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REPRESENTATIVE VOLUME ELEMENT
IN 2D FOR DISKS AND IN 3D FOR BALLS

NATALIA RYLKO

Effective properties of random composites are discussed in the framework of the representative volume
element (RVE) theory proposed by Mityushev (2006). This theory is extended to 2D fiber composites
with sections perpendicular to fibers of different radii and to 3D composites with spherical inclusions.
RVE theory is applied to the mixture problem frequently met in technological processes. This problem
consists in a mechanical stir process of few components to get a homogeneous material in macroscale.
In particular, the AlSi9/SiC composites obtained by thermomechanical deformation are investigated.

1. Introduction

The effective properties of composites and porous media can be determined by measurement of macro-
scopic properties of test specimens. Analogous to the measurement, computational methods are used in
theoretical investigations of the specimens, which represent the entire material. If inclusions or pores
are distributed statistically homogeneously in the bulk material, the effective properties are described by
constant tensors [Adler et al. 2012; Gross and Seelig 2011]. The macroscopic tensors do not depend on
the size, shape of the chosen specimen or on boundary conditions [Bakhvalov and Panasenko 1989; Jikov
et al. 1994]. These tensors can be determined via solution of the periodic problem when the periodicity
cell represents the material under consideration. This concerns not only strictly periodic media but also
statistically homogeneous media when a cell represents the macroscopic properties of the random media
[Golden and Papanicolaou 1983; Jikov et al. 1994; Telega 2004]. Such media constitute a subclass of
heterogeneous fields discussed in [Torquato 2002; Mityushev 1999; Mityushev and Rylko 2013] and
functionally gradient materials [Jaworska et al. 2006; Rozmus et al. 2009; Gross and Seelig 2011].

Statistically homogeneous media, defined in [Golden and Papanicolaou 1983; Jikov et al. 1994; Telega
2004], can be represented by a cell, which is called the representative volume element (RVE). The
homogenization theory justifies existence of the macroscopic tensors for such media. The computational
problem consists in numerical and symbolic calculations of the effective tensors when the RVE is given,
i.e., the microstructure is deterministically or statistically described. However, only the existence of the
RVE follows from the homogenization theory. Therefore, methods to construct RVEs can be considered
as the first step to determine the effective properties of composites and porous media.

Statistical methods to construct RVEs have been described in detail in [Benveniste 1987; Gusev 1997;
Huet 1990; Kanit et al. 2003; Milton 2002; Ostoja-Starzewski 2008; 2011; Segurado and LLorca 2006;
Torquato 2002] and works cited therein. The statistical methods are based on the overall testing process.
For instance, for dispersed two-phase composites with equal inclusions, the number of particles contained
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in a sample is increased and the effective constants are computed, usually by purely numerical methods
[Zohdi and Wriggers 2008]. The process of increasing is stopped when the fluctuations of the effective
constants become sufficiently small. The number of particles 64 per cell frequently arises in the literature
[ibid.] as a sufficiently large number for the nonoverlapping uniform distribution of inclusions. Analytical
and numerical results [Czapla et al. 2012a; 2012b] rigorously confirm this fact.

Purely numerical methods [Zohdi and Wriggers 2008] are restricted to special distributions of in-
clusions. The properties of constituents are also given numerically. These lacks were overcame in
[Mityushev 2006] (hereafter referred to as [M2006]) where a rigorous and constructive theory of the
RVE for plane composites with identical circular inclusions was described. The RVE theory for identical
disks in that paper is based on the representation of the effective conductivity tensor [Berlyand and
Mityushev 2001; Mityushev 2001] in the form of a double series depending on the concentration of
inclusions and on “basic elements” which depend only on the locations of the inclusions. These basic
elements are written in terms of the Eisenstein series. Coefficients in the double series depend on the
physical properties of constituents. Two composites were defined as equivalent if they have the same
basic elements. Therefore, the set of the composites with circular identical inclusions was divided into
equivalence classes determined only by the geometrical structure of the composite. In each equivalence
class, a composite having the minimal size cell is chosen. Following [M2006], this cell is called the
representative cell of equivalent composite materials. A constructive algorithm to determine the repre-
sentative cell for any distribution of inclusions using only pure geometrical parameters was described in
[M2006]. Examples presented therein yield fast transformations from cells to the representative cell of
small size. This can be used in optimal computations of the macroscopic properties by applications of
numerical and analytical methods.

In this paper we discuss the mixture problem, which can be outlined as follows. Take many balls, put
them in a vessel and stir. Hence, we have the original and final locations of balls in the vessel. There
are various methods of stirring [Kurtyka and Rylko 2013]. The mixture problem consists in determining
the time (velocity, energy, etc.) necessary to reach the required mixture. Here, we arrive at the questions
of how to measure the macroscopic thermal and mechanical properties of the mixture. It can be done by
expensive experiments. The RVE theory yields an effective and simple method, developed in Section 4,
to resolve the mixture problem. This method essentially extends the approach of the paper [Kurtyka and
Rylko 2013] based on the M-sum.

In the present paper, we extend the RVE theory of [M2006] to 2D polydisperse composites and to
3D monodisperse composites with spherical inclusions. The obtained theoretical results are applied to
the porous alumina material (α-Al2O3) discussed in [Nowak et al. 2013] and to the mixture problem
frequently met in technological processes. It is shown how to construct the RVE size following the
theory of [M2006]. Advantages of using this theory are the fast reconstruction method of the RVE and
applications to the mixture problem. It is worth noting that the reconstruction of the RVE in [M2006]
was based on equations where unknowns were centers of inclusions. However, it is not clear how to
investigate polydisperse composites by use of such equations. Our method is based on investigation of
the M-sums for various fragments of the large cell. Such a modification is reduced to investigation of
one fixed cell instead of the whole class, which reduces computations.

The paper is organized as follows. The 2D RVE theory for disks is developed in Section 2. The
3D RVE theory is described in Section 3 for the nonoverlapping uniformly distributed identical spherical
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Figure 1. 2D RVE in the torus topology, a section of the 3D RVE parallel to the x3-axis.

inclusions. Section 4 is devoted to applications of the RVE theory. Concluding remarks and relations to
the RVE theory are presented in Section 5.

2. 2D RVE theory

Following [M2006], we extend the RVE theory to 2D composites with circular inclusions of different
radii. Consider a 2D two-component composite made from a collection of nonoverlapping disks embed-
ded in a matrix of a different nature (see Figure 1). It is assumed that the distribution R of the radii of
the disks rk is given and it does not depend on the locations of the disks. The centers of the disks satisfy
a distribution A corresponding to a nonoverlapping-disks distribution on the plane. The distribution A

formally does not depend on the distribution R of radii, but the choice of the distribution A is restricted
by R. This situation can be demonstrated by the following observation: for identical disks of radius r ,
the distance between any two centers must exceed 2r .

It is assumed that the distribution A generates a random homogeneous field [Golden and Papanicolaou
1983; Jikov et al. 1994; Telega 2004] for which the macroscopic properties are correctly defined. One
of the most important distributions A is the nonoverlapping uniform distribution U, which corresponds
to the perfect mixture of inclusions. The distribution U can be realized by the sequence location method
or by random walks described in [Czapla et al. 2012a]. Other distributions are described in the book
[Torquato 2002] in terms of the correlation functions. In the present paper, we do not discuss the question
of the statistical generation of the theoretical distributions, and assume that realizations of A are given in
the form of pairs (ak, rk), where ak = (xk, yk) denotes the center and rk the radius of the k-th inclusion.
Further, it will be convenient to identify ak with the complex number ak = xk + iyk .

According to the homogenization theory [Golden and Papanicolaou 1983; Jikov et al. 1994; Telega
2004] there exists a periodicity cell with a finite number of inclusions representing the composite. First,
we describe parameters of this cell. Consider a lattice Q on the complex plane C which is defined by
two fundamental translation vectors ω1 and ω2. Without loss of generality we assume that ω1 > 0 and
Imω2 > 0, where Im stands for the imaginary part. Introduce the zeroth cell

Q0 :=
{
z ∈ C : z = t1ω1+ t2ω2,−

1
2 < t1,2 < 1

2

}
.

The lattice Q is generated by the cells Qm := {z ∈ C : z−m1ω1−m2ω2 ∈ Q0}, where m = m1+ im2 is
a complex number with m1 and m2 integers.
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Let CN denote the set of the elements (ak, rk), k = 1, 2, . . . , N , where the radii rk satisfy the dis-
tribution R and the centers ak correspond to nonoverlapping uniformly distributed disks in the cell Q0.
Let CN+1 = CN ∪ {(aN+1, rN+1)}. Introduce the set C =

⋃
∞

N=N0
CN with sufficiently large N0. The

number N0 gives the size of the minimal representative set CN0 . The set C consists of all the configura-
tions of mutually disjoint disks uniformly distributed on the plane whose radii satisfy the distribution R.
It is worth noting that C describes random locations of disks on the plane. In practical measurements,
we observe finite fragments of C. If these fragments represent the considered material, it is possible to
statistically recover the distributions R and A.

The radii distribution R can be easily constructed since it describes a 1D random variable. The 2D
distribution A is theoretically described by correlation functions [Torquato 2002]. But we do not follow
that reference, and consider A as a set of the given center coordinates ak (measured and statistically
presented). In particular, the 2D concentration of inclusions φ2 can be measured. Theoretically, the 2D
concentration φ2 can be considered as the mean value

φ2 =
1
|Q|

N∑
k=1

πr2
k , (2-1)

where |Q| stands for the area of the domain Q.
According to the theory [M2006], we have to compare two different representative elements of A.

Consider a large fundamental region Q′ constructed from the fundamental translation vectors ω′1 and ω′2.
Let Q′ contain N ′ nonoverlapping circular disks D′k of radius r ′k with centers a′k ∈ Q′ (k = 1, 2, . . . , N ′)
representing the distributions R and A. Let 3̂′ be the effective tensor of the composite represented by
the region Q′ with inclusions D′k . Let the cell Q′ correspond to another small cell Q which contains
inclusions Dk = {z ∈ C : |z− ak |< rk} (k = 1, . . . , N ) also representing the distributions R and A, such
that the effective tensor 3̂ is close to 3̂′. Closeness is defined by the concentration accuracy O(φL+1

2 )

for the difference 13̂= 3̂− 3̂′, with prescribed L . According to [M2006], the cell Q is a representative
cell for the region Q′ with the accuracy O(φL+1

2 ) if

13̂= O(φL+1
2 ). (2-2)

Let a representative cell Q have the minimal possible area from all the representative cells equivalent
to Q′. This cell is called the RVE. The existence of the RVE is evident since in the worst case one can
take Q = Q′. The numerical statistical methods [Kanit et al. 2003] are also based on the relation (2-2).
Since φ2 is fixed in numerical computations, (2-2) becomes 13̂≈ 0.

Instead of (2-2), Mityushev proposed to compare the basic elements of the expansion of the effective
tensor. These basic elements are introduced as follows. Let a cell Q contain N inclusions with centers ak .
Let Em(z) denote the Eisenstein function of order m (see for instance Appendix A of [Czapla et al.
2012a]). Let C denote the operator of complex conjugation, which satisfies Cq z = z for even q and
Cq z = Cz = z for odd q.

The following sums, of multi-order (m1, . . . ,mq), were introduced in [M2006]:

em1...mq :=

(
π

φ2

)1+ 1
2 (m1+···+mq ) ∑

k0,k1,...,kq

r2
k0

r2t1
k1
. . . r2tq

kq
Em1(ak0 − ak1)Em2(ak1 − ak2) · · ·

×Cq Emq (akq−1 − akq ), (2-3)
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where ks = 1, 2, . . . , N for 0 ≤ s ≤ q, t0 = 1 and ts = ms − ts−1. We call (2-3) the M-sum of order
(m1, . . . ,mq).1 For instance, the M-sum of order (2, 2) has the form

e22 :=

(
π

φ2

)3 ∑
k0,k1,k2

r2
k0

r2
k1

r2
k2

E2(ak0 − ak1)E2(ak1 − ak2). (2-4)

It is justified in [M2006] that the effective conductivity tensor for 2D composites can be presented in
the form of a power series in the total concentration φ2 with coefficients linearly depending on em1...mq .
An explicit iterative scheme for the coefficients of this series was explicitly presented in [Berlyand and
Mityushev 2001; 2005; Mityushev 2001]. Plane elastic stress and strain fields are described by bihar-
monic functions [Grigolyuk and Filshtinsky 1991]. Any harmonic function is biharmonic. Therefore,
harmonic functions describe not only conductivity problems but also special elastic stress and strain
fields. This implies that the M-sums also describe (perhaps partially) macroscopic properties of elastic
composites. We conjecture that this description is complete for the following reason. An iterative scheme
analogous to [Berlyand and Mityushev 2001; 2005; Mityushev 2001] for conductivity problems can be
extended to 2D elastic problems. Then, a formula for the effective elastic tensor could be deduced. Such
a scheme was actually constructed in particular cases for regular structures [Grigolyuk and Filshtinsky
1991]. Preliminary results in [ibid.] and [Mityushev 2000] demonstrate that the effective elastic constants
linearly depend on the M-sums and, let us say, M∗-sums having the same structure as (2-3), but with the
quasi-elliptic functions E∗m(z) introduced in Appendix 2 of the book [Grigolyuk and Filshtinsky 1991]
instead of the Eisenstein functions Em(z). Hence, the effective elastic tensor can be expressed through
a linear combinations of the M- and M∗- sums (the form of this linear combination is not known, but
it exists). The quasi-elliptic functions E∗m(z) are expressed via the Eisenstein functions by algebraic
equations [ibid.]. Therefore, it is sufficient to consider only the M-sums (2-3) for elastic media.

Not all the M-sums participate in the effective tensor. For instance, the effective conductivity up to
O(φ5

2) contains eight M-sums: e2, e22, e33, e222, e44, e322, e223, e2222. For macroscopically isotropic
composites, e2 = π , and many other M-sums are dependent [Mityushev and Rylko 2012]. This reduces
the number of basic elements to achieve the accuracy O(φ4

2) to the following four M-sums:

e22, e33, e2222, e44. (2-5)

The M-sum (2, 2) can be calculated by (2-4). Explicit forms of other M-sums (2-5) are given by the
following formulae:

e33 =

(
π

φ2

)4 ∑
k0,k1,k2

r2
k0

r4
k1

r2
k2

E3(ak0 − ak1)E3(ak1 − ak2), (2-6)

e2222 =

(
π

φ2

)5 ∑
k0,k1,k2,k3,k4

r2
k0

r2
k1

r2
k2

r2
k3

r2
k4

E2(ak0 − ak1)E2(ak1 − ak2)E2(ak2 − ak3)E2(ak3 − ak4), (2-7)

e44 =

(
π

φ2

)5 ∑
k0,k1,k2

r2
k0

r6
k1

r2
k2

E4(ak0 − ak1)E4(ak1 − ak2). (2-8)

1 M-sum is short for Mityushev’s sum.
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Figure 2. 3D RVE, which can be triply periodically continued to the whole space.

Remark. The M-sums (2-3), in particular (2-5), can be considered as the moments of the correlation
functions [Torquato 2002]. Hence, the RVE theory [M2006] implicitly uses the correlation functions and
does not require their explicit computations.

3. 3D RVE theory

The 2D M-sums (2-3) can be applied to the 3D RVE by use of the sections method. Consider a 3D cell P
with fundamental translation vectors ω j ( j = 1, 2, 3). For simplicity, consider the unit cubic cell P , where
ω1 = (1, 0, 0), ω2 = (0, 1, 0) and ω3 = (0, 0, 1). Suppose that sufficiently many identical balls (n, say)
are uniformly located in P without overlapping (see Figure 2). This distribution corresponds to perfectly
mixed balls of the same radius R in a uniform host with prescribed volume concentration

φ =
4πn

3
R3. (3-1)

Consider a typical section of P parallel to the plane generated by ω1 and ω2 (see Figure 1). This section
can be considered as a plane cell Q0 with the complex coordinates introduced in Section 2. Let Q0

contain N disks of radii rk with centers located at ak . The concentration of disks in Q0 has the form

φ2 =

N∑
k=1

πr2
k (3-2)

since Q0 is the unit square. The uniform nonoverlapping distribution of the identical balls in P yields a
uniform nonoverlapping distribution of disks in Q0 with radii distributed in a special way described by a
distribution denoted for definiteness by Rs . Let r be the random value distributed in accordance with Rs .
It can be described by the uniformly distributed 1D random variable on the segment (0, R). Then the
mathematical expectation of the area of a disk is calculated by formula

〈πr2
〉 =

1
R

∫ R

0
π(R2

− x2) dx = 2π
3

R2. (3-3)

Let 〈N 〉 denote the expected number of disks in the cell Q0. Then (3-2) and (3-3) imply that



REPRESENTATIVE VOLUME ELEMENT IN 2D FOR DISKS AND IN 3D FOR BALLS 433

φ2

〈N 〉
=

〈
1
N

N∑
k=1

πr2
k

〉
=

2π
3

R2. (3-4)

The volume concentration (3-1) is equal to the probability that a point from P belongs to one of the
balls. The concentration (3-2) is equal to the probability that a point from Q0 belongs to one of the disks.
The balls are uniformly distributed in P . Moreover, Q0 is a typical section of P , hence the 2D and 3D
concentrations coincide:

φ2 = φ. (3-5)
Then (3-4) and (3-1) yield

〈N 〉 = 2Rn. (3-6)

This formula relates the expected number 〈N 〉 of disks in the cell Q0 with the given number n of balls
per cell.

The expected values of (2-4), (2-6)–(2-8) are calculated by use of (3-3)–(3-4) as

〈em1...mq 〉 = qm1...mq , (3-7)
where

qm1...mq :=
1

〈N 〉1+
1
2 (m1+···+mq )

∑
k0k1...kq

Em1(ak0 − ak1)Em2(ak1 − ak2) · · ·C
q Emq (akq−1 − akq ). (3-8)

The M-sums (3-8) correspond to the distribution of the identical disks when the centers ak obey the
uniform nonoverlapping distribution Us consistent with the special radii distribution Rs . The relation
(3-7) contains the mathematical expectation 〈em1...mq 〉 over the radii distribution Rs . We now write the
mathematical expectation of (3-7) over the distribution As of centers in the form

〈〈em1...mq 〉〉 = 〈〈qm1...mq f 〉〉. (3-9)

It is difficult to calculate analytically the operator 〈〈·〉〉 because the distribution As has a complicated
support domain for the centers of nonoverlapping disks. However, numerical statistical estimations of
〈〈qm1...mq 〉〉 can be performed by algorithms developed in [Czapla et al. 2012a; 2012b]. Consider the
M-sums (2-5) to estimate the RVE with the accuracy O(φ4). It was proved in [Mityushev and Rylko
2012] that

qpp =
(−1)p

〈N 〉p+1

〈N 〉∑
m=1

∣∣∣∣∣
〈N 〉∑
k=1

E p(am − ak)

∣∣∣∣∣
2

, p = 2, 3, 4, (3-10)

and

q2222 =
1
〈N 〉

〈N 〉∑
k=1

∣∣∣∣∣ 1
〈N 〉2

∑
k1,k2

E2(ak − ak1)E2(ak1 − ak2)

∣∣∣∣∣
2

. (3-11)

This implies that q(1) = q22, q(2) = −q33, q(3) = q44 and q(4) = q2222 are nonnegative for any location
of ak . It was justified in [Berlyand and Mityushev 2005; Berlyand et al. 2013] that, in the framework
of the shaking model, the q( j) ( j = 1, 2, 3, 4) decrease when order (regularity) of the center locations
increases. It is conjectured that the decrease principle for ordered structures takes place in the general case.
Consider the degenerate plane radii distribution RR in which all the radii are equal to R. This distribution
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yields the plane uniform nonoverlapping distribution UR of the identical disks. The probabilistic space
of events described by Us is wider than that described by UR . Hence, UR is “more regular” than Us .
This yields the inequality q( j)(UR)≤ q( j)(Us). For moderate concentrations, one can expect that

q( j)(UR)≈ q( j)(Us), j = 1, 2, 3, 4. (3-12)

4. Applications

In this section, various applications of the RVE theory are demonstrated. Section 4 is devoted to the size
problem of the RVE. It is a traditional problem of the RVE which can be easily solved by simple and fast
computations based on the M-sums. Sections 4–4 concern investigations of the structure of the special
composites.

Example 1: size of the RVE. We consider a polydisperse random “shaking” composite [Berlyand and
Mityushev 2001; 2005]. Let the periodic square array be perturbed by random deviations of the disks.
Consider the model as displayed in Figure 3. The doubly periodic unit cell Q0= (−0.5, 0.5)×(−0.5, 0.5)
contains 900 disks of radii between 0.0045 and 0.0135, displaced from their position in a regular array by
the distance d, taken for each disk as a random variable uniformly distributed on the interval (0, 0.006).
Following the RVE theory [M2006], we have to restrict the infinite set of M-sums {e2, e22, e33, e2222, . . .}.
For definiteness, take the set {e2, e22}. Now, let the unit cell Q0 be cut to the cells Qc = (−0.5c, 0.5c)×
(−0.5c, 0.5c), where 0≤ c ≤ 1. New M-sums {e2(c), e22(c)} with reduced numbers of disks N (c) are
calculated (after necessary normalization to the unit cell) and presented in Figures 4 and 5. Here, the
parameter c is omitted and dependencies of the M-sums on the number of inclusions per cell are shown.

Theoretically, e2 = π ≈ 3.14159. Hence, the imaginary part 1
π

Im e2 can be considered as a measure
of accuracy. For instance, if the precision 1% is chosen, it is sufficient to take 100 inclusions per cell.
The presented computations were performed in about 40 seconds on a standard computer. The results of
the computations are given in Table 1.

Figure 3. Shaking array of disks.
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Figure 4. Plot of e2 against N , the number of disks in the corresponding cut cell.

Figure 5. Plot of e22 against N .

It is worth noting that representation of the shaking geometries (and any other random geometry) by
one inclusion per cell gives the worst possible approximation of the effective properties, since the effec-
tive conductivity of the periodic regular structure attains extremal values in locally disturbed composites
with a fixed concentration [Berlyand and Mityushev 2001; 2005].

N 4 5 8 16 25 36 64 100

Re e2 3.27 1.59 3.16 3.61 3.17 3.171 3.40 3.15
Im e2 0.122 0.461 −0.00165 0.294 0.0172 0.01 0.061 −0.001
e22 10.915 6.314 11.059 10.319 10.232 10.202 14.214 10.075

N 224 261 324 400 484 676 900

Re e2 3.1461 3.1317 3.1407 3.1417 3.1411 3.1433 3.1423
Im e2 0.0066 0.006 0.00264 −0.0013 0.000755 0.00204 0.00165
e22 10.0587 10.2828 10.0092 10.0123 10.0075 10.023 10.014

Table 1. M-sums computed for the shaking geometry; N is the number of inclusions per cell.
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concentration 0.05 0.1 0.2 0.45 0.7

q22 54.462 30.334 18.195 11.525 10.056
q33 −382.333 −94.686 −23.367 −3.506 −0.408
q44 4190.05 554.766 77.573 7.988 1.094

q2222 9643.33 2135.82 575.241 161.135 103.932

Table 2. Theoretical M-sums for the distribution UR .

q∗2 3.195+ 1.473i
q∗22 39.1971
q∗33 −282.112
q∗44 2127.11

q∗2222 3527.98

Table 3. M-sums computed for data from [Kurtyka and Rylko 2013].

Example 2. The uniform distribution UR has been studied extensively, in particular, the expectations
q( j) were computed [Czapla et al. 2012a; 2012b]. The results are gathered in Table 2. The composite
material F3K.10S reinforced with SiC particles with concentration 0.1 was discussed in [Kurtyka and
Rylko 2013]. This composite was obtained by a process of thermomechanical deformation (FSP), which
can be considered as a stir method. The results of measurement and computations are presented in
Table 3.

First of all, we have to note that the theoretical value q2 = π ≈ 3.14159 [Czapla et al. 2012a] differs
from the measured data q∗2 = 3.195+ 1.473i , which demonstrates anisotropy of the experimental sample.
This means that SiC particles were not well stirred in the host. The coefficient of anisotropy introduced in
[Mityushev 2001] can be used to measure anisotropy of composites. Let us compare now the theoretical
q( j) and experimental results q( j)∗ for high-order M-sums with the fixed concentration 0.1 (bold numbers
in the tables). One can see that the |q( j)∗

| exceed the corresponding values |q( j)
|. This follows from the

initial compact location of the inclusions, because smaller distances |ak − am | between the centers yield
larger values of the Eisenstein functions |E p(ak − am)|, hence larger values of the M-sums. Therefore,
comparison of the values from Tables 2 and 3 demonstrates that SiC particles are not sufficiently well
stirred during the FSP process. Besides the macroscopic anisotropy confirmed by q∗2 = 3.195+ 1.473i ,
other values q( j)∗ of the M-sums also confirm that the final mixture is not sufficiently well stirred.

Example 3. In the present section, the structure of the Al2O3 composite from [Nowak et al. 2013] (see
Figure 1 in that paper) is investigated. The 2D concentration of inclusions is equal to 0.52 (3D porosity
0.84 in [ibid.] gives another volume characteristic of the considered composite).

The comparison of the results in Tables 2 and 4 demonstrates the inverse situation to Example 2.
First, the value q∗2 is approximately equal to π . The data from Table 4 are similar to the data from the
column of Table 2 corresponding to the concentration 0.45. This implies that the “gelcasting of foams”
manufacturing method [Nowak et al. 2013] yields isotropic and homogeneous structures similar to the
theoretical uniform nonoverlapping distribution.
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q∗2 3.126+ 0.06118i
q∗22 11.7983
q∗33 −5.0835
q∗44 9.61203

q∗2222 163.672

Table 4. M-sums computed for digitized data obtained from Figure 1 of [Nowak et al. 2013].

5. Conclusion

In the present paper, we extend the RVE theory of [M2006] to 2D polydisperse composites and to 3D
monodisperse composites with spherical inclusions and apply it to the mixture problem. The considered
example refers to Al2O3 composites obtained by gelcasting of foams and to F3K.10S samples reinforced
with SiC particles obtained by FSP.

The developed method gives a simple procedure to construct a typical RVE whose existence is pre-
dicted by the homogenization theory. Further, the effective constants can be computed by numerical
methods.

The presented methodology can be applied to arbitrary dispersed composites. In the present paper, we
consider balls uniformly distributed in host material. This follows from the restriction that we have at our
disposal only those theoretical M-sums computed in [Czapla et al. 2012a; 2012b]. Other distributions
can be investigated by simulations described in these papers.
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