dense foam I
(versus foam II) to the corrugated plate was large, preventing its bending deformation in the middle
region. In contrast, towards the ends of the plate, the constraint was not strong enough, causing localized
buckling as well as fluctuation of the von Mises equivalent stress in this region (Figure 12, right). This
particular buckling mode may be attributed to the heterogeneous distribution of foam constraints on the
deformation (deflection) and buckling of the corrugated plate.

Mode B: plastic wrinkling. The mode of “plastic wrinkling” could occur in corrugated plates having
small values of t/L (less than 0.015) and filled with either foam I with small inclination angles (less
than 45◦; see Figure 19, top left) or foam II (Figure 19, top right). This collapse mode appeared with
small buckle waves along with global odd-symmetrical bending, similar to a dual-frequency buckling
mode, as illustrated in Figure 13 (left). Interestingly, due to the early formation of global bending,
wrinkling with small buckle wave length appeared along with one complete sine-wave shape at large
strain (Figure 13, middle), which was quite different from the traditional wrinkling [Hadi 2001]. The
equivalent stress exhibited only slight fluctuations (Figure 13, right) due to the relatively small lateral
deflections (Figure 13, middle) of the corrugated plate associated with wrinkling.

Mode C: middle local-buckling. As shown in Figure 19 (top: left and right), at intermediate values of
t/L the corrugated plates in a foam-filled core may collapse with the mode of “middle local-buckling”.
Different from “sides local-buckling”, a pair of localized plastic hinges formed only in the middle portion
of the plate (Figure 14, left). Before the collapse occurred, the corrugated plate (its middle region in
particular) behaved approximately as a straight line, with nearly identical equivalent stress in this region.
As the strain was increased, a couple of localized plastic hinges were developed close to the middle
region where much bending occurred while the remaining parts of the plate rotated around these hinges
as rigid rods (Figure 14, middle). Simultaneously, such local-buckling induced abrupt fluctuation of the
equivalent stress in the middle region (Figure 14, right). During post-buckling, the equivalent stress in the
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Figure 14. Middle local-buckling: t/L = 0.02, θ = 65◦, foam I-filled corrugated core.

Figure 15. Plastic odd-buckling: t/L = 0.06, θ = 55◦, foam I-filled corrugated core.

parts of the corrugated plate without plastic hinges even decreased due to relaxation of the compressive
stresses (Figure 14, right).

Mode D: plastic odd-buckling. As the values of t/L became larger than those corresponding to mode C
(Figure 19, top: left and right), different from the collapse mode of “plastic wrinkling”, a kind of
global plastic buckling mode appeared as a single-frequency wave in an odd-symmetrical way; see
Figure 15 (left). Whilst the corrugated plate only exhibited a slight bending trend before the collapse, its
lateral deflection increased rapidly once buckling occurred; see Figure 15 (middle). Correspondingly,
during post-buckling, the fluctuation of the equivalent stress occupied the main region of the plate;
see Figure 15 (right). To avoid confusion with the plastic buckling of empty corrugated plates (see
immediately below), the plastic buckling mode as characterized above was defined here as plastic odd-
buckling.

Note that the above four types of collapse mode for foam-filled corrugated plates all occurred at
compressive strains significantly larger than those associated with empty ones, consistent with the results
presented in the previous section.

Mode E: stable compression. As the value of t/L became sufficiently large, the stubby thick-walled
corrugated plates in a foam-filled core did not collapse but rather deform in “stable compression” with
continuously plastic hardening (Figure 16, left). Despite of the slight bending due to the strong constraint
of the clamped ends, the equivalent stress in the main middle region of the corrugated plate was almost
identical throughout the compression process (Figure 16, right). This collapse mode also occurred in the
empty cores, as shown in Figure 19 (bottom).



COLLAPSE MECHANISMS OF SANDWICH STRUCTURES WITH FOAM-FILLED CORRUGATED CORES 417

bulging corner

Figure 16. Stable compression: t/L = 0.20, θ = 45◦, foam I-filled corrugated core.

Figure 17. Euler buckling: t/L = 0.01, θ = 45◦, empty corrugated core.

For the foam-filled cores, four different types of buckling mode had now been identified, including
three localized buckling (sides local-buckling, plastic wrinkling and middle local-buckling) and one
global buckling (plastic odd-buckling). These collapse modes as illustrated in the left-most parts of
Figures 12–15 represented the typical examples marked in Figure 19 where the dominance regime of
another collapse mode, stable compression (Figure 16), was also given. Interestingly, the results of
Figures 12–16 suggested that the collapse modes of foam-filled cores all exhibited an odd-symmetry
feature. In contrast, the empty cores collapsed in either elastic or plastic buckling had the common
feature of global even symmetry, as discussed below.

4.2.2. Collapse modes of empty corrugated core. In addition to stable compression, the present FE sim-
ulations revealed that an empty corrugated core could also collapse in two other modes (F and G), defined
here as Euler buckling and plastic even buckling.

Mode F: Euler buckling. For empty cores with small values of t/L (less than 0.018), elastic Euler buck-
ling occurred at small strain levels. As shown in Figure 17, the corrugated plate collapsed with three
elastic hinges: one in the middle and the other two near the ends caused by the rotating of the plate. This
collapse mode was quite different from that of foam-filled cores, as the constraint provided by filling foam
against plate rotation was absent. Moreover, during post-buckling, the elastic hinges became gradually
plastic as the strain was increased (Figure 17, right).

Mode G: plastic even-buckling. Different from the mode of plastic odd-buckling in foam-filled cores,
an empty core with sufficiently large values of t/L (larger than 0.018) collapsed with plastic buckling
in an “even-symmetry” way; see Figure 18 (left). Similar to Euler buckling, three hinges emerged, all
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Figure 18. Plastic even-buckling: t/L = 0.05, θ = 55◦, empty corrugated core.

associated with the equivalent stress exceeding the yield level (Figure 18, right). Unlike the foam-filled
cores, within the stage of post-buckling at large compressive strains, the equivalent stress near the two
ends of the corrugated plate was larger than that in the center, whether the empty core collapsed with
elastic buckling or plastic even-buckling.

It was of interest to notice that, for a thick-walled corrugated plate under large compressive strain,
small yet visible corner bulging occurred, as illustrated in Figure 16 (left). The bulging was caused by
the material located inside the core (along direction-1) being squeezed out, analogous to the case of a
thick-walled short tube under internal or external pressure [Zhu et al. 2013]. Whilst the bulging corner
occurred in either foam-filled or empty corrugated cores, the extent of bulging was more serious for the
former due to the additional squeezing of the filling foam.

It was seen from Figure 19 (top: left and right) that whilst the collapse modes of corrugated plates
filled with either foam I or foam II were more or less similar (yet totally different from the traditional
Euler buckling and plastic buckling of empty plates), the regime of dominance of each mode (apart from
stable compression) varied considerably as foam I was replaced by foam II. In particular, with foam II
insertions, the mode of “sides local-buckling” was absent; see Figure 19 (top right). Further, the regimes
of collapse modes for empty cores were nearly independent of the inclination angle θ whereas those of
the foam-filled cores were quite sensitive to θ .

4.2.3. Collapse mechanisms. The deformation and collapse of a foam-filled corrugated core may be
attributed to the synergetic effects of several factors, including: constraints of foam insertions; nonunifor-
mity of foam constraints; influence of core web slenderness ratio t/L and inclination angle θ . Although
different collapse modes were identified for foam-filled cores, the global tendency of the deformation
was similar, all exhibiting an odd-symmetry feature. Qualitatively, this may be interpreted as follows.
Analogous to the analysis of Yoo et al. [2010] for foam-filled egg-boxes, the difference in densification
strain on the two sides of the corrugated plate led to unbalanced forces on either side of the plate, as
illustrated in Figure 20 (top left). Only near the center of the plate were the stresses from the foam on
either side of the plate expected to be equal. Hence, in contrast to the even-symmetrical bending of empty
corrugated plates, there was tendency for the foam insertions to generate a rotational moment, inducing
odd-symmetrical (or antisymmetrical) buckling of the plate as shown in Figure 20 (right).

4.3. Strength maps. For both empty and foam-filled corrugated cores, contours of their relative strength
σp/σY as well as relative density ρ̄ were plotted in Figure 21 on a chart with axes of t/L and θ . The
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Figure 19. Collapse mechanism map for corrugated plates filled with: foam I (top left);
foam II (top right); no foam (bottom). Red dashed lines separated neighboring defor-
mation modes. Experimental data were marked as solid circles at top left and bottom,
whilst typical geometries for different deformation modes were marked as solid squares.
Boundary between elastic and plastic buckling for empty corrugated plates was con-
structed using (A.4).

Figure 20. Schematic of global bending deformation of foam-filled corrugated plates
under out-of-plane compression. Left: emergence of turning (bending) moment on corru-
gated plate; right: corresponding global bending deformation of corrugated plate (middle
line).
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Figure 21. Normalized peak stress (σp/σY ) and relative density (ρ̄) plotted as functions
of core web slenderness ratio (t/L) and inclination angle (θ) for corrugated sandwich
plates having: foam I-filled core (top left); foam II-filled core (top right); empty core
(bottom). Thick solid lines separated the “stable compression” regime from the plastic
buckling modes. Solid contours denoted ρ̄ and dashed lines denoted σp/σY .

thick inclined line on the chart separated the “stable compression” regime which exhibited no peak stress
from the buckling regime where the peak stress was clearly defined.

Consider a trajectory of fixed ρ̄ for the foam-filled cores. The relative strength σp/σY increased
monotonously with increasing θ , rather than increasing t/L . Consequently, there existed no clear optimal
path of core geometry that gave rise to the peak stress for any given value of ρ̄ that maximized the peak
stress. This indicated that θ played a more important role than t/L in the compressive response of foam-
filled cores. It followed that, for out-of-plane compression, it would be better to design a foam-filled
corrugated core with large inclination angle, with θ close to 90 degree being the best choice. In reality,
however, it was difficult to fabricate corrugated cores without using platforms when θ was larger than
say 70 degree. Further, in addition to out-of-plane compression, the performance of foam-filled cores
having large inclination angles subjected to other loading types such as three-point bending and shear
needs to be considered.
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Figure 22. Left: Performance of competing sandwich core topologies under quasistatic
compression: peak stress (compressive strength) versus core density; right: energy ab-
sorption per unit volume (up to εn = 0.30) versus core density. Except for the results of
square honeycombs from [Côté et al. 2004], all the other data was from the present study.

5. Comparison with competing core topologies

Under out-of-plane compression, the energy absorption capacity of a sandwich core was traditionally
defined as the integration of stress with respect to strain from 0 up to 0.50. However, as the present study
of different sandwich cores was limited to the nominal compressive strain of εn = 0.30, for consistency
the energy absorption per unit volume was defined as

E =
∫ 0.30

0
σn dεn. (10)

Figure 22 compared separately the compressive strength (peak stress) and energy absorption of foam-
filled corrugated cores with several competing core topologies for lightweight sandwich constructions,
including close-celled metallic foams, square honeycombs and empty corrugated cores. Both experimen-
tal data and FE simulation results were used for the comparison. For foam-filled cores, data for both
foam I and foam II insertions were presented. Further, for both empty and foam-filled cores, results for
θ = 45◦ as well as θ = 65◦ were included.

It was seen from Figure 22 (left) that the compressive strength of foam I-filled core with θ = 65◦

was almost comparable with that of square honeycombs [Côté et al. 2004], and considerably superior
to either metal foams (used in the present study) or empty corrugated cores. Further, for a fixed core
density, foam I-filled core with θ = 65◦ performed much better than that with θ = 45◦, consistent with
previous results concerning the effect of inclination angle.

In addition to compressive strength, the energy absorption of foam I-filled sandwich core with θ = 65◦

also exceeded that of square honeycombs; see Figure 22 (right). Square honeycombs rapidly softened
due to buckling once the peak stress was reached, whilst the softening of foam-filled corrugated cores
(θ = 65◦) after the peak was less pronounced. In addition, the post-buckling performance was also
considerably strengthened by the filling foam relative to the unfilled cores.
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6. Conclusions

Detailed physical mechanisms underlying the significant beneficial effects of filling aluminum foams
into the interstices of corrugated plates made of 304 stainless steel were exploited by using the finite
element method. With the focus placed upon quasistatic out-of-plane compression, the beneficial effects
were assessed on the basis of elevated peak stress and energy absorption relative to unfilled corrugated
plates of equal mass. The main findings were summarized as follows:

(1) Good agreement between FE simulated and experimentally measured stress versus strain curves was
achieved. The deformation and collapse modes of both the empty and foam-filled corrugated plates were
also accurately captured by the FE simulations.

(2) The post-yielding strength and energy absorption of foam-filled corrugated plates were significantly
enhanced relative to empty ones, both exceeding the combined contributions from the corrugated plates
and the foam alone, and the advantages increased as the foam became denser.

(3) The coupling effects of a corrugated plate and the surrounding foam resulted in much delayed and
stabilized buckling of the former. With foam support, the corrugated plate experienced noticeable length
reduction as axial compression was dominant before the plate collapsed. As the plate began to bend,
the foam insertions were strengthened, changing the initial state of uniaxial compressive stressing to the
state of complex stressing involving compression, tension and shear. In comparison, in the absence of
foam filling, the corrugated plate was dominated by bending deformation (with little length change) and
easily collapsed, with a tiny critical strain ranging from 0.002 to 0.004.

(4) The beneficial effects of foam filling to both the strength and energy absorption was the greatest if
the slenderness ratio t/L ≤ 0.02, when the empty corrugated plates collapsed by elastic Euler buckling.
For sufficiently large values of t/L , stable compression with plastic hardening of both the empty and
foam-filled corrugated plates occurred so that the strengthening effect of foam filling was gradually lost.

(5) The inclination angle θ also played an important role in dictating the compressive response of both
the empty and foam-filled corrugated plates. For the foam-filled corrugated plates, the specific strength
and energy absorption depended primarily upon the inclination angle, with a weak dependence upon the
core web slenderness.

(6) Different from the traditional buckling modes of unfilled plates, a variety of different collapse modes
were identified for foam-filled plates, including sides local-buckling, plastic wrinkling, middle local-
buckling and plastic odd-buckling. Correspondingly, collapse mechanism maps were constructed.

Besides the out-of-plane compressive response, similar beneficial effects had been established when
the foam-filled sandwich plates were subjected to three-point bending and simple shear. The varying role
of foam insertion with increasing compression velocity had also been explored. These experimental and
theoretical results will be reported in separate studies. In summary, the foam-filled corrugated topology is
attractive from the perspectives of strength and energy absorption, holding great potential for heavy-duty
structural applications.
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Appendix: Analytical formulae for buckling of empty corrugated panels

For empty corrugated panels subjected to uniform out-of-plane compression, plane strain assumption
was appropriate. Therefore, (1− v2) was introduced to the Young’s modulus Es of the core web material
whilst its yielding stress became 2σY /

√
3. For core webs having small slenderness ratios, an equilibrium

analysis indicated the out-of-plane compressive strength may be expressed as

σp−empty = σc tan θ(t/L) (A.1)

where σc was the maximum axial compressive stress of the core web. For elasto-plastic hardening
materials (i.e., stainless steel as considered in the present study), according to the Euler buckling and
Shanley plastic bifurcation stresses [Shanley 1947; Côté et al. 2006], σc may be obtained as

σc =


π2 Es

12(1− v2)

(
t
µL

)2

if
t
L
< µ

√
8
√

3(1− v2)σY

π2 Es
,

π2 Et

12

(
t
µL

)2

otherwise,

(A.2)

where the coefficient µ was introduced to correct the effective length of the core web under different
end constraints. For the core webs considered here, it was reasonable to take the ends of the core web as
built-in constrained, giving µ= 0.5. For elastic perfectly plastic materials, the Equation (A.2) may be
simplified to

σc =


π2 Es

12(1− v2)

(
t
µL

)2

if
t
L
< µ

√
8
√

3(1− v2)σY

π2 Es
,

2σY
√

3
otherwise.

(A.3)

It followed from Equation (A.2) or (A.3) that the critical slenderness ratio corresponding to the transition
from elastic buckling to plastic buckling (or yielding) was

t
L

∣∣∣
critical

= µ

√
8
√

3σY (1− v2)

π2 Es
. (A.4)
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REPRESENTATIVE VOLUME ELEMENT
IN 2D FOR DISKS AND IN 3D FOR BALLS

NATALIA RYLKO

Effective properties of random composites are discussed in the framework of the representative volume
element (RVE) theory proposed by Mityushev (2006). This theory is extended to 2D fiber composites
with sections perpendicular to fibers of different radii and to 3D composites with spherical inclusions.
RVE theory is applied to the mixture problem frequently met in technological processes. This problem
consists in a mechanical stir process of few components to get a homogeneous material in macroscale.
In particular, the AlSi9/SiC composites obtained by thermomechanical deformation are investigated.

1. Introduction

The effective properties of composites and porous media can be determined by measurement of macro-
scopic properties of test specimens. Analogous to the measurement, computational methods are used in
theoretical investigations of the specimens, which represent the entire material. If inclusions or pores
are distributed statistically homogeneously in the bulk material, the effective properties are described by
constant tensors [Adler et al. 2012; Gross and Seelig 2011]. The macroscopic tensors do not depend on
the size, shape of the chosen specimen or on boundary conditions [Bakhvalov and Panasenko 1989; Jikov
et al. 1994]. These tensors can be determined via solution of the periodic problem when the periodicity
cell represents the material under consideration. This concerns not only strictly periodic media but also
statistically homogeneous media when a cell represents the macroscopic properties of the random media
[Golden and Papanicolaou 1983; Jikov et al. 1994; Telega 2004]. Such media constitute a subclass of
heterogeneous fields discussed in [Torquato 2002; Mityushev 1999; Mityushev and Rylko 2013] and
functionally gradient materials [Jaworska et al. 2006; Rozmus et al. 2009; Gross and Seelig 2011].

Statistically homogeneous media, defined in [Golden and Papanicolaou 1983; Jikov et al. 1994; Telega
2004], can be represented by a cell, which is called the representative volume element (RVE). The
homogenization theory justifies existence of the macroscopic tensors for such media. The computational
problem consists in numerical and symbolic calculations of the effective tensors when the RVE is given,
i.e., the microstructure is deterministically or statistically described. However, only the existence of the
RVE follows from the homogenization theory. Therefore, methods to construct RVEs can be considered
as the first step to determine the effective properties of composites and porous media.

Statistical methods to construct RVEs have been described in detail in [Benveniste 1987; Gusev 1997;
Huet 1990; Kanit et al. 2003; Milton 2002; Ostoja-Starzewski 2008; 2011; Segurado and LLorca 2006;
Torquato 2002] and works cited therein. The statistical methods are based on the overall testing process.
For instance, for dispersed two-phase composites with equal inclusions, the number of particles contained
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in a sample is increased and the effective constants are computed, usually by purely numerical methods
[Zohdi and Wriggers 2008]. The process of increasing is stopped when the fluctuations of the effective
constants become sufficiently small. The number of particles 64 per cell frequently arises in the literature
[ibid.] as a sufficiently large number for the nonoverlapping uniform distribution of inclusions. Analytical
and numerical results [Czapla et al. 2012a; 2012b] rigorously confirm this fact.

Purely numerical methods [Zohdi and Wriggers 2008] are restricted to special distributions of in-
clusions. The properties of constituents are also given numerically. These lacks were overcame in
[Mityushev 2006] (hereafter referred to as [M2006]) where a rigorous and constructive theory of the
RVE for plane composites with identical circular inclusions was described. The RVE theory for identical
disks in that paper is based on the representation of the effective conductivity tensor [Berlyand and
Mityushev 2001; Mityushev 2001] in the form of a double series depending on the concentration of
inclusions and on “basic elements” which depend only on the locations of the inclusions. These basic
elements are written in terms of the Eisenstein series. Coefficients in the double series depend on the
physical properties of constituents. Two composites were defined as equivalent if they have the same
basic elements. Therefore, the set of the composites with circular identical inclusions was divided into
equivalence classes determined only by the geometrical structure of the composite. In each equivalence
class, a composite having the minimal size cell is chosen. Following [M2006], this cell is called the
representative cell of equivalent composite materials. A constructive algorithm to determine the repre-
sentative cell for any distribution of inclusions using only pure geometrical parameters was described in
[M2006]. Examples presented therein yield fast transformations from cells to the representative cell of
small size. This can be used in optimal computations of the macroscopic properties by applications of
numerical and analytical methods.

In this paper we discuss the mixture problem, which can be outlined as follows. Take many balls, put
them in a vessel and stir. Hence, we have the original and final locations of balls in the vessel. There
are various methods of stirring [Kurtyka and Rylko 2013]. The mixture problem consists in determining
the time (velocity, energy, etc.) necessary to reach the required mixture. Here, we arrive at the questions
of how to measure the macroscopic thermal and mechanical properties of the mixture. It can be done by
expensive experiments. The RVE theory yields an effective and simple method, developed in Section 4,
to resolve the mixture problem. This method essentially extends the approach of the paper [Kurtyka and
Rylko 2013] based on the M-sum.

In the present paper, we extend the RVE theory of [M2006] to 2D polydisperse composites and to
3D monodisperse composites with spherical inclusions. The obtained theoretical results are applied to
the porous alumina material (α-Al2O3) discussed in [Nowak et al. 2013] and to the mixture problem
frequently met in technological processes. It is shown how to construct the RVE size following the
theory of [M2006]. Advantages of using this theory are the fast reconstruction method of the RVE and
applications to the mixture problem. It is worth noting that the reconstruction of the RVE in [M2006]
was based on equations where unknowns were centers of inclusions. However, it is not clear how to
investigate polydisperse composites by use of such equations. Our method is based on investigation of
the M-sums for various fragments of the large cell. Such a modification is reduced to investigation of
one fixed cell instead of the whole class, which reduces computations.

The paper is organized as follows. The 2D RVE theory for disks is developed in Section 2. The
3D RVE theory is described in Section 3 for the nonoverlapping uniformly distributed identical spherical
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Figure 1. 2D RVE in the torus topology, a section of the 3D RVE parallel to the x3-axis.

inclusions. Section 4 is devoted to applications of the RVE theory. Concluding remarks and relations to
the RVE theory are presented in Section 5.

2. 2D RVE theory

Following [M2006], we extend the RVE theory to 2D composites with circular inclusions of different
radii. Consider a 2D two-component composite made from a collection of nonoverlapping disks embed-
ded in a matrix of a different nature (see Figure 1). It is assumed that the distribution R of the radii of
the disks rk is given and it does not depend on the locations of the disks. The centers of the disks satisfy
a distribution A corresponding to a nonoverlapping-disks distribution on the plane. The distribution A

formally does not depend on the distribution R of radii, but the choice of the distribution A is restricted
by R. This situation can be demonstrated by the following observation: for identical disks of radius r ,
the distance between any two centers must exceed 2r .

It is assumed that the distribution A generates a random homogeneous field [Golden and Papanicolaou
1983; Jikov et al. 1994; Telega 2004] for which the macroscopic properties are correctly defined. One
of the most important distributions A is the nonoverlapping uniform distribution U, which corresponds
to the perfect mixture of inclusions. The distribution U can be realized by the sequence location method
or by random walks described in [Czapla et al. 2012a]. Other distributions are described in the book
[Torquato 2002] in terms of the correlation functions. In the present paper, we do not discuss the question
of the statistical generation of the theoretical distributions, and assume that realizations of A are given in
the form of pairs (ak, rk), where ak = (xk, yk) denotes the center and rk the radius of the k-th inclusion.
Further, it will be convenient to identify ak with the complex number ak = xk + iyk .

According to the homogenization theory [Golden and Papanicolaou 1983; Jikov et al. 1994; Telega
2004] there exists a periodicity cell with a finite number of inclusions representing the composite. First,
we describe parameters of this cell. Consider a lattice Q on the complex plane C which is defined by
two fundamental translation vectors ω1 and ω2. Without loss of generality we assume that ω1 > 0 and
Imω2 > 0, where Im stands for the imaginary part. Introduce the zeroth cell

Q0 :=
{
z ∈ C : z = t1ω1+ t2ω2,−

1
2 < t1,2 < 1

2

}
.

The lattice Q is generated by the cells Qm := {z ∈ C : z−m1ω1−m2ω2 ∈ Q0}, where m = m1+ im2 is
a complex number with m1 and m2 integers.
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Let CN denote the set of the elements (ak, rk), k = 1, 2, . . . , N , where the radii rk satisfy the dis-
tribution R and the centers ak correspond to nonoverlapping uniformly distributed disks in the cell Q0.
Let CN+1 = CN ∪ {(aN+1, rN+1)}. Introduce the set C =

⋃
∞

N=N0
CN with sufficiently large N0. The

number N0 gives the size of the minimal representative set CN0 . The set C consists of all the configura-
tions of mutually disjoint disks uniformly distributed on the plane whose radii satisfy the distribution R.
It is worth noting that C describes random locations of disks on the plane. In practical measurements,
we observe finite fragments of C. If these fragments represent the considered material, it is possible to
statistically recover the distributions R and A.

The radii distribution R can be easily constructed since it describes a 1D random variable. The 2D
distribution A is theoretically described by correlation functions [Torquato 2002]. But we do not follow
that reference, and consider A as a set of the given center coordinates ak (measured and statistically
presented). In particular, the 2D concentration of inclusions φ2 can be measured. Theoretically, the 2D
concentration φ2 can be considered as the mean value

φ2 =
1
|Q|

N∑
k=1

πr2
k , (2-1)

where |Q| stands for the area of the domain Q.
According to the theory [M2006], we have to compare two different representative elements of A.

Consider a large fundamental region Q′ constructed from the fundamental translation vectors ω′1 and ω′2.
Let Q′ contain N ′ nonoverlapping circular disks D′k of radius r ′k with centers a′k ∈ Q′ (k = 1, 2, . . . , N ′)
representing the distributions R and A. Let 3̂′ be the effective tensor of the composite represented by
the region Q′ with inclusions D′k . Let the cell Q′ correspond to another small cell Q which contains
inclusions Dk = {z ∈ C : |z− ak |< rk} (k = 1, . . . , N ) also representing the distributions R and A, such
that the effective tensor 3̂ is close to 3̂′. Closeness is defined by the concentration accuracy O(φL+1

2 )

for the difference 13̂= 3̂− 3̂′, with prescribed L . According to [M2006], the cell Q is a representative
cell for the region Q′ with the accuracy O(φL+1

2 ) if

13̂= O(φL+1
2 ). (2-2)

Let a representative cell Q have the minimal possible area from all the representative cells equivalent
to Q′. This cell is called the RVE. The existence of the RVE is evident since in the worst case one can
take Q = Q′. The numerical statistical methods [Kanit et al. 2003] are also based on the relation (2-2).
Since φ2 is fixed in numerical computations, (2-2) becomes 13̂≈ 0.

Instead of (2-2), Mityushev proposed to compare the basic elements of the expansion of the effective
tensor. These basic elements are introduced as follows. Let a cell Q contain N inclusions with centers ak .
Let Em(z) denote the Eisenstein function of order m (see for instance Appendix A of [Czapla et al.
2012a]). Let C denote the operator of complex conjugation, which satisfies Cq z = z for even q and
Cq z = Cz = z for odd q.

The following sums, of multi-order (m1, . . . ,mq), were introduced in [M2006]:

em1...mq :=

(
π

φ2

)1+ 1
2 (m1+···+mq ) ∑

k0,k1,...,kq

r2
k0

r2t1
k1
. . . r2tq

kq
Em1(ak0 − ak1)Em2(ak1 − ak2) · · ·

×Cq Emq (akq−1 − akq ), (2-3)
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where ks = 1, 2, . . . , N for 0 ≤ s ≤ q, t0 = 1 and ts = ms − ts−1. We call (2-3) the M-sum of order
(m1, . . . ,mq).1 For instance, the M-sum of order (2, 2) has the form

e22 :=

(
π

φ2

)3 ∑
k0,k1,k2

r2
k0

r2
k1

r2
k2

E2(ak0 − ak1)E2(ak1 − ak2). (2-4)

It is justified in [M2006] that the effective conductivity tensor for 2D composites can be presented in
the form of a power series in the total concentration φ2 with coefficients linearly depending on em1...mq .
An explicit iterative scheme for the coefficients of this series was explicitly presented in [Berlyand and
Mityushev 2001; 2005; Mityushev 2001]. Plane elastic stress and strain fields are described by bihar-
monic functions [Grigolyuk and Filshtinsky 1991]. Any harmonic function is biharmonic. Therefore,
harmonic functions describe not only conductivity problems but also special elastic stress and strain
fields. This implies that the M-sums also describe (perhaps partially) macroscopic properties of elastic
composites. We conjecture that this description is complete for the following reason. An iterative scheme
analogous to [Berlyand and Mityushev 2001; 2005; Mityushev 2001] for conductivity problems can be
extended to 2D elastic problems. Then, a formula for the effective elastic tensor could be deduced. Such
a scheme was actually constructed in particular cases for regular structures [Grigolyuk and Filshtinsky
1991]. Preliminary results in [ibid.] and [Mityushev 2000] demonstrate that the effective elastic constants
linearly depend on the M-sums and, let us say, M∗-sums having the same structure as (2-3), but with the
quasi-elliptic functions E∗m(z) introduced in Appendix 2 of the book [Grigolyuk and Filshtinsky 1991]
instead of the Eisenstein functions Em(z). Hence, the effective elastic tensor can be expressed through
a linear combinations of the M- and M∗- sums (the form of this linear combination is not known, but
it exists). The quasi-elliptic functions E∗m(z) are expressed via the Eisenstein functions by algebraic
equations [ibid.]. Therefore, it is sufficient to consider only the M-sums (2-3) for elastic media.

Not all the M-sums participate in the effective tensor. For instance, the effective conductivity up to
O(φ5

2) contains eight M-sums: e2, e22, e33, e222, e44, e322, e223, e2222. For macroscopically isotropic
composites, e2 = π , and many other M-sums are dependent [Mityushev and Rylko 2012]. This reduces
the number of basic elements to achieve the accuracy O(φ4

2) to the following four M-sums:

e22, e33, e2222, e44. (2-5)

The M-sum (2, 2) can be calculated by (2-4). Explicit forms of other M-sums (2-5) are given by the
following formulae:

e33 =

(
π

φ2

)4 ∑
k0,k1,k2

r2
k0

r4
k1

r2
k2

E3(ak0 − ak1)E3(ak1 − ak2), (2-6)

e2222 =

(
π

φ2

)5 ∑
k0,k1,k2,k3,k4

r2
k0

r2
k1

r2
k2

r2
k3

r2
k4

E2(ak0 − ak1)E2(ak1 − ak2)E2(ak2 − ak3)E2(ak3 − ak4), (2-7)

e44 =

(
π

φ2

)5 ∑
k0,k1,k2

r2
k0

r6
k1

r2
k2

E4(ak0 − ak1)E4(ak1 − ak2). (2-8)

1 M-sum is short for Mityushev’s sum.
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Figure 2. 3D RVE, which can be triply periodically continued to the whole space.

Remark. The M-sums (2-3), in particular (2-5), can be considered as the moments of the correlation
functions [Torquato 2002]. Hence, the RVE theory [M2006] implicitly uses the correlation functions and
does not require their explicit computations.

3. 3D RVE theory

The 2D M-sums (2-3) can be applied to the 3D RVE by use of the sections method. Consider a 3D cell P
with fundamental translation vectors ω j ( j = 1, 2, 3). For simplicity, consider the unit cubic cell P , where
ω1 = (1, 0, 0), ω2 = (0, 1, 0) and ω3 = (0, 0, 1). Suppose that sufficiently many identical balls (n, say)
are uniformly located in P without overlapping (see Figure 2). This distribution corresponds to perfectly
mixed balls of the same radius R in a uniform host with prescribed volume concentration

φ =
4πn

3
R3. (3-1)

Consider a typical section of P parallel to the plane generated by ω1 and ω2 (see Figure 1). This section
can be considered as a plane cell Q0 with the complex coordinates introduced in Section 2. Let Q0

contain N disks of radii rk with centers located at ak . The concentration of disks in Q0 has the form

φ2 =

N∑
k=1

πr2
k (3-2)

since Q0 is the unit square. The uniform nonoverlapping distribution of the identical balls in P yields a
uniform nonoverlapping distribution of disks in Q0 with radii distributed in a special way described by a
distribution denoted for definiteness by Rs . Let r be the random value distributed in accordance with Rs .
It can be described by the uniformly distributed 1D random variable on the segment (0, R). Then the
mathematical expectation of the area of a disk is calculated by formula

〈πr2
〉 =

1
R

∫ R

0
π(R2

− x2) dx = 2π
3

R2. (3-3)

Let 〈N 〉 denote the expected number of disks in the cell Q0. Then (3-2) and (3-3) imply that
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φ2

〈N 〉
=

〈
1
N

N∑
k=1

πr2
k

〉
=

2π
3

R2. (3-4)

The volume concentration (3-1) is equal to the probability that a point from P belongs to one of the
balls. The concentration (3-2) is equal to the probability that a point from Q0 belongs to one of the disks.
The balls are uniformly distributed in P . Moreover, Q0 is a typical section of P , hence the 2D and 3D
concentrations coincide:

φ2 = φ. (3-5)
Then (3-4) and (3-1) yield

〈N 〉 = 2Rn. (3-6)

This formula relates the expected number 〈N 〉 of disks in the cell Q0 with the given number n of balls
per cell.

The expected values of (2-4), (2-6)–(2-8) are calculated by use of (3-3)–(3-4) as

〈em1...mq 〉 = qm1...mq , (3-7)
where

qm1...mq :=
1

〈N 〉1+
1
2 (m1+···+mq )

∑
k0k1...kq

Em1(ak0 − ak1)Em2(ak1 − ak2) · · ·C
q Emq (akq−1 − akq ). (3-8)

The M-sums (3-8) correspond to the distribution of the identical disks when the centers ak obey the
uniform nonoverlapping distribution Us consistent with the special radii distribution Rs . The relation
(3-7) contains the mathematical expectation 〈em1...mq 〉 over the radii distribution Rs . We now write the
mathematical expectation of (3-7) over the distribution As of centers in the form

〈〈em1...mq 〉〉 = 〈〈qm1...mq f 〉〉. (3-9)

It is difficult to calculate analytically the operator 〈〈·〉〉 because the distribution As has a complicated
support domain for the centers of nonoverlapping disks. However, numerical statistical estimations of
〈〈qm1...mq 〉〉 can be performed by algorithms developed in [Czapla et al. 2012a; 2012b]. Consider the
M-sums (2-5) to estimate the RVE with the accuracy O(φ4). It was proved in [Mityushev and Rylko
2012] that

qpp =
(−1)p

〈N 〉p+1

〈N 〉∑
m=1

∣∣∣∣∣
〈N 〉∑
k=1

E p(am − ak)

∣∣∣∣∣
2

, p = 2, 3, 4, (3-10)

and

q2222 =
1
〈N 〉

〈N 〉∑
k=1

∣∣∣∣∣ 1
〈N 〉2

∑
k1,k2

E2(ak − ak1)E2(ak1 − ak2)

∣∣∣∣∣
2

. (3-11)

This implies that q(1) = q22, q(2) = −q33, q(3) = q44 and q(4) = q2222 are nonnegative for any location
of ak . It was justified in [Berlyand and Mityushev 2005; Berlyand et al. 2013] that, in the framework
of the shaking model, the q( j) ( j = 1, 2, 3, 4) decrease when order (regularity) of the center locations
increases. It is conjectured that the decrease principle for ordered structures takes place in the general case.
Consider the degenerate plane radii distribution RR in which all the radii are equal to R. This distribution
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yields the plane uniform nonoverlapping distribution UR of the identical disks. The probabilistic space
of events described by Us is wider than that described by UR . Hence, UR is “more regular” than Us .
This yields the inequality q( j)(UR)≤ q( j)(Us). For moderate concentrations, one can expect that

q( j)(UR)≈ q( j)(Us), j = 1, 2, 3, 4. (3-12)

4. Applications

In this section, various applications of the RVE theory are demonstrated. Section 4 is devoted to the size
problem of the RVE. It is a traditional problem of the RVE which can be easily solved by simple and fast
computations based on the M-sums. Sections 4–4 concern investigations of the structure of the special
composites.

Example 1: size of the RVE. We consider a polydisperse random “shaking” composite [Berlyand and
Mityushev 2001; 2005]. Let the periodic square array be perturbed by random deviations of the disks.
Consider the model as displayed in Figure 3. The doubly periodic unit cell Q0= (−0.5, 0.5)×(−0.5, 0.5)
contains 900 disks of radii between 0.0045 and 0.0135, displaced from their position in a regular array by
the distance d, taken for each disk as a random variable uniformly distributed on the interval (0, 0.006).
Following the RVE theory [M2006], we have to restrict the infinite set of M-sums {e2, e22, e33, e2222, . . .}.
For definiteness, take the set {e2, e22}. Now, let the unit cell Q0 be cut to the cells Qc = (−0.5c, 0.5c)×
(−0.5c, 0.5c), where 0≤ c ≤ 1. New M-sums {e2(c), e22(c)} with reduced numbers of disks N (c) are
calculated (after necessary normalization to the unit cell) and presented in Figures 4 and 5. Here, the
parameter c is omitted and dependencies of the M-sums on the number of inclusions per cell are shown.

Theoretically, e2 = π ≈ 3.14159. Hence, the imaginary part 1
π

Im e2 can be considered as a measure
of accuracy. For instance, if the precision 1% is chosen, it is sufficient to take 100 inclusions per cell.
The presented computations were performed in about 40 seconds on a standard computer. The results of
the computations are given in Table 1.

Figure 3. Shaking array of disks.
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Figure 4. Plot of e2 against N , the number of disks in the corresponding cut cell.

Figure 5. Plot of e22 against N .

It is worth noting that representation of the shaking geometries (and any other random geometry) by
one inclusion per cell gives the worst possible approximation of the effective properties, since the effec-
tive conductivity of the periodic regular structure attains extremal values in locally disturbed composites
with a fixed concentration [Berlyand and Mityushev 2001; 2005].

N 4 5 8 16 25 36 64 100

Re e2 3.27 1.59 3.16 3.61 3.17 3.171 3.40 3.15
Im e2 0.122 0.461 −0.00165 0.294 0.0172 0.01 0.061 −0.001
e22 10.915 6.314 11.059 10.319 10.232 10.202 14.214 10.075

N 224 261 324 400 484 676 900

Re e2 3.1461 3.1317 3.1407 3.1417 3.1411 3.1433 3.1423
Im e2 0.0066 0.006 0.00264 −0.0013 0.000755 0.00204 0.00165
e22 10.0587 10.2828 10.0092 10.0123 10.0075 10.023 10.014

Table 1. M-sums computed for the shaking geometry; N is the number of inclusions per cell.
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concentration 0.05 0.1 0.2 0.45 0.7

q22 54.462 30.334 18.195 11.525 10.056
q33 −382.333 −94.686 −23.367 −3.506 −0.408
q44 4190.05 554.766 77.573 7.988 1.094

q2222 9643.33 2135.82 575.241 161.135 103.932

Table 2. Theoretical M-sums for the distribution UR .

q∗2 3.195+ 1.473i
q∗22 39.1971
q∗33 −282.112
q∗44 2127.11

q∗2222 3527.98

Table 3. M-sums computed for data from [Kurtyka and Rylko 2013].

Example 2. The uniform distribution UR has been studied extensively, in particular, the expectations
q( j) were computed [Czapla et al. 2012a; 2012b]. The results are gathered in Table 2. The composite
material F3K.10S reinforced with SiC particles with concentration 0.1 was discussed in [Kurtyka and
Rylko 2013]. This composite was obtained by a process of thermomechanical deformation (FSP), which
can be considered as a stir method. The results of measurement and computations are presented in
Table 3.

First of all, we have to note that the theoretical value q2 = π ≈ 3.14159 [Czapla et al. 2012a] differs
from the measured data q∗2 = 3.195+ 1.473i , which demonstrates anisotropy of the experimental sample.
This means that SiC particles were not well stirred in the host. The coefficient of anisotropy introduced in
[Mityushev 2001] can be used to measure anisotropy of composites. Let us compare now the theoretical
q( j) and experimental results q( j)∗ for high-order M-sums with the fixed concentration 0.1 (bold numbers
in the tables). One can see that the |q( j)∗

| exceed the corresponding values |q( j)
|. This follows from the

initial compact location of the inclusions, because smaller distances |ak − am | between the centers yield
larger values of the Eisenstein functions |E p(ak − am)|, hence larger values of the M-sums. Therefore,
comparison of the values from Tables 2 and 3 demonstrates that SiC particles are not sufficiently well
stirred during the FSP process. Besides the macroscopic anisotropy confirmed by q∗2 = 3.195+ 1.473i ,
other values q( j)∗ of the M-sums also confirm that the final mixture is not sufficiently well stirred.

Example 3. In the present section, the structure of the Al2O3 composite from [Nowak et al. 2013] (see
Figure 1 in that paper) is investigated. The 2D concentration of inclusions is equal to 0.52 (3D porosity
0.84 in [ibid.] gives another volume characteristic of the considered composite).

The comparison of the results in Tables 2 and 4 demonstrates the inverse situation to Example 2.
First, the value q∗2 is approximately equal to π . The data from Table 4 are similar to the data from the
column of Table 2 corresponding to the concentration 0.45. This implies that the “gelcasting of foams”
manufacturing method [Nowak et al. 2013] yields isotropic and homogeneous structures similar to the
theoretical uniform nonoverlapping distribution.
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q∗2 3.126+ 0.06118i
q∗22 11.7983
q∗33 −5.0835
q∗44 9.61203

q∗2222 163.672

Table 4. M-sums computed for digitized data obtained from Figure 1 of [Nowak et al. 2013].

5. Conclusion

In the present paper, we extend the RVE theory of [M2006] to 2D polydisperse composites and to 3D
monodisperse composites with spherical inclusions and apply it to the mixture problem. The considered
example refers to Al2O3 composites obtained by gelcasting of foams and to F3K.10S samples reinforced
with SiC particles obtained by FSP.

The developed method gives a simple procedure to construct a typical RVE whose existence is pre-
dicted by the homogenization theory. Further, the effective constants can be computed by numerical
methods.

The presented methodology can be applied to arbitrary dispersed composites. In the present paper, we
consider balls uniformly distributed in host material. This follows from the restriction that we have at our
disposal only those theoretical M-sums computed in [Czapla et al. 2012a; 2012b]. Other distributions
can be investigated by simulations described in these papers.
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SMALL AMPLITUDE ELASTIC BUCKLING OF A BEAM
UNDER MONOTONIC AXIAL LOADING, WITH FRICTIONLESS CONTACT

AGAINST MOVABLE RIGID SURFACES

FRANCESCO GENNA AND GUIDO BREGOLI

The elastic buckling of planar beams in the presence of frictionless unilateral contact against rigid sur-
faces is reconsidered, taking also into account a possible elastic translation of the rigid surfaces with
respect to each other. Exclusive reference is made to the case of small amplitude deflections, such as it
is expected to occur in the engineering application of buckling-restrained braces, where the gap between
the brace itself and the external containment structure is normally extremely small. Even though this case
precludes the occurrence of several deformed shapes possible for the general case of large displacement
(to be treated like Euler’s elastica), already described in the literature, a significant variety of behaviors
is still possible. Only monotonic loading is considered. The main variables under investigation are
(i) the wavelength of the buckled beam for a given value of the axial shortening and (ii) the total thrust
exerted by the buckled beam against the rigid constraints. It is found that both variables can assume
several possible values under the same load; in some cases, their values can be bounded analytically. It
appears that, even in the extremely simplified case considered here, the actual behavior is dominated by
the existing imperfections, both mechanical and geometrical, thus being quite difficult to be predicted
with accuracy.

1. Introduction

The work herein described concerns the post-buckling analysis of a compressed elastic beam placed
between two rigid surfaces, that create a frictionless unilateral constraint to the deflection amplitude.
The work done so far, which seems to have started with [Villaggio 1979], approaches this problem in a
general framework, i.e., for arbitrarily large displacements, in terms of Euler’s equations for the so-called
elastica. In few instances, such as [Chai 1998], a detailed analysis is developed also for the special case
of small amplitude, i.e., exploiting a second-order theory. In the work published so far the main goal
was to follow the evolution of the first waves of the deformed shape, once in contact against the external
rigid surfaces; a remarkable variety of configurations was found to be possible.

In the present work, the attention is focused only on the case of small amplitudes. The motivation
for this analysis is the determination of the buckled configuration of the core plate of a steel buckled-
restrained brace (BRB)1 for a given axial shortening displacement, as well as of the thrust exerted by
the buckled core against the external confinement profiles. In this situation, the usually small gap left

Work done within a research project financed by the Italian Ministry of University and Research (MIUR).
Keywords: elastic buckling, unilateral contact.

1 A steel-bolted BRB is an innovative type of brace, designed to dissipate energy, upon horizontal loading such as wind- or
earthquake-induced, both in tension and in compression. It is made of a steel plate enclosed into two bolted steel struts that act
as a retaining case, with an internal empty gap.
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between the facing surfaces of the inner core of the BRB and the external containment guarantees for
small amplitude buckling, so that an analysis developed in a second-order theory is fully adequate. At
the same time, this analysis eliminates from the picture a significant portion of the complexity inherent
into the elastica solutions, thus allowing some closed-form solutions.

The real case of the BRBs involves, of course, friction and plastic dissipation. Nevertheless, in order to
obtain first indications about both the number of waves formed by the buckled core for a prescribed axial
shortening, and about the lateral thrust, it appears useful to start the analysis from the simplest possible
case, i.e., the one schematically illustrated in Figure 1: linear elastic material; frictionless unilateral
contact between core and containment profiles; containment treated as a rigid surface.

The post-buckling deformed shape is here assumed to have a small amplitude, since the gap s between
core and rigid constraints is always assumed to be very small. As a consequence, the average axial strain
is given only by the axial deformation, with no contribution given by the post-buckling bending. This is
true as long as the wavelength does not become extremely short, a circumstance that here is ruled out,
limiting the interest to engineering situations for which the average axial shortening strain of the buckled
core is of the order of 0.01.

In the present work, no attempt is made at dealing with cyclic loading, which seems to cause a very
strange inelastic behavior, according to [Chai 1998], even in the presence of a fully conservative situation.
This aspect alone deserves a separate analysis, for which there is no space here.

The rigid constraints are not assumed to be fully fixed to the reference system, and are thus unable
to transmit reaction forces to it. In an attempt at describing the real arrangement of BRBs, the two rigid
surfaces are connected to each other by an elastic spring, whose stiffness can range from any finite value
up to infinity. In this situation, the rigid surfaces can only translate following the internal core thrusts, so
that the lateral thrust at one side of the core must equal the one at the opposite side. This is an essential
difference with respect to all the previous work published on this topic.

The main goal is to obtain in a direct way, given a value 1 of the axial shortening displacement, (i)
the number of buckled waves, (ii) the associated axial force and (iii) the total lateral thrust. It is worth
repeating that in all the previous analyses these were never the main points of interest. [Chai 1998]
illustrates how to follow the evolution of the post-buckling configuration, but it does not provide an
indication of how to calculate directly the quantities of engineering interest.

Other works [Domokos et al. 1997; Holmes et al. 1999; Tzaros and Mistakidis 2011; Alart and Pagano
2002; Pocheau and Roman 2004] consider essentially the elastica problem, and are focused to either
mathematical or computational aspects. More work has been devoted to the case of plates [Muradova
and Stavroulakis 2007; Chai 2001; 2002; Roman and Pocheau 2002], but never with an engineering-
oriented viewpoint. In all cases, the interest has mainly been on following the evolution of the first few
waves, a problem quite difficult in itself, but of little engineering interest, for instance in view of the
inevitable — and uncontrollable — effect of the existing imperfections.

In the approach illustrated in the present work, two main methodological contributions could be
pointed out, both potentially useful to give an answer to the problem of calculating directly the engi-
neering quantities of interest.

A first one is the adoption of the total potential energy as a tool to identify, when necessary and when
possible, the number of buckled waves. This technique was already adopted in [Genna and Gelfi 2012b],
but in a more restricted framework.
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Figure 1. Geometry of the problem under consideration.

A second idea is to choose the buckled wavelength as the main unknown, instead of the number of
waves as done previously (for instance, in [Chai 1998]). The number of waves is an integer number that
depends on all the geometrical and material data of the problem, whereas the wavelength turns out to be
governed by a parameter much easier to be computed, and independent of the total length of the beam.
In the case of an infinitely rigid connection spring, such a parameter can take values in a reasonably
restricted set.

Since the application envisaged here concerns the post-buckling behavior of BRBs, it is deemed impor-
tant, upon examination of both numerical and experimental results [Bregoli 2014; Genna and Gelfi 2012a;
2012b; Gelfi and Metelli 2007], to take into account post-buckling shapes not previously considered in
the available literature, i.e., for instance, nonsymmetric ones, with point contact at one side of the beam
and line contact at the other. Even though the restriction to the small-amplitude case prevents the much
wider range of shapes allowed by the elastica case, a significant potential complexity can still be shown,
that requires attention.

The analysis illustrated in the sequel will consider initially the general case of an elastic spring con-
necting the two rigid surfaces. For the special case of a rigid connection, some closed-form results are
obtained; the conflicting effects of the elasticity of the constraint will be shown.

2. Analysis of the problem

The geometry of Figure 1 is considered, which refers to rigid surfaces that can only translate according
to the force generated into the connecting elastic spring by the thrust of the buckled core.

Although equilibrium is imposed on the deformed configuration, both displacements and strains are
assumed to be infinitesimal (i.e., second-order approximation); shear strain contributions are neglected.

It is assumed, for simplicity, that any existing imperfection amplifies the first eigenvector of the elastic
beam. Were this not the case, the initial transient phase, after first buckling of the core, might be con-
siderably different from what described in the following, even though, eventually, some clearly defined
state, among those illustrated next, should be reached anyway.

The buckled deformed shape is assumed to be periodic along the beam length. This assumption
entails some difficulties. The first one concerns the initial transient stage, which is dominated by the
imperfections and is hardly periodic in any real situation. When the number of waves increases, the
configuration tends to be slightly less sensitive to imperfections, and to become more and more periodic,
although never exactly so. If everything were perfect and periodic, each wave would buckle and form
a new wave at the same time, thus causing an instantaneous multiplication of the wave number. On
the contrary, as also observed in [Chai 1998], in experiments, but also in numerical simulations that
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1= 2.3292 mm

1= 22.5685 mm

1= 10.9882 mm

1= 43.865 mm

Figure 2. Deformed shape, magnified by a factor of 100, at four axial displacement
values for a beam problem adopting the data of Figure 5 of [Chai 1998]. Dashed lines
indicate undeformed shapes; thick solid lines indicate the final position of the rigid
containment surfaces. FEM solution; 500 Timoshenko linear beam elements. Data as
noted in the text.

must include some imperfection in order to exhibit buckling, the number of waves increases every time
by one, for increasing axial shortening. This effect could be once more attributed to the existence of
imperfections. The new configuration, when a new buckled wave is generated, is again (almost) periodic
anyway.

The analysis of the possible evolution of the buckled configuration may start from the observation of
a finite element (FEM) solution, shown in Figure 2. This solution is obtained by means of the commer-
cial code ABAQUS [Hibbitt et al. 2013], and refers to the case of an infinitely rigid connection spring.
The data reproduce the example analyzed in [Chai 1998], and are: length L = 3000 mm; rectangular
cross-section 120 × 10 mm; gap s = 15 mm; Young’s modulus E = 210000 MPa; axial shortening
1= 43.865 mm, so as to have a final value of Chai’s parameter η equal to η= 400, as in Figure 5 of [Chai
1998]. The numerical analysis adopts a mesh of 500 Timoshenko 2-noded beam elements; it is conducted
for prescribed axial shortening, in a regime of arbitrarily large strains and displacements. An initial
geometrical imperfection is defined as an irregularity of the axis line of the beam, of the order of ±s/600.

Figure 2 shows a remarkable complexity in the evolution of the buckled shape. It shows both the
point and the line contacts described in [loc. cit.], but it also shows that a very common occurrence is
a buckled shape having a line contact followed, along the axis line of the beam, by a point one. This
occurrence is also found, both experimentally and numerically, in the analysis of BRBs in the elastic-
plastic range [Genna and Gelfi 2012a], and it seems necessary to include it in the calculations concerning
the lateral thrust.

A qualitative analysis of the evolution of the post-buckled shape of this type of structure seems to lead
to the following possibilities.
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2A. Initial contact. Before contact occurs, the situation is purely Eulerian. In the absence of imper-
fections a bifurcation would occur, of no practical interest. In a real case, what happens first depends
strongly on the existing imperfections, that can lead to the formation of one or more than one contact
points, in a way impossible to predict. As said, we will consider, for simplicity, only a case in which the
first contact occurs at a single point.

Figure 3 illustrates the first stages of the post-buckled configuration. Each image shows a single wave,
of length 2l0, of the deformed shape v(z) at the top, and the corresponding bending moment M(z) diagram
at the bottom. Image 1, if 2l0 = L , refers to the time following the first contact. At the contact point, a
local concentrated force (thrust) Qi causes a local reduction of the bending moment. For increasing axial
shortening, the increase of the thrust reduces the bending moment at the contact point until it becomes
equal to zero (image 2). At this moment, two possibilities exist, as discussed in quantitative terms in the
next section: (i, image 3a), one of the single half-waves buckles, thus forming a new wave with a new
point contact situation; (ii, images 3b and 3c), the point contact becomes a line contact before any further
local buckling occurs. This latter situation can be of two different types: a symmetric line contact, as
in image 3c, or an asymmetric line contact, as in image 3b, with a line contact at one side and a point
contact at the other. Which path will be actually followed depends on the existing imperfections; there
seems to be no indication, from the theory, about a preferred path.

In order to simplify the presentation, the acronym PC will be used from now on to denote a pure point
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Figure 3. Possible evolution of the buckled shape after the first contact. One or two
buckled waves are depicted. Image 2 refers to the instant when both the inclined portions
of the beam reach a critical axial load value, with zero bending moment at the contact
point. Images 3a, 3b, and 3c illustrate possible evolutions from the situation of image 2.



446 FRANCESCO GENNA AND GUIDO BREGOLI

z
v (z) v (z)

2l0

M (z) M (z)
z

z

2l

2π/α

0

z

2π/α

z
v (z) v (z)

2l0

M (z) M (z)

z

z

2l0

z

3b 3c

4b 4c

Figure 4. Possible evolution of the buckled shape from line contact situations. Images
3b and 4b refer to the evolution from an ALC configuration, and images 3c and 4c to
the evolution from an SLC configuration.

contact situation; SLC will indicate a symmetric line contact, and ALC will indicate an asymmetric line
contact as in image 3b of Figure 3.

2B. Evolution from a PC situation. Consider first a PC configuration like the one of image 1 in Figure 3,
where now, in general, a single wave does not represent the full length of the beam. Recall that, despite
the assumed periodicity, each time there is a local buckling only one new wave is generated, and the
rest of the beam rearranges its configuration, according to the existing imperfections, in order to restore
periodicity. Upon an increase of the axial shortening, any of the situations of Figure 3, images 3a, 3b,
and 3c, can be reached next.

2C. Evolution from an ALC situation. Figure 4 shows the possible evolutions from both the line contact
configurations. In the case of an ALC (images 3b and 4b), either one flat portion buckles, or one of the
inclined portions buckles. In both cases, always assuming that only a single new wave can appear, and
that periodicity must be restored, the next configuration has to be a PC one, illustrated in image 4b.

2D. Evolution from an SLC situation. Image 4c in Figure 4 shows the possible evolution from an SLC
situation. In both the events that one flat portion or one inclined portion of a wave buckles, a new ALC
configuration is reached.

It seems that in some cases, such as in Figure 4, image 4b, the bending moment at the point of the new
contact can be nonzero independently of the number of preexisting waves. This condition would rule out
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Figure 5. FEM analysis of the problem of Figure 2. Deformed shape (top, magnified by
a factor of 20) and elastic curvature (bottom) at two successive times (a) and (b) during
the post-buckling history. A line contact — the one at the extreme left in (a) — , with
zero bending moment along it, transforms into a point contact with nonzero bending
moment at the contact point, seen in (b). Dashed lines indicate undeformed shapes;
thick solid lines indicate the final position of the rigid containment surfaces.

the possibility that the formation of a new wave occurs directly with a new line contact configuration: a
line contact configuration, in fact, has zero bending moment all along the flattened portion of the beam.
This can also be shown numerically: Figure 5 illustrates two successive instants during the deformation
history of the same beam of Figure 2. At the first instant, on the left, a sequence of ALC configurations
appears. At the second instant, on the right, after a little increment of the prescribed axial displacement,
the left flat portion of the beam has buckled, forming a new wave with a new point contact situation. The
bending moment, at the new contact point, is nonzero, as shown in the corresponding bottom image.

Several numerical solutions of this problem, with different geometries and different gaps, have always
shown the evolution from one situation to another in terms of what described above. As apparent even
from Figure 2, in a “real” case a full periodicity is not always reached, and, moving along the beam
axis, one might encounter a sequence of PC, SLC, and ALC waves. Nevertheless, in order to perform
analytical calculations to estimate the parameters of interest, full periodicity must be assumed anyway,
as done in the next section.

3. Analytical calculation of the wavelength and associated lateral thrust

The technique adopted in this section is in part similar to that proposed in [Chai 1998], but has several
important differences:

• Contact may occur, in general, against rigid surfaces that can translate, being connected to each
other by an elastic spring. This could be either a distributed elastic foundation or, fully equivalently,
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a single elastic spring as shown in Figure 1. The spring constant k of Figure 1 is in fact equivalent
to the value of a foundation constant per unit length multiplied by the total length L of the beam.

• All the possibilities illustrated in the previous section are considered.

• The analysis considers as a main unknown the buckled wavelength, independent of the total length
of the beam.

• The analysis aims at determining directly the wavelength corresponding to a given axial shortening.

• The beam total axial shortening 1 derives, in general terms, from both the axial deformability and
the post-buckling bending, i.e., in a second-order theory,

1= εL +
∫ L

0

1
2(v
′(z))2 dz, (3-1)

where ε indicates the average membrane strain due to the axial stiffness, assumed positive if associ-
ated to shortening. In the sequel of this work, shortening and compression will always be assumed
as positive.

Nevertheless, the assumption of a small value for the gap s, and the consequent adoption of a
second-order theory, make it appropriate to neglect the bending contribution when considering the
boundary conditions of the problem. This is true as long as the number of buckled waves does
not become excessively high, a situation that can be easily ruled out in engineering applications.
Therefore, in the sequel of this work the following global boundary condition will be adopted:

1= εL . (3-2)

In real applications, such as BRBs, the prescribed value of 1 can derive from any type of horizontal
loading, such as wind or earthquake-induced, acting on a frame which includes the considered structural
element as a bracing structure. The frame stiffness is usually much greater than the BRB stiffness;
therefore, the ends of the BRB can be considered as hinged (or fully fixed, depending on the connection
design), and subjected to a prescribed displacement.

3A. Equations for the case of point contact. Figure 6 shows the considered geometry and the adopted
reference systems for the most general case of a point contact situation (solid lines only). The Figure
shows a generic half-wave, of length l0, of the beam deformed shape. In this configuration, the two
beam portions at the extreme left and right sides correspond to originally flat portions that have buckled
simultaneously, forming each a new wave, possibly of different length at each side. Although such a
situation has been ruled out a priori, previously, one can start from it from the sake of generality, and
analyze its implications.

In all the calculations developed in the following, the buckled shape is assumed to be periodic along
the beam length.

The two central inclined portions of the beam must have equal length, defined by the unknown pa-
rameter β, 0 < β ≤ 1

2 , in order to satisfy the geometric boundary conditions and in order to have the
same force at the points of contact with the rigid surfaces (this could be checked analytically). This is an
important consequence of the arrangement of Figure 1, which has no constraint for the absolute vertical
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a generic configuration of line contact. Parameters ξ , β, and γ are unknown and define
the geometrical properties of the half-wavelength l0.

translations of the rigid surfaces, in such a way that the total contact force acting on one surface must be
equal to the corresponding force acting on the other.

The two lateral portions of the beam are initially assumed to have a different length, defined by the
unknown parameter γ , 0≤ γ ≤ 1.

As a consequence of this arrangement, only three different reference systems must be adopted for a
single half-wave: one, indicated by z1, refers to the two central portions of the beam, whose deflection
is denoted by v1(z1); the two lateral portions of the beam are referred to systems z2 and z3, respectively,
and their deflections are denoted by v2(z2) and v3(z3), for the right and the left portions, respectively,
with the conventions of Figure 6. Correspondingly, the bending moment for z1 = 0, a point of flex for
the deformed shape, is zero.

The axial force corresponding to the prescribed displacement 1 is denoted by F ; owing to the as-
sumption of small displacements and linear elasticity, the following relation holds:

F = E Aε = E A
L
1, (3-3)

where E denotes the Young’s modulus of the beam, and A the beam’s cross-sectional area.
At each contact point, the corresponding contact force is denoted by Qi/2, Qi indicating the unit

thrust, i.e., the thrust associated to a single wave at each side of the buckled beam. The total thrust at
each side of the beam, i.e., the force acting inside the connection spring, is given by

Q = Qi N , (3-4)
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where N denotes the total number of buckled waves. Here, and for a while next, the following relationship
is adopted, to relate the number of waves N to the half-wavelength l0:

N = L
2l0
. (3-5)

Finally, the maximum amplitude of the buckled shape, at all the contact points, is given by

v1(βl0)= v2(0)= v3(0)= s+
Q
2k
. (3-6)

This condition follows from the infinite bending stiffness of the external surfaces; one must also recall
that the total elongation of the connection spring between the rigid surfaces, equal to Q/k, is twice the
difference between the maximum amplitude v1(βl0), at each side of the buckled beam, and the gap s.

It is possible, on the basis of the scheme of Figure 6, to write both the bending moment equations in
all the beam parts, and the differential equations governing the deformed shapes:

M1(z1)= Fv1(z1)−
1
2 Qi z1, 0≤ z1 ≤ βl0,

M2(z2)= Fv2(z2)−
1
2 Qiβl0, 0≤ z2 ≤ l0(1− 2β)γ,

M3(z3)= Fv3(z3)−
1
2 Qiβl0, 0≤ z3 ≤ l0(1− 2β)(1− γ ), (3-7)

E Iv′′1 (z1)=−M1(z1), E Iv′′2 (z2)=−M2(z2), E Iv′′3 (z3)=−M3(z3), (3-8)

where the bending moments are assumed positive if causing tension in the top fibers in the two right
portions of the beam, and in the bottom fibers in the two left portions of the beam, and I indicates the
relevant moment of inertia of the beam cross-section: here, this will always assumed to be the minimum
principal moment of inertia. Inserting (3-7) into (3-8) and rearranging terms in the usual way, one obtains:

v′′1 (z1)+α
2v1(z1)=

Qiα
2z1

2F
, v′′2 (z2)+α

2v2(z2)=
Qiα

2βl0

2F
,

v′′3 (z3)+α
2v3(z3)=

Qiα
2βl0

2F
, (3-9)

where
α2
=

F
E I
. (3-10)

The half-wavelength l0 is redefined in terms of the following nondimensional parameter ξ , which, to-
gether with parameters β and γ introduced earlier, will be the main unknown of this problem:

l0 = ξ
π

α
(3-11)

in such a way that the following also holds:

F = ξ 2π
2 E I
l2
0

. (3-12)

This allows an immediate comparison of the results for the wavelength with the standard Euler results
for elastic buckling, where ξ = 1 always.
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The relevant boundary conditions are as follows:

v1(0)= 0, (3-13)

v1(βl0)= v2(0)= v3(0)= s+
Q
2k
, (3-14)

v′1(βl0)= 0, (3-15)

v′2(0)= v
′

3(0)= 0, (3-16)

v′2[l0(1− 2β)γ ] = 0, (3-17)

v′3[l0(1− 2β)(1− γ )] = 0. (3-18)

The integration of equations (3-9) yields the following results:

v1(z1)= C1 cosαz1+C2 sinαz1+
Ql0z1

F L
, (3-19)

v2(z2)= C3 cosαz2+C4 sinαz2+
Qβl2

0

F L
, (3-20)

v3(z3)= C5 cosαz3+C6 sinαz3+
Qβl2

0

F L
. (3-21)

It is convenient to start with the analysis of functions v2 and v3 in (3-20) and (3-21). The equations
(3-16) yield immediately C4 = C6 = 0. The equations (3-17) and (3-18) are then rewritten as:

−αC3 sin [αl0(1− 2β)γ ] = 0 and −αC5 sin [αl0(1− 2β)(1− γ )] = 0, (3-22)

respectively. These can be satisfied in the following ways:

(1) By setting C3 = C5 = 0, which would correspond to line contact solutions, for the moment of
no interest; or

(2) By prescribing what follows:
αl0(1− 2β)γ = π, (3-23)

αl0(1− 2β)(1− γ )= π, (3-24)

which, making use of (3-11), gives

γ =
1

ξ(1− 2β)
and 1− γ =

1
ξ(1− 2β)

. (3-25)

These conditions imply

γ =
1
2
, β =

1
2
−

1
ξ
, (3-26)

which corresponds to a situation in which, starting from a pure SLC case, both the flat portions of
the wave have just buckled, and there are two new contact points at each side of each wave.

This case, in the framework herein considered, has been ruled out, since only the formation of a
single new wave at a time is allowed; nevertheless, it can, and will, be easily incorporated into the
next calculations, so as to take into account also the result for ξ associated to it.
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In addition to these cases, two more possibilities can be obtained from the above equations, by setting
equal to zero either one or both the lengths of the lateral extremities of the wave.

The first additional case corresponds to setting, equivalently, γ = 0 or γ = 1. Let’s consider only
the latter choice; then, only functions v1(z1) and v2(z2) survive, and only the boundary condition (3-23)
must be considered, which yields

γ = 1 =⇒ β =
1
2

(
1− 1

ξ

)
. (3-27)

This corresponds to a situation in which, starting from a pure ALC case, the flat portion of the wave
has just buckled. There is one contact point at one side of the wave, and two contact points at the
opposite side.

A second additional possibility derives from setting γ = 0 and β = 1
2 , which describes a pure PC

situation, in which only function v1(z1) survives and there is only one contact point at each side of a
single wave.

In this way, it is seen that the case of point contact has three possible subcases, of which one, defined
by (3-26), has only a purely theoretical interest since, in practice, the existence of imperfections makes
it impossible to occur.

The determination of parameter ξ for the three possible subcases follows.
For all of them, function v1(z1) is uniquely defined by the same conditions. Prescribing the boundary

conditions (3-13), (3-14), and (3-15) one obtains

v1(z1)=
2πξks[sin(αz1)−αz1 cos(πξβ)]

cos(πξβ)(α2 F L − 2π2ξ 2βk)+ 2πξk sin(πξβ)
, (3-28)

Qi =
4πξαk Fs cos(πξβ)

cos(πξβ)(2π2ξ 2βk−α2 F L)− 2πξk sin(πξβ)
. (3-29)

Correspondingly, the bending moment associated to the function v1(z1) is given by:

M1(z1)= E I
2πξα2ks sin(αz1)

cos(πξβ)(α2 F L − 2π2ξ 2βk)+ 2πξk sin(πξβ)
. (3-30)

In all these expressions, the wavelength parameters ξ and β are still to be computed.
As proposed in [Genna and Gelfi 2012b], the parameter ξ is computed by prescribing the stationarity

of the total potential energy (TPE) with respect to it. Unless one is ready to follow the complete history
of the prescribed axial displacement, in fact, there seems to be no other way to determine the correct
configuration associated to a given value of 1. Even following the actual loading history, it seems
difficult, in the absence of specific information about the existing imperfections, to prescribe a priori,
as done in [Chai 1998], the number of waves generated by a local buckling, starting from any given
configuration. Therefore, it appears that the minimization of the total potential energy is the safest tool
to obtain the correct response.

In order to write the TPE, for the problem under examination, it is convenient to reconsider it as
force-driven, and to express the force, at the end of the calculations, as a function of the prescribed axial
shortening by means of (3-3).
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The TPE for an axially compressed beam of length L , whose transversal deflection is indicated by v(z)
and axial displacement by u(z), can be written, in a second-order theory, as follows:

TPE[v(z), u(z)] = 1
2

∫ L

0

(
E I (v′′)2(z)+ E A(u′)2(z)

)
dz− F1. (3-31)

In this equation, the boundary condition (3-1) should be considered for the axial shortening 1. If one
wants to distinguish between the bending and the axial contribution to the beam shortening, then the
average membrane strain ε is an unknown, that can be calculated once the u(z) function is obtained.

It must now be recalled that the stationarity of the TPE of equation (3-31), in a second-order theory,
would furnish a bending result v(z) fully uncoupled from the axial one u(z).

As a consequence, exploiting the smallness of the gap s, and in order to avoid the useless complication
of calculating also the unknown function u(z) and the associate average strain ε, here, as said, the average
axial strain is assumed as known, given by (3-2), and the axial contribution to the TPE is completely
ignored. Some comments about this simplification will be given in Section 4. Therefore, for the prob-
lem under investigation, the total potential energy TPE can be written, for the general configuration of
Figure 6, as follows:

TPE[ξ ]= 4N 1
2

∫ βl0

0

(
E I (v′′1 )

2(z1)−F(v′1)
2(z1)

)
dz1+2N 1

2

∫ l0(1−2β)γ

0

(
E I (v′′2 )

2(z2)−F(v′2)
2(z2)

)
dz2

+ 2N 1
2

∫ l0(1−2β)(1−γ )

0

(
E I (v′′3 )

2(z3)−F(v′3)
2(z3)

)
dz3+

1
2

4k(v1(βl0)− s)2 H [(v1(βl0)− s)], (3-32)

where H [·] indicates the Heaviside function, required here to prescribe the existence of a contact force
only if the maximum deflection of the core equals or exceeds the nominal gap s.

By prescribing the stationarity of the TPE of equation (3-32) with respect to ξ , for any choice of β
and γ among the three listed above, one obtains a nonlinear equation in ξ , that, in general, must be
solved numerically.

3A1. Pure PC case, single contact point at each side. This is the case already considered in [Genna and
Gelfi 2012b], where, though, only fully fixed rigid surfaces were introduced. This corresponds to setting
β = 1

2 in the previous equations, in such a way that both functions v2(z2) and v3(z3), which do not exist,
disappear from (3-32).

The numerical results will be presented in the next section. Nevertheless, it is of interest to furnish
immediately the result in the limit k→∞. In such a case, the stationarity equation reduces to

tan (ξπ)= ξπ, (3-33)
which has the solution

ξ ≈ 1.4303, (3-34)

i.e., the result found in [loc. cit.]. In the limit k→∞, equation (3-29) for the unit thrust reduces to

Qi,∞ =
2αFs cos (πξβ)

πξβ cos (πξβ)− sin (πξβ)
, (3-35)

which holds for all the values of β and ξ deriving from a situation of pure contact at both sides of
the beam.
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3A2. Symmetric case, double contact point at each side. In this case (3-26) holds. Adopting these
values, one can obtain both the integration constants C3 and C5 from the boundary conditions (3-14).
The result is:

C3 = C5 =
2πξks sin

(
πξ
2

)
cos
(
πξ
2

)(
α2 F L −π2(ξ − 2)ξk

)
+ 2πξk sin

(
πξ
2

) . (3-36)

Accordingly, the two remaining equations for the buckled shape are:

v2(z2)= v3(z3)=
πξks

(
π(ξ − 2) cos

(
πξ
2

)
− 2 sin

(
πξ
2

)
cos(αz2(3))

)
cos
(
πξ
2

)(
π2(ξ − 2)ξk−α2 F L

)
− 2πξk sin

(
πξ
2

) , (3-37)

and the TPE of equation (3-32) can be computed as a function of ξ .
As before, it is of interest to furnish immediately the result for ξ in the limit k→∞. In such a case,

the equation expressing the stationarity of the TPE of equation (3-32) reduces to

π(ξ − 1) cos (ξπ)= π + sin (ξπ), (3-38)

which has the solution
ξ ≈ 3.58639. (3-39)

3A3. Asymmetric case, double contact point at the top side, single contact point at the bottom side. In
this case (3-27) holds, with γ = 1. Adopting these values, function v3(z3) disappears from the picture,
and one obtains the integration constant C3 from the relevant boundary condition of (3-14). The result is:

C3 =
2πξks cos

(
πξ
2

)
2πξk cos

(
πξ
2

)
− sin

(
πξ
2

)(
α2 F L −π2(ξ − 1)ξk

) . (3-40)

Accordingly, the remaining equation for the buckled shape is:

v2(z2)=
πξks

(
2 cos

(
πξ
2

)
cos(αz2)+π(ξ − 1) sin

(
πξ
2

))
2πξk cos

(
πξ
2

)
− sin

(
πξ
2

)(
α2 F L −π2(ξ − 1)ξk

) . (3-41)

Once more, it is of interest to furnish immediately the corresponding result in the limit k→∞. In such
a case, the equation expressing the stationarity of the TPE of equation (3-32) reduces to

π(1− 2ξ) cos (ξπ)= π − 2 sin (ξπ), (3-42)

which has the solution
ξ ≈ 2.52875. (3-43)

3B. Equations for the case of line contact. A line contact starts occurring at the instant when the
bending moment, at the extremities of an inclined portion of the buckled wave, becomes equal to zero.
The first occurrence of this situation is illustrated in Figure 3, image 2. Upon an increase of the axial
shortening, after a PC situation, the unit thrust Qi increases until the bending moment, at the contact
point, becomes zero. Thereafter, three possibilities exist, as discussed in Section 2B. A first one implies
the return to a pure PC situation, with a complete rearrangement of the waves; two others imply the
progressive flattening of a portion of the beam included between the points of application of half the unit
thrust, as shown in images 3b and 3c of Figure 3.
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In all the cases when the bending moment is zero at the extremities of an inclined portion of the
beam, it is immediate to obtain the corresponding length of the inclined portion itself from (3-30), by
prescribing the following condition:

M1(z1 = βl0)= 0 =⇒ sin (αβl0)= 0. (3-44)

This implies (recall also (3-11)):
βl0 =

π

α
=⇒ β =

1
ξ
. (3-45)

For the specific situation of Figure 3, image 2, i.e., the limiting case of a pure PC situation, with β = 1
2 ,

one thus gets
ξmax = 2. (3-46)

This is the result always adopted in [Genna and Gelfi 2012b] to relate the buckled wavelength to a
prescribed value of axial shortening, since the value ξ = 2 gave a better prediction than the theoretical
result of (3-34). Genna and Gelfi [2012b], however, took into account only a PC configuration, whereas,
in the previous paragraphs of the present work, it was already shown that, upon considering more general
cases, even larger values for the coefficient ξ can be found.

In all the configurations of Figure 3 with zero bending moment at the extremities of the inclined parts
of the wave, under the validity of (3-45), both these inclined parts have reached a local buckling load.
What happens for an increase of axial shortening is not uniquely defined: as observed in Section 2, either
the inclined portions buckle, or the line contact portion buckles, or, if a line contact portion does not
exist yet, when ξ = 2 for a PC situation, flattening starts developing at the contact point. In this latter
case, the unit thrust Qi splits into separate forces of intensity Qi/2 each, acting at the lateral extremities
of the line contact zone. What really happens depends on the existing imperfections.

If a line contact has already developed, such as in Figure 3, images 3b and 3c, condition (3-45) allows
one to easily compute all the limit situations that can derive from a line contact in the case that the
next critical phenomenon is the local buckling of the flat portion. One can consider the most general
situation of a line contact, which includes, as special cases, both the ALC and SLC situations considered
so far. This is the configuration depicted by the dashed lines in Figure 6, where the lengths of the two
flat portions can be in any ratio between each other.

The maximum value that can be reached by the wavelength parameter ξ , starting from the configuration
described by the central portion of the beam plus the lateral dashed lines in Figure 6, corresponds to the
first local buckling of the flat portions. Assume, with no loss of generality, that γ ≥ 1

2 , so that the right
flat portion of the beam buckles first. In this case, according to (3-45) and recalling definition (3-11),
one has

(1− 2β)γ l0 =

(
1− 2

ξ

)
γ
ξπ

α
= l1. (3-47)

The maximum value for the corresponding wavelength is obtained under the following value of the
critical axial load F∗:

F∗ =
π2 E I

l2
1

. (3-48)

This condition, using (3-47), implies

ξmax =
1+2γ
γ

. (3-49)
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If one now recalls that the only possible values for γ ≥ 1
2 are γ = 1

2 or γ = 1, one obtains immediately:

• For γ = 1
2 , i.e., starting from an SLC configuration:

ξmax = 4. (3-50)

Note that, immediately after this situation, in principle both the flat portions of the wave would
buckle, thus creating a new situation for which result (3-39) holds: the wavelength decreases in a
discontinuous way.

• For γ = 1, i.e., starting from an ALC configuration:

ξmax = 3. (3-51)

Note that, immediately after this situation, the flat portion of the wave buckles, thus creating a new
situation for which result (3-43) holds: the wavelength decreases in a discontinuous way.

If the bending moment for z1 = βl0 vanishes, the unit thrust Qi can be obtained directly from the
global equilibrium of the central inclined portion of the beam, i.e., (see Figure 6):

F
(

s+
Q
2k

)
=

Qi

2
βl0 =⇒ F

(
s+

Qi Lα
4kπξ

)
=

Qi

2
π

α
, (3-52)

and has the following final expression:

Qi,M1(βl0)=0 =
4πξαk Fs

2π2ξk−α2 F L
, (3-53)

which, in the limit k →∞, yields the following trivial result, independent of both ξ and L (see also
[Genna and Gelfi 2012b]):

Qi,M1(βl0)=0,∞ =
2Fαs
π

. (3-54)

Equation (3-53) is also a particularization of (3-29) for the case in which equations (3-45) and (3-47) hold.

4. Numerical results and discussion

It was shown that the wavelength associated to a given axial shortening can be governed, according to
the different possible situations, by several different values of parameter ξ . Even in the case of a rigid
connection spring, the coefficient ξ takes values in the range 1.4303≤ ξ ≤ 4. In the case of a deformable
connection spring, the situation becomes definitely more complex.

In the presence of a line contact, either fully developed or incipient, the results of equations (3-46),
(3-50), and (3-51), for the maximum value of ξ before a change of configuration under the condition of
(3-45), hold for any value of the spring stiffness k.

On the contrary, in all the possible cases of point contact both the parameter ξ and the thrust Q depend
on the stiffness of the connection spring in a complex way, illustrated, for the pure PC case (i.e., β = 1

2 ),
in Figures 7, 8, and 9. These figures plot, as a function of the spring stiffness k normalized by α2 F L ,
the corresponding values for ξ , Qi , and Q, respectively. In Figures 8 and 9 the values of the thrusts have
been normalized to obtain dimensionless quantities. The values for ξ have been calculated numerically,
solving the stationarity equation of the TPE of equation (3-32) by means of Newton’s method.
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Figure 7. Values for the parameter ξ as a function of the connection spring stiffness k
normalized by α2 F L , as computed from the stationarity of the TPE of equation (3-32)
for the case β = 1

2 .

0.10

0.08

0.06

0.04

0.02

0.00
0.0016 0.008 0.04 0.2

2k/(α  FL)

2
Q

  /(
α

  F
Ls

)
i

Figure 8. Values of the unit thrust Qi , normalized by α2 F Ls, as a function of the
normalized spring stiffness k/α2 F L , for β = 1

2 and ξ as in Figure 7, as given by (3-29).
Other data are: rectangular cross-section 5× 50 mm, E = 210000 MPa, L = 560 mm,
s = 0.5 mm, 1= 11.2 mm.

Similar results could be shown (they are not for the sake of brevity) for different cases of point contact,
i.e., for the other possible choices of the parameters β and γ as computed in Section 3A1.

The jumps of the values for ξ correspond to infinite values of the unit thrust Qi . As can be seen from
the denominator of (3-29), the normalization of k by α2 F L yields values for ξ that do not depend on
any further parameter.
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Figure 9. Values of the total thrust Q, normalized by α2 F Ls, as a function of the
normalized spring stiffness k/α2 F L , for β = 1

2 and ξ as in Figure 7, as given by (3-4)
and (3-5). Other data as in Figure 8.

The values for ξ take a descending step shape, staying constant in a range of values for k and then
jumping to a smaller value for an infinitesimal increase of k, until the limiting value ξ ≈ 1.4303 is reached.
The jumps in the values of ξ are not of constant value, although they are all quite close to unity. In the
considered range of values for k, ξ goes from ξ ≈ 15.49 to ξ ≈ 1.4303, which is its minimum possible
value. As said, here ξ depends only on the normalized value of k, and is independent of L . This fact
makes its determination simpler than the determination of the wave number N , as done in [Chai 1998]
(there only for k→∞).

All the results tend to their corresponding counterparts in the limit k→∞. For finite values of k, one
sees an interplay between the tendency to form less and less waves as the spring stiffness decreases (in
the limit k→ 0 only one wave would be formed), which would imply smaller and smaller lateral thrusts,
and to produce a higher thrust as the maximum displacement of the buckled shape increases, i.e., as k
decreases with a constant number of waves.

The unit thrust of Figure 8 increases rapidly with decreasing k, for constant values of ξ , tending to
an infinite value. The total thrust of Figure 9 follows a similar trend, in which, in addition, the tendency
towards smaller values as k decreases, but for an increasing number of waves, is more apparent.

All the values of the thrust depend on all the parameters of the problem; even the value for Qi in the
limit k→∞, given by (3-54), depends linearly on the gap s and on the product αF . In addition, all the
values for Q depend also on the total length L .

It is worth commenting about the effect of replacing the boundary condition in (3-2) with the boundary
condition (3-1). These comments will be restricted, for the sake of simplicity, to the case of infinite
stiffness of the connection spring, and only to the situation of a PC contact.

If one treats the membrane strain ε of equations (3-2) and (3-1) as an unknown, given a value of the
prescribed shortening displacement 1, then, still following the path described in the previous section,
the axial force corresponding to 1 is unknown, defined by the first relationship in (3-3), and the total
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potential energy of (3-31) becomes a function of the two unknowns ξ and ε. In order to compute both
unknowns, the easiest way is to impose (3-1) in strong form, and couple it with the stationarity of the
TPE of (3-32) with respect to ξ . One thus obtains in any case the result ξ ≈ 1.4303, and values for ε that
depend essentially on the value of the gap s. For small gaps, the membrane strain tends to coincide with
the nominal strain 1/L; only for large gaps the effect of the bending strain becomes important.

Consider, as an example, the problem extensively studied in [Genna and Gelfi 2012a], which has
the following set of data: L = 560 mm; E = 210000 MPa; rectangular cross-section 5× 50 mm; gap
s = 0.5 mm; 1= 11.2 mm. If one adopts (3-2), one has immediately ε = 0.02, and F = 1050000 N as
the applied axial force; if one adopts the boundary condition in (3-1), one computes ε = 0.01978 and
F = 1038600 N. If one considers a gap s = 1.0 mm, then (3-1) yields ε = 0.01915 and F = 1005190 N;
but with s = 5.0 mm one finds ε = 0.009438 and F = 495491 N, with a substantial difference between
the two approaches. In this last case, the bending contribution to the axial displacement, given by the
second term in (3-1), is 1b = 5.91476 mm.

Similar results are obtained using a very different set of data, taken from the example studied in
[Gelfi and Metelli 2007]: L = 3000 mm; E = 210000 MPa; rectangular cross-section 10× 120 mm; gap
s = 1.0 mm; 1 = 60.0 mm. Using (3-2) one has ε = 0.02 and F = 5040000 N; using (3-1) one finds
ε= 0.01978 and F = 4983680 N. Only with a gap s = 10.0 mm one finds a significant difference between
the two approaches, (3-1) providing ε = 0.0094 and F = 2371250 N.

Therefore, it seems reasonable to conclude that, if one restricts the attention to the case of small gaps
and small buckled amplitudes, the use of (3-2) is perfectly adequate. In the presence of exceedingly large
gaps a second-order approximation would lose validity altogether.

Some comments are now given about the important topic of the meaning of the obtained analytical
results with reference to the calculation of the lateral thrust in actual BRBs. We still refer to a fully ideal
BRB situation, in which linear elasticity holds for the core material, no friction exists between core and
containment profiles, and the loading is monotonic.

Even in this ideal case, it seems impossible, in practice, to predict with accuracy the half-wavelength l0.
Owing to the effect of the imperfections, in fact, the actual configuration under any given value of the
axial shortening 1 could be any of those herein considered, and the relevant value for ξ can take any of
the values computed accordingly.

This fact could be confirmed numerically. The problem of [Genna and Gelfi 2012a] has been solved
numerically several times using the FEM code ABAQUS [Hibbitt et al. 2013] using a mesh of 3000
Timoshenko linear beam elements, with frictionless unilateral contact against rigid surfaces in the case
k→∞. Each analysis introduced a different type of initial imperfection, which was either a deviation
from linearity of the beam axis or the presence of a small transversal load, in some case having a quick
temporal variation in order to influence in a “random” way the formation of new buckled waves. Chang-
ing the type of this imperfection, for 1= 11.2 mm, i.e., ε= 0.02, quite different solutions were predicted,
with a number of waves variable from 1 to 3, with l0 variable from 250 mm to 90 mm, and with a total
lateral thrust variable from 17073 N to 103366 N.

Suggestions about a reasonable engineering compromise for the choice of parameter ξ will be given
shortly.

Another difficult point concerns the calculation of the total thrust Q. Even though the unit thrust Qi

is not strongly dependent on the value of ξ in several cases (see for instance (3-54); but also in other
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situations the unit thrust, for reasonable values of the parameters, does not depend too much on the value
of ξ — see also Tables 1 and 2 on page 461), the value of the total thrust Q exhibits always a strong
dependence on both ξ and, of course, L . The difficulty, here, derives from the adoption of (3-5) to relate
the wave number to the wavelength: this expression furnishes real (as alternative to integer) values for N ,
which is not correct, since N has to be an integer.

This problem is of difficult solution as long as one needs to take into account also the stiffness k of the
elastic connection spring. In this case, in fact, all the aspects of the solution become strongly coupled,
and all the parameters of interest vary in a quite large range of values, depending on the actual value
of k; the thrust can jump to infinity, which makes it completely unpredictable.

Nevertheless, considering that a correct estimate of the spring constant k is not so easy, and considering
that the good functioning of a BRB depends anyway on a high stiffness of the containment structure, it
can be safely concluded that an engineer should endeavor to design the containment profiles stiff enough
to make them behave as almost rigid, i.e., in the range of values for k associated to the result ξ ≈ 1.4303
for the pure PC situation for all the expected values of the axial force.

Then, by restricting the attention to the case k→∞, it is possible to reach some acceptable results. In
the first place, the admissible values for ξ are now limited in the range 1.4303≤ ξ ≤ 4. Considering that,
in practice, asymmetric configurations will be more likely than fully symmetric ones, as also shown by
experiments and numerical simulations (see for instance [Genna and Gelfi 2012a] and [Bregoli 2014]),
one is lead to adopt values in the range 2.52875≤ ξ ≤ 3, ξ = 3 being the simplest choice, not so far from
the trivial average value ξ = (1.4303+ 4)/2= 2.72.

One further reason for adopting the value ξ = 3 as an estimate for the wavelength derives from thinking
in terms of elastic-plastic behavior, obviously important in engineering applications such as BRBs. In
the elastic-plastic case, the axial force F can definitely reach and overcome the elastic limit for the
compressed core. This means that at the contact points the bending moment contribution can not be
high anyway, considering that the cross-section has almost fully exhausted its stress-carrying capacity
because of the axial force alone. Therefore, one should reasonably expect a situation in which the bending
moment is zero, or nearly so, at the contact points, which implies that coefficient ξ can assume the limit
value ξmax= 2 for a PC situation, ξmax= 3 for an ALC situation, or ξmax= 4 for an SLC one. Considering
that all these values are the maximum possible in each case, and that in a real situation (elastic-plastic,
with friction, etc.) symmetry is less and less likely, it seems more appropriate to choose the asymmetric
case value, i.e., ξ = 3.

Finally, recall also that values ξ > 3, with k→∞, correspond to situations in which two new waves
would be formed simultaneously, a case that in reality does never occur; ξ = 3 seems therefore to be
the highest possible value that can be reached in the case of an infinitely rigid connection spring, and a
reasonable engineering choice, in the absence of information about imperfections.

According to this choice, the expression for the unit thrust to be adopted becomes (3-53), which, in
the case of a rigid connection spring, reduces to (3-54).

Once agreed on this, then it is finally possible to tackle the problem of computing the total thrust on
the basis of an integer number of waves.

If one attempts to make the TPE extreme with respect to feasible values of N , with N an integer (this
can be easily done numerically), one finds results not much distant from the analytical ones given by the
use of (3-5). It can be seen, actually, that, given ξ , the corresponding choice, for the correct integer Nint,
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is given by
Nint = Int(N + 0.5), (4-1)

i.e., the nearest integer to N given by (3-5). Therefore, in computing the unit thrust Q for a given ξ , on
the basis of (3-4), it is suggested to adopt expression (4-1) instead of (3-5).

In order to have an idea of the approximation provided by the proposed procedure, one can once more
consider the two examples of [Genna and Gelfi 2012a] and [Gelfi and Metelli 2007]. Both geometries
have been studied using the FEM code ABAQUS [Hibbitt et al. 2013], adopting a full 3D mesh for
the core, with linear elasticity for the core material, and frictionless rigid surfaces for the containment.
In the case of 3D analyses, the adopted imperfection was only a small fraction of the self weight of
the beam, considered acting as a transversal load. In general, the FEM solutions obtained by means of
continuum models tend to be less sensitive to imperfections than solutions given by beam models, and
even less sensitive in the elastic-plastic range, as was also found in [Genna and Gelfi 2012a], and as will
be discussed in work under way. The following numerical results have been obtained:

• geometry of [Genna and Gelfi 2012a] with 1 = 11.2 mm; l0 ≈ 70 mm, ξ ≈ 2.06; N = 4; F =
938464 N; Qi = 24438 N; Q = 97750 N;

• geometry of [Gelfi and Metelli 2007] with 1 = 60.0 mm; l0 ≈ 150 mm, ξ ≈ 2.44; N = 9; F =
5466330 N; Qi = 143060 N; Q = 1287540 N.

The corresponding analytical results, for k→∞, are shown in Tables 1 and 2, respectively, where all
the possible choices of parameters ξ and β have been considered, in order to show the relevant differences.

ξ β l0 [mm] Nint Qi [N] Q [N]

1.4303 0.5 45.86 6 29447 176682
2 0.5 64.13 4 32747 130989
2.52875 0.3023 81.08 4 31037 124148
3 0.3333 96.2 3 32747 98242
3.58639 0.2212 114.99 2 31641 63282
4 0.25 128.26 2 32747 65495

Table 1. Analytical results for the example of [Genna and Gelfi 2012b] with k→∞.
1= 11.2 mm; F = 1050000 N.

ξ β l0 [mm] Nint Qi [N] Q [N]

1.4303 0.5 91.72 16 141345 2261514
2 0.5 128.26 12 157187 1886244
2.52875 0.3023 162.16 9 148978 1340798
3 0.3333 192.4 8 157187 1257495
3.58639 0.2212 229.99 7 151878 1063143
4 0.25 265.51 6 157187 943122

Table 2. Analytical results for the example of [Gelfi and Metelli 2007] with k→∞.
1= 60 mm; F = 5040000 N.
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It is apparent that the total thrust Q takes values in a quite large range, even though the unit thrust Qi

does not depend much on the considered configuration. Adopting the proposed values for ξ and β (ξ = 3,
β = 1/ξ = 0.3333), the error on the most interesting quantity, i.e., the total lateral thrust Q, is of the
order of 0.02 in the worst case, which appears satisfactory, under the circumstances.

5. Conclusions

New calculations have been developed for the problem of the buckling of an elastic compressed beam
restrained by unilateral frictionless contact against rigid surfaces that can translate elastically with respect
to each other. Special attention has been devoted to devising a technique for obtaining directly the wave
number and the associated thrust produced by the beam, when in contact against the rigid surfaces, for a
prescribed value of the axial shortening. Even though some analytical results could be obtained, it appears
that a precise calculation of the current number of buckled waves, and thus of the total lateral thrust, is
impossible. Several alternative configurations can in principle occur under the same axial load, and the
one actually followed depends on the existing imperfections, which can not be defined with precision.

With reference to the design of BRBs, the calculations developed herein lead to conclude that a good
engineering choice is to enforce as strongly as possible a rigid constraint between the rigid surfaces,
and that, also in view of the likely preference of buckled shapes for nonsymmetric configurations, a
good choice for the coefficient ξ of the equation (3-11) governing the wavelength should be ξ = 3. The
comparison with some numerical simulations has shown that, in this way, reasonably accurate results
can be found under the assumptions of validity of the theory herein developed.

It is worth remarking that the choice ξ = 3 provides a relationship, between axial force and buckled
wavelength, that implies an axial force 9 times larger than the one given by Euler’s formula (see (3-12)),
which is obviously not applicable in this situation.

The obtained results should constitute a starting point for the engineering design of BRBs, although
the real situation, with BRBs, includes plastic deformations, contact with friction, and cyclic loading.
Further work, based on the results herein presented, will tackle these more general aspects.
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