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In the companion article a case study problem was presented that illustrated a dynamic instability related
to nonassociated plastic flow. This instability allows stress waves to grow in both amplitude and width as
they propagate. In addition to this physically implausible behavior, multiple solutions to the equations of
motion were shown to exist, which causes numerical solutions not to converge with mesh refinement.
Reformulation of some aspects of traditional plasticity theory is necessary since associated models
over-predict the amount of plastic dilatation, and nonassociated models may result in this physically
unrealistic behavior. The case study solutions in the companion paper were limited to a few relatively
simple plastic models. The purpose of this paper is to investigate the effects of various traditional and
nontraditional plasticity features on the existence of the instability and resulting nonuniqueness. The
instability and nonuniqueness are shown to persist with both hardening and softening. An incrementally
nonlinear model is shown to eliminate the instability and result in mesh-independent solutions. A vis-
coplastic model is shown to lead to unstable solutions for all loading rates. However, mesh-independent
numerical solutions are found when the loading timescale is much less than the plastic relaxation time.
A nonlocal plasticity model is shown to produce solutions that are both unstable and mesh-dependent.
Therefore, of the models considered, only the incrementally nonlinear model was capable of eliminating
this nonphysical instability. This work provides much needed direction for laboratory investigations of
the validity of incrementally nonlinear flow rules.

1. Introduction

An associated plasticity model is one for which the plastic strain rate tensor is proportional to the normal
to the yield surface. While associated models have been shown to lead to unique solutions to boundary
value problems [Hill 1958], several studies have demonstrated that associated flow rules are incompatible
with experimental data.

Specifically, Spitzig et al. [1976] showed that associated models over-predict the amount of plastic
dilatation in triaxial compression tests of metals. Lade et al. [1987] and Shen et al. [2012] found a
similar problem with associated flow rules for geologic materials. More recently, it has been shown that
nonassociated flow rules describe the anisotropic plastic flow of sheet metals better than associated flow
rules [Stoughton 2002; Cvitanic et al. 2008; Mohr et al. 2010; Taherizadeh et al. 2010]. Additionally,
Gao et al. [2011] have developed a plasticity model for aluminum 5083 and shown that, under a variety
of loading conditions, a nonassociated model is in closer agreement with experimental data than is an
associated model. However, several recent papers [Desmorat and Marull 2011; Dunand et al. 2012; Besse
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and Mohr 2012] have shown that a nonassociated flow rule is not necessary to describe the anisotropic
plasticity of rolled sheet metal if other plasticity features are included. Popov and Lagoudas [2007] and
Saint-Sulpice et al. [2009] found it necessary to use a nonassociated flow rule to describe the inelastic
behavior of shape memory alloys, but more recently Saleeb et al. [2011] have developed and validated a
shape memory alloy model utilizing an associated flow rule.

While these studies clearly represent a significant improvement upon more traditional metal plasticity
models, Paquet et al. [2011] and Rousselier et al. [2012] describe several phenomena relating to the
evolution of plastic anisotropy that are not well-described by even advanced macroscopic phenomeno-
logical plasticity models. Rousselier demonstrated that a model based on polycrystalline metal plasticity
is capable of describing these complex behaviors. As noted in this recent work, when the material
microstructure is accounted for, the yield surface can take on complex shapes, including the formation of
vertices. At a vertex in the yield surface, the plastic flow direction depends upon the direction of loading
and is therefore an irregular flow rule.

Many of these studies have demonstrated that certain nonassociated models are more compatible
with experimental data than are similar associated models. This may be attributed to the additional
mathematical flexibility of nonassociated models rather than to any physical arguments. This is well
illustrated by the recent microscopically-based models discussed above.

Despite the fact that nonassociated models often fit experimental data better, the adoption of a nonasso-
ciated model brings with it a host of possible problems. For example, nonassociated models do not satisfy
Drucker’s stability postulate [1950] for all loading directions. Of course, Drucker’s stability postulate
is merely a sufficient, but not necessary, condition for stability and uniqueness. As discussed in detail
below, nonassociated models have been shown to result in instability and a loss of uniqueness for certain
loading conditions.

A well-known loading condition that results in both the loss of uniqueness of solution and instability
with a nonassociated flow rule was discovered by Rudnicki and Rice [1975]. They showed that, under
certain loading directions, a nonassociated model could result in a localization instability even while the
material remained in the hardening regime. This localization instability has been shown to result in a loss
of uniqueness of solution for local rate-independent plasticity models. This instability and nonuniqueness
have been extensively studied over the years [Bažant 1976; de Borst et al. 1993; Dorgan 2006; Valanis
1998]. While the softening-like behavior of nonassociated models is consistent with experimental data,
the governing equations are nevertheless ill-posed with the occurrence of this behavior and must be
regularized in some way. The current leading regularization approaches appear to be nonlocal plasticity
and gradient plasticity.

A related form of instability and loss of uniqueness of solution related to nonassociated plastic flow
is the flutter instability [Bigoni 1995]. Whereas the localization instability occurs when a negative
eigenvalue of the constitutive operator arises, the flutter instability occurs when a complex eigenvalue
arises. For a more detailed discussion of the effect of nonassociated flow rules on the eigenvalues of the
constitutive operator, see [Brannon and Drugan 1993]

Another, and fundamentally different, source of instability and nonuniqueness caused by nonassoci-
ated plastic flow was first observed by Sandler and Rubin [1987]. They showed that with any degree
of nonassociativity there exist loading directions for which the wave speed in plastic loading exceeds
the wave speed in elastic unloading. This over-stiffening occurs any time the trial stress rate tensor
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has a positive inner product with the normal to the yield surface, but a negative inner product with the
plastic strain rate tensor. This region of stress space, which lies above the yield surface, but below the
plastic flow potential surface, will be herein referred to as the Sandler–Rubin wedge. Sandler and Rubin
showed that the existence of these so-called “fast plastic” waves causes a loss of uniqueness of solutions
and that solutions are admitted for which an infinitesimal stress perturbation can nonphysically grow in
amplitude and width as it propagates. This phenomenon is essentially equivalent to spontaneous motion
from a quiescent state, which can be construed as an implausible behavior for a passive material. Under
these conditions all of the eigenvalues of the plastic tangent stiffness tensor are real and positive, so this
phenomenon is not related to the localization or flutter instability previously discussed.

Nonetheless, the numerical manifestation of the ill-posedness caused by the Sandler–Rubin instability
is remarkably similar to that caused by localization. Specifically, when a local model is used to solve
a localization problem, the strain in the localization region becomes unbounded with mesh refinement.
For localization problems, the region of unbounded strain is stationary in a Lagrangian sense. For the
Sandler–Rubin instability, the region of unbounded strain lies at the peak of a propagating stress wave.
As the head and tail of the wave diverge because of the inversion in plastic wave speeds, the region of
unbounded strain expands linearly in time. In the one-dimensional problem considered in the companion
paper, the solution in this region of space was shown to be subject to only two constraints:

0≤ σ̇ (1)
and

CE < v < CP , (2)

where σ̇ is the axial component of the stress rate, CE is the elastic wave speed, v is the wave speed in
the region of nonuniqueness, and CP is the plastic wave speed.

In a pair of relatively recent articles on plastic stability, Stoughton and Yoon [2006; 2008] have
expressed some concerns about the range of validity of the Sandler–Rubin instability. In the second
of these articles they suggest that the Sandler–Rubin instability is permitted by only a very small and
simple subset of nonassociated plasticity models, and that any model with a nonconstant plastic wave
speed will not be subject to the problems identified by Sandler and Rubin. In the companion paper it was
shown via a numerical example that a model with nonlinear hardening, which produces a nonconstant
plastic wave speed, results in the same problems that result with linear hardening.

In light of both the loss of uniqueness of solution and the physically implausible behavior permitted
under the Sandler–Rubin instability, it seems that traditional nonassociated models must be rejected.
However, as discussed previously, associated models also must be rejected since they are incompatible
with experimental data. Clearly a resolution to this problem lies outside of traditional plasticity theories.
The purpose of this paper is to investigate several nontraditional theories to determine which, if any, of
these theories are capable of matching experimental data while at the same time eliminating the physically
implausible Sandler–Rubin instability and resulting in unique solutions.

In part I of our paper, the existence and characteristics of the Sandler–Rubin instability were illustrated
using both analytical and numerical solutions to a simple one-dimensional wave-propagation problem.
To illustrate the instability in the simplest possible context, the companion paper employed a rate-
independent, perfectly plastic, and nonlinear hardening model. In this paper we solve this same case
study problem with a variety of generalizations of this simple model.
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The case study problem of the companion paper is briefly described in Section 2. In Section 4, we
examine various generalizations of the simple plasticity model considered in the companion article. The
first of these generalizations discussed is a more detailed examination of hardening and softening than
was presented in the companion paper. The second reformulation considered is the adoption of an incre-
mentally nonlinear flow rule, which allows the plastic flow direction to change based on the incremental
loading direction. The third alternative theory considered is the adoption of rate-dependence. The final
reformulation of traditional plasticity theory considered here is an integral-type nonlocal plasticity theory.

2. Description of the case study problem from part I

In this section, a simple numerical case study problem is described that elicits the Sandler–Rubin insta-
bility. This case study problem, originally developed by Thomas Pučik, is described in greater detail in
the companion article. The case study problem consists of a semi-infinite elastic/plastic half-space as
shown in Figure 1. The axial component of the initial stress state σ ∗X is chosen to be −100 MPa, while
the lateral component, σ ∗Y = σ ∗Z , is chosen to be −17.55 MPa, where stresses are taken to be positive in
tension. The material is also assumed to be in a quiescent initial state. The linear Drucker–Prager yield
function used in this case study is

f =
√

J2+α I1− ko, (3)

where J2 =
1
2 S : S, S is the deviatoric stress tensor, I1 = Tr(σ ), and α and ko are material parameters

whose values are chosen to be 0.315 and 5.066 MPa respectively. With these parameters, and the chosen
initial stress state, the material is at incipient yield in its initial condition. The dilatation angle is chosen to
be zero, meaning that the plastic strain rate tensor is proportional to the deviatoric part of the stress tensor
and therefore has no volumetric part. Various generalizations of this simple model will be considered
and are discussed in detail below. This model was contrived to simplistically demonstrate the existence
and character of the instability. In what follows, various enhancements to this model are systematically
explored for the effect on the instability in this case study.

The surface traction at the free surface is initially −100 MPa, which places the material in equilibrium
in the initial state. A small perturbation is applied to the surface traction as shown in Figure 1. The
perturbation is characterized by the peak change in stress σo = 10 MPa, and the duration of the pulse
τ = 2 ms. Since the axial component of stress changes from −100 MPa to −90 MPa, this is a tensile
stress increment that reduces both the confining pressure and the magnitude of the stress deviator and
induces plastic flow. This loading increment is reversed by returning the axial component of the stress
tensor to its initial value in what can be shown to be an elastic recompression increment. This loading
sequence results in the triangular-shaped time-history of the perturbation shown in Figure 1, with the
front of the triangular pulse placing the material in a plastic loading state and the tail of the pulse placing
the material in an elastic unloading state. Here loading refers to an increment that induces plastic flow
and unloading refers to an increment that is purely elastic, even though the plastic loading increment
represents a decrease in the applied load.

This perturbation causes a longitudinal wave to propagate through the half-space. As shown in the
companion article, this loading condition places the trial stress rate in the Sandler–Rubin wedge and
results in a plastic wave speed that exceeds the elastic wave speed. In the companion article this case
study problem was shown to possess a two-parameter family of nonunique analytical solutions. The
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Figure 1. Geometry and loading for the case study problem.

problem was also solved numerically using the finite-element and material point methods. Figure 2
shows an example of the numerical solutions presented in the companion paper, which were found
using the Uintah material point method (MPM) code [de St. Germain et al. 2000; Sulsky et al. 1994;
Bardenhagen and Kober 2004], which is also used in the simulations presented in this paper.

As these solutions illustrate, the head of the wave (left-hand portion of the stress wave history) and
the tail of the wave (right-hand portion of the stress wave history) are diverging from each other due to
the plastic wave speed exceeding the elastic wave speed. This causes what is initially a single point at
the top of the triangular stress pulse to open up into a finite region. It is in this region that the solution
is nonunique. This nonuniqueness becomes apparent in analytical solutions by the presence of free pa-
rameters in the solution. In contrast, nonuniqueness can be much more subtle in numerical solutions. As
with the nonuniqueness that occurs in localization problems, the numerical manifestation of the Sandler–
Rubin instability occurs primarily though a mesh-dependency of the solution. This can be observed by
comparing the coarse resolution plot on the left-hand side of Figure 2 with the finer resolution on the
right-hand side of the same figure. At late times in the more resolved solution, secondary peaks in the
stress wave begin to form, which grow much more rapidly than the primary peak. As the mesh is further
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Figure 2. Stress histories at various locations throughout the problem domain using a
local plasticity model, no hardening, and a mesh resolution of 1x = 0.25 m (left) and
1x = 0.125 m (right). This result was found using the Uintah MPM code and has been
independently confirmed via analytical solutions and numerical solutions using a variety
of FEM codes, as described in the companion paper.
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refined, these secondary peaks begin to form at earlier and earlier times and also grow at an increasingly
rapid rate, with the result being that the numerical solution diverges with mesh refinement. The same
trend was observed using several commercial finite-element codes, including DYNA3D and ABAQUS,
though the formation of the secondary peaks began at a different mesh resolution with the FEM.

3. Directional stiffness

The concept of directional stiffness as developed by Runesson and Mroz [1989] is a convenient method
for studying the stiffness properties of a plasticity model. The directional stiffness Sε is defined so that

σ̇ε = Sε ε̇, (4)

where σ̇ε is the projection of the stress rate σ̇ onto the direction of ε̇. The directional stiffness ratio is
defined as the ratio of the plastic and elastic directional stiffness:

Rε =
Sε
Se
ε

=
ε̇ : T : ε̇

ε̇ : C : ε̇
, (5)

where Se
ε is the elastic directional stiffness, T is the fourth-order elastic-plastic tangent stiffness tensor,

and C is the fourth-order elastic tangent stiffness tensor. This quantity provides a scalar measure of the
stiffness of a plasticity model relative to the corresponding elastic stiffness for a given loading direction.
As shown in Figure 3, the loading direction is quantified by the loading angle θ , which is defined so that
it is zero when the strain rate tensor is tangent to the yield surface. Of the two tangent directions, θ is
measured from the directional tangent tensor having a negative trace (compressive).

The right-hand side of Figure 3 is a plot of the directional stiffness ratio for both associated and
nonassociated, perfectly plastic, linear Drucker–Prager models for 0≤ θ ≤ π .

As shown in the figure, the directional stiffness ratio for an associated model is always greater than
zero and less than one. However, with a nonassociated model, the directional stiffness ratio is negative
for some loading directions and greater than one for others. This results in the nonassociated model
exhibiting a softening-like behavior for certain loading directions, and an over-stiffening behavior for
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others. The softening-like behavior occurs when the plastic directional stiffness ratio is less than zero,
and corresponds to the onset of localization even while the material remains in the hardening regime
[Rudnicki and Rice 1975].

In contrast to the softening-like behavior, the over-stiffening behavior of nonassociated models has
seen much less study, and its effects are much more subtle. As discussed in Section 2, when the over-
stiffening behavior occurs, the plastic wave speed exceeds the elastic wave speed, resulting in a loss of
uniqueness of solution and the existence of a physically implausible instability. The loss of uniqueness
of solution itself is problematic from a practical standpoint as it can result in mesh-dependent numerical
solutions, or solutions that are very sensitive to small changes in the input parameters, as is the case with
localization problems. However, in contrast to the instability seen in localization problems, the Sandler–
Rubin instability is not physically plausible. Therefore, resolving the mesh-dependency arising from the
Sandler–Rubin instability is not a matter of only restoring the well-posedness, but rather the plasticity
model must be modified to preclude the existence of the instability.

Therefore, we draw a conclusion that a realistic plasticity model will have a directional stiffness ratio
that is less than zero for some loading directions (and therefore admits localization in the hardening
regime), but is never greater than one (and therefore does not admit the Sandler–Rubin instability). We
now examine various modifications to the elastic perfectly plastic model considered thus far to determine
which, if either, of these requisite properties each model exhibits.

4. Use of alternative theories

In what follows the case study problem is solved using the MPM with various modifications to the non-
hardening plasticity model considered in the companion article. Both isotropic hardening and softening
are considered, as well as three nontraditional plasticity model formulations. Each subsection describes
the model reformulation as well and its effect upon the existence and characteristics of the Sandler–Rubin
instability.

4.1. Hardening and softening. The companion paper considered only perfect plasticity and nonlinear
hardening models. In this section we examine in more detail the effect of hardening, and additionally
consider the effect of softening upon the Sandler–Rubin instability. Figure 4 shows the directional stiff-
ness ratio for the modified constitutive model, including both hardening and softening. As has been
pointed out by Runesson and Mroz [1989] and as witnessed by the increase in the minimum value of the
directional stiffness ratio with hardening shown in Figure 4, hardening serves to diminish the softening-
like behavior exhibited by nonassociated models. In fact, there exists a critical amount of hardening
necessary to eliminate the possibility of attaining a negative value for the plastic directional stiffness,
which in turn eliminates the possibility of localization. As would be expected, the figure shows that
strain softening serves to increase the softening behavior of a nonassociated model (the minimum value
of the directional stiffness ratio decreases with strain softening).

As shown in Figure 4, the maximum value of the directional stiffness ratio increases when the model
includes softening. This means that the spurious stiffening caused by nonassociated models is exacer-
bated by softening. Therefore, softening would be expected to exacerbate the Sandler–Rubin instability.
Hardening serves to slightly decrease the maximum value of the directional stiffness ratio. Therefore,
hardening would be expected to ameliorate the Sandler–Rubin instability.
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Figure 4. Directional stiffness ratio for a nonassociated model with softening, nonhard-
ening (perfect plasticity) and hardening.

Figure 5 shows numerical solutions to the case study problem with hardening and softening. For
reference, the perfect plasticity solution is also shown with dashed lines. As suggested by the increase in
the maximum value of the directional stiffness ratio with softening shown in Figure 4, the plastic wave
speed has increased as compared to the perfect plasticity solution. With this increase in plastic wave
speed with softening, the degree of instability has also increased. In contrast, the solution with hardening
shows a decrease in the plastic wave speed and a decrease in the degree of instability. It can be shown
that only as the hardening modulus approaches infinity does the plastic wave speed approach the elastic
wave speed. Therefore, in contrast to what was found with the localization instability, there is no critical
amount of hardening or softening that eliminates the Sandler–Rubin instability. As mentioned above, in
the companion paper it is shown that these same trends, along with the instability and nonuniqueness,
persist with nonlinear hardening as well.

4.2. Incrementally nonlinear plasticity. While a large body of evidence suggests that the use of an
associated flow rule is inappropriate for many materials [Spitzig et al. 1976; Lade et al. 1987], the
physically implausible instability illustrated above is inherent in all nonassociated flow rules. Since
both an associated and nonassociated flow rule seem to be at odds with experimental data, we ought to
question the validity of the assumptions upon which both of these flow rules rest.
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Figure 5. Stress histories for the numerical solution using hardening (left) and softening (right).
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One such assumption is the existence of a regular flow rule. A regular flow rule is defined as one
for which the direction of the plastic strain rate is independent of the direction of the strain rate itself.
Of the very few studies to investigate the validity of this assumption, most have cast considerable doubt
on the validity of a regular flow rule for general loading conditions [Anandarajah 1995; Tamagnini
et al. 2005; Nicot and Darve 2007]. As noted above, the recent work by Rousselier et al. [2012] in
polycrystalline metals plasticity, which can lead to an irregular flow rule, shows a significant improvement
over macroscopic phenomenological models that use a regular flow rule. In addition to microscopic
polycrystalline metals plasticity models, several macroscopic phenomenological incrementally nonlinear
flow rules have been proposed in the literature [Hashiguchi 1997; Bauer 1996; Gudehus 1996; Ito 1979;
Nicot and Darve 2007]. One of these, the “extended flow rule” (EFR) proposed by Hashiguchi [1997], is
investigated as a possible alternative to the use of a regular rule. This flow rule was chosen since it may
be easily incorporated within the basic framework of classical plasticity. The only difference is that the
direction of the plastic strain rate is permitted to change based on the direction of the strain rate tensor.
For this flow rule, the direction of the plastic strain rate M is given by

M = N̂‖ė∗‖+ Pvt ėv I + P∗t ė∗, (6)

where N̂ is the unit normal to the yield surface, ‖ : ‖ represents the Euclidean norm of its argument,
ė∗ is the deviatoric part of the strain rate tensor, ėv is the volumetric part of the strain rate tensor, I is
the identity tensor, and Pvt and P∗t are fitting parameters that control the degree to which the direction
of plastic strain rate will be influenced by the direction of the strain rate tensor. Taking Pvt and P∗t to be
zero would result in a regular, associated flow rule. By selecting nonzero values for one or both of these
parameters the constitutive model may be calibrated so that it accurately predicts the volumetric strain
observed in triaxial compression tests, while at the same time preventing the Sandler–Rubin instability
by precluding the plastic wave speed from exceeding the elastic wave speed for any loading direction.

This flow rule was implemented using the Drucker–Prager constitutive model used in the example
problem, with Pvt = 0.5 and P∗t = 0. With these values, a triaxial compression test will result in very little
volumetric plastic strain, as would be expected from a triaxial compression test on a rock-like material.
The directional stiffness ratio for this model, and a perfectly plastic Drucker–Prager yield function, is
shown on the left-hand side of Figure 6. For all loading directions, the directional stiffness ratio is less
than one, indicating that no spurious stiffening is possible with this flow rule. The right-hand portion
of this figure shows the stress histories for the case study problem with this flow rule. As expected by
the boundedness of the directional stiffness ratio, no instability is evident with this flow rule. In fact
the stress wave dissipates, rather than grows, as it propagates. Like a nonassociated flow rule, there are
loading directions for which the directional stiffness ratio is negative. This means that this flow rule and
choice of parameters will still admit localization for some loading directions. As mentioned above, the
ability to localize while in the hardening regime is a desirable feature of a plasticity model.

While the EFR has the desirable attributes of disallowing the Sandler–Rubin instability, being capable
of matching triaxial compression data and admitting the localization instability, such flow rules have
undergone relatively little validation. Since an incrementally nonlinear flow rule is capable of exactly
duplicating the triaxial compression response of a standard nonassociated model, triaxial compression
tests alone will not validate or invalidate the EFR. The experimental measurements necessary to validate
an incrementally nonlinear model are not straightforward. Additional data that measure the plastic strain
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Figure 6. Left: stress histories every 100 meters through the problem domain using the
extended flow rule (EFR) [Hashiguchi 1997] with Pv = 0.5. The wave rapidly dissipates
since the plastic wave speed is less than the elastic. Right: The directional stiffness with
the EFR for all axisymmetric directions. The stiffness is never greater than the elastic,
but the stiffness is negative for some directions.

increments resulting from a variety of loading directions would be necessary to determine if the EFR is
in fact valid. As discussed in our concluding remarks, such measurements may be critical to resolving
the problems discussed in this paper, but performing such tests introduces irreducible uncertainty in the
data. In the absence of such data, it would seem most prudent to choose a flow rule which disallows any
nonphysical instabilities and can be fit to existing data.

4.3. Rate-dependent plasticity. In this section, we consider the effect of rate dependency on the ex-
istence and characteristics of the Sandler–Rubin instability. In their original work, Sandler and Rubin
suggested that rate dependence might eliminate the nonphysical behavior caused by nonassociated plastic
flow. The context of their suggestion was a discussion of the impacts of the Sandler–Rubin instability
for quasistatic problems. The instability is inherently dynamic, but it is rational to demand that the
quasistatic solution be admissible only if it is stable under infinitesimal dynamic perturbations. The con-
clusion is that, if a nonassociated flow rule is inappropriate for dynamic problems involving infinitesimal
perturbations, then it also ought to be rejected for quasistatic problems. If rate dependence were shown
to be capable of eliminating the instability for dynamic problems, then there would be no concern in
using current rate-independent plasticity models for quasistatic problems.

With this motivation, the case study problem discussed above was solved using a rate-dependent
generalized Duvaut–Lions overstress model. The generalized Duvaut–Lions model is an “overstress”
model, meaning that, under high-rate loading, it allows the stress state to fall outside the yield surface.
The “overstress” is quantified by

σ over
= σ − σ qs, (7)

where σ qs is the corresponding quasistatic stress state. The strain rate ε̇ is additively decomposed into
elastic (ε̇e) and viscoplastic (ε̇vp) components:

ε̇ = ε̇e
+ ε̇vp. (8)

The elastic strain rate is defined to be the same as in rate-independent theory. The viscoplastic strain
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rate is governed by

ε̇vp
=

1
τmat

C−1
: σ over, (9)

where τmat is the plastic relaxation time, and C−1 is the inverse of the elastic tangent stiffness tensor
(elastic tangent compliance tensor). The basis for this type of model is that plastic deformation requires
a finite amount of time to develop. The time-scale associated with plastic deformation is quantified
by τmat. For a detailed description of this model see [Brannon 2007]. For rate-dependent models it is
convenient to use the nondimensional Deborah number (De) to describe the loading rate. The Deborah
number is defined as

De=
τmat

τload
, (10)

where τmat is the material relaxation time constant, and τload is a time-scale associated with the loading.
A large De indicates that the loading time-scale is short compared to the material relaxation time-scale,
which would produce an elasticity-dominated response. A small De indicates that the loading time-scale
is long compared to the material relaxation time-scale, which would produce a plasticity-dominated
response. In the limit as De→ 0, a viscoplastic material model would predict a material response similar
to a rate-independent model. In the limit as De→∞, a viscoplastic material model would predict
a response that is purely elastic. Whereas, at high De, the rate-dependency will cause a viscoplastic
material model to predict a more elastic-like response.

Figure 7 shows a series of plots of the stress history at various locations in the problem domain using
several values of De. As discussed above, for low De, the material behavior would be expected to be
similar to the rate-independent response. However, for this case study problem the solution is nonunique
across the peak of the wave. This fact allows the solution in this region to change dramatically with even
small changes in the material response. This is evident in the stress histories for De = 0.01 shown in
Figure 7. As would be expected, the head and tail of the wave are propagating with essentially the same
speed as with the rate-independent solution (dashed line). However, the numerical solution across the
peak of the wave is dramatically different than with the rate-independent model, and has become much
more unstable. Again, this should not be cause for concern since no unique solution exists for this region
of (x, t) space. As discussed in Section 2, the only constraints on the solution in this region are that the
stress rate be greater than or equal to zero, and that the wave speed be greater than the elastic wave speed
and less than the plastic wave speed. The numerical solution for De= 0.01 shown in Figure 7 satisfies
both of these constraints.

When the relaxation time is nearly the same as the loading rate, the material behavior would be
expected to become more elastic. This can be seen in the stress history plots for De = 1 shown in
Figure 7. For this solution the head and tail of the wave are diverging at a much lower rate, and are
propagating with a wave speed that lies between the elastic and plastic wave speeds. Because the actual
stress state can transiently lie outside the yield surface with the viscoplasticity formulation used, the
viscoplastic strain rate can be nonzero even when the quasistatic stress state is within the yield surface.
After the quasistatic stress state enters the yield surface, the overstress will exponentially decay to zero
so that the actual stress state will approach the quasistatic stress state as it moves to an elastic state. The
rate at which this approach occurs depends upon the relaxation time. Therefore, when the relaxation
time is of the same order as the loading rate, a large part of the tail of the wave may still be undergoing
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Figure 7. Stress histories for a Duvaut–Lions viscoplasticity model for De= 0.01 (top
left), De= 1 (top right), De= 5 (bottom left), and De= 10 (bottom right).

viscoplastic deformation, even though the quasistatic stress state is within the yield surface. This is
why the tail of the wave becomes increasingly dispersed as De increases, as seen in Figure 7. This also
causes an increasing portion of the tail of the wave to be in a viscoplastic state as De increases. This also
reduces the rate at which the head and tail of the wave diverge at high De, thereby decreasing the degree
of instability in the solution. Also, for the mesh resolutions considered (1x = 2 m to 1x = 0.125 m), the
numerical solutions for De> 5 seemed to converge to a unique solution, although the instability remains.

4.4. Nonlocal plasticity. As was mentioned in Section 1, there are two known instabilities that may arise
from nonassociated plasticity models: a localization instability and the Sandler–Rubin instability. As was
mentioned previously, despite the fact that these two instabilities arise from essentially opposite effects
(softening-like behavior versus excessive stiffening behavior), their numerical manifestations have some
similarities. With both the localization and the Sandler–Rubin instability the strain becomes unbounded
inside a discrete region of space. In both cases the governing equations become ill-posed.

In the case of the localization, the instability is an actual phenomenon that a realistic model ought
to admit. Nonetheless, to achieve unique solutions to localization problems, some modification of the
model is required to regularize the governing equations. Two commonly used approaches to regulariz-
ing localization problems are nonlocal plasticity and gradient plasticity. Both of these modifications to
traditional plasticity theory cause wave propagation to become dispersive, which means that waves of
different frequencies propagate at different velocities. Dispersive wave propagation behavior has been
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shown to be critical to allowing these types of models to lead to mesh-independent numerical solutions
to localization problems [Sluys et al. 1993; Di Luzio and Bažant 2005].

In this section, we investigate the effect of nonlocal plasticity and the resulting dispersive wave propa-
gation behavior on the Sandler–Rubin instability. This is done by solving our case study problem using an
integral-type overlocal plasticity model as described by Strömberg and Ristinmaa [1996]. An overlocal
model includes both local hardening/softening and nonlocal hardening/softening. The overlocal Drucker–
Prager yield function is given by

f =
√

J2+α I1− ko− (1−m)η+mζ, (11)

where η is the local hardening/softening function, ζ is the nonlocal hardening/softening function, and
m is the overlocal parameter. For m = 0, a purely local model is obtained, and for m = 1 a purely
nonlocal model is obtained. As discussed by both Strömberg and Ristinmaa [1996] and Di Luzio and
Bažant [2005], the best localization limiting properties are obtained with the overlocal choice, m > 1. In
this paper we use m = 2. The hardening/softening functions evolve according to

η̇(x)= hλ̇(x) (12)

and

ζ̇ (x)=
h

Vα

∫
�

α(x− s)λ̇(s) dV, (13)

where x is the position vector of a given material particle, h is the hardening/softening modulus (here
taken to be a constant material parameter), Vα =

∫
�
α(s) dV , and α(x) is the nonlocal weighting function,

here chosen to be the Gaussian distribution function given by

α(x)= Exp
[
(−k‖x‖/ l)2

]
, (14)

where k = (6
√
π)1/3, and l is the nonlocal length scale. With the nonlocal term, the yield function at

each material point becomes coupled with all material points within the support of α(x). To solve this
coupled set of equations, a new fixed-point iteration scheme (to be documented in a separate article) was
developed and implemented into the MPM solution procedure.

A perturbation analysis technique described by Di Luzio and Bažant [2005], was adapted to solve for
the frequency-dependent wave propagation velocity for the uniaxial strain wave propagation problem in
this paper. The left-hand side of Figure 8 shows the resulting wave propagation velocity versus frequency
for the nonlocal Drucker–Prager model. Unlike the dispersion relations for localization problems reported
in the literature which focused on low values of the directional stiffness ratio, with the overlocal Drucker
Prager model at high directional stiffness ratios no localization occurs. Hence there is no critical wave
frequency at which the propagation speed is zero. This is due to the over-stiffening behavior of the
nonassociated model for the loading directions involved in this problem. The wave propagation velocity
is bounded by the purely local softening wave speed (upper bound) and by the purely local wave speed
(lower bound). This is because with low frequencies (and therefore small gradients) the nonlocal average
of the plastic strain approaches the local value, so the nonlocal model results in little change as compared
to a purely local softening model. For high frequency waves the nonlocal average for a material particle
will be much less than the local value since neighboring “elastic” particles, whose plastic strain rate



162 JEFFREY BURGHARDT AND REBECCA M. BRANNON

overlocal softening
local softening

0m
100m 200m 300m 400m

500m
600m

overlocal plastic

elastic

local hardening

-5

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

∆
σ
x

(
M

P
a
)

time (s)

3.75

3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

4.25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
frequency (Hz)

w
a
v
e

s
p
e
e
d

(
k
m

/
s
)

Figure 8. A plot of the frequency-dependent wave propagation velocity for the case
study problem with an overlocal plasticity model, with the elastic and local hardening
wave speeds shown for reference (left). Stress histories using an overlocal plasticity
model with a nonlocal length scale of 1 m and a mesh resolution of 0.125 m (right).

tensor is zero, are included in the average. Therefore, for high frequencies, the local term of the overlocal
hardening/softening dominates, and the response approaches that of a local hardening model.

The case study was solved using a nonlocal length scale of l = 1.0 m. The internal length scale is
proportional to the length scale associated with a critical material microstructure. The critical material
length scale depends upon the length scale associated with the problem geometry and the wave length of
the solution. This case study problem is meant to represent a stress wave propagating through geologic
strata. For the length scales involved and the frequency of the solution, the critical material structure
driving the nonlocal length scale would likely be the thickness of bedding planes or similar geologic
structures. With this in mind a nonlocal length scale of one meter would be reasonable.

The right-hand side of Figure 8 shows the stress histories at various locations in the problem domain
using the overlocal model discussed above. For reference, the local softening solution is shown with a
dashed line. Consistent with the dispersion plot in the same figure, the overlocal model has resulted in
a reduction in the plastic wave speed relative to the local softening solution; nevertheless, the instability
and nonuniqueness persist. As can be seen by the horizontal separation of the curves in Figure 8, the
difference in arrival time is greater for the secondary pulse that it is for the primary pulse. This is due to
the higher frequency of the secondary pulse, which, according to the dispersion relation for this problem,
results in a decrease in wave speed as compared to lower frequency waves.

From the dispersion relation and the overlocal case study solution, we conclude that a nonlocal plas-
ticity model eliminates neither the Sandler–Rubin instability nor the resulting ill-posedness.

5. Concluding remarks

Of the models considered, only Hashiguchi’s incrementally nonlinear extended flow rule (EFR) [Hashiguchi
1997] eliminated the Sandler–Rubin instability. The viscoplastic model considered here resulted in
mesh-independent solutions for high loading rates, but the nonphysical instability was present for all
loading rates considered. Both the instability and the mesh dependency of the numerical solution were
observed with both hardening and softening. Hardening was shown to diminish, but not eliminate, the
instability, while softening tended to exacerbate it. The nonlocal plasticity solutions were very similar
to the local plasticity solutions. Therefore, of the models considered here, the incrementally nonlinear
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flow rule is the only one that may eliminate the instability while maintaining the desirable aspects of a
nonassociated model.

As discussed in Section 4.2, Hashiguchi’s EFR model introduces new material parameters that must
be calibrated to a material of interest. To choose these parameters for a given material, the plastic strain
increment must be measured for several loading directions. To measure the plastic strain increments,
laboratory tests much include unloading increments. Furthermore, to measure these increments at the
same material state for a different loading direction requires nonproportional loading. A limited amount
of such data is available in the literature, and collecting such data is complicated by the loading-history
dependent nature of plastic loading [Brannon et al. 2009].

Measuring the components of any tensor (in our case the tangent stiffness) requires measuring the
response to more than one loading direction. In measuring the plastic strain increment for one loading
direction, however, the material is permanently altered, making it impossible to know how the material
would have responded to a different loading direction from the same initial state. Any further loading
of the material with a loading increment in a different direction begins at a different material state,
therefore it is impossible to measure the tangent stiffness in the laboratory with certainty. Stoughton
[2002, p. 689] pointed out a few additional problems with making such measurements. Specifically, he
mentioned that many materials of interest do not exhibit a “sharp” yield point, but instead the material
gradually transitions from elastic to elastic/plastic deformation. This makes detecting the onset of yield
difficult. Several techniques have been used to ameliorate the these problem, each with its own drawbacks
[Anandarajah 1995; Tamagnini et al. 2005; Brannon et al. 2009].

The flow rule validation studies from the sheet metal forming community [Mohr et al. 2010; Dunand
and Mohr 2011; Taherizadeh et al. 2010] have performed a best-fit parametrization of associated and
nonassociated regular flow rule models to a subset of their experimental data. The models were then
used to generate predictions for other experimental data that were not used for model calibration. As
mentioned previously, these studies have shown that a nonassociated flow rule is better able to match the
experimental data. Although these tests were performed for a wide variety of loading directions, none of
these tests explicitly measured the plastic strain increments by including unloading increments. These
and other tests already mentioned do provide a compelling case against an associated flow rule, but they
do not provide any evidence for or against the validity of a regular flow rule.

To our knowledge, no study has conclusively validated or invalidated the existence of a regular flow
rule. Therefore, the validity of the incrementally nonlinear approach is a critical topic for future ex-
perimental work. It is suggested that future validation efforts include incrementally nonlinear models
as a possible alternative to traditional regular flow rules. Until such experimental evidence becomes
available, it seems prudent to choose a model that fits known data while at the same time disallowing the
nonphysical instabilities evident in traditional nonassociated plasticity. Therefore, analysts may consider
adopting an incrementally nonlinear approach if an analysis involves loading paths in the directions
which could potentially excite the Sandler–Rubin instability.
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