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CONTOURS FOR PLANAR CRACKS GROWING IN THREE DIMENSIONS

LOUIS MILTON BROCK

A three-dimensional dynamic steady state analysis for extension of a semi-infinite plane crack is con-
sidered. Fracture is brittle and driven by loads applied to the crack surfaces. An analytical solution is
obtained, and examined in light of two criteria: energy release (rate) and strain energy density. Intro-
duction of a quasipolar coordinate system allows, for each criterion, generation of a nonlinear first-order
differential equation for the distance from the origin to any point on the crack edge. These in turn give
insight into the crack contour generated by the crack edge. In particular, for loading by compressive point
forces, the equation generated by the energy release (rate) criterion is solved exactly. Calculations depict
a crack edge contour that tends to the rectilinear, but deviates markedly from that near the point forces.

Introduction

The author considers sliding contact in the 3D dynamic steady state by rigid dies in [Brock 2012; 2014a;
2014b; 2015]. Basic die shapes — sphere, ellipsoid, cone — are treated [Brock 2012; 2014a], but also
more complicated shapes [Brock 2014a; 2014b; 2015] that preclude simple connectivity of the contact
zone [Brock 2014b] or a single contact zone [Brock 2015]. These 3D studies demonstrate the sensitivity
of contact zone contour to sliding speed, and show that contact zone shape does not necessarily replicate
the projection of the die profile onto the half-space.

An analogous goal in fracture mechanics is to determine crack edge location. In 2D dynamic fracture,
this requires an equation of motion for the crack tip [Freund 1990]. In a 3D study, such an equation must
describe the crack contour defined by crack edge location. The paper, therefore, considers semi-infinite
crack growth in an unbounded solid. For simplicity, the crack is assumed to (a) remain in its original
plane, (b) be driven by crack surface loads that translate at constant subcritical speed in a fixed direction
and (c) achieve a dynamic steady state.

While analogous, the study does not enjoy some features of [Brock 2012; 2014a; 2014b; 2015]: (a)
die/half-space conformation is paramount in defining the solution, (b) the (valid) assumption of a “small”
contact zone often allows conformation to be expressed in terms of polynomials and (c) solution of the
conformation equation itself can be simplified under the same assumption, e.g. [Brock 2014a]. Prescribed
geometrical properties do not in general define fracture criteria. Indeed, geometrical features (crack edge
location, crack contour) are outputs. Therefore, approximations for the equation of crack edge location
may be unrealistic.

The 3D analysis begins by considering the unmixed boundary value problem for a displacement dis-
continuity imposed over a semi-infinite plane area AC contained in an unbounded solid. The discontinuity
vanishes along area boundary C , vanishes at infinite distances from it, and translates with AC at constant
subcritical speed V in a fixed direction. A dynamic steady state ensues and allows use of a translating
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Cartesian basis. The transform solution is generated, but a quasipolar coordinate system is introduced
in the inversion process. Expressions for traction on the plane of AC lead to classical singular integral
equations for the displacement discontinuity produced were AC a crack subject to prescribed surface
loads. Two fracture criteria are considered, and each leads to a nonlinear first-order differential equation
for the distance from a fixed point in AC to any point on (now) crack edge C .

Displacement discontinuity growth — governing equations

Consider an unbounded, isotropic and linearly elastic solid. In terms of Cartesian basis x = x(xk),
semi-infinite planar region (x3 = 0, x1 < 0) AC is subject to discontinuity

[u(uk)] = U(Uk). (1)

Here k = (1, 2, 3), [ ] signifies a jump as travel from x3 = 0− to x3 = 0+ occurs, u is the displacement
field and Uk = Uk(x1, x2) discontinuity components. Region extension then occurs in the positive x1-
direction with constant subcritical speed V . A dynamic steady state is achieved such that U does not
change, and region boundary C assumes a fixed, albeit no longer rectilinear, profile. Displacement u(uk)

and traction T (σik) are invariant in the moving frame of AC . Basis x is therefore translated with AC so
that uk = uk(x), Uk =Uk(x1, x2), σik = σik(x) and the time derivative can be written as −V ∂1. Here ∂k

signifies xk-differentiation. For convenience x = 0 is located in the dislocation region, so that function
=(x1, x2)= 0,

√

x2
1 + x2

2 6= 0 defines contour C and the region can be defined as (x1, x2) ∈ AC . Both =
and its gradient ∇= are continuous, and any line passing through x = 0 in the x1x2-plane can cross C
only once. For x3 6= 0, governing equations for u(xk) can be written as [Brock 2012]

u = uD + uS, (2a)

(∇2
− c2∂2

1 )uS = 0, ∇ · uS = 0, (2b)

(c2
D∇

2
− c2∂2

1 )uD = 0, ∇ × uD = 0. (2c)

In (2) ∇2 is the Laplacian, and traction T is defined by

1
µ

T = [(c2
D − 2)∇ · uD]1+ 2(∇u+ u∇). (3)

Term 1 is the identity tensor, and (c, cD) are dimensionless ratios

c =
V
VS
, cD =

VD

VS
. (4)

Here (V, VS, VD) are, respectively, translation speed, shear wave speed, and dilatational wave speed, where

cD =

√
2

1− v
1− 2ν

, VS =

√
µ

ρ
. (5)

In (2)–(5), (ν, µ, ρ) are Poisson’s ratio, shear modulus and mass density, and 1 < cD. In light of (1),
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conditions for x3 = 0 are

[uk] =Uk (x1, x2) ∈ AC , [uk] = 0 (x1, x2) /∈ AC , (6a)

[σ3k] = 0. (6b)

Components Uk are not specified, but must be finite and continuous for (x1, x2) ∈ AC . Therefore Uk = 0
for =(x1, x2)= 0, and (u, T ) should remain finite for |x| →∞, x3 6= 0.

General transform solution

A double bilateral transform [Sneddon 1972] can be defined as

F̂ =
∫∫

F(x1, x2) exp(−p1x1− p2x2) dx1 dx2. (7)

Integration is along the entire Re(x1) and Re(x2)-axes. Application of (7) to (2) gives

ûS = V exp(−B|x3|), ûD = U exp(−A|x3|), (8a)

p1V1+ p2V2− BV3 = 0, U = (p1, p2,−A)U. (8b)

Terms (B, A) are roots of the transforms of, respectively, (2b) and (2c), given by

B =
√
−D+ c2 p2

1, A =
√
−D+ (c2/c2

D)p
2
1, D = p2

1 + p2
2. (9)

Equation (8) is bounded for x3 6= 0 if branch cuts are introduced so that Re(B, A)≥ 0 in the cut complex
(p1, p2)-planes. Application of (7) to (6) and substitution of (8) and (9) gives equations for (U, V1, V2)

in terms of transforms Ûk . The solutions for x3 ≥ 0(+) and x3 ≤ 0(−) are given by (A.1). Expressions
for traction (σ33, σ31, σ32) in plane x3 = 0 are also required and, in light of (3), (7) and (A.1), their
transforms are given by (A.3).

Transform inversion — general formulas

In (6), inhomogeneous terms (U1,U2,U3) arise only for (x1, x2) ∈ AC . In light of (A.3), therefore,
the inversion operation corresponding to (7) gives (σ33, σ31, σ32) for x3 = 0 as linear combinations of
expressions ∫∫

Uk dξ1 dξ2
1

2π i

∫
dp1

1
2π i

∫
Pk dp2 exp[p1(x1− ξ1)+ p2(x2− ξ2)]. (10)

Here Uk =Uk(ξ1, ξ2) and Pk = Pk(p1, p2) is the corresponding coefficient. Double integration is over
region AC , and single integration is over the entire Im(p1) and Im(p2)-axes. The form of (10) suggests
definitions and transformations [Brock 2012]:

p1 = p cosψ, p2 = p sinψ, (11a)[
x
y

]
=

[
cosψ sinψ
−sinψ cosψ

] [
x1

x2

]
,

[
ξ

η

]
=

[
cosψ sinψ
−sinψ cosψ

] [
ξ1

ξ2

]
. (11b)
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In (11), Re(p) = 0+, | Im(p), x, y, ξ, η| <∞ and |ψ | < π/2. Parameters (p, ψ), (x, ψ; y = 0) and
(ξ, ψ; η = 0) resemble quasipolar coordinate systems, i.e.,

dξ1 dξ2 = |ξ | dξ dψ, dp1 dp2 = |p| dp dψ. (12)

Use of (11) and (12) in (9) and (A.3) give

D = p2, B = B
√
−p2, A = A

√
−p2, K = K p2, (13a)

B =
√

1− c2 cos2 ψ, A =
√

1− (c2/c2
D) cos2 ψ, K = c2 cos2 ψ − 2. (13b)

In light of (7) and conditions for contour function =, (10) assumes the form

1
iπ

∫
9

Pk dψ
∫

N
dη

∂

∂x

∫
X

dξ
∂Uk

∂ξ
(ξ, η)

1
2π i

∫
|p|
p

√
−p
√

p
dp exp(p(x − ξ)). (14)

Symbols (N , X, 9) signify integration over ranges |ψ | < π/2, N− < η < N+ and X− < ψ < X+,
respectively. Here Pk = Pk(ψ), and p-integration is along the positive side of the entire imaginary axis.
Terms in (8) are bounded for positive and real (B, A) if branches Im(p)= 0, Re(p) < 0 and Im(p)= 0,
Re(p) > 0 are introduced for

√
±p, respectively, such that Re(

√
±p) > 0 in the cut p-plane. The p-

integration is given in Appendix B so that, in view of the condition that Uk vanish continuously on C
[Brock 2012],

1
π

∫
9

Pk dψ
∂

∂x

∫
N

dη
1
π

∫
X

∂Uk

∂ξ
(ξ, η)

dξ
ξ − x

. (15)

Limits N±(ψ) in (15) are defined by

=(ξ1(ξ, N±), ξ2(ξ, N±))= 0,
d N±

dξ
= 0. (16)

That is, for given ψ , limits N± are the maximum and minimum values of η on C , and for given η, limits
X±(ψ, η) locate the ends of lines that run parallel to the ξ -axis and that span C . Conditions on C imply
that these limits exist, are single-valued, and vary continuously in ψ . In particular, the semi-infinite
nature of AC guarantees that X−→−∞ for portions of 9. Figure 1 gives a generic sketch of AC for
the case that N+(ψ)→∞ and |X−(ψ, η)| is finite but too large to appear.

In light of (7)–(13), traction in AC itself, i.e., x3 = 0, (x1, x2) ∈ AC , can be written as

σ3k =−
1
π

∫
9

dψ
∫

N
dη

∂

∂x

∫
X

dξ δ(ξ, η)σ3k(x1(ξ, η), x2(ξ, η)). (17)

In (17), δ is the Dirac function. Therefore, expressions for traction in AC can be obtained by matching
the integrands of (ψ, η)-integration in (17) with combinations of those in (15). Moreover, ξ in (15)
and (17) is an integration variable representing parameter x that itself depends on (x1, x2) and ψ . As
noted in connection with (11), coordinates (x1, x2) can be replaced by (x, ψ) for y = 0. Thus every point
(x1, x2) ∈ AC lies on an integration path η = 0 that passes through both limit points of the ξ -integral.
The resulting expressions for traction in AC are given in Appendix C. Equation (13b) shows that (B, A)
are positive and real so long as c < 1. Term R in (C.3) is the Rayleigh function [Achenbach 1975] of
argument c cosψ and vanishes at value c cosψ = cR (0< cR < 1) where VR = cR VS is the Rayleigh wave
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ℑ(ξ  (ξ,η),ξ  (ξ,η)) = 01 2

ξ

ξ

1

ξ2

η = Ν  (ψ)

ψ

η

−

ξ = X  (ψ,η)+

C

AC

Figure 1. Schematic of semi-infinite area AC and contour C .

speed. To avoid critical behavior, therefore, the translation speed of C is subject to restriction 0< c < cR .
Crack extension in the dynamic steady state can now be treated. The treatment begins with some basic
results for extension caused by crack surface traction.

Related crack extension problem: basic results

Region AC in the dynamic steady state is now a crack whose two surfaces are subjected to traction
(−σC

33,−σ
C
31,−σ

C
32), with σC

3k > 0. Crack geometry, i.e., C , =(x1, x2)= 0 and V , is the same as before.
The conditions placed on Uk above are relevant for fracture. In light of 2D dynamic steady state analyses
of semi-infinite cracks [Brock 1999] therefore, (σC

33, σ
C
31, σ

C
32) must be finite and piecewise continuous.

Behavior should also be such that, for (x1, x2) ∈ AC ,

σC
3k ≈ O((x2

1 + x2
2)
−χ ),

√
x2

1 + x2
2 →∞ (χ > 1). (18)

Coupled singular integral equations for x-derivatives of (now-unknown) components (U1,U2,U3) are
provided by (C.3), with σ3k replaced by −σC

3k . Solution gives the derivatives and the functions themselves.
To emphasize aspects of 3D behavior, σC

3k-values are maximum near (x1, x2)= 0. It is then reasonable
to assume that any curvature of crack edge C will produce an essentially concave profile with respect
to (x1, x2) = 0. In view of the original restrictions on C , then, two cases arise. For X+ = x+(ψ) > 0,
X− =−x−(ψ),

∂Uk

∂x
=

1
√

x+− x
√

x + x−

(vp)
π

∫
X

gk(ξ, ψ)

ξ − x

√
x+− ξ

√
ξ + x− dξ, (19a)

Uk =
1
π

∫
X

gk(ξ, ψ) ln
∣∣∣∣√x+− x

√
ξ + x−−

√
x + x−

√
x+− ξ

√
x+− x

√
ξ + x−+

√
x + x−

√
x+− ξ

∣∣∣∣ dξ. (19b)
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Continuity of C requires that x±(π/2)= x∓(−π/2). For X+ = x+(ψ), X−→−∞,

∂Uk

∂x
=

1
√

x+− x
(vp)
π

∫
X

gk(ξ, ψ)

ξ − x

√
x+− ξ dξ, (20a)

Uk =
1
π

∫
X

gk(ξ, ψ) ln
∣∣∣∣√x+− ξ −

√
x+− x

√
x+− ξ +

√
x+− x

∣∣∣∣ dξ. (20b)

Continuity of C now requires that x+(±π/2)→∞. Equations (19b) and (20b) vanish continuously
on C , as required. In (19) and (20),

g1 =
1
N

[
M
B

(
σC

32

µ
cosψ −

σC
31

µ
sinψ

)
sinψ −

σC
31

µ
Bc2 cos2 ψ

]
, (21a)

g2 =
1
N

[
M
B

(
σC

32

µ
sinψ −

σC
12

µ
cosψ

)
cosψ −

σC
32

µ
Bc2 cos2 ψ

]
, (21b)

g3 =−
2A
R
σC

33

µ
c2 cos2 ψ. (21c)

Substitution of (19a) and (20a) into (15), but then performing the ξ -integration for x /∈ X leads to,
respectively, expressions for traction on plane x3 = 0, (x, ψ) /∈ AC ,

σ3k =
1

π
√

x+− x
√

x−+ x

∫
X

σC
3k(ξ, ψ)

ξ − x

√
x+− ξ

√
ξ + x− dξ, (22a)

σ3k =
1

π
√

x+− x

∫
X

σC
3k(ξ, ψ)

ξ − x

√
x+− ξ dξ. (22b)

Brittle fracture parameter: energy release (rate)

After [Griffith 1921], crack growth occurs when the rate of surface energy release balances that of po-
tential energy decrease. For the 2D brittle crack, this criterion equates the rate per unit length (of crack
edge) of energy release and negative of power per unit length generated in the crack plane [Achenbach
1975; Freund 1990]. Here, total release rate < and total power are considered. Use of (8) for the dynamic
steady state gives

<=−V
∫
9

dψ
[ ∫

∞

−∞

|x | dx σ3k∂1Uk +

∫
X
|x | dx σC

3k∂1Uk

]
, (23a)

∂1 = cosψ ∂

∂x
−

sinψ
|x |

∂

∂ψ
, ∂2 = sinψ ∂

∂x
+

cosψ
|x |

∂

∂ψ
. (23b)

The summation convention is understood in (23a). To illustrate the form of <, the ∂1-operator is applied
to case (20b) as

∂1Uk =−
(vp)

π
√

x+− x

∫
X

gk dξ
[√

x+− ξ
ξ − x

cosψ −
sinψ

|x |
√

x+−ψ
dx+
dψ

]
+

sinψ
π |x |

∫
X

dξ ln
∣∣∣∣√x+− ξ +

√
x+− x

√
x+− ξ −

√
x+− x

∣∣∣∣∂gk

∂ψ
.

(24)
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The x-integration sum, (17), (19b), (22b) and (24) imply that < = 0 in (23a). But in the sense of a
distribution each term in the sum gives [Achenbach and Brock 1973]

H(x+− x)
√

x+− x
H(x − x+)
√

x − x+
=
π

2
δ(x − x+). (25)

Here H is the step function. Also, < is assumed invariant with respect to its integrand in (23a). Singular
behavior guarantees invariance in terms of x , so that the integrand need only be constant in terms of ψ .
Therefore, for |ψ |< π/2,

<
√
µρ
=
−c
π

d
x+ dψ

(x+ sinψ)
∫

X

σC
3k dξ

µ
√

x+− ξ

∫
X

gk dξ
√

x+− ξ
. (26)

Equation (26) is, in effect, a nonlinear differential equation for x+(ψ). Equation (26) is based on (20).
Thus for |ψ | = π/2, x+→∞ yet < is invariant and finite. For |ψ | ≈ π/2, Equations (13b), (18), (21),
(C.3) and (26) lead to asymptotic forms∫

X

σC
3k(t, ψ)
√

x+− t
dt ≈−

63k

xχ−1/2
+

Gχ , Gχ =

∫
∞

−1

du

uχ
√

1+ u
, (27a)

<
√
µρ
≈

c
8π2

G2
χ

x2χ
+

dx+
dψ

(
c2

D

c2
D − 1

62
33+6

2
31−6

2
32

)
. (27b)

It is noted that the right-hand side of (27b) is finite when x+ ≈ O(1/
√

cosψ) for |ψ | ≈ π/2 and χ = 3
2 .

It is also to be noted that for ψ = 0, (26) in fact involves only x+(0) itself.

Brittle fracture parameter: strain energy density

Another brittle fracture model [Sih 1973] posits that an edge segment of a stationary crack will extend
in a given direction if the strain energy density E achieves a maximum in that direction, where

E
µ
=

c2
D

2
ϕ1− 2ϕ2, (28a)

ϕ1 = e11+ e22+ e33, ϕ2 = e11e22+ e22e33+ e33e11− e2
12− e2

23− e2
31. (28b)

Equation (28b) gives the first and second invariant of strain, where 2eik = ∂i uk + ∂kui . Behavior near the
crack edge, i.e., distance r→ 0, for brittle fracture, is

E ≈ S
r
. (29)

Therefore S is the key parameter. In keeping with the study of energy release rate, we examine the strain
energy W itself in a thin “tube” that encases crack edge C . This value is infinite, but the result obtained
below will correspond to (28). Results for x3 6= 0 are now required. In view of (7)–(14) and (A.1),
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components of ∂uk/∂x can be written as real or imaginary parts of a complex form as

1
iπ

∫
9

dψ
∫

N
dη

∂

∂x

∫
X

dξ
∂Uk

∂ξ
(ξ, η)

1
2π i

∫
|p|
p

[
Pk

√
−p
√

p
+ i Qk

]
dp

× exp(p(x − ξ)−
√
−p
√

p�|x3|). (30)

Symbol � represents (A, B) defined by (13b). The p-integration is obtained from Appendix B. Use of
(20a) and a result corresponding to (17) gives generic form

1
π2

∫
X

gk dt
√

x+− t
1
π

∫
X

dξ
(t − ξ)

√
ξ − x+

Pk + i Qk

x − ξ − i�|x3|
. (31)

The ξ -integration is performed by residue theory. Integration of (31) with respect to x , in view of the
condition that uk vanish on C , gives a generic form for uk-components

−
1
π2 (Pk + i Qk)

∫
X

gk ln

√
P −
√

x+− t
√

P +
√

x+− t
dt, P = x − x+− i�|x3|. (32)

Equation (28b) requires ∇uk , and (11) shows that xk-dependence in (32) is bound up in P which, for
case �= A, is

P = rA exp(iφA), (33a)

rA =
√
(x − x+)2+ A2x2

3 , φA = tan−1 Ax3

x − x+
(|φA|< π). (33b)

Knowledge of ∇uk near C suffices for (29), so, for �= A, (32) can be replaced with the asymptotic result

1
π2 (Pk + i Qk)

∫
X

gk dt
√

x+− t
√

rA exp
(

i
φA

2

)
+ O(rA). (34)

This form suggests that for given ψ a standard polar coordinate system (r, φ), centered on C , be defined
in the x − x3 plane with

r =
√
(x − x+)2+ x2

3 (r ≈ 0), φ = tan−1 x3

x − x+
(|φ|< π). (35)

Operations (∂1, ∂2, ∂3) on (34) required for∇uk follow, respectively, in view of (11), (23b), (33) and (35), as

−1

π2 A8
√

2r
(Pk + i Qk)

∫
X

gk dt
√

x+− t
[A++ i A− sgn(φ)]

d
x+ dψ

(x+ sinψ), (36a)

1

π2 A8
√

2r
(Pk + i Qk)

∫
X

gk dt
√

x+− t
[A++ i A− sgn(φ)]

d
x+ dψ

(x+ cosψ), (36b)

i A

π2 A8
√

2r
(Pk + i Qk)

∫
X

gk dt
√

x+− t
[A++ i A− sgn(φ)] sgn(φ). (36c)
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The result for �= B follows by replacing (A±, A8) with (B±, B8), where

A8 =
√

1− (c2/c2
D) cos2 ψ sin2 φ, A± =

√
A8± cosφ, (37a)

B8 =
√

1− c2 cos2 ψ sin2 φ, B± =
√

B8± cosφ. (37b)

Derivatives with respect to ψ , it is noted, for (Pk, Qk, gk), (A±, A8, A) and (B±, B8, B) in (34) are
associated with terms that vanish as r→ 0; see (24). To illustrate the results of (36), strain components
for the case of pure crack surface compression (σC

31 = σ
C
32 = 0) are given in Appendix D. Equations (28),

(29), (36) and (D.1) show that

E ≈ 1
r
6(ψ, φ). (38)

In view of (21), therefore, 6(ψ, φ) is quadratic in∫
X

σC
3k dt
√

x+− t
,

d
x+ dψ

(x+ sinψ),
d

x+ dψ
(x+ cosψ). (39)

Strain energy W in a thin tube (r ≈ 0) that encases crack edge C can be written as

W = r
∫
8

dφ
∫
9

6(ψ, φ) dC(ψ), dC(ψ)=
√

x2
+
+ (dx+/dψ)2 dψ. (40)

Symbol 8 signifies integration over range |φ|< π and dC(ψ) is the increment of length along the crack
edge. If W is assumed to be invariant, a critical strain energy density parameter for |ψ |< π/2 is

∂2W
∂r∂ψ

= SC =

∫
8

6(ψ, φ) dφ
√

x2
+
+ (dx+/dψ)2. (41)

While more complicated than energy release rate < given by (26), (41) is in effect also a nonlinear
differential equation for crack edge geometry parameter x+(ψ). Equation (40) is also based on (20), and
for |ψ | ≈ π/2, (37) gives( A+

A8
,

B+
B8

)
=
√

2 cos
φ

2
,

( A−
A8
,

B−
B8

)
=
√

2
∣∣∣sin

φ

2

∣∣∣. (42)

A standard table is used to carry out integration in (41). Use of (27a), (28), (D.1) and (D.2) lead to the
asymptotic formula

SC ≈
1

2µ

[
Gχ633

π2(c2
D − 1)

]2 dx+
dψ

[
c2

D(2−πc2
D)+

π

2

(
dx+

x+ dψ

)2]
. (43)

If asymptotic traction behavior (χ = 3
2) featured with (27b) is imposed, (43) gives finite SC for |ψ | = π/2

when x+ ≈ O(1/ cos2 ψ) as |ψ | → π/2. In addition, (D.1) shows that SC does not give an algebraic
equation for x+(0); see (26).

Illustration: application of energy release (rate) criterion

The strain energy density criterion is generally applied to static situations to ascertain the (possibly) out-
of-plane direction that a crack edge segment may move [Sih 1973]. Therefore, planar crack edge behavior



72 LOUIS MILTON BROCK

ψ 0◦ 5◦ 15◦ 30◦ 45◦ 60◦ 75◦ 85◦ 90◦

c = 0.1 1.0 0.989 0.95 0.912 0.932 1.051 1.406 2.187 ∞

c = 0.4 1.0 0.987 0.936 0.881 0.887 0.987 1.319 2.238 ∞

Table 1. Ratio
x+(ψ)
x+(0)

for various (c, ψ).

in the dynamic steady state is illustrated here in terms of the energy release (rate) criterion. For simplicity,

σC
31 = σ

C
32 = 0, σC

33 =
Pδ(r0)

2πr0
, r0 =

√
x2

1 + x2
2 . (44)

Here P is a force, so that traction σC
33 is the axially symmetric Dirac function in standard polar coordinates.

In view of (21) and (42), criterion (26) reduces to (see (D.2))

<
√
µρ
=

2A
πR

(G
u

)2
c3 cos2 ψ

d
x+ dψ

(x+ sinψ), G =
∫

X

σC
33 dt
√

x+− t
. (45)

The expression for G is found in Appendix E, and so (45) gives differential equation

<
√
µρ
=

( P
2πµ

)2 A
R

c3 cos2 ψ
d

x3
+ dψ

(x+ sinψ). (46)

Here < is indeed finite at |ψ | = π/2 if x+ ≈ O(1/
√

cosψ), and, for ψ = 0,

<
√
µρ
=

(
P

2πµ

)2 A1c3

R1x2
+(0)

, R1 = 4A1 B1− K 2
1 , (47a)

A1 =
√

1− c2/c2
D, B1 =

√
1− c2, K1 = c2

− 2. (47b)

Thus, (44) gives the same asymptotic behavior for < as that caused by a distributed traction governed
by (18) with χ = 3

2 . Equation (47a) is algebraic, and readily solved. Invariance of < leads to the
differential equation, for ψ 6= 0,

1
x3
+

dx+
dψ
=

A1 R
AR1 cos2 ψ

1
x2
+(0)

. (48)

Separation of variables (x+, ψ) is possible in (48), and for 0<ψ < π/2 leads to

x2
+
(0)

x2
+(ψ)

=
2A1

R1
sin2 ψ

∫ π/2

ψ

dϕ

sin3 ϕ

R
A cos2 ϕ

. (49)

The integration in (49) produces (E.5) in Appendix E. That formula gives the appropriate result that the
right-hand side of (49) is unity for ψ = 0, and behaves as cosψ for ψ→ π/2. Case −π/2<ψ < 0 also
gives the right-hand side of (E.5), a result that in light of symmetry is also appropriate.

Sample calculation: energy release (rate) criterion

For a solid characterized by cD = 2 and cR = 0.932, (49) and (E.5) are used to calculate dimensionless
ratio x+(ψ)/x+(0) for c = 0.1 and c = 0.4 for values 0≤ ψ ≤ 90◦. The results appear in Table 1. Use
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c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
β1(c) 0.259 0.3706 0.4631 0.5512 0.6442 0.7534 0.901 1.1579

Table 2. Dimensionless parameter β1(c), cR = 0.932. Note: β1(0)= β1(cR)= 0.

of (4) in (47a) gives a relation in terms of three dimensionless quantities as√
</PVS

[√
µ/P x+(0)

]
=
β1(c)
2π

, β1(c)= c
√

cA1/R1. (50)

Parameter β1(c) defines, therefore, variation in x+(0) with respect to (dimensionless) crack translation
speed c, and calculations are given in Table 2. Combining the entries for c= 0.1 and c= 0.4 with Table 1
entries leads to schematics of crack edge contour C for (x1, x2) > 0 (x > 0, 0< ψ < 90◦) in Figure 2.
Both contours tend to the rectilinear, but are perturbed by a smooth indentation near the point force
location (denoted by ×). It was noted in light of (43) that the strain energy density criterion [Sih 1973]
predicts larger values of contour parameter x+ for |ψ | ≈ π/2 than those predicted by energy release (rate)
[Freund 1990]. In view of Figure 2 this implies that the crack edge contour may deviate even more from
lines that tend to the rectilinear.

Some comments

This study has produced equations for the radial measure x+(ψ) from a point on the crack surface to
points on the crack edge. Solutions, therefore, define the crack contour. Such equations follow from
the criterion for brittle crack growth imposed, and here energy release (rate) and strain energy density
are illustrated. Nonlinear first-order differential equations arise in both cases. The strain energy density
result is more complicated, because of nonlinearity in both the radial measure and its first derivative.

The case of compressive forces applied to corresponding points on the two crack surfaces is illustrated
on the basis of energy release (rate). An analytic solution of the equation, and related calculations, show

C (c = 0.1)

C (c = 0.4)

85� 75�
60�

45�

30�

15�

ψ = 5�

x

V

2

x1

Figure 2. Schematic of crack edge contour, C (drawn to scale).
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that the crack contour consists of lines that tend to the rectilinear at great distances from the point forces,
but exhibit a pronounced indentation near them. The contours are sensitive to crack growth rate.

The 3D results of this paper are obtained on the assumption that crack growth achieves a dynamic
steady state. Nevertheless, they may allow insight into aspects of brittle fracture response that do not arise
in a 2D study. On a related note, the analytic results in this paper make use of a “hybrid” form: Cartesian
fields are expressed in terms of quasipolar coordinates in the crack plane. The advantages of this are: (a)
the solution can be obtained from classical singular integral equations, and (b) some factorization of x+
and its derivative dx+/dψ in the nonlinear equation is possible.

One difficulty, however, with the “hybrid” form is that description of solution behavior in terms of
the three fracture modes must be extracted. When crack contour is known or a 2D study is involved,
imposition of local Cartesian coordinates that are, respectively, normal to the crack plane, and normal
and tangential to the crack edge, is feasible; see, e.g., [Freund 1990]. Based on experience [Brock 2012]
with undefined area contours, the author decided that such a coordinate choice could prove to be an
analytical stumbling block.

Appendix A

For x3 ≥ 0(+) and x3 ≤ 0(−), respectively,

c2 p2
1U± =−

KÛ3

2A
± (p1Û1+ p2Û2), (A.1a)

c2 p2
1V±1 = p1 BÛ3±

[
c2 p2

1
Û1

2
− p1(p1Û1+ p2Û2)

]
, (A.1b)

c2 p2
1V±2 = p2 BÛ3±

[
c2 p2

1
Û2

2
− p2(p1Û1+ p2Û2)

]
. (A.1c)

In (A.1), (B, A) are defined by (9), and

K = c2 p2
1 − 2D. (A.2)

Transforms of traction for x3 = 0 are given by

σ̂33

µ
=−

Û3

2Ac2 p2
1
(4D AB+ K 2), (A.3a)

σ̂31

µ
=

p1

Bc2 p2
1
(K − 2AB)(p1Û1+ p2Û2)+

1
2B
[(p2

2 − c2 p2
1)Û1+ p1 p2Û2], (A.3b)

σ̂32

µ
=

p2

Bc2 p2
1
(K − 2AB)(p1Û1+ p2Û2)+

1
2B
[(p2

1 − c2 p2
1)Û2+ p1 p2Û1]. (A.3c)

Appendix B

Consider integrals involving real constants (X, Y ) over the entire Im(p)-axis

1
2π i

∫
|p|
(√
−p
√

p
, 1
)

exp(pX − Y
√
−p
√

p)
dp
p

(Y ≥ 0). (B.1)
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As noted in connection with (11) and (12), Re(
√
±p) ≥ 0 in the p-plane with branch cuts Im(p) = 0,

Re(p) < 0 and Im(p) = 0, Re(p) > 0 respectively. In particular, for Re(p) = 0+ and, respectively,
Im(p)= q > 0 and Im(p)= q < 0,

√
−p =

∣∣∣q
2

∣∣∣1/2(1∓ i),
√

p =
∣∣∣q
2

∣∣∣1/2(1± i). (B.2)

Use of (B.2) reduces (B.1) to

1
iπ

∫
∞

0
(sin q X, cos q X) exp(−Y q) dq. (B.3)

Integration of (B.3) gives

1
iπ

[
X

X2+ Y 2 ,
Y

X2+ Y 2

]
=

1
iπ
[Re, Im]

1
X − iY

. (B.4)

It is noted that
1
π

Y
X2+ Y 2 → δ(X) (Y → 0+). (B.5)

Here δ is the Dirac function.

Appendix C

For x3 = 0, X− < x < X+, ψ ∈9, i.e., x3 = 0, (x1, x2) ∈ C ,

σ33

2µ
=−

G3

π
(vp)

∫
X

∂U3

∂x
dξ
ξ − x

, (C.1a)

σ31

2µ
=−

G1

π
(vp)

∫
X

∂U1

∂x
dξ
ξ − x

−
G12

π
(vp)

∫
X

∂U2

∂x
dξ
ξ − x

, (C.1b)

σ32

2µ
=−

G21

π
(vp)

∫
X

∂U1

∂x
dξ
ξ − x

−
G2

π
(vp)

∫
X

∂U2

∂x
dξ
ξ − x

. (C.1c)

In (C.1), Uk =Uk(ξ, ψ), (vp) signifies principal value integration, and

G1 = B+
M

Bc2 , G2 = B+
M

Bc2 tan2 ψ, G12 = G21 =
M

Bc2 tanψ, (C.2a)

G3 =
R

Ac2 cos2 ψ
. (C.2b)

Terms in (C.2) are defined by (13b) and

M = 2N + c2 cos2 ψ, N = 2AB+ K , R = 4AB− K 2. (C.3)
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Appendix D

If (σC
31, σ

C
32)= 0 and (X−→−∞, |ψ |< π/2), strain for r ≈ 0 is obtained from (44) as

e11 ≈−
cosψ

π2
√

2r

G
R

(
K

A+
A8
+ 2AB

B+
B8

)
d

x+ dψ
(x+ sinψ), (D.1a)

e22 ≈
sinψ

π2
√

2r

G
R

(
K

A+
A8
+ 2AB

B+
B8

)
d

x+ dψ
(x+ cosψ), (D.1b)

e33 ≈−
A

π2
√

2r

G
R

(
K A

A+
A8
+ 2B

B+
B8

)
, (D.1c)

e23 ≈
1

2π2
√

2r

G
R

(
K

A−
A8
+ 2B2 B−

B+

)
sinψ + sgn(φ)

(
K

A−
A8
+ 2AB

B−
B8

)
d

x+ dψ
(x+ cosψ), (D.1d)

e31 ≈
1

2π2
√

2r

G
R

(
K

A−
A8
+ 2B2 B−

B8

)
cosψ − sgn(φ)

(
K

A−
A8
+ 2AB

B−
B8

)
d

x+ dψ
(x+ sinψ), (D.1e)

e12 ≈
1

2π2
√

2r

G
R

(
K

A+
A8
+ 2AB

B+
B8

)
cosψ

d
x+ dψ

(x+ cosψ)− sinψ
d

x+ dψ
(x+ sinψ). (D.1f)

The factor G is given by

G =
∫

X

σC
33 dt
√

x+− t
. (D.2)

Appendix E

In terms of quasipolar coordinates (x, ψ), (41) gives

σC
33 = P

δ(x)
π |x |

, |ψ |< π/2. (E.1)

Function G in (42) is obtained in terms of representation

σC
33 = P

ε

π2|x |(x2+ ε2)
(ε→ 0). (E.2)

Function FG(z) in the complex z-plane, where x = Re(z), is defined as

FG(z)=
1√

z2− ε2
0(z

2+ ε2)
√

z− x+
(ε0 ≈ 0). (E.3)

Here FG ≈ O(z−3), |z|→∞ and exhibits branch cuts on the Re(z)-axis with branch points z= (±ε0, x+),
and poles z =±iε. Thus integration over a closed contour that includes a portion |z| →∞, but excludes
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the poles and branch cuts, can be performed by residue theory. Setting ε0 = 0 then leads to

G =
P

πα
√

2(1+α)

1

x3/2
+

, α =
√

1+ ε2/x2
+
, (E.4a)

G =
P

2πx3/2
+

(ε→ 0). (E.4b)

Use of (E.4) leads to the integral in (49). Introduction of integration variable u = c cosϕ gives a form
that is readily carried out as∫ π/2

ψ

R sin2 ψ

A cos2 ϕ

dϕ

sin3 ϕ
=

(
2B−

K 2
1 A

2A2
1

)
cosψ + 4(A− B)

sin2 ψ

cosψ

+
2K1

A1

(
1+

K1

A2
1

)
ln
∣∣∣∣ A+ A1 cosψ

A− A1 cosψ

∣∣∣∣ sin2 ψ + 2
(

B1+
1

2B1

)
ln
∣∣∣∣ B+ B1 cosψ

B− B1 cosψ

∣∣∣∣ sin2 ψ. (E.5)

The right-hand side behaves as cosψ for ψ = π/2, and for ψ = 0 gives R1/2A1.
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